GUJARAT TECHNOLOGICAL UNIVERSITY

SUBJECT NAME: DATA MINIMG and BUSINESS INTELLIGENCE SUBJECT CODE: 2170715 B.E. 7th SEMESTER

Objective of the Course:

The main objective to give the course

- To understand the basics of data mining and business intelligence
- To understand the basics of data warehousing
- To understand the use of the various data mining techniques, tasks and tools
- To understand big data and hadoop framework

Outline of the course:

Sr.	Title of the unit	Minimum number of			
No.		hours			
1.	Introduction to Data Warehousing and Business	05			
	Intelligence				
2.	The Architecture of BI and DW	07			
3.	Introduction to data mining (DM)	04			
4.	Data Pre-processing	07			
5.	Concept Description & Association Rule Mining	07			
6.	Classification and Prediction	07			
7.	Data Mining for Business Intelligence Applications	04			
8.	Advance topics	04			

Total hours (Theory): 45

Total hours (Lab): 30

Total hours: 75

Teaching and Examination Scheme:

Teaching Scheme C			Credits	Examination Marks						
				Theory Marks		Practical Marks			Total	
L	T	P	C	ESE	PA (M)	ESE (V)		PA (I)		Marks
				(E)	PA (M)	ESE	OEP	PA	RP	
03	00	02	05	70	30	20	10	10	10	150

Detailed Syllabus:

1. Overview and concepts Data Warehousing and Business 05 Hours 12% Intelligence

Why reporting and Analysing data, Raw data to valuable information-Lifecycle of Data - What is Business Intelligence - BI and DW in today's perspective - What is data warehousing - The building Blocks: Defining Features - Data warehouses and data 1marts - Overview of the components - Metadata in the data warehouse - Need for data warehousing - Basic elements of data warehousing - trends in data warehousing.

2. The Architecture of BI and DW

07 Hours 16%

BI and DW architectures and its types - Relation between BI and DW - OLAP (Online analytical processing) definitions - Difference between OLAP and OLTP - Dimensional analysis - What are cubes? Drill-down and roll-up - slice and dice or rotation - OLAP models - ROLAP versus MOLAP - defining schemas: Stars, snowflakes and fact constellations

3. Introduction to data mining (DM)

04 Hours 08%

Motivation for Data Mining - Data Mining-Definition and Functionalities - Classification of DM Systems - DM task primitives - Integration of a Data Mining system with a Database or a Data Warehouse - Issues in DM - KDD Process

4. Data Pre-processing

07 Hours 16%

Why to pre-process data? - Data cleaning: Missing Values, Noisy Data - Data Integration and transformation - Data Reduction: Data cube aggregation, Dimensionality reduction - Data Compression - Numerosity Reduction - Data Mining Primitives - Languages and System Architectures: Task relevant data - Kind of Knowledge to be mined - Discretization and Concept Hierarchy.

5. Concept Description and Association Rule Mining

07 Hours 16%

What is concept description? - Data Generalization and summarization-based characterization - Attribute relevance - class comparisons Association Rule Mining: Market basket analysis - basic

concepts - Finding frequent item sets: Apriori algorithm - generating rules - Improved Apriori algorithm - Incremental ARM - Associative Classification - Rule Mining

6. 07 Hours 16%

Classification and Prediction

What is classification and prediction? – Issues regarding Classification and prediction:

- Classification methods: Decision tree, Bayesian Classification,
 Rule based, CART, Neural Network
- Prediction methods: Linear and nonlinear regression, Logistic Regression

Introduction of tools such as DB Miner /WEKA/DTREG DM Tools

7. Data Mining for Business Intelligence Applications

04 Hours 08%

Data mining for business Applications like Balanced Scorecard, Fraud Detection, Clickstream Mining, Market Segmentation, retail industry, telecommunications industry, banking & finance and CRM etc.,

- Data Analytics Life Cycle: Introduction to Big data Business Analytics - State of the practice in analytics role of data scientists
- Key roles for successful analytic project Main phases of life cycle - Developing core deliverables for stakeholders.

8. Advance topics 04 Hours 08%

Introduction and basic concepts of following topics.

Clustering, Spatial mining, web mining, text mining,

Big Data: Introduction to big data: distributed file system – Big Data and its importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications. Algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce. Introduction to Hadoop architecture: Hadoop Architecture, Hadoop Storage: HDFS, Common Hadoop Shell commands, Anatomy of File Write and Read., NameNode, Secondary NameNode, and DataNode, Hadoop MapReduce paradigm, Map and Reduce tasks, Job, Task trackers - Cluster

Setup – SSH & Hadoop Configuration – HDFS Administering – Monitoring & Maintenance.

Instructional Method and Pedagogy:

- Lectures will be taken in class room with the use of multi-media presentations and black board – mix of both.
- Assignments based on above course content will be given to the students at the end of each chapter. Each assignment contains minimum 5 questions.
- Quizzes and Surprise tests will be conducted for testing the knowledge of students for particular topic.

Student Learning Outcomes:

By taking this course,

- Students will be able to use mining tool.
- Students are able to perform various data warehouse related exercise.

Recommended Study Material:

♦ Text Books:

- 1. J. Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- 2. M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley &Sons Inc.

A Reference Books:

- 1. Paulraj Ponnian, "Data Warehousing Fundamentals", John Willey.
- 2. M. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education.
- 3. G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", Wiley India.