FACULTY OF ENGINEERING & TECHNOLOGY

First Year Bachelor of Engineering

Course Code: 102001202

Course Title: BASIC MECHANICAL ENGINEERING

Type of Course: Engineering Science Course

Course Objectives: The course is intended to make students familiar with the basic concepts of Mechanical systems and engineering and enable them to carry out elementary analysis of mechanical systems and interpret the outcomes.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)			ssing)		
Lecture Tutorial		Dwastisal	Credits	Inte	rnal	External		Total	
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total	
3	0	2	4	30 / 9	20/6	70 / 21	30/9	150 / 45	

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction: Prime movers and its types, Concept of Force, Pressure, Energy, Work,	04
	Power, System, Heat, Temperature, Specific heat, Change of state, Path, Process,	
	Cycle, Internal energy, Enthalpy, Statements of Zeroth law and First law	
2	Properties of gases: Boyle's law, Charles's law, Gay-Lussac's law, Avogadro's law,	06
	Combined gas law, Gas constant, Relation between Cp and Cv, Various non-flow	
	processes like constant volume process, constant pressure process, Isothermal	
	process, Adiabatic process, Polytropic process	
3	Steam Generation: Steam formation, Types of steam, Enthalpy, Specific volume,	06
	Internal energy and dryness fraction of steam, use of steam tables, Introduction to	
	boilers, boiler classification, Babcock and Wilcox boiler	
4	Heat Engines: Heat engine cycle and Heat engine, working substances, Classification	07
	of heat engines, Description and thermal efficiency of Carnot; Rankine; Otto cycle	
	and Diesel cycles	
5	Internal Combustion Engines: Introduction, Classification, Engine details, four-	06
	stroke/ two-stroke cycle Petrol/Diesel engines, Indicated power, Brake Power,	
	Efficiencies	
6	Pumps: Types and operation of Reciprocating, Rotary and Centrifugal pumps,	04
	Priming	
7	Air Compressors: Types and operation of Reciprocating and Rotary air compressors	04
8	Refrigeration & Air Conditioning: Refrigerant, Vapor compression refrigeration	04
	system, Domestic Refrigerator, Window and split air conditioners	
9	Transmission of Motion and Power: Shaft and axle, Different arrangement and	04
	applications of Belt drive; Chain drive; Friction drive and Gear drive	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

2 1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,		
R	U	A	N	E	С	N: Analyze; E: Evaluate; C: Create	
20%	40%	20%	15%	05%	0 %		

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Basic Mechanical Engineering by Pravin Kumar, Pearson Publications
2	Engineering Thermodynamics by Rayner Joel
3	Thermal Science and Engineering by Dr. D.S. Kumar, S.K. Kataria & sons Publications
4	Fundamental of Mechanical Engineering by G.S. Sawhney, PHI Publications
5	Elements of Mechanical Engineering by Sadhu Singh S. Chand Publication
6	Elements of Mechanical Engineering by P.S.Desai and S.B.Soni

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage	
CO-1	Learn fundamental concepts and terms concerning mechanical	20	
	engineering		
CO-2	Learn properties of ideal gases and steam	25	
CO-3	Learn various energy conversion cycles and their analysis 45		
CO-4	Learn various power transmission elements and their applications	10	

List of Practicals / Tutorials:

1	Study of different configurations of steam generators			
2	Study of different boiler mountings and accessories			
3	Study of different calorimeters - measurement of steam quality			
4	Study of different I C engines			
5	Study of different types of pumps.			
6	Study of different types of compressors			
7	Study of refrigeration and air Conditioning systems			
8	Study of elements of motion transmission and power transmission			
9	Study of different couplings, clutches and brakes			
10	Performance test on four stroke diesel engine			

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Oct-20		
Next Review on (Month-Year):	Apr-22		