

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme: Bachelor of Technology (Information Technology)

Semester: VII

Course Code: 202047804

Course Title: Deep Learning and Applications

Course Group: Professional Elective Course - IV

Course Objectives: This course aims to provide the fundamental knowledge of the theoretical foundations, algorithms, and methodologies of Neural Network. It covers design and development of applications using various deep learning methods such as convolutional neural networks, recurrent neural networks, and other advancements.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Lecture Tutorial P		Dragtical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	0	2	4	50/18	50/17	25/9	25/9	150/53

^{*} **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:

Sr.	Contents	Hours		
1	Introduction to Deep Learning: Introduction, Machine learning vs. deep learning, applications of deep learning, Feature engineering, Deep learning frameworks, Bias, Variance, Regularizations			
2	Review of Neural Networks: Review of Neural network basics – architectures, activation functions, parameters, Single layer and Multilayer Perceptron, Backpropagation learning			
3	Convolutional Neural Networks (CNNs): Introduction to CNNs – convolution, pooling, Deep CNNs, Different deep CNN architectures – LeNet, AlexNet, VGG, InceptionV3, etc., Training a CNNs: weights initialization, batch normalization, hyperparameter optimization, Understanding and visualizing CNNs, Transfer learning, CNN applications	10		
4	Recurrent Neural Networks (RNNs): Introduction to RNN, Sequence modeling using RNNs, Long Short-Term Memory (LSTM), Bidirectional LSTMs, Bidirectional RNNs, Gated Recurrent Units, Autoencoders	8		

5	Generative Models:	7
	Restrictive Boltzmann Machines (RBMs), Belief nets, Deep belief nets, Generative	
Adversarial Networks (GAN), Applications of Generative models		
6	Applications:	5
	Applications in computer vision, speech processing, and natural language processing Image Classifications, Object detections, etc.	
	Total	40

List of Practicals / Tutorials:

1	Study of TensorFlow Framework.			
2	Write the code to read a dataset using the appropriate python library and display it.			
3	Implementation of multi-layer network and study network parameters for any application.			
4	Implement Digit Recognition for MNIST dataset using pretrained models.			
5	Implement CNN architecture for any given classification task.			
6	Perform object recognition using CNN Model.			
7	Implement LSTM model and test it for a given application/dataset.			
8	Implement GRU model and test it for a given application/dataset			
9	Implement autoencoder for any application.			
10	Study of Generative models and applications.			
11	Mini Project (Implementation of any application using deep learning model)			

Reference Books:

1	Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press, 2017.					
2	Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media,					
2017						
3	3 Umberto Michelucci "Applied Deep Learning. A Case-based Approach to Understanding					
	Deep Neural Networks" Apress, 2018.					
4	Aurelion Geron, "Hands-on machine learning with Scikit-learn Keras and TensorFlow"					
	O'Reilley publications					
5	Francois Chollet, "Deep Learning with Python" Manning.					
6	Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine					
	Intelligence Algorithms", O'Reilly publications.					

Sup	Supplementary learning Material:					
1	NPTEL - Swayam Courses					
	https://nptel.ac.in/courses/106/106/106106184/					
2	Coursera courses					
	https://in.coursera.org/specializations/deep-learning					
	https://in.coursera.org/learn/introduction-to-deep-learning-boulder					
	https://in.coursera.org/specializations/tensorflow2-deeplearning#courses					

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster Presentation
- Industrial/ Field visits
- Course Projects

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

1	Distribution of Theory Marks in %						R: Remembering; U: Understanding; A: Applying;
	R	U	A	N	E	C	N: Analyzing; E: Evaluating; C: Creating
	15%	25%	25%	15%	20%		

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Realize characteristics of deep learning models that are useful to solve real-world problems.	10
CO-2	Understand different models to create application using deep nets.	25
CO-3	Identify and apply appropriate deep learning algorithms for analyzing the data for variety of problems.	25
CO-4	Experiment the various challenges involved in designing deep learning models.	20
CO-5	Apply deep learning algorithms for various applications such as	20
	Computer vision, Speech processing, NLP and other.	

Curriculum Revision:					
Version:	2.0				
Drafted on (Month-Year):	June -2022				
Last Reviewed on (Month-Year):	- -				
Next Review on (Month-Year):	June-2025				