

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme: Bachelor of Technology (Information Technology)

Semester: V

Course Code: 202045601

Course Title: Design and Analysis of Algorithms

Course Group: Professional Core Course

Course Objectives: This course provides the fundamental knowledge to design and analyse the algorithms. Different algorithm paradigms will be explored. Students will learn how to measure performance of various algorithms.

Teaching & Examination Scheme:

	Conta	ct hours pe	r week	Course	Examination Marks (Maximum / Pas				ing)
	Locturo	Tutorial	Practical	Course Credits	Theory		J/V/P*		Total
	Lecture				Internal	External	Internal	External	Total
	4	0	2	5	50 / 18	50 / 17	25/9	25/9	150 / 53

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours						
1	Basics of Algorithms and Mathematics: Definition of Algorithm, Importance of							
	design and analysis of algorithms, Mathematics for Algorithmic Sets, Functions and							
	Relations, Quantifiers, Vectors and Matrices, simple series, basic combinations.							
	Analysis of Algorithm: Time complexity, Space complexity, Analysis: average, best							
	and worst case, Asymptotic notations, Limit rules, Conditional asymptotic							
	notations, Analyzing generalize algorithm with control structures: "for", "while"							
	and "repeat" loops. Amortized analysis.							
2	Methods to Solve Recurrence: Substitution, homogeneous Recurrences,	11						
	Inhomogeneous Recurrences, Change of Variable, Master Theorem, Range							
	Transformations and Recursion Tree. Sorting Algorithms with analysis: Bubble							
	sort, Selection sort, Insertion sort, Heap sort. Sorting in linear time: Bucket sort							
	and Counting sort.							
3	Divide and Conquer Algorithms: Introduction, multiplying large integers							
	problem, Problem solving using divide conquer algorithm - Binary search, Merge							
	sort and Quick sort algorithms with analysis, Max-Min problem, Matrix							
	multiplication, Exponential.							

4	Greedy Algorithms: General Characteristics of greedy algorithms, Problem solving	07				
	using Greedy Algorithm- Making change problem, Minimum Spanning trees					
	(Kruskal's algorithm, Prim's algorithm), Graphs: Single Source Shortest paths					
	(Dijkstra's algorithm, The Bellman-Ford algorithm), The Knapsack Problem, Jo					
	Scheduling Problem, Huffman code.					
5	Dynamic Programming: Introduction, Comparison with Greedy algorithm and	08				
1=	divide & conquer algorithm, Problem solving using dynamic programming -					
	Calculating the binomial coefficient, The principle of optimality, Making change					
	problem, The knapsack problem, All points shortest path (Floyd's algorithm),					
	Chained matrix multiplication, longest common subsequence.					
6						
	First Search, Breath First Search. Backtracking: Introduction, The Eight queen's					
	problem, The knapsack problem. Branch and Bound : The assignment problem,					
	The knapsack problem. Minimax principle.					
7	String Matching: Introduction, The naive string-matching algorithm, The Rabin-	04				
	Karp algorithm, The Knuth-Morris-Pratt algorithm.					
8	1 9					
7	Completeness Problem, NP-Hard Problems, Travelling Salesman problem,					
	Hamiltonian problem.					
	Total	52				

List of Practicals / Tutorials:

DISC 0	ast of Fracticals / Futorials.						
1	Write a program to sort given elements of an array in ascending order using bubble sort. Analyze the time complexity for best, average and worst case.						
2	Write a program to sort given elements of an array in ascending order using selection sort.						
	Analyze the time complexity for best, average and worst case.						
3	Write a program to implement heap sort.						
4	Write a program to search given element from an array using sequential search and binary						
	search. Analyze the time complexity for best, average and worst case.						
5	Write a program to sort given elements of an array in ascending order using merge sort.						
	Analyze the time complexity for best, average and worst case.						
6	Write a program to sort given elements of an array in ascending order using quick sort.						
	Analyze the time complexity for best, average and worst case.						
7	Write a program to implement making change problem using greedy algorithm.						
8	Write a program to implement the knapsack problem using greedy algorithm.						
9	Write a program to implement making change problem using dynamic programming.						
10	Write a program to implement the knapsack problem using dynamic programming.						
11	Write a program to implement Floyd's algorithm for finding shortest path using dynamic						
	programming.						
12	Write a program to implement chained matrix multiplication using dynamic programming.						
13	Write a program to implement longest common subsequence using dynamic programming.						

Reference Books:

1 Fundamental of Algorithmics by Gills Brassard and Paul Bratley, PHI.	
2	Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and
b	Clifford Stein, PHI.

3	Fundamentals of Computer Algorithms by Ellis Horowitz, Sartaj Sahni and Sangutheva
	Rajasekharan, Galgotia.

4	Design and Ana	lysis of Algorithms b	by Dave and Dave, Pearson.
---	----------------	-----------------------	----------------------------

Sup	Supplementary learning Material:					
1	Lecture Notes					
2	NPTEL - Swayam Courses					

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster Presentation
- Industrial/ Field visits
- Course Projects

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				arks in	R: Remembering; U: Understanding;	
R	U	A	N	E	7 C	A : Applying; N : Analyzing; E : Evaluating;
10%	30%	10%	20%	20%	10%	C: Creating

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage			
CO-1	To study the asymptotic performance of algorithms.	20			
CO-2	Apply various complexity measures and find out performance of the				
	algorithm through divide and conquer like searching and sorting.				
CO-3	To generate optimal solutions by applying various Greedy and Dynamic				
	algorithms.				
CO-4	To apply fundamental algorithms to model engineering problem solving	20			
17	using various graph methods or using suitable data structures.				

Curriculum Revision:						
Version:	2.0					
Drafted on (Month-Year):	June-2022					
Last Reviewed on (Month-Year):	-					
Next Review on (Month-Year):	June-2025					