FACULTY OF ENGINEERING \& TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme:	Bachelor of Technology (Information Technology)
Semester:	II
Course Code:	202000211
Course Title:	Linear Algebra, Vector Calculus and ODE
Course Group:	Basic Science Courses

Course Objectives: The course is intended to develop computational proficiency involving procedures in Matrices, Linear algebra, Vector Calculus and Differential Calculus which are useful to all engineering disciplines.

Teaching \& Examination Scheme:

Contact hours per week			Course Credits	Examination Marks (Maximum / Passing)				
Lecture	Tutorial	Practical		Theory		J/V/P*		Total
				Internal	External	Internal	External	
3	2	0	4	$50 / 18$	$50 / 17$	25/9	25/9	150 / 53

*J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
$\mathbf{1}$	Applications of Matrices: Matrices and Elementary Row Operations, Echelon and Reduced Row Echelon forms of a Matrix, Solutions of System of Nonhomogeneous and Homogeneous Linear Equations: Gaussian Elimination and Gauss- Jordan Method, Inverse of a Matrix by Gauss-Jordan Elimination Method, Rank of a Matrix, Eigenvalues and Eigenvectors of a Matrix, Caley-Hamilton Theorem, Diagonalization	$\mathbf{1 0}$
$\mathbf{2}$	Linear Algebra: Vector Spaces, Subspaces of a Vector Space, Linear Independence and Dependence of Vectors, Span of a Set of Vectors, Basis and Dimension	$\mathbf{0 8}$
$\mathbf{3}$	Vector Calculus: Vector and Scalar Functions and Fields, Derivatives, Gradient of a Scalar Field, Directional Derivative, Divergence of a Vector Field, Curl of a Vector Field, Line Integrals, Line Integrals Independent of Path, Green's Theorem in the Plane (Without Proof), Surface Integrals, Divergence Theorem of Gauss (Without Proof), Stoke's Theorem (Without Proof)	$\mathbf{1 2}$

UNIVERSITY
Aegis: Charutar Vidya Mandal (Estd.1945)

$\mathbf{4}$	Differential Equations of First Order: Bernoulli's Equation, Exact Differential Equations, Equations Reducible to Exact Equations, Clairaut's Equation	$\mathbf{0 5}$
$\mathbf{5}$	Higher Order Ordinary Differential Equations: Linear Differential Equations with Constant Coefficients, Inverse Operator, Rules for Finding Particular Integral when X=eax, sin(ax + b), cos(ax+b), xm, eaxV, V being a function of x. Method of Variation of Parameters, Method of Undetermined Coefficients, Euler - Cauchy differential equations, Legender's Linear Equation$\quad \mathbf{1 2}$	

List of Practicals / Tutorials:

$\mathbf{1}$	System of Linear Equations- Non-Homogeneous and Homogeneous
$\mathbf{2}$	Rank of a matrix and inverse of a matrix by Gauss Jordan Method
$\mathbf{3}$	Eigen Values and Eigen Vectors. Cayley's Hamilton Theorem and it's applications
$\mathbf{4}$	Diagonalization of a matrix.
$\mathbf{5}$	Vector Spaces and Sub Spaces
$\mathbf{6}$	Linear independence and linear independence. Span of a vector space and Basis, $\mathbf{7}$ Dimension
$\mathbf{8}$	Gradient, directional derivative, divergence, curl
$\mathbf{9}$	First Order differential equations- Bernoulli's Equation, Exact, Clairaut's
$\mathbf{1 0}$	Higher order differential equations with constant coefficients having standard functions as X given in the syllabus
$\mathbf{1 1}$	Method of Variation of Parameters, Method of Undetermined Coefficients, Legender's Linear Equation

Reference Books:

$\mathbf{1}$	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Student Edition
$\mathbf{2}$	Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers
$\mathbf{3}$	Engineering Mathematics Vol II S S Sastry, Prentice Hall of India
$\mathbf{4}$	Elementary Linear Algebra Howard Anton, John Wiley \& Sons
$\mathbf{5}$	Introduction to Engineering Mathematics- Vol II H K Dass, S Chand Publication

Supplementary learning Material:

$\mathbf{1}$	Lecture Note	
$\mathbf{2}$	NPTEL Video Lectures Matrices and Linear Algebra: https://nptel.ac.in/courses/111106051/	
$\mathbf{3}$	NPTEL Video Lectures Differential Equations: https://nptel.ac.in/courses/111106100/	
$\mathbf{4}$	NPTEL Vector Calculus: https://nptel.ac.in/courses/111/105/111105122/	

Pedagogy:

- Direct Classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment (Tutorials)
- Interactive methods
- Seminar/Poster presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):
Distribution of Theory Marks \quad R: Remembering; U: Understanding; A: Application,

\mathbf{R}	\mathbf{U}	\mathbf{A}	\mathbf{N}	\mathbf{E}	\mathbf{C}
$\mathbf{N}:$ Analyze; E: Evaluate; \mathbf{C} : Create					

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	\%weightage
$\mathbf{C O - 1}$	Use the matrix methods and certain techniques to solve the system of linear equations and to find eigen values, eigen vectors of a matrix to check whether it is diagonalizable.	$\mathbf{2 0}$
$\mathbf{C O - 2}$	Understand the abstract notions of vector space and the dimensionality of it.	$\mathbf{2 0}$
$\mathbf{C O - 3}$	Learn different notions of vector and scalar fields with their properties. Understanding the major theorems (Green's, Stokes', Gauss') and some applications of these theorems $\mathbf{C O - 4}$Apply some methods of differential equations like Bernoulli's Equation, Exact, Clairaut's which remains to study at their plus two level.	$\mathbf{1 0}$
$\mathbf{C O - 5}$	To find solution of higher-order linear differential equations of constant coefficients by using different methods.	$\mathbf{2 0}$

Curriculum Revision:	2.0
Version:	June-2022
Drafted on (Month-Year):	-
Last Reviewed on (Month-Year):	
Next Review on (Month-Year):	June-2025

