

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme: Bachelor of Technology (Computer Engineering)

Semester: V

Course Code: 202090521

Course Title: Non-Conventional Energy Sources

Course Group: Open Elective-I

Course Objectives: To provide a survey of the most important renewable energy resources and the technologies for harnessing these resources within the framework of a broad range of simple to state- of -the-art energy system.

Teaching & Examination Scheme:

Conta	Contact hours per week			Examination Marks (Maximum / Passing)				
Lecture	Tutorial	Practical	Course Credits	The	eory	J/V	/P*	Total
Lecture	Tutoriai	Fractical		Internal	External	Internal	External	
3	0	0	3	50 / 18	50 / 17			100 / 35

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction:	02
	World Production and reserve of conventional energy sources, Present energy	
	scenario in Gujarat, India and World. Need of the non-conventional energy sources,	
	Various conventional & non-conventional energy sources and their availability.	
2	Solar Radiation and Measurement :	08
7	Origin, nature and availability of solar radiation, Solar Constant, Solar radiation at	
	Earth's Surface, radiation on tilted surface, Solar radiation geometry, Solar	
	radiation measurement and estimation, Instruments for solar radiation	
	measurements.	
3	Solar Energy Collectors :	06
	Types of solar collector, Flat Plate Collector (FPC)-Thermal Analysis of FPC,	
	Concentrating collectors, Solar Pond.	
4	Application of Solar Energy:	09
	Solar water heating system, Space heating and cooling system, Solar Pumping,	
	Solar Distillation, Solar Cooker, Solar furnace, Solar air conditioning system, Solar	
	electric power generation, Photovoltaic solar cell, Solar cell modules and arrays,	
	Solar cell types, Solar cell materials.	

5	Wind Energy: Basic principle of wind energy conversion system, site selection consideration, basic components of WECS, classification of WEC systems, applications of wind energy.	07
6	Energy from Biomass:	06
	Biomass conversion technologies, Biogas generation, Classification, advantage and	
	disadvantage of biogas plants, gasification, types and application of gasifiers.	
7	Geothermal and Oceans Energy:	07
15	Sites, potentiality, resources, different conversion systems and other uses of geo-	
	thermal sources, advantages and limitations. Prospects of geothermal energy in	
	India. Ocean Thermal Energy Conversion-Principle of utilization, open cycle OTEC	
	system, closed cycle, hybrid cycle. Tidal Energy-Principle of working, performance	
	and limitations.	
	Total	45

Reference Books:

	10101 01100 20 01101				
1	G. D. Rai, Non-Conventional Energy Sources, Khanna Publishers				
2	G. N. Tiwari and M. K. Ghoshal, Renewable Energy Sources Basic Principles and Applications,				
	Narosa Publishing House, New Delhi				
3	S. P. Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw-				
1=	Hill				
4	Duffie, J. A. & W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons.				
5	B H Khan, Non-Conventional Energy Resources, Tata Mc Graw Hill Education Pvt Ltd				
	C. S. Solanki, 'Solar Photovoltaics: Fundamental Applications and Technologies, Prentice Hall				
	of India				
6	Shobh Nath Singh, Non-conventional energy resources, Pearson India				
7	Abbasi Tasneem, Renewable energy sources, PHI Learning				
8	R K Rajput, Non-Conventional Energy Source & Utilization, S Chand & Co Ltd				

Supplementary learning Material:						
1	1 NPTEL Resources					

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Industrial/Field visits

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	U	A	N	E	C	N: Analyzing; E: Evaluating; C: Creating
15%	25%	30%	10%	15%	5%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the need for alternative sources of energy	25
CO-2	Know the solar energy conversion technologies and application	30
CO-3	Know Wind and biomass energy sources and their energy conversion techniques, applications, comparison.	30
CO-4	Analyze harnessing of geothermal and ocean energy	15

Curriculum Revision:				
Version:	2.0			
Drafted on (Month-Year):	June-2022			
Last Reviewed on (Month-Year):	-			
Next Review on (Month-Year):	June-2025			