

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme:	Bachelor of Technology (Computer Engineering)
Semester:	V
Course Code:	202045601
Course Title:	Design and Analysis of Algorithms
Course Group:	Professional Core Course

Course Objectives: This course provides the fundamental knowledge to design and analyse the algorithms. Different algorithm paradigms will be explored. Students will learn how to measure performance of various algorithms.

Teaching & Examination Scheme:

Conta	ct hours pe	r week	Course	Examination Marks (Maximum / Passing)					
Locturo	Tutorial	Practical	Course Credits	The	eory	J/V	/P*	Total	
Lecture	Tutorial	Practical	creaits	Internal	External	Internal	External	Total	
4	0	2	5	50 / 18	50 / 17	25/9	25/9	150 / 53	

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Basics of Algorithms and Mathematics: Definition of Algorithm, Importance of	06
	design and analysis of algorithms, Mathematics for Algorithmic Sets, Functions and	
	Relations, Quantifiers, Vectors and Matrices, simple series, basic combinations.	
	Analysis of Algorithm: Time complexity, Space complexity, Analysis: average, best	
	and worst case, Asymptotic notations, Limit rules, Conditional asymptotic	
	notations, Analyzing generalize algorithm with control structures: "for", "while"	
	and "repeat" loops. Amortized analysis.	
2	Methods to Solve Recurrence: Substitution, homogeneous Recurrences,	11
	Inhomogeneous Recurrences, Change of Variable, Master Theorem, Range	
	Transformations and Recursion Tree. Sorting Algorithms with analysis: Bubble	
	sort, Selection sort, Insertion sort, Heap sort. Sorting in linear time: Bucket sort	
	and Counting sort.	
3	Divide and Conquer Algorithms: Introduction, multiplying large integers	06
	problem, Problem solving using divide conquer algorithm - Binary search, Merge	
	sort and Quick sort algorithms with analysis, Max-Min problem, Matrix	
	multiplication, Exponential.	

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

4	Greedy Algorithms: General Characteristics of greedy algorithms, Problem solving	07
	using Greedy Algorithm- Making change problem, Minimum Spanning trees	
	(Kruskal's algorithm, Prim's algorithm), Graphs: Single Source Shortest paths	
	(Dijkstra's algorithm, The Bellman-Ford algorithm), The Knapsack Problem, Job	
	Scheduling Problem, Huffman code.	
5	Dynamic Programming: Introduction, Comparison with Greedy algorithm and	08
07	divide & conquer algorithm, Problem solving using dynamic programming -	
	Calculating the binomial coefficient, The principle of optimality, Making change	
	problem, The knapsack problem, All points shortest path (Floyd's algorithm),	
	Chained matrix multiplication, longest common subsequence.	
6	Exploring Graphs: Undirected Graph, Directed Graph, Traversing Graphs, Depth	07
	First Search, Breath First Search. Backtracking: Introduction, The Eight queen's	
	problem, The knapsack problem. Branch and Bound: The assignment problem,	
	The knapsack problem. Minimax principle.	
7	String Matching: Introduction, The naive string-matching algorithm, The Rabin-	04
	Karp algorithm, The Knuth-Morris-Pratt algorithm.	
8	Introduction to NP-Completeness: The class P and NP, Polynomial reduction, NP-	03
	Completeness Problem, NP-Hard Problems, Travelling Salesman problem,	
1	Hamiltonian problem.	
	Total	52

List of Practicals / Tutorials:

LISCO	of Practicals / Tutorials:
1	Write a program to sort given elements of an array in ascending order using bubble sort.
\sim	Analyze the time complexity for best, average and worst case.
2	Write a program to sort given elements of an array in ascending order using selection sort.
	Analyze the time complexity for best, average and worst case.
3	Write a program to implement heap sort.
4	Write a program to search given element from an array using sequential search and binary
	search. Analyze the time complexity for best, average and worst case.
5	Write a program to sort given elements of an array in ascending order using merge sort.
1	Analyze the time complexity for best, average and worst case.
6	Write a program to sort given elements of an array in ascending order using quick sort.
	Analyze the time complexity for best, average and worst case.
7	Write a program to implement making change problem using greedy algorithm.
8	Write a program to implement the knapsack problem using greedy algorithm.
9	Write a program to implement making change problem using dynamic programming.
10	Write a program to implement the knapsack problem using dynamic programming.
11	Write a program to implement Floyd's algorithm for finding shortest path using dynamic
	programming.
12	Write a program to implement chained matrix multiplication using dynamic programming.
13	Write a program to implement longest common subsequence using dynamic programming.

Reference Books:

1	Fundamental of Algorithmics by Gills Brassard and Paul Bratley, PHI.				
2	Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and				
	Clifford Stein, PHI.				

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

3 Fundamentals of Computer Algorithms by Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekharan, Galgotia.

4 Design and Analysis of Algorithms by Dave and Dave, Pearson.

Supplementary learning Material:

1 Lecture Notes

2 NPTEL - Swayam Courses

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster Presentation
- Industrial/ Field visits
- Course Projects

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				arks in	R: Remembering; U: Understanding;	
R	U	Α	N	Е	C	A: Applying; N: Analyzing; E: Evaluating;
10%	30%	10%	20%	20%	10%	C: Creating

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	To study the asymptotic performance of algorithms.	20
CO-2	Apply various complexity measures and find out performance of the	30
	algorithm through divide and conquer like searching and sorting.	
CO-3	To generate optimal solutions by applying various Greedy and Dynamic	30
	algorithms.	
CO-4	To apply fundamental algorithms to model engineering problem solving	20
h	using various graph methods or using suitable data structures.	

Curriculum Revision:					
Version:	2.0				
Drafted on (Month-Year):	June-2022				
Last Reviewed on (Month-Year):					
Next Review on (Month-Year):	June-2025				

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in