

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme:	Bachelor of Technology (Computer Engineering)
Semester:	IV
Course Code:	202040405
Course Title:	Discrete Mathematics

Course Group: Basic Science

Course Objectives: This course provides students to develop logical thinking and its application to computer science. The course stresses on mathematical reasoning and describes different ways in which mathematical problems could be solved. Students will learn about topics such as sets and functions, logic and proofs, algebraic structures, graph theory and other important discrete math concepts.

Teaching & Examination Scheme:

Contact hours per week			Course	Durse Examination Marks (Maximum / Passing)				
Locture	Tutorial	Dractical	Credits	The	eory	J/V	/P*	Total
Lecture	Tutomar	Plactical	4	Internal	External	Internal	External	Total
3	2	0	4	50 / 18	50 / 17	NA	NA	100 / 35
	D D C		•					

^c J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Set Theory:	04
	Introduction, Finite Set, Cardinality of Finite Sets, Power Set, Cartesian Product,	
	Properties of Sets, Venn Diagrams, Bit Vector Implementation of Sets.	
2	Relations:	04
	Definition, Binary Relation, Representation, Domain, Range, Universal Relation, Void	
	Relation, Union, Intersection, and Complement Operations on Relations, Properties	
	of Binary Relations in a Set: Reflexive, Symmetric, Transitive, Anti-symmetric	
	Relations, Relation Matrix and Graph of a Relation; Partition and Covering of a Set,	
	Equivalence Relation, Equivalence Classes, Compatibility Relation, Maximum	
	Compatibility Block, Composite Relation.	
3	Functions:	03
	Introduction & Definition, Co-domain, Range, Injective, Surjective, Bijective,	
	Composition of functions, Identity map, Condition of a function to be invertible.	
4	Counting:	02
	The Basics of Counting, The Pigeonhole Principle, Permutations and Combination.	

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

		1
5	Propositional Logic:	03
	Definition, Statements & Notation, Truth Values, Connectives, Statement Formulas &	
	Truth Tables, Well-formed Formulas, Tautologies, Equivalence of Formulas, Duality	
	Law, Tautological Implications	
6	Predicate Logic:	03
	Definition of Predicates; Statement functions, Variables, Quantifiers, Predicate	
	Formulas, Free & Bound Variables; The Universe of Discourse, Examples, Valid	
A	Formulas & Equivalences.	
7	Partial Ordering:	03
/	Definition, Examples, Simple or Linear Ordering, Totally Ordered Set (Chain),	
	Frequently Used Partially Ordered Relations, Representation of Partially Ordered	
	Sets, Hesse Diagrams	
8	Lattices:	02
_	Definition, Properties of lattices – Bounded, Complemented, Modular and Complete	
	lattice.	
9	Algebraic Structures:	10
	Definition, Groups, Subgroups and order, Cyclic Groups, Cosets, Lagrange's theorem,	
	Normal Subgroups, Permutation and Symmetric groups, Group Homomorphisms,	
	Definition and elementary properties of Rings and Fields, Integers Modulo n.	
10	Graph Theory:	10
	Definition of a graph, Incidence and Degree, Isomorphic Graphs, Subgraphs, Walks,	
	Paths and Circuits, Connected Graphs, Disconnected Graphs and Components, Euler	
	Graphs, Operations on Graphs, Hamiltonian Paths and Circuits, Trees, Some	
	Properties of Trees, Pendant Vertices in a Tree, Distance and Centers in a Tree,	
	Rooted and Binary Tree, Spanning Tree, Fundamental Circuits, Incidence Matrix,	
	Circuit Matrix, Applications	
	Total	44

List of Practicals / Tutorials:

1	Assignment on Set Theory
2	Assignment on Relations
3	Assignment on Functions
4	Assignment on Counting and Propositional Logic
5	Assignment on Predicate Logic
6	Assignment on Partial Ordering
7	Assignment on Lattices and Algebraic Structures
8	Assignment on Algebraic Structures
9	Assignment on Graph Theory

Reference Books:

1	Discrete Mathematics and Its Applications – Kenneth H. Rosen, McGraw-Hill
2	Elements of Discrete Mathematics – Liu and Mohapatra, McGraw Hill Publications
3	Discrete Mathematical Structures with Applications to Computer Science J P Trimblay, R
	Manohar, Tata McGraw Hill Publications

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

4 Graph Theory with Applications to Engineering and Computer Science Narsinh Deo, Prentice Hall

Supplementary learning Material:

1 NPTEL Courses

2 MIT Open Course Ware in Computer Science

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster Presentation
- Industrial/ Field visits
- Course Projects

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				arks ir	n %	R : Remembering; U : Understanding; A : Applying;
R	U	A	< N	Ε	С	N: Analyzing; E: Evaluating; C: Creating
15%	25%	25%	20%	15%	ł	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Upon completion of the course, the student will be able to use logical	25
	notation and students can be able to perform logical proofs.	
CO-2	Students will be able to apply recursive functions and solve recurrence	25
	relations. Moreover, they will be able to determine equivalent logic	
	expressions.	
CO-3	Students can be able to understand abstract notions by learning algebraic	25
	structures.	
CO-4	By learning Graph Theory students can be able to know the applications in	25
- /5	the field of Computer Science.	

Curriculum Revision:					
Version:	2.0				
Drafted on (Month-Year):	June-2022				
Last Reviewed on (Month-Year):					
Next Review on (Month-Year):	June-2025				

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in