

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme:	Bachelor of Technology (Computer Engineering)
Semester:	V
Course Code:	202020521
Course Title:	Sustainability Engineering
Course Group:	Open Elective -I

Course Objectives: This course provides an overview of sustainability in a chemical engineering context. The aim is to establish the conceptual framework and foundation for quantitative methods to the analysis of (bio) chemical processes with respect to their impact on sustainability.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Dractical	Credits	The	eory	J/V	/P*	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	0	0	3	50 / 18	50 / 17	NA	NA	100 / 35

J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Sustainability Introduction:	08
	Definitions, principles and indicators of sustainability, Need and concept of	
	sustainability, Social- environmental and economic sustainability concepts.	
	Sustainable development, Nexus between Technology and Sustainable	
	development, Challenges for Sustainable Development. Roles of engineers in	
	developing sustainable society, Quantification of sustainability.	
2	Air Pollution, Effects of Air Pollution:	08
	Water pollution- sources, Sustainable wastewater treatment, Solid waste - sources,	
\square	impacts of solid waste, Zero waste concepts, 3 R concept. Global environmental	
	issues- Resource degradation, Climate change, Global warming, Ozone layer	
	depletion, Regional and Local Environmental Issues. Carbon credits and carbon	
K	trading, carbon foot print.	
3	Environmental management standards:	08
	ISO 14000 series, Life Cycle Analysis (LCA) – Scope, Goal and case studies, Bio-	
	mimicking, Environment Impact Assessment (EIA) - Procedures of EIA in India and	
	case studies.	
4	Basic concepts of sustainable habitat:	07
	Green buildings, green materials for building construction, material selection for	
	sustainable design, green building certification, Methods for increasing energy	
17	efficiency of buildings. Sustainable cities, Sustainable transport.	

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

5	Green Engineering: Sustainable Urbanization, industrialization, and poverty	07			
	reduction; Social and technological change, Industrial Processes: Material selection,				
	Pollution Prevention, Industrial Ecology, Industrial symbiosis.				
6	5 Energy sources: Basic Concepts-Conventional and non-conventional, solar energy,				
	Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energyderived from oceans,				
	Geothermal energy.				
1-	Total	44			

Reference Books:

1	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
2	Bradley. A. S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
3	Mackenthun, K. M., Basic Concepts in Environmental Management, Lewis Publication, Imndon. 1998.
4	ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications - GRIHA Rating System.
5	Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
6	Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).
7	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.

Supplementary learning Material:

1	Video lectures available on the websites of NPTEL.
2	CDs available with some reference books for the solution of problems.
3	Use of subject relevant software for the problems solving and analyzing the thermodynamic
	processes.

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster Presentation
- Industrial/ Field visits
- Course Projects

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					R : Remembering; U : Understanding;	
R	U	Α	Ν	E	C	A: Applying; N: Analyzing;
25%	20%	25%	15%	10%	5%	E: Evaluating; C: Creating

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage			
CO-1	Understand the complex environmental, economic, and social issues	20			
	related to sustainable engineering.				
CO-2	Become aware of concepts, analytical methods/models, and resources				
1-1	for evaluating and comparing sustainability implications of engineering				
	activities.				
CO-3	Critically evaluate existing and new methods related to sustainable	25			
	engineering.				
CO-4	Develop sustainable engineering solutions by applying methods and	20			
	tools to research a specific system design.				
C0-5	Clearly communicate results related to their research on sustainable	15			
	engineering.				

Curriculum Revision:

Version:	2.0
Drafted on (Month-Year):	June-2022
Last Reviewed on (Month-Year):	
Next Review on (Month-Year):	June-2025

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in