

# FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

| Programme:    | Bachelor of Technology (Computer Engineering) |
|---------------|-----------------------------------------------|
| Semester:     | II                                            |
| Course Code:  | 202001213                                     |
| Course Title: | Physics                                       |
| Course Group: | Basic Science Courses                         |

**Course Objectives:** The basic science physics course is to prepare students for implementing physics principles to the advancement of technology. The course aims to provide a stable foundation for the pursuit of graduate studies in engineering as well as to enhance their scientific thinking abilities towards the real life problems in various engineering branches.

## **Teaching & Examination Scheme:**

| Conta                            | Contact hours per week |           |                   | Examination Marks (Maximum / Passing) |          |          |          |          |
|----------------------------------|------------------------|-----------|-------------------|---------------------------------------|----------|----------|----------|----------|
| Locture                          | Tutorial               | Dractical | Course<br>Credits | The                                   | eory     | J/V      | //P*     | Total    |
| Lecture                          | Tutorial               | Practical | creatts           | Internal                              | External | Internal | External | Total    |
| 3                                | 0                      | 2         | 4 /               | 50 / 18                               | 50 / 17  | 25/9     | 25 / 9   | 150 / 53 |
| * I. Jury, V. Viva, D. Dractical |                        |           |                   |                                       |          |          |          |          |

\* **J**: Jury; **V**: Viva; **P**: Practical

#### **Detailed Syllabus:**

| Sr. | Contents                                                                            | Hours |
|-----|-------------------------------------------------------------------------------------|-------|
| 1   | Unit 1 Sound:                                                                       | 10    |
| _   | Acoustics: Sound waves in air, Properties and characteristics of sound wave,        |       |
| -   | Doppler effect, Sound absorption and reverberation, Sabine's formula and usage      |       |
|     | (excluding derivation), Acoustic of building                                        |       |
|     | Ultrasonics: Properties of ultrasound, Production of ultrasonic waves,              |       |
|     | Magnetostriction, Piezoelectric method, Piezo-electric oscillator, Acoustical       |       |
|     | Grating method, Application of ultrasound, Non Destructive testing                  |       |
| 2   | Unit 2 Band theory of Solids:                                                       | 10    |
|     | Introduction, Formation of bands and energy gap- A quantum Mechanical               |       |
|     | Approach, Kronig – Penny Model and E- K Diagram, Energy band Formation, Fermi       |       |
| 1   | Dirac Distribution Function and Fermi level, Classification of Solids : conductors, |       |
|     | semiconductors and insulators, Concept of Effective mass                            |       |
| 3   | Unit 3 Superconductivity:                                                           | 05    |
|     | Introduction of Superconductivity, Properties of superconductor, Effect of          |       |
|     | magnetic field, Meissner effect, Isotopic mass effect, Type I And Type II           |       |
|     | Superconductors, Application of superconductors: MagLav, Cryotron and SQUID         |       |



| 4  | Unit 4 Nonlinear Optics:                                                                 | 10        |
|----|------------------------------------------------------------------------------------------|-----------|
|    | Lasers: Properties of Laser, Einstein's theory of matter radiation : A and B             |           |
|    | coefficients, Different types of lasers, He-Ne laser, Applications of lasers in science, |           |
|    | engineering                                                                              |           |
|    | Fiber Optics: Introduction, Construction of optical fiber cable, Total Internal          |           |
|    | Reflection, Equation of Numerical Aperture, Classification, Advantages, Application      |           |
| 5  | Unit 5 Measurement Techniques:                                                           | 06        |
| NE | Introduction, Four-probe Technique, Van der Pauw Technique, Hall Effect                  |           |
| /  | Measurement, UV-Vis Spectroscopy, Scanning Electron Microscopy (SEM),                    |           |
|    | Transmission Electron Microscopy (TEM)                                                   |           |
| 6  | Unit 6 Engineering Materials:                                                            | 07        |
|    | Nanomaterials: Introduction, Concept, properties, Synthesis of Nanomaterials by          |           |
|    | Physical vapor transport method, Applications with concept of quantum computing          |           |
|    | Shape Memory Alloy: Structure, properties and applications                               |           |
|    | Metallic glasses: Properties, Melt Spinning Technique, Applications                      |           |
|    | Bio Materials: Properties and Applications                                               |           |
|    | TOTAL                                                                                    | <b>48</b> |

# List of Practicals / Tutorials:

| Sr. | Contents                                                                                    |  |  |  |
|-----|---------------------------------------------------------------------------------------------|--|--|--|
| 1   | (a) To study Vernier calipers and micrometer screw gauge.                                   |  |  |  |
|     | (b) To study spherometer.                                                                   |  |  |  |
| 2   | (a) To analyze the errors in the experiment of Vernier calipers, micrometer screw gauge     |  |  |  |
|     | and spherometer.                                                                            |  |  |  |
|     | (b) To measure the velocity of ultrasonic waves in liquid and calculate the compressibility |  |  |  |
|     | and bulk modulus of liquid.                                                                 |  |  |  |
| 3   | (a) To determine Young's modulus of elasticity of the given sample material by bending of   |  |  |  |
|     | beam method.                                                                                |  |  |  |
|     | (b) To study the series and parallel combination of solar cells.                            |  |  |  |
| 4   | (a) To study the current-voltage characteristic and the power curve to find the maximum     |  |  |  |
| 1   | power point (MPP) and efficiency of a solar cell.                                           |  |  |  |
| 1   | (b) To measure numerical aperture of optical fiber cable. To Study Bending loss and         |  |  |  |
|     | measurement of propagation loss or Attenuation loss in fiber optic cable.                   |  |  |  |
| 5   | (a) To study Full Wave Bridge Rectifier.                                                    |  |  |  |
|     | (b) To study and verify R-L-C Series circuit.                                               |  |  |  |
| 6   | (a) To measure dielectric constant of different materials.                                  |  |  |  |
|     | (b) To study the coercivity, saturation magnetization and retentivity of the given material |  |  |  |
|     | (commercial Nickel).                                                                        |  |  |  |
| 7   | (a) To determine the wavelength of laser using grating and to determine the slit width.     |  |  |  |
|     | (b) To study Hall effect and its applications.                                              |  |  |  |
| 8   | (a) To study seven-segment LED display.                                                     |  |  |  |
|     | (b) Determination of resistivity and band gap of semiconductors by four probe method at     |  |  |  |
|     | different temperatures.                                                                     |  |  |  |
| 9   | To study basic electrical instruments (CRO) and Measurement of Frequency and Voltage        |  |  |  |
|     | using CRO and Function generator.                                                           |  |  |  |
| 10  | (a) To study the characteristics of p-n junction diode.                                     |  |  |  |
|     | (b) To study Zener diode characteristics.                                                   |  |  |  |
| 11  |                                                                                             |  |  |  |



**11** (a) To study the characteristics of light emitting diode (LED).

(b) To determine the radius of curvature of a given plano-convex lens by setting up Newton's rings.

- **12** Set up for Study of Damped Simple Harmonic Motion
- **13** Set up of Melde's Experiment Transverse and Longitudinal Modes.
- **14** Experiments With Sonometer
- **15** To Determine the Minimum Deviation angle using Spectrometer

# **Reference Books:**

| 1 | Engineering Physics by Dattu R Joshi, Tata MC Graw Hill education Private Limited, 2010   |
|---|-------------------------------------------------------------------------------------------|
| 2 | Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson India Education       |
|   | services Pvt.Ltd, 2018                                                                    |
| 3 | A Textbook of Engineering Physics by M. N. Avadhanulu, And P. G. Kshirsagar, S. Chand and |
|   | Company, 2011                                                                             |
| 4 | Engineering Physics by V Rajendran, Tata McGraw Hill Education Private Limited, 2010      |

# Supplementary learning Material:

| 1  | How things works by Louis A Bloomfeild, Wiley Publications                       |  |  |  |
|----|----------------------------------------------------------------------------------|--|--|--|
| 2  | Physics of Everyday Phenomena by W. Thomas Griffith, Juliet Brosing, McGraw Hill |  |  |  |
| 17 | Education                                                                        |  |  |  |
| 3  | Physics (Par I and II) by R Resnik and D Halliday, Wiley Publications            |  |  |  |
| 4  | Concepts of Physics by H C Verma, Bharati Bhawan Publishers & Distributors       |  |  |  |

## **Pedagogy:**

- Direct Classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster presentation

## Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

| I   | Distribution of Theory Marks |     |     | y Mark | S  | <b>R</b> : Remembering; <b>U</b> : Understanding; <b>A</b> : Application, |
|-----|------------------------------|-----|-----|--------|----|---------------------------------------------------------------------------|
| R   | U                            | Α   | N   | Ε      | C  | N: Analyze; E: Evaluate; C: Create                                        |
| 10% | 30%                          | 25% | 20% | 10%    | 5% |                                                                           |

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

#### **Course Outcomes (CO):**

| Sr.  | Course Outcome Statements                                                  | %weightage |
|------|----------------------------------------------------------------------------|------------|
| CO-1 | The student will demonstrate the ability to think in core concept of their | 55         |
| 1    | engineering application by studying various topics involved in branch      |            |
|      | specific applications.                                                     |            |



| CO-2 | The student will demonstrate the ability to use appropriate mathematical techniques and concepts to obtain quantitative solutions to problems in physics.                                                                                                                                                                                        | 20 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CO-3 | In courses involving laboratory, the student will demonstrate the ability<br>to collect and analyze data and to prepare coherent reports of his or her<br>findings He/ She will learn to create visualization of various phenomena<br>covered in the syllabus and to induce the skill of student in handling<br>different measuring instruments. |    |
| CO-4 | In a design module project, the student will demonstrate the ability to<br>perform a literature search, to make use of appropriate computational<br>or laboratory skills, and to make an effective written or oral<br>presentation of the results of the project.55                                                                              | 15 |

| Curriculum Revision:           |           |  |  |  |  |
|--------------------------------|-----------|--|--|--|--|
| Version:                       | 2.0       |  |  |  |  |
| Drafted on (Month-Year):       | June-2022 |  |  |  |  |
| Last Reviewed on (Month-Year): | -         |  |  |  |  |
| Next Review on (Month-Year):   | June-2025 |  |  |  |  |