

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme: Bachelor of Technology (Computer Engineering)

Semester: II

Course Code: 202000211

Course Title: Linear Algebra, Vector Calculus and ODE

Course Group: Basic Science Courses

Course Objectives: The course is intended to develop computational proficiency involving procedures in Matrices, Linear algebra, Vector Calculus and Differential Calculus which are useful to all engineering disciplines.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)					
Lostuno	Tutovial	Dwagtigal	Course	The	eory	J/V/P*		Total	
Lecture	Tutoriai	Practical	creams	Internal	External	Internal	External	Total	
3	2	0	4	50 / 18	50 / 17	25/9	25/9	150 / 53	

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours				
1	1 Applications of Matrices:					
	Matrices and Elementary Row Operations, Echelon and Reduced Row					
	Echelon forms of a Matrix, Solutions of System of Nonhomogeneous					
	and Homogeneous Linear Equations: Gaussian Elimination and Gauss-					
	Jordan Method, Inverse of a Matrix by Gauss-Jordan Elimination					
	Method, Rank of a Matrix, Eigenvalues and Eigenvectors of a Matrix,					
17	Caley-Hamilton Theorem, Diagonalization					
2	Linear Algebra:	08				
	Vector Spaces, Subspaces of a Vector Space, Linear Independence and					
	Dependence of Vectors, Span of a Set of Vectors, Basis and Dimension					
3	Vector Calculus:	12				
	Vector and Scalar Functions and Fields, Derivatives, Gradient of a					
	Scalar Field, Directional Derivative, Divergence of a Vector Field, Curl					
	of a Vector Field, Line Integrals, Line Integrals Independent of Path,					
	Green's Theorem in the Plane (Without Proof), Surface Integrals,					
	Divergence Theorem of Gauss (Without Proof), Stoke's Theorem					
	(Without Proof)					

4	Differential Equations of First Order:	05
	Bernoulli's Equation, Exact Differential Equations, Equations Reducible	
	to Exact Equations, Clairaut's Equation	
5	Higher Order Ordinary Differential Equations:	12
	Linear Differential Equations with Constant Coefficients, Inverse	
	Operator, Rules for Finding Particular Integral when X=eax, sin(ax + b),	
	cos(ax+b), xm, eaxV, V being a function of x. Method of Variation of	
1	Parameters, Method of Undetermined Coefficients, Euler – Cauchy	
	differential equations, Legender's Linear Equation	
	TOTAL	47

List of Practicals / Tutorials:

DISC O	ist of Fracticals / Futorials.					
1	System of Linear Equations- Non-Homogeneous and Homogeneous					
2	Rank of a matrix and inverse of a matrix by Gauss Jordan Method					
3	Eigen Values and Eigen Vectors. Cayley's Hamilton Theorem and it's applications					
4	Diagonalization of a matrix.					
5	Vector Spaces and Sub Spaces					
6	Linear independence and linear independence. Span of a vector space and Basis,					
	Dimension					
7	Gradient, directional derivative, divergence, curl					
8	Line integral. Green's Theorem, Gauss Divergence Theorem and Stoke's Theorem					
9	First Order differential equations- Bernoulli's Equation, Exact, Clairaut's					
10	Higher order differential equations with constant coefficients having standard functions as					
	X given in the syllabus					
11	Method of Variation of Parameters, Method of Undetermined Coefficients, Legender's					
	Linear Equation					

Reference Books:

1	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Student Edition					
2	Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers					
3	B Engineering Mathematics Vol II S S Sastry, Prentice Hall of India					
4	Elementary Linear Algebra Howard Anton, John Wiley & Sons					
5	Introduction to Engineering Mathematics- Vol II H K Dass, S Chand Publication					

Supplementary learning Material:

F F	-FF							
1	Lecture Note							
2	NPTEL Video Lectures Matrices and Linear Algebra:							
1	https://nptel.ac.in/courses/111106051/							
3	NPTEL Video Lectures Differential Equations:							
	https://nptel.ac.in/courses/111106100/							
4	NPTEL Vector Calculus:							
	https://nptel.ac.in/courses/111/105/111105122/							

Pedagogy:

- Direct Classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment (Tutorials)
- Interactive methods
- Seminar/Poster presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					y Mark	S	R: Remembering; U: Understanding; A: Application,
	R	⊃U	A	N	E	С	N: Analyze; E: Evaluate; C: Create
	20%	40%	30%	10%	0%	0%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Use the matrix methods and certain techniques to solve the system of	20
	linear equations and to find eigen values, eigen vectors of a matrix to	
	check whether it is diagonalizable.	
CO-2	Understand the abstract notions of vector space and the dimensionality	20
	of it.	
CO-3	Learn different notions of vector and scalar fields with their properties.	30
	Understanding the major theorems (Green's, Stokes', Gauss') and some	
	applications of these theorems	
CO-4	Apply some methods of differential equations like Bernoulli's Equation,	10
//	Exact, Clairaut's which remains to study at their plus two level.	
CO-5	To find solution of higher-order linear differential equations of constant	20
	coefficients by using different methods.	

Curriculum Revision:	
Version:	2.0
Drafted on (Month-Year):	June-2022
Last Reviewed on (Month-Year):	
Next Review on (Month-Year):	June-2025