

FACULTY OF ENGINEERING & TECHNOLOGY

Second Year Bachelor of Engineering

Course Code: 102040301

Course Title: Data structures

Type of Course:Professional Core Course

Course Objectives:

To understand the concepts of data structures and how these concepts are useful in problem solving. To get accustomed with elementary data structures: Linear, Non-linear

To practice programming techniques for efficient storage and retrieval for developing sophisticated computer applications.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	Examination Marks (Maximum / Passing)			
Locturo	Tutorial	Dractical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutorial	Practical		Theory	J/V/P*	Theory	J/V/P*	TOLAT
4	0	2	5	40/14	60/21	20/7	30/10	150/52

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours			
1	Introduction to Data Structure	2			
	Introduction, Primitive Data Structure, Importance of Data Structure, Types				
	of Data Structure, Primitive & Non-Primitive Data types.				
2	Elementary Data Structure - Linear	12			
	Array: Definition & concept, Representation & Application, 2D & 3D arrays,				
	Matrix representation				
	Stack: Definition & concept, Representation, applications, Expression: Infix,				
	prefix & postfix, Expression conversion, stack & expression, recursion.				
	Queues: Definition & concept, types, representation, applications				
	Linked List: Definition & concepts, types, representation, applications				
3	Elementary Data Structure – Non-Linear	10			
	Trees: Definition & Concept, Representation & Application, types, Traversals,				
	Advanced Tree Concepts: AVL Tree, Balancing, Height/Weight Balancing,				
	Rotation				
	Graphs: Definition & Concept, Representation & Application, types,				
	Traversals.				
	Advanced Graph Concepts: Spanning Trees, Shortest Paths, DFS/BFS.				

Page 1 of 4

4	Sorting Techniques	8		
	Introduction, Types of sorting techniques: Bubble sort, Radix sort, Selection			
	sort, Quick sort, Merge sort, Insertion sort			
5	Searching & Hashing Techniques	8		
	Introduction			
	Searching: Linear search, Binary search,			
	Hashing: The symbol table, Hashing Functions, Collision-Resolution			
	Techniques,			
6	Advanced Data Structures	6		
	Heaps: Types of Heap, applications, Binary Heap, Fibonacci Heap, Building a			
	Heap, Heaps & Priority Queues, Heapify function.			
	Red-Black Trees: Introduction & concept, properties, applications, insert &			
	delete operation in Red-Black Trees, Balancing.			
	Forests: Sets, Dis-joint sets, Forest-trees, usage & applications, operations			

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					S	R : Remembering; U : Understanding; A : Application,
R	U	Α	Ν	Ε	С	N: Analyze; E: Evaluate; C: Create
10%	30%	40%	20%	0%	0%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Data Structures using C & C++ -By Ten Baum Publisher – Prenctice-Hall International.
2	Fundamentals of Computer Algorithms by Horowitz, Sahni, Galgotia Pub. 2001 ed.
3	Data Structures: A Pseudo-code approach with C -By Gilberg & Forouzan PublisherThomson
	Learning.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Describe the efficient methods of data storage and retrieval	10
CO-2	Implement dynamic memory allocation in for different data structures	10
CO-3	Design and implement linear data structures	30
CO-4	Design and implement Non-linear data structures	30
CO-5	Design and implement sorting and searching techniques	20

Page 2 of 4

List of Practicals / Tutorials:

1	Write a program to insert/delete in linear array at specific position.
	Write a program to remove duplicate elements from liner array.
	Write a program to read 10 integers in an array. Sort them out on the basis of number of digits
	in each element.
2	Demonstrate the concept of Call by value and Call by Reference.
	Write a program to prints array elements in reverse orders applying pointers
	Write program to implement stack and simple queue using array
3	Write a program for stack using array for the following operations:
	Push, Pop, Peek and IsEmpty.
	Write a program for queue using array for the following operations:
	Enqueue, Dequeue, IsEmpty, IsFull.
	Write a program for circular queue using array for the following operations:
	Enqueue, Dequeue, IsEmpty, IsFull.
4	Write a program for single linked list for the following operations:
	1. Count the number of nodes in a given linked list
	2. Delete the desired node from linked list
	3. Insert the new node after the desired node into the linked list
	4. Create a new list by reversing the list
	5. Concatenates two linked list
	Write a program for stack using linked list for the following operations:
	Push, Pop, Peek and IsEmpty.
	Write a program for queue using linked list for the following operations:
	Enqueue, Dequeue, IsEmpty,
5	Write a program of conversion of an expression from infix to Postfix, Prefix.
	Write a program to evaluate postfix expression.
6	Write a program to implement doubly linked list for the following operations:
	1. Insert a new node after the desired node
	2. Delete the desired note
	3. Display the nodes of doubly linked list
	Write a program to implement circular doubly linked list for the following operations:
	1. Insert a new node after the desired node
	2. Delete the desired note
	3. Display the nodes of doubly linked list
7	Write a program to construct binary search tree.
	Write a program to travers binary search tree.
8	Write a program to construct AVL tree

Page 3 of 4

9	Write a program to demonstrate DFS and BFS.					
	Write a program for given a directed graph, and check whether the graph contains a cycle or					
	not. It should print true if the given graph contains at least one cycle, else it should print false.					
	Write a program to implement minimum spanning tree algorithm					
11	Write a program to implement binary search					
	Write a program to implement: Bubble sort, Radix sort, Selection					
12	Write a program to implement: Quick sort, Merge sort, Insertion sort					
	Write a program to implement the mechanism to handle hash collision by:					
	1. Separate chaining					
	2. Open addressing					
13	Write a program to implement max-heap.					
	Write a program to implement Red-Black tree.					

Supplementary learning Material:

1 NPTEL courses

Curriculum Revision:				
Version:	1			
Drafted on (Month-Year):	Feb-21			
Last Reviewed on (Month-Year):	Feb-21			
Next Review on (Month-Year):	Click or tap to enter a date.			

Page 4 of 4