

Artificial Intelligence
A Modern Approach

Stuart J. Russell and Peter Norvig

Contributing writers:
John F. Canny, Jitendra M. Malik, Douglas D. Edwards

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data
Russell, Stuart J. (Stuart Jonathan)

Artificial intelligence : a modern approach/ Stuart Russell, Peter Norvig.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-103805-2

1. Artificial intelligence I. Norvig, Peter. II. Title.
Q335.R86 1995
006.3-dc20 94-36444

CIP

Publisher: Alan Apt
Production Editor: Mona Pompili
Developmental Editor: Sondra Chavez
Cover Designers: Stuart Russell and Peter Norvig
Production Coordinator: Lori Bulwin
Editorial Assistant: Shirley McGuire

© 1995 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN D-IH-IQBSOS-E

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Preface
There are many textbooks that offer an introduction to artificial intelligence (AI). This text has
five principal features that together distinguish it from other texts.

1. Unified presentation of the field.
Some texts are organized from a historical perspective, describing each of the major
problems and solutions that have been uncovered in 40 years of AI research. Although
there is value to this perspective, the result is to give the impression of a dozen or so barely
related subfields, each with its own techniques and problems. We have chosen to present
AI as a unified field, working on a common problem in various guises. This has entailed
some reinterpretation of past research, showing how it fits within a common framework
and how it relates to other work that was historically separate. It has also led us to include
material not normally covered in AI texts.

2. Intelligent agent design.
The unifying theme of the book is the concept of an intelligent agent. In this view, the
problem of AI is to describe and build agents that receive percepts from the environment
and perform actions. Each such agent is implemented by a function that maps percepts
to actions, and we cover different ways to represent these functions, such as production
systems, reactive agents, logical planners, neural networks, and decision-theoretic systems.
We explain the role of learning as extending the reach of the designer into unknown environ-
ments, and show how it constrains agent design, favoring explicit knowledge representation
and reasoning. We treat robotics and vision not as independently defined problems, but
as occurring in the service of goal achievement. We stress the importance of the task
environment characteristics in determining the appropriate agent design.

3. Comprehensive and up-to-date coverage.
We cover areas that are sometimes underemphasized, including reasoning under uncer-
tainty, learning, neural networks, natural language, vision, robotics, and philosophical
foundations. We cover many of the more recent ideas in the field, including simulated
annealing, memory-bounded search, global ontologies, dynamic and adaptive probabilistic
(Bayesian) networks, computational learning theory, and reinforcement learning. We also
provide extensive notes and references on the historical sources and current literature for
the main ideas in each chapter.

4. Equal emphasis on theory and practice.
Theory and practice are given equal emphasis. All material is grounded in first principles
with rigorous theoretical analysis where appropriate, but the point of the theory is to get the
concepts across and explain how they are used in actual, fielded systems. The reader of this
book will come away with an appreciation for the basic concepts and mathematical methods
of AI, and also with an idea of what can and cannot be done with today's technology, at
what cost, and using what techniques.

5. Understanding through implementation.
The principles of intelligent agent design are clarified by using them to actually build agents.
Chapter 2 provides an overview of agent design, including a basic agent and environment

vii

Vlll Preface

project. Subsequent chapters include programming exercises that ask the student to add >.
capabilities to the agent, making it behave more and more interestingly and (we hope)
intelligently. Algorithms are presented at three levels of detail: prose descriptions and !
pseudo-code in the text, and complete Common Lisp programs available on the Internet or
on floppy disk. All the agent programs are interoperable and work in a uniform framework
for simulated environments.

This book is primarily intended for use in an undergraduate course or course sequence. It
can also be used in a graduate-level course (perhaps with the addition of some of the primary
sources suggested in the bibliographical notes). Because of its comprehensive coverage and the
large number of detailed algorithms, it is useful as a primary reference volume for AI graduate
students and professionals wishing to branch out beyond their own subfield. We also hope that
AI researchers could benefit from thinking about the unifying approach we advocate.

The only prerequisite is familiarity with basic concepts of computer science (algorithms,
data structures, complexity) at a sophomore level. Freshman calculus is useful for understanding
neural networks and adaptive probabilistic networks in detail. Some experience with nonnumeric
programming is desirable, but can be picked up in a few weeks study. We provide implementations
of all algorithms in Common Lisp (see Appendix B), but other languages such as Scheme, Prolog,
Smalltalk, C++, or ML could be used instead.

Overview of the book
The book is divided into eight parts. Part 1, "Artificial Intelligence," sets the stage for all the others,
and offers a view of the AI enterprise based around the idea of intelligent agents—systems that
can decide what to do and do it. Part II, "Problem Solving," concentrates on methods for deciding
what to do when one needs to think ahead several steps, for example in navigating across country
or playing chess. Part III, "Knowledge and Reasoning," discusses ways to represent knowledge
about the world—how it works, what it is currently like, what one's actions might do—and how
to reason logically with that knowledge. Part IV, "Acting Logically," then discusses how to
use these reasoning methods to decide what to do, particularly by constructing plans. Part V,
"Uncertain Knowledge and Reasoning," is analogous to Parts III and IV, but it concentrates on
reasoning and decision-making in the presence of uncertainty about the world, as might be faced,
for example, by a system for medical diagnosis and treatment.

Together, Parts II to V describe that part of the intelligent agent responsible for reaching
decisions. Part VI, "Learning," describes methods for generating the knowledge required by these
decision-making components; it also introduces a new kind of component, the neural network,
and its associated learning procedures. Part VII, "Communicating, Perceiving, and Acting,"
describes ways in which an intelligent agent can perceive its environment so as to know what is
going on, whether by vision, touch, hearing, or understanding language; and ways in which it can
turn its plans into real actions, either as robot motion or as natural language utterances. Finally,
Part VIII, "Conclusions," analyses the past and future of AI, and provides some light amusement
by discussing what AI really is and why it has already succeeded to some degree, and airing the
views of those philosophers who believe that AI can never succeed at all.

Preface

Using this book
This is a big book; covering all the chapters and the projects would take two semesters. You will
notice that the book is divided into 27 chapters, which makes it easy to select the appropriate
material for any chosen course of study. Each chapter can be covered in approximately one week.
Some reasonable choices for a variety of quarter and semester courses are as follows:

• One-quarter general introductory course:
Chapters 1, 2, 3, 6, 7, 9, 11, 14, 15, 18, 22.

• One-semester general introductory course:
Chapters 1, 2, 3, 4, 6, 7, 9, 11, 13, 14, 15, 18, 19, 22, 24, 26, 27.

• One-quarter course with concentration on search and planning:
Chapters 1, 2, 3, 4, 5, 6, 7, 9, 11, 12,13.

• One-quarter course with concentration on reasoning and expert systems:
Chapters 1,2, 3, 6, 7, 8,9, 10,11,14, 15,16.

• One-quarter course with concentration on natural language:
Chapters 1, 2, 3, 6, 7, 8, 9, 14, 15, 22, 23, 26, 27.

• One-semester course with concentration on learning and neural networks:
Chapters 1, 2, 3, 4, 6, 7, 9, 14, 15, 16, 17,18, 19, 20, 21.

• One-semester course with concentration on vision and robotics:
Chapters 1, 2, 3, 4, 6, 7, 11, 13, 14, 15, 16, 17, 24, 25, 20.

These sequences could be used for both undergraduate and graduate courses. The relevant parts
of the book could also be used to provide the first phase of graduate specialty courses. For
example, Part VI could be used in conjunction with readings from the literature in a course on
machine learning.

We have decided not to designate certain sections as "optional" or certain exercises as
"difficult," as individual tastes and backgrounds vary widely. Exercises requiring significant
programming are marked with a keyboard icon, and those requiring some investigation of the
literature are marked with a book icon. Altogether, over 300 exercises are included. Some of
them are large enough to be considered term projects. Many of the exercises can best be solved
by taking advantage of the code repository, which is described in Appendix B. Throughout the
book, important points are marked with a pointing icon.

If you have any comments on the book, we'd like to hear from you. Appendix B includes
information on how to contact us.

Acknowledgements
Jitendra Malik wrote most of Chapter 24 (Vision) and John Canny wrote most of Chapter

25 (Robotics). Doug Edwards researched the Historical Notes sections for all chapters and wrote
much of them. Tim Huang helped with formatting of the diagrams and algorithms. Maryann
Simmons prepared the 3-D model from which the cover illustration was produced, and Lisa
Marie Sardegna did the postprocessing for the final image. Alan Apt, Mona Pompili, and Sondra
Chavez at Prentice Hall tried their best to keep us on schedule and made many helpful suggestions
on design and content.

Preface

Stuart would like to thank his parents, brother, and sister for their encouragement and their
patience at his extended absence. He hopes to be home for Christmas. He would also like to
thank Loy Sheflott for her patience and support. He hopes to be home some time tomorrow
afternoon. His intellectual debt to his Ph.D. advisor, Michael Genesereth, is evident throughout
the book. RUGS (Russell's Unusual Group of Students) have been unusually helpful.

Peter would like to thank his parents (Torsten and Gerda) for getting him started, his advisor
(Bob Wilensky), supervisors (Bill Woods and Bob Sproull) and employer (Sun Microsystems)
for supporting his work in AI, and his wife (Kris) and friends for encouraging and tolerating him
through the long hours of writing.

Before publication, drafts of this book were used in 26 courses by about 1000 students.
Both of us deeply appreciate the many comments of these students and instructors (and other
reviewers). We can't thank them all individually, but we would like to acknowledge the especially
helpful comments of these people:

Tony Barrett, Howard Beck, John Binder, Larry Bookman, Chris Brown, Lauren
Burka, Murray Campbell, Anil Chakravarthy, Roberto Cipolla, Doug Edwards, Kut-
luhan Erol, Jeffrey Forbes, John Fosler, Bob Futrelle, Sabine Glesner, Barbara Grosz,
Steve Hanks, Othar Hansson, Jim Hendler, Tim Huang, Seth Hutchinson, Dan Ju-
rafsky, Leslie Pack Kaelbling, Keiji Kanazawa, Surekha Kasibhatla, Simon Kasif,
Daphne Roller, Rich Korf, James Kurien, John Lazzaro, Jason Leatherman, Jon
LeBlanc, Jim Martin, Andy Mayer, Steve Minton, Leora Morgenstern, Ron Musick,
Stuart Nelson, Steve Omohundro, Ron Parr, Tony Passera, Michael Pazzani, Ira
Pohl, Martha Pollack, Bruce Porter, Malcolm Pradhan, Lorraine Prior, Greg Provan,
Philip Resnik, Richard Scherl, Daniel Sleator, Robert Sproull, Lynn Stein, Devika
Subramanian, Rich Sutton, Jonathan Tash, Austin Tate, Mark Torrance, Randall
Upham, Jim Waldo, Bonnie Webber, Michael Wellman, Dan Weld, Richard Yen,
Shlomo Zilberstein.

Summary of Contents
i

ii

in

IV

Artificial Intelligence 1
1 In t roduct ion . 3
2 Intelligent Agen t s . 31

Problem-solving 53
3 Solving Problems by Searching . 55
4 Informed Search Methods . 92
5 Game P lay ing . 122
Knowledge and reasoning 149
6 Agents that Reason Logica l ly . 151
7 First-Order Logic . 185
8 Building a Knowledge Base . 217
9 Inference in First-Order Log ic . 265
10 Logical Reasoning Sys tems. 297
Acting logically 335
11 P lann ing . 337
12 Practical Planning . 367
13 Planning and Ac t ing . 392

Uncertain knowledge and reasoning 413
14 Uncer ta in ty . 415
15 Probabilistic Reasoning Sys t ems . 436
16 Making Simple Decisions . 471
17 Making Complex Decisions . 498
Learning 523
18 Learning from Observat ions . 525
19 Learning in Neural and Belief Networks . 563
20 Reinforcement Learn ing . 598
21 Knowledge in Learn ing . 625
Communicating, perceiving, and acting 649

22 Agents that Communicate . 651
23 Practical Natural Language Processing . 691
24 Perception . 724
25 Robo t i c s . 773

VIII Conclusions 815
26 Philosophical Foundations . 817
27 AI: Present and Future . 842
A Complexity analysis and O() notat ion. 851
B Notes on Languages and Algor i thms. 854

Bibliography 859
Index 905

VI

VII

Contents

I Artificial Intelligence 1
1 Introduction 3

1.1 What is AI? . 4
Acting humanly: The Turing Test approach . 5
Thinking humanly: The cognitive modelling approach 6
Thinking rationally: The laws of thought approach 6
Acting rationally: The rational agent approach 7

1.2 The Foundations of Artificial Intelligence . 8
Philosophy (428 B.C.-present) . 8
Mathematics (c. 800-present) . 11
Psychology (1879-present) . 12
Computer engineering (1940-present) . 14
Linguistics (1957-present) . 15

1.3 The History of Artificial Intelligence . 16
The gestation of artificial intelligence (1943-1956). 16
Early enthusiasm, great expectations (1952-1969) 17
A dose of reality (1966-1974) . 20
Knowledge-based systems: The key to power? (1969-1979). 22
AI becomes an industry (1980-1988) . 24
The return of neural networks (1986-present) 24
Recent events (1987-present) . 25

1.4 The State of the Art . 26
1.5 Summary . 27
Bibliographical and Historical Notes . 28
Exercises . 28

2 Intelligent Agents 31
2.1 Introduction . 31
2.2 How Agents Should Act . 31

The ideal mapping from percept sequences to actions 34
Autonomy . 35

2.3 Structure of Intelligent Agents . 35
Agent programs . 37
Why not just look up the answers? . 38
An example . 39
Simple reflex agents . 40
Agents that keep track of the world . 41
Goal-based agents . 42
Utility-based agents . 44

2.4 Environments . 45

XIV Contents

Properties of environments . 46
Environment programs . 47

2.5 Summary . 49
Bibliographical and Historical Notes . 50
Exercises . 50

II Problem-solving 53
3 Solving Problems by Searching 55

3.1 Problem-Solving Agents . 55
3.2 Formulating Problems . 57

Knowledge and problem types . 58
Well-defined problems and solutions . 60
Measuring problem-solving performance . 61
Choosing states and actions . 61

3.3 Example Problems . 63
Toy problems . 63
Real-world problems . 68

3.4 Searching for Solutions . 70
Generating action sequences . 70
Data structures for search trees . 72

3.5 Search Strategies . 73
Breadth-first search . 74
Uniform cost search . 75
Depth-first search . 77
Depth-limited search . 78
Iterative deepening search . 78
Bidirectional search . 80
Comparing search strategies . 81

3.6 Avoiding Repeated States . 82
3.7 Constraint Satisfaction Search . 83
3.8 Summary . 85
Bibliographical and Historical Notes . 86
Exercises . 87

4 Informed Search Methods 92
4.1 Best-First Search . 92

Minimize estimated cost to reach a goal: Greedy search 93
Minimizing the total path cost: A* search . 96

4.2 Heuristic Functions . 101
The effect of heuristic accuracy on performance 102
Inventing heuristic functions . 103
Heuristics for constraint satisfaction problems 104

4.3 Memory Bounded Search . 106

Contents___xv

Iterative deepening A* search (IDA*) . 106
SMA* search . 107

4.4 Iterative Improvement Algorithms . 1 1 1
Hill-climbing search . 1 1 1
Simulated annealing . 1 1 3
Applications in constraint satisfaction problems 1 1 4

4.5 Summary . 115
Bibliographical and Historical Notes . 115
Exercises . 118

5 Game Playing 122
5.1 Introduction: Games as Search Problems . 122
5.2 Perfect Decisions in Two-Person Games . 123
5.3 Imperfect Decisions . 126

Evaluation functions . 127
Cutting off search . 129

5.4 Alpha-Beta Pruning . 129
Effectiveness of alpha-beta pruning . 131

5.5 Games That Include an Element of Chance . 133
Position evaluation in games with chance nodes 135
Complexity of expectiminimax . 135

5.6 State-of-the-Art Game Programs . 136
Chess . 137
Checkers or Draughts . 138
Othello . 138
Backgammon . 139
Go . 139

5.7 Discussion . 139
5.8 Summary . 141
Bibliographical and Historical Notes . 141
Exercises . 145

III Knowledge and reasoning 149
6 Agents that Reason Logically 151

6.1 A Knowledge-Based Agent . 151
6.2 The Wumpus World Environment . 153

Specifying the environment . 154
Acting and reasoning in the wumpus world . 155

6.3 Representation, Reasoning, and Logic . 157
Representation . 160
Inference . 163
Logics . 165

6.4 Prepositional Logic: A Very Simple Logic . 166

XVI Contents

Syntax . 166
Semantics . 168
Validity and inference . 169
Models . 170
Rules of inference for propositional logic . 171
Complexity of prepositional inference . 173

6.5 An Agent for the Wumpus World . 174
The knowledge base . 174
Finding the wumpus . 175
Translating knowledge into action . 176
Problems with the propositional agent . 176

6.6 Summary . 178
Bibliographical and Historical Notes . 178
Exercises . 180

7 First-Order Logic 185
7.1 Syntax and Semantics . 186

Terms . 188
Atomic sentences . 189
Complex sentences . 189
Quantifiers . 189
Equality . 193

7.2 Extensions and Notational Variations . 194
Higher-order logic . 195
Functional and predicate expressions using the A operator 195
The uniqueness quantifier 3! . 196
The uniqueness operator / . 196
Notational v a r i a t i o n s . 196

7.3 Using First-Order Logic . 197
The kinship domain . 197
Axioms, definitions, and theorems . 198
The domain of sets . 199
Special notations for sets, lists and arithmetic 200
Asking questions and getting answers . 200

7.4 Logical Agents for the Wumpus World . 201
7.5 A Simple Reflex Agent . 202

Limitations of simple reflex agents . 203
7.6 Representing Change in the World . 203

Situation calculus . 204
Keeping track of location . 206

7.7 Deducing Hidden Properties of the World . 208
7.8 Preferences Among Actions . 210
7.9 Toward a Goal-Based Agent . 211
7.10 Summary . 211

Contents xvn

Bibliographical and Historical Notes . 212
Exercises . 213

8 Building a Knowledge Base 217
8.1 Properties of Good and Bad Knowledge Bases 218
8.2 Knowledge Engineering . 221
8.3 The Electronic Circuits Domain . 223

Decide what to talk about . 223
Decide on a vocabulary . 224
Encode general rules . 225
Encode the specific instance . 225
Pose queries to the inference procedure . 226

8.4 General Ontology . 226
Representing Categories . 229
Measures . 231
Composite objects . 233
Representing change with events . 234
Times, intervals, and actions . 238
Objects revisited . 240
Substances and objects . 241
Mental events and mental objects . 243
Knowledge and action . 247

8.5 The Grocery Shopping World . 247
Complete description of the shopping simulation 248
Organizing knowledge . 249
Menu-planning . 249
Navigating . 252
Gathering . 253
Communicating . 254
Paying . 255

8.6 Summary . 256
Bibliographical and Historical Notes . 256
Exercises . 261

9 Inference in First-Order Logic 265
9.1 Inference Rules Involving Quantifiers . 265
9.2 An Example Proof . 266
9.3 Generalized Modus Ponens . 269

Canonical form . 270
Unification . 270
Sample proof revisited . 271

9.4 Forward and Backward Chaining . 272
Forward-chaining algorithm . 273
Backward-chaining algorithm . 275

XV111 Contents

9.5 Completeness . 276
9.6 Resolution: A Complete Inference Procedure 277

The resolution inference rule . 278
Canonical forms for resolution . 278
Resolution proofs . 279
Conversion to Normal Form . 281
Example proof . 282
Dealing with equality . 284
Resolution strategies . 284

9.7 Completeness of resolution . 286
9.8 Summary . 290
Bibliographical and Historical Notes . 291
Exercises . 294

10 Logical Reasoning Systems 297
10.1 Introduction . 297
10.2 Indexing, Retrieval, and Unification . 299

Implementing sentences and terms . 299
Store and fetch . 299
Table-based indexing . 300
Tree-based indexing . 301
The unification algorithm . 302

10.3 Logic Programming Systems . 304
The Prolog language . 304
Implementation . 305
Compilation of logic programs . 306
Other logic programming languages . 308
Advanced control facilities . 308

10.4 Theorem Provers . 310
Design of a theorem prover . 310
Extending Prolog . 3 1 1
Theorem provers as assistants . 312
Practical uses of theorem provers . 313

10.5 Forward-Chaining Production Systems . 3 1 3
Match phase . 314
Conflict resolution phase . 315
Practical uses of production systems . 316

10.6 Frame Systems and Semantic Networks . 316
Syntax and semantics of semantic networks 317
Inheritance with exceptions . 319
Multiple inheritance . 320
Inheritance and change . 320
Implementation of semantic networks . 321
Expressiveness of semantic networks . 323

IContents __ xix

10.7 Description Logics . 323
Practical uses of description logics . 325

10.8 Managing Retractions, Assumptions, and Explanations 325
10.9 Summary . 327
Bibliographical and Historical Notes . 328
Exercises . 332

IV Acting logically 335
11 Planning 337

11.1 A Simple Planning Agent . 337
11.2 From Problem Solving to Planning . 338
11.3 Planning in Situation Calculus . 341
11.4 Basic Representations for Planning . 343

Representations for states and goals . 343
Representations for actions . 344
Situation space and plan space . 345
Representations for plans . 346
Solutions . 349

11.5 A Partial-Order Planning Example . 349
11.6 A Partial-Order Planning Algorithm . 355
11.7 Planning with Partially Instantiated Operators 357
11.8 Knowledge Engineering for Planning . 359

The blocks world . 359
Shakey's world . 360

11.9 Summary . 362
Bibliographical and Historical Notes . 363
Exercises . 364

12 Practical Planning 367
12.1 Practical Planners . 367

Spacecraft assembly, integration, and verification 367
Job shop scheduling . 369
Scheduling for space missions . 369
Buildings, aircraft carriers, and beer factories 371

12.2 Hierarchical Decomposition . 371
Extending the language . 372
Modifying the planner . 374

12.3 Analysis of Hierarchical Decomposition . 375
Decomposition and sharing . 379
Decomposition versus approximation . 380

12.4 More Expressive Operator Descriptions . 381
Conditional effects . 381
Negated and disjunctive goals . 382

XX Contents

Universal quantification . 383
A planner for expressive operator descriptions 384

12.5 Resource Constraints . 386
Using measures in planning . 386
Temporal c o n s t r a i n t s . 388

12.6 Summary . 388
Bibliographical and Historical Notes . 389
Exercises . 390

13 Planning and Acting 392
13.1 Conditional Planning . 393

The nature of conditional plans . 393
An algorithm for generating conditional plans 395
Extending the plan language . 398

13.2 A Simple Replanning Agent . 401
Simple replanning with execution m o n i t o r i n g 402

13.3 Fully Integrated Planning and Execution . 403
13.4 Discussion and Extensions . 407

Comparing conditional planning and replanning 407
Coercion and abstraction . 409

13.5 Summary . 410
Bibliographical and Historical Notes . 411
Exercises . 412

V Uncertain knowledge and reasoning 413
14 Uncertainty 415

14.1 Acting under Uncertainty . 415
Handling uncertain knowledge . 416
Uncertainty and rational decisions . 418
Design for a decision-theoretic agent . 419

14.2 Basic Probability Notation . 420
Prior probability . 420
Conditional probability . 421

14.3 The Axioms of Probability . 422
Why the axioms of probability are reasonable 423
The joint probability distribution . 425

14.4 Bayes' Rule and Its Use . 426
Applying Bayes' rule: The simple case . 426
Normalization . 427
Using Bayes' rule: Combining evidence . 428

14.5 Where Do Probabilities Come From? . 430
14.6 Summary . 431
Bibliographical and Historical Notes . 431

Contents xxi

Exercises . 433

15 Probabilistic Reasoning Systems 436
15.1 Representing Knowledge in an Uncertain Domain 436
15.2 The Semantics of Belief Networks . 438

Representing the joint probability distribution 439
Conditional independence relations in belief networks 444

15.3 Inference in Belief Networks . 445
The nature of probabilistic inferences . 446
An algorithm for answering queries . 447

15.4 Inference in Multiply Connected Belief Networks 453
Clustering methods . 453
Cutset conditioning methods . 454
Stochastic simulation methods . 455

15.5 Knowledge Engineering for Uncertain Reasoning 456
Case study: The Pathfinder system . 457

15.6 Other Approaches to Uncertain Reasoning . 458
Default reasoning . 459
Rule-based methods for uncertain reasoning 460
Representing ignorance: Dempster-Shafer theory 462
Representing vagueness: Fuzzy sets and fuzzy logic 463

15.7 Summary . 464
Bibliographical and Historical Notes . 464
Exercises . 467

16 Making Simple Decisions 471
16.1 Combining Beliefs and Desires Under Uncertainty 471
16.2 The Basis of Utility Theory . 473

Constraints on rational preferences . 473
... and then there was Utility . 474

16.3 Utility Functions . 475
The utility of money . 476
Utility scales and utility assessment . 478

16.4 Multiattribute utility functions . 480
Dominance . 481
Preference structure and multiattribute utility 483

16.5 Decision Networks . 484
Representing a decision problem using decision networks 484
Evaluating decision networks . 486

16.6 The Value of Information . 487
A simple example . 487
A general formula . 488
Properties of the value of information . 489
Implementing an information-gathering agent 490

xxii Contents

16.7 Decision-Theoretic Expert Systems . 491
16.8 Summary . 493
Bibliographical and Historical Notes . 493
Exercises . 495

17 Making Complex Decisions 498
17.1 Sequential Decision Problems . 498
17.2 Value Iteration . 502
17.3 Policy Iteration . 505
17.4 Decision-Theoretic Agent Design . 508

The decision cycle of a rational agent . 508
Sensing in uncertain worlds . 510

17.5 Dynamic Belief Networks . 514
17.6 Dynamic Decision Networks . 516

Discussion . 5 1 8
17.7 Summary . 519
Bibliographical and Historical Notes . 520
Exercises . 521

VI Learning 523

18 Learning from Observations 525
18.1 A General Model of Learning Agents . 525

Components of the performance element . 527
Representation of the components . 528
Available feedback . 528
Prior knowledge . 528
Bringing it all together . 529

18.2 Inductive Learning . 529
18.3 Learning Decision Trees . 531

Decision trees as performance elements . 531
Expressiveness of decision trees . 532
Inducing decision trees from examples . 534
Assessing the performance of the learning algorithm 538
Practical uses of decision tree learning . 538

18.4 Using Information Theory . 540
Noise and overfilling . 542
Broadening the applicability of decision Irees 543

18.5 Learning General Logical Descriptions . 544
Hypotheses . 544
Examples . 545
Current-besl-hypolhesis search . 546
Least-commitment search . 549
Discussion . 552

Contents XXlll

18.6 Why Learning Works: Computational Learning Theory 552
How many examples are needed? . 553
Learning decision lists . 555
Discussion . 557

18.7 Summary . 558
Bibliographical and Historical Notes . 559
Exercises . 560

19 Learning in Neural and Belief Networks 563
19.1 How the Brain Works . 564

Comparing brains with digital computers . 565
19.2 Neural Networks . 567

Notation . 567
Simple computing elements . 567
Network structures . 570
Optimal network structure . 572

19.3 Perceptrons . 573
What perceptrons can represent . 573
Learning linearly separable functions . 575

19.4 Multilayer Feed-Forward Networks . 578
Back-propagation learning . 578
Back-propagation as gradient descent search 580
Discussion . 583

19.5 Applications of Neural Networks . 584
Pronunciation . 585
Handwritten character recognition . 586
Driving . 586

19.6 Bayesian Methods for Learning Belief Networks 588
Bayesian learning . 588
Belief network learning problems . 589
Learning networks with fixed structure . 589
A comparison of belief networks and neural networks 592

19.7 Summary . 593
Bibliographical and Historical Notes . 594
Exercises . 596

20 Reinforcement Learning 598
20.1 Introduction . 598
20.2 Passive Learning in a Known Environment . 600

Nai've updating . 601
Adaptive dynamic programming . 603
Temporal difference learning . 604

20.3 Passive Learning in an Unknown Environment 605
20.4 Active Learning in an Unknown Environment 607

XXIV Contents

20.5 Exploration . 609
20.6 Learning an Action-Value Function . 612
20.7 Generalization in Reinforcement Learning . 615

Applications to game-playing . 617
Application to robot control . 6 1 7

20.8 Genetic Algorithms and Evolutionary Programming 619
20.9 Summary . 621
Bibliographical and Historical Notes . 622
Exercises . 623

21 Knowledge in Learning 625
21.1 Knowledge in Learning . 625

Some simple examples . 626
Some general schemes . 627

21.2 Explanation-Based Learning . 629
Extracting general rules from examples . 630
Improving efficiency . 631

21.3 Learning Using Relevance Information . 633
Determining the hypothesis space . 633
Learning and using relevance information . 634

21.4 Inductive Logic Programming . 636
An example . 637
Inverse resolution . 639
Top-down learning methods . 641

21.5 Summary . 644
Bibliographical and Historical Notes . 645
Exercises . 647

VII Communicating, perceiving, and acting 649

22 Agents that Communicate 651
22.1 Communication as Action . 652

Fundamentals of language . 654
The component steps of communication . 655
Two models of communication . 659

22.2 Types of Communicating Agents . 659
Communicating using Tell and Ask . 660
Communicating using formal language . 661
An agent that communicates . 662

22.3 A Formal Grammar for a Subset of English . 662
The Lexicon of £o . 664
The Grammar of £Q . 664

22.4 Syntactic Analysis (Parsing) . 664
22.5 Definite Clause Grammar (DCG) . 667

Contents xxv

22.6 Augmenting a Grammar . 668
Verb Subcategorization . 669
Generative Capacity of Augmented Grammars 671

22.7 Semantic Interpretation . 672
Semantics as DCG Augmentations . 673
The semantics of "John loves Mary" . 673
The semantics of £\ . 675
Converting quasi-logical form to logical form 677
Pragmatic Interpretation . 678

22.8 Ambiguity and Disambiguation . 680
Disambiguation . 682

22.9 A Communicating Agent . 683
22.10 Summary . 684
Bibliographical and Historical Notes . 685
Exercises . 688

23 Practical Natural Language Processing 691
23.1 Practical Applications . 691

Machine translation . 691
Database access . 693
Information retrieval . 694
Text categorization . 695
Extracting data from text . 696

23.2 Efficient Parsing . 696
Extracting parses from the chart: Packing . 701

23.3 Scaling Up the Lexicon . 703
23.4 Scaling Up the Grammar . 705

Nominal compounds and apposition . 706
Adjective phrases . 707
Determiners . 708
Noun phrases revisited . 709
Clausal complements . 710
Relative clauses . 710
Questions . 7 1 1
Handling agrammatical strings . 712

23.5 Ambiguity . 712
Syntactic evidence . 713
Lexical evidence . 7 1 3
Semantic evidence . 713
Metonymy . 714
Metaphor . 715

23.6 Discourse Understanding . 715
The structure of coherent discourse . 717

23.7 Summary . 719

xxvi Contents

Bibliographical and Historical Notes . 720
Exercises . 721

24 Perception 724
24.1 Introduction . 724
24.2 Image Formation . 725

Pinhole camera . 725
Lens systems . 727
Photometry of image formation . 729
Spectrophotometry of image formation . 730

24.3 Image-Processing Operations for Early Vision 730
Convolution with linear filters . 732
Edge detection . 733

24.4 Extracting 3-D Information Using Vision . 734
Motion . 735
Binocular stereopsis . 737
Texture gradients . 742
Shading . 743
Contour . 745

24.5 Using Vision for Manipulation and Navigation 749
24.6 Object Representation and Recognition . 751

The alignment method . 752
Using projective invariants . 754

24.7 Speech Recognition . 757
Signal processing . 758
Defining the overall speech recognition model 760
The language model: P(words) . 760
The acoustic model: P(signallwords) . 762
Putting the models together . 764
The search algorithm . 765
Training the model . 766

24.8 Summary . 767
Bibliographical and Historical Notes . 767
Exercises . 771

25 Robotics 773
25.1 Introduction . 773
25.2 Tasks: What Are Robots Good For? . 774

Manufacturing and materials handling . 774
Gofer robots . 775
Hazardous environments . 775
Telepresence and virtual reality . 776
Augmentation of human abilities . 776

25.3 Parts: What Are Robots Made Of? . 777

Contents ___xxvii

Effectors: Tools for action . 777
Sensors: Tools for perception . 782

25.4 Architectures . 786
Classical architecture . 787
Situated automata . 788

25.5 Configuration Spaces: A Framework for Analysis 790
Generalized configuration space . 792
Recognizable Sets . 795

25.6 Navigation and Motion Planning . 796
Cell decomposition . 796
Skeletonization methods . 798
Fine-motion planning . 802
Landmark-based navigation . 805
Online algorithms . 806

25.7 Summary . 809
Bibliographical and Historical Notes . 809
Exercises . 811

VIII Conclusions 815

26 Philosophical Foundations 817
26.1 The Big Questions . 817
26.2 Foundations of Reasoning and Perception . 819
26.3 On the Possibility of Achieving Intelligent Behavior 822

The mathematical objection . 824
The argument from informality . 826

26.4 Intentionality and Consciousness . 830
The Chinese Room . 831
The Brain Prosthesis Experiment . 835
Discussion . 836

26.5 Summary . 837
Bibliographical and Historical Notes . 838
Exercises . 840

27 AI: Present and Future 842
27.1 Have We Succeeded Yet? . 842
27.2 What Exactly Are We Trying to Do? . 845
27.3 What If We Do Succeed? . 848

A Complexity analysis and O() notation 851
A.I Asymptotic Analysis . 851
A.2 Inherently Hard Problems . 852
Bibliographical and Historical Notes . 853

XXV111 Contents

B Notes on Languages and Algorithms 854
B.I Defining Languages with Backus-Naur Form (BNF) 854
B.2 Describing Algorithms with Pseudo-Code . 855

Nondeterminism . 855
Static variables . 856
Functions as values . 856

B.3 The Code Repository . 857
B.4 Comments . 857

Bibliography

Index

859

905

Parti
ARTIFICIAL INTELLIGENCE

The two chapters in this part introduce the subject of Artificial Intelligence or AI
and our approach to the subject: that AI is the study of agents that exist in an
environment and perceive and act.

Section The Foundations of Artificial Intelligence

and subtracting machine called the Pascaline. Leibniz improved on this in 1694, building a
mechanical device that multiplied by doing repeated addition. Progress stalled for over a century
until Charles Babbage (1792-1871) dreamed that logarithm tables could be computed by machine.
He designed a machine for this task, but never completed the project. Instead, he turned to the
design of the Analytical Engine, for which Babbage invented the ideas of addressable memory,
stored programs, and conditional jumps. Although the idea of programmable machines was
not new—in 1805, Joseph Marie Jacquard invented a loom that could be programmed using
punched cards—Babbage's machine was the first artifact possessing the characteristics necessary
for universal computation. Babbage's colleague Ada Lovelace, daughter of the poet Lord Byron,
wrote programs for the Analytical Engine and even speculated that the machine could play chess
or compose music. Lovelace was the world's first programmer, and the first of many to endure
massive cost overruns and to have an ambitious project ultimately abandoned." Babbage's basic
design was proven viable by Doron Swade and his colleagues, who built a working model using
only the mechanical techniques available at Babbage's time (Swade, 1993). Babbage had the
right idea, but lacked the organizational skills to get his machine built.

AI also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to write modern programs (and
papers about them). But this is one area where the debt has been repaid: work in AI has pioneered
many ideas that have made their way back to "mainstream" computer science, including time
sharing, interactive interpreters, the linked list data type, automatic storage management, and
some of the key concepts of object-oriented programming and integrated program development
environments with graphical user interfaces.

Linguistics (1957-present)
In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed account
of the behaviorist approach to language learning, written by the foremost expert in the field. But
curiously, a review of the book became as well-known as the book itself, and served to almost kill
off interest in behaviorism. The author of the review was Noam Chomsky, who had just published
a book on his own theory, Syntactic Structures. Chomsky showed how the behaviorist theory did
not address the notion of creativity in language—it did not explain how a child could understand
and make up sentences that he or she had never heard before. Chomsky's theory—based on
syntactic models going back to the Indian linguist Panini (c. 350 B.C.)—could explain this, and
unlike previous theories, it was formal enough that it could in principle be programmed.

Later developments in linguistics showed the problem to be considerably more complex
than it seemed in 1957. Language is ambiguous and leaves much unsaid. This means that
understanding language requires an understanding of the subject matter and context, not just an
understanding of the structure of sentences. This may seem obvious, but it was not appreciated
until the early 1960s. Much of the early work in knowledge representation (the study of how to
put knowledge into a form that a computer can reason with) was tied to language and informed
by research in linguistics, which was connected in turn to decades of work on the philosophical
analysis of language.

She also gave her name to Ada, the U.S. Department of Defense's all-purpose programming language.

1 INTRODUCTION

In which we try to explain why we consider artificial intelligence to be a subject most
worthy of study, and in which we try to decide what exactly it is, this being a good
thing to decide before embarking.

Humankind has given itself the scientific name homo sapiens—man the wise—because our
mental capacities are so important to our everyday lives and our sense of self. The field of
artificial intelligence, or AI, attempts to understand intelligent entities. Thus, one reason to
study it is to learn more about ourselves. But unlike philosophy and psychology, which are
also concerned with intelligence, AI strives to build intelligent entities as well as understand
them. Another reason to study AI is that these constructed intelligent entities are interesting and
useful in their own right. AI has produced many significant and impressive products even at this
early stage in its development. Although no one can predict the future in detail, it is clear that
computers with human-level intelligence (or better) would have a huge impact on our everyday
lives and on the future course of civilization.

AI addresses one of the ultimate puzzles. How is it possible for a slow, tiny brain, whether
biological or electronic, to perceive, understand, predict, and manipulate a world far larger and
more complicated than itself? How do we go about making something with those properties?
These are hard questions, but unlike the search for faster-than-light travel or an antigravity device,
the researcher in AI has solid evidence that the quest is possible. All the researcher has to do is
look in the mirror to see an example of an intelligent system.

AI is one of the newest disciplines. It was formally initiated in 1956, when the name
was coined, although at that point work had been under way for about five years. Along with
modern genetics, it is regularly cited as the "field I would most like to be in" by scientists in other
disciplines. A student in physics might reasonably feel that all the good ideas have already been
taken by Galileo, Newton, Einstein, and the rest, and that it takes many years of study before one
can contribute new ideas. AI, on the other hand, still has openings for a full-time Einstein.

The study of intelligence is also one of the oldest disciplines. For over 2000 years, philoso-
phers have tried to understand how seeing, learning, remembering, and reasoning could, or should,

Chapter Introduction

be done.' The advent of usable computers in the early 1950s turned the learned but armchair
speculation concerning these mental faculties into a real experimental and theoretical discipline.
Many felt that the new "Electronic Super-Brains" had unlimited potential for intelligence. "Faster
Than Einstein" was a typical headline. But as well as providing a vehicle for creating artificially
intelligent entities, the computer provides a tool for testing theories of intelligence, and many
theories failed to withstand the test—a case of "out of the armchair, into the fire." AI has turned
out to be more difficult than many at first imagined, and modem ideas are much richer, more
subtle, and more interesting as a result.

AI currently encompasses a huge variety of subfields, from general-purpose areas such as
perception and logical reasoning, to specific tasks such as playing chess, proving mathematical
theorems, writing poetry, and diagnosing diseases. Often, scientists in other fields move gradually
into artificial intelligence, where they find the tools and vocabulary to systematize and automate
the intellectual tasks on which they have been working all their lives. Similarly, workers in AI
can choose to apply their methods to any area of human intellectual endeavor. In this sense, it is
truly a universal field.

1.1 WHAT is AI?

RATIONALITY

We have now explained why AI is exciting, but we have not said what it is. We could just say,
"Well, it has to do with smart programs, so let's get on and write some." But the history of science
shows that it is helpful to aim at the right goals. Early alchemists, looking for a potion for eternal
life and a method to turn lead into gold, were probably off on the wrong foot. Only when the aim ;
changed, to that of finding explicit theories that gave accurate predictions of the terrestrial world, j
in the same way that early astronomy predicted the apparent motions of the stars and planets, i
could the scientific method emerge and productive science take place.

Definitions of artificial intelligence according to eight recent textbooks are shown in Fig- j
ure 1.1. These definitions vary along two main dimensions. The ones on top are concerned
with thought processes and reasoning, whereas the ones on the bottom address behavior. Also,!
the definitions on the left measure success in terms of human performance, whereas the ones 1
on the right measure against an ideal concept of intelligence, which we will call rationality. A!
system is rational if it does the right thing. This gives us four possible goals to pursue in artificial j
intelligence, as seen in the caption of Figure 1.1.

Historically, all four approaches have been followed. As one might expect, a tension existsl
between approaches centered around humans and approaches centered around rationality.2 A!
human-centered approach must be an empirical science, involving hypothesis and experimental]

1 A more recent branch of philosophy is concerned with proving that AI is impossible. We will return to this interesting j
viewpoint in Chapter 26.
2 We should point out that by distinguishing between human and rational behavior, we are not suggesting that humans 1
are necessarily "irrational" in the sense of "emotionally unstable" or "insane." One merely need note that we often make I
mistakes; we are not all chess grandmasters even though we may know all the rules of chess; and unfortunately, not]
everyone gets an A on the exam. Some systematic errors in human reasoning are cataloged by Kahneman et al. (1982).

Section 1.1 What is Al?

"The exciting new effort to make computers
think . . . machines with minds, in the full
and literal sense" (Haugeland, 1985)

"[The automation of] activities that we asso-
ciate with human thinking, activities such as
decision-making, problem solving, learning
..."(Bellman, 1978)

"The art of creating machines that perform
functions that require intelligence when per-
formed by people" (Kurzweil, 1990)
"The study of how to make computers do
things at which, at the moment, people are
better" (Rich and Knight, 1 99 1)

"The study of mental faculties through the
use of computational models"
(Charniak and McDermott, 1985)

"The study of the computations that make
it possible to perceive, reason, and act"
(Winston, 1992)

"A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes" (Schalkoff, 1 990)
"The branch of computer science that is con-
cerned with the automation of intelligent
behavior" (Luger and Stubblefield, 1993)

Figure 1.1 Some definitions of AI. They are organized into four categories:

Systems that think like humans.

Systems that act like humans.

Systems that think rationally.

Systems that act rationally.

confirmation. A rationalist approach involves a combination of mathematics and engineering.
People in each group sometimes cast aspersions on work done in the other groups, but the truth
is that each direction has yielded valuable insights. Let us look at each in more detail.

TURING TEST

KNOWLEDGE
REPRESENTATION
AUTOMATED
REASONING

MACHINE LEARNING

L

Acting humanly: The Turing Test approach
The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactory
operational definition of intelligence. Turing defined intelligent behavior as the ability to achieve
human-level performance in all cognitive tasks, sufficient to fool an interrogator. Roughly
speaking, the test he proposed is that the computer should be interrogated by a human via a
teletype, and passes the test if the interrogator cannot tell if there is a computer or a human at the
other end. Chapter 26 discusses the details of the test, and whether or not a computer is really
intelligent if it passes. For now, programming a computer to pass the test provides plenty to work
on. The computer would need to possess the following capabilities:

0 natural language processing to enable it to communicate successfully in English (or some
other human language);

<C> knowledge representation to store information provided before or during the interrogation;
<) automated reasoning to use the stored information to answer questions and to draw new

conclusions;
<) machine learning to adapt to new circumstances and to detect and extrapolate patterns.

Turing's test deliberately avoided direct physical interaction between the interrogator and the
computer, because physical simulation of a person is unnecessary for intelligence. However,

Chapter 1. Introduction

TOTAL TURING TEST the so-called total Turing Test includes a video signal so that the interrogator can test the
subject's perceptual abilities, as well as the opportunity for the interrogator to pass physical
objects "through the hatch." To pass the total Turing Test, the computer will need

COMPUTER VISION <) computer vision to perceive objects, and
ROBOTICS (> robotics to move them about.

Within AI, there has not been a big effort to try to pass the Turing test. The issue of acting
like a human comes up primarily when AI programs have to interact with people, as when an
expert system explains how it came to its diagnosis, or a natural language processing system has
a dialogue with a user. These programs must behave according to certain normal conventions of
human interaction in order to make themselves understood. The underlying representation and
reasoning in such a system may or may not be based on a human model.

COGNITIVE SCIENCE

Thinking humanly: The cognitive modelling approach
If we are going to say that a given program thinks like a human, we must have some way of
determining how humans think. We need to get inside the actual workings of human minds.
There are two ways to do this: through introspection—trying to catch our own thoughts as they
go by—or through psychological experiments. Once we have a sufficiently precise theory of
the mind, it becomes possible to express the theory as a computer program. If the program's
input/output and timing behavior matches human behavior, that is evidence that some of the
program's mechanisms may also be operating in humans. For example, Newell and Simon, who
developed GPS, the "General Problem Solver" (Newell and Simon, 1961), were not content to
have their program correctly solve problems. They were more concerned with comparing the
trace of its reasoning steps to traces of human subjects solving the same problems. This is in
contrast to other researchers of the same time (such as Wang (I960)), who were concerned with
getting the right answers regardless of how humans might do it. The interdisciplinary field of
cognitive science brings together computer models from AI and experimental techniques from
psychology to try to construct precise and testable theories of the workings of the human mind.

Although cognitive science is a fascinating field in itself, we are not going to be discussing
it all that much in this book. We will occasionally comment on similarities or differences between
AI techniques and human cognition. Real cognitive science, however, is necessarily based on
experimental investigation of actual humans or animals, and we assume that the reader only has
access to a computer for experimentation. We will simply note that AI and cognitive science
continue to fertilize each other, especially in the areas of vision, natural language, and learning.
The history of psychological theories of cognition is briefly covered on page 12.

SYLLOGISMS

L

Thinking rationally: The laws of thought approach
The Greek philosopher Aristotle was one of the first to attempt to codify "right thinking," that is,
irrefutable reasoning processes. His famous syllogisms provided patterns for argument structures
that always gave correct conclusions given correct premises. For example, "Socrates is a man;

Section 1.1. What is AI?

LOGIC

LOGICIST

all men are mortal; therefore Socrates is mortal." These laws of thought were supposed to govern
the operation of the mind, and initiated the field of logic.

The development of formal logic in the late nineteenth and early twentieth centuries, which
we describe in more detail in Chapter 6, provided a precise notation for statements about all kinds
of things in the world and the relations between them. (Contrast this with ordinary arithmetic
notation, which provides mainly for equality and inequality statements about numbers.) By 1965,
programs existed that could, given enough time and memory, take a description of a problem
in logical notation and find the solution to the problem, if one exists. (If there is no solution,
the program might never stop looking for it.) The so-called logicist tradition within artificial
intelligence hopes to build on such programs to create intelligent systems.

There are two main obstacles to this approach. First, it is not easy to take informal
knowledge and state it in the formal terms required by logical notation, particularly when the
knowledge is less than 100% certain. Second, there is a big difference between being able to
solve a problem "in principle" and doing so in practice. Even problems with just a few dozen
facts can exhaust the computational resources of any computer unless it has some guidance as to
which reasoning steps to try first. Although both of these obstacles apply to any attempt to build
computational reasoning systems, they appeared first in the logicist tradition because the power
of the representation and reasoning systems are well-defined and fairly well understood.

AGENT

Acting rationally: The rational agent approach

Acting rationally means acting so as to achieve one's goals, given one's beliefs. An agent is just
something that perceives and acts. (This may be an unusual use of the word, but you will get
used to it.) In this approach, AI is viewed as the study and construction of rational agents.

In the "laws of thought" approach to AI, the whole emphasis was on correct inferences.
Making correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to reason logically to the conclusion that a given action will achieve one's goals,
and then to act on that conclusion. On the other hand, correct inference is not all of rationality,
because there are often situations where there is no provably correct thing to do, yet something
must still be done. There are also ways of acting rationally that cannot be reasonably said to
involve inference. For example, pulling one's hand off of a hot stove is a reflex action that is
more successful than a slower action taken after careful deliberation.

All the "cognitive skills" needed for the Turing Test are there to allow rational actions. Thus,
we need the ability to represent knowledge and reason with it because this enables us to reach
good decisions in a wide variety of situations. We need to be able to generate comprehensible
sentences in natural language because saying those sentences helps us get by in a complex society.
We need learning not just for erudition, but because having a better idea of how the world works
enables us to generate more effective strategies for dealing with it. We need visual perception not
just because seeing is fun, but in order to get a better idea of what an action might achieve—for
example, being able to see a tasty morsel helps one to move toward it.

The study of AI as rational agent design therefore has two advantages. First, it is more
general than the "laws of thought" approach, because correct inference is only a useful mechanism
for achieving rationality, and not a necessary one. Second, it is more amenable to scientific

Chapter 1. Introduction

LIMITED
RATIONALITY

development than approaches based on human behavior or human thought, because the standard
of rationality is clearly defined and completely general. Human behavior, on the other hand,
is well-adapted for one specific environment and is the product, in part, of a complicated and
largely unknown evolutionary process that still may be far from achieving perfection. This
book will therefore concentrate on general principles of rational agents, and on components for
constructing them. We will see that despite the apparent simplicity with which the problem can
be stated, an enormous variety of issues come up when we try to solve it. Chapter 2 outlines
some of these issues in more detail.

One important point to keep in mind: we will see before too long that achieving perfect
rationality—always doing the right thing—is not possible in complicated environments. The
computational demands are just too high. However, for most of the book, we will adopt the
working hypothesis that understanding perfect decision making is a good place to start. It
simplifies the problem and provides the appropriate setting for most of the foundational material
in the field. Chapters 5 and 17 deal explicitly with the issue of limited rationality—acting
appropriately when there is not enough time to do all the computations one might like.

1.2 THE FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

In this section and the next, we provide a brief history of AI. Although AI itself is a young field,
it has inherited many ideas, viewpoints, and techniques from other disciplines. From over 2000
years of tradition in philosophy, theories of reasoning and learning have emerged, along with the
viewpoint that the mind is constituted by the operation of a physical system. From over 400 years
of mathematics, we have formal theories of logic, probability, decision making, and computation.
From psychology, we have the tools with which to investigate the human mind, and a scientific
language within which to express the resulting theories. From linguistics, we have theories of
the structure and meaning of language. Finally, from computer science, we have the tools with
which to make AI a reality.

Like any history, this one is forced to concentrate on a small number of people and events,
and ignore others that were also important. We choose to arrange events to tell the story of how
the various intellectual components of modern AI came into being. We certainly would not wish
to give the impression, however, that the disciplines from which the components came have all
been working toward AI as their ultimate fruition.

Philosophy (428 B.C.-present)

The safest characterization of the European philosophical tradition is that it consists of a series
of footnotes to Plato.
—Alfred North Whitehead

We begin with the birth of Plato in 428 B.C. His writings range across politics, mathematics,
physics, astronomy, and several branches of philosophy. Together, Plato, his teacher Socrates,

I
Section 1.2. The Foundations of Artificial Intelligence

DUALISM

MATERIALISM

EMPIRICIST

INDUCTION

and his student Aristotle laid the foundation for much of western thought and culture. The
philosopher Hubert Dreyfus (1979, p. 67) says that "The story of artificial intelligence might well
begin around 450 B.C." when Plato reported a dialogue in which Socrates asks Euthyphro,3 "I
want to know what is characteristic of piety which makes all actions pious... that I may have it
to turn to, and to use as a standard whereby to judge your actions and those of other men."4 In
other words, Socrates was asking for an algorithm to distinguish piety from non-piety. Aristotle
went on to try to formulate more precisely the laws governing the rational part of the mind. He
developed an informal system of syllogisms for proper reasoning, which in principle allowed one
to mechanically generate conclusions, given initial premises. Aristotle did not believe all parts
of the mind were governed by logical processes; he also had a notion of intuitive reason.

Now that we have the idea of a set of rules that can describe the working of (at least part
of) the mind, the next step is to consider the mind as a physical system. We have to wait for
Rene Descartes (1596-1650) for a clear discussion of the distinction between mind and matter,
and the problems that arise. One problem with a purely physical conception of the mind is that
it seems to leave little room for free will: if the mind is governed entirely by physical laws, then
it has no more free will than a rock "deciding" to fall toward the center of the earth. Although a
strong advocate of the power of reasoning, Descartes was also a proponent of dualism. He held
that there is a part of the mind (or soul or spirit) that is outside of nature, exempt from physical
laws. On the other hand, he felt that animals did not possess this dualist quality; they could be
considered as if they were machines.

An alternative to dualism is materialism, which holds that all the world (including the
brain and mind) operate according to physical law.5 Wilhelm Leibniz (1646-1716) was probably
the first to take the materialist position to its logical conclusion and build a mechanical device
intended to carry out mental operations. Unfortunately, his formulation of logic was so weak that
his mechanical concept generator could not produce interesting results.

It is also possible to adopt an intermediate position, in which one accepts that the mind
has a physical basis, but denies that it can be explained by a reduction to ordinary physical
processes. Mental processes and consciousness are therefore part of the physical world, but
inherently unknowable; they are beyond rational understanding. Some philosophers critical of
AI have adopted exactly this position, as we discuss in Chapter 26.

Barring these possible objections to the aims of AI, philosophy had thus established a
tradition in which the mind was conceived of as a physical device operating principally by
reasoning with the knowledge that it contained. The next problem is then to establish the
source of knowledge. The empiricist movement, starting with Francis Bacon's (1561-1626)
Novwn Organum,6 is characterized by the dictum of John Locke (1632-1704): "Nothing is in
the understanding, which was not first in the senses." David Hume's (1711-1776) A Treatise
of Human Nature (Hume, 1978) proposed what is now known as the principle of induction:

3 The Euthyphro describes the events just before the trial of Socrates in 399 B.C. Dreyfus has clearly erred in placing it
51 years earlier.
4 Note that other translations have "goodness/good" instead of "piety/pious."
5 In this view, the perception of "free will" arises because the deterministic generation of behavior is constituted by the
operation of the mind selecting among what appear to be the possible courses of action. They remain "possible" because
the brain does not have access to its own future states.
6 An update of Aristotle's organon, or instrument of thought.

10 Chapter 1. Introduction

LOGICAL POSITIVISM
OBSERVATION
SENTENCES
CONFIRMATION
THEORY

MEANS-ENDS
ANALYSIS

that general rules are acquired by exposure to repeated associations between their elements.
The theory was given more formal shape by Bertrand Russell (1872-1970) who introduced
logical positivism. This doctrine holds that all knowledge can be characterized by logical
theories connected, ultimately, to observation sentences that correspond to sensory inputs.7 The
confirmation theory of Rudolf Carnap and Carl Hempel attempted to establish the nature of the
connection between the observation sentences and the more general theories—in other words, to
understand how knowledge can be acquired from experience.

The final element in the philosophical picture of the mind is the connection between
knowledge and action. What form should this connection take, and how can particular actions
be justified? These questions are vital to AI, because only by understanding how actions are
justified can we understand how to build an agent whose actions are justifiable, or rational.
Aristotle provides an elegant answer in the Nicomachean Ethics (Book III. 3, 1112b):

We deliberate not about ends, but about means. For a doctor does not deliberate whether he
shall heal, nor an orator whether he shall persuade, nor a statesman whether he shall produce
law and order, nor does any one else deliberate about his end. They assume the end and
consider how and by what means it is attained, and if it seems easily and best produced
thereby; while if it is achieved by one means only they consider how it will be achieved by
this and by what means this will be achieved, till they come to the first cause, which in the
order of discovery is last . . . and what is last in the order of analysis seems to be first in the
order of becoming. And if we come on an impossibility, we give up the search, e.g. if we
need money and this cannot be got: but if a thing appears possible we try to do it.

Aristotle's approach (with a few minor refinements) was implemented 2300 years later by Newell
and Simon in their GPS program, about which they write (Newell and Simon, 1972):

The main methods of GPS jointly embody the heuristic of means-ends analysis. Means-ends
analysis is typified by the following kind of common-sense argument:

I want to take my son to nursery school. What's the difference between what I
have and what I want? One of distance. What changes distance? My automobile.
My automobile won't work. What is needed to make it work? A new battery.
What has new batteries? An auto repair shop. I want the repair shop to put in a
new battery; but the shop doesn't know I need one. What is the difficulty? One
of communication. What allows communication? A telephone . . . and so on.

This kind of analysis—classifying things in terms of the functions they serve and oscillating
among ends, functions required, and means that perform them—forms the basic system of
heuristic of GPS.

Means-ends analysis is useful, but does not say what to do when several actions will achieve the
goal, or when no action will completely achieve it. Arnauld, a follower of Descartes, correctly
described a quantitative formula for deciding what action to take in cases like this (see Chapter 16).
John Stuart Mill's (1806-1873) book Utilitarianism (Mill, 1863) amplifies on this idea. The more
formal theory of decisions is discussed in the following section.

7 In this picture, all meaningful statements can be verified or falsified either by analyzing the meaning of the words or
by carrying out experiments. Because this rules out most of metaphysics, as was the intention, logical positivism was
unpopular in some circles.

Section 1.2. The Foundations of Artificial Intelligence 11

Mathematics (c. 800-present)
Philosophers staked out most of the important ideas of AI, but to make the leap to a formal
science required a level of mathematical formalization in three main areas: computation, logic,

ALGORITHM and probability. The notion of expressing a computation as a formal algorithm goes back to
al-Khowarazmi, an Arab mathematician of the ninth century, whose writings also introduced
Europe to Arabic numerals and algebra.

Logic goes back at least to Aristotle, but it was a philosophical rather than mathematical
subject until George Boole (1815-1864) introduced his formal language for making logical
inference in 1847. Boole's approach was incomplete, but good enough that others filled in the
gaps. In 1879, Gottlob Frege (1848-1925) produced a logic that, except for some notational
changes, forms the first-order logic that is used today as the most basic knowledge representation
system.8 Alfred Tarski (1902-1983) introduced a theory of reference that shows how to relate
the objects in a logic to objects in the real world. The next step was to determine the limits of
what could be done with logic and computation.

David Hilbert (1862-1943), a great mathematician in his own right, is most remembered
for the problems he did not solve. In 1900, he presented a list of 23 problems that he correctly
predicted would occupy mathematicians for the bulk of the century. The final problem asks
if there is an algorithm for deciding the truth of any logical proposition involving the natural
numbers—the famous Entscheidungsproblem, or decision problem. Essentially, Hilbert was
asking if there were fundamental limits to the power of effective proof procedures. In 1930, Kurt
Godel (1906-1978) showed that there exists an effective procedure to prove any true statement in
the first-order logic of Frege and Russell; but first-order logic could not capture the principle of
mathematical induction needed to characterize the natural numbers. In 1931, he showed that real

TNHCEora=METENESS limits do exist. His incompleteness theorem showed that in any language expressive enough
to describe the properties of the natural numbers, there are true statements that are undecidable:
their truth cannot be established by any algorithm.

This fundamental result can also be interpreted as showing that there are some functions
on the integers that cannot be represented by an algorithm—that is, they cannot be computed.
This motivated Alan Turing (1912-1954) to try to characterize exactly which functions are
capable of being computed. This notion is actually slightly problematic, because the notion
of a computation or effective procedure really cannot be given a formal definition. However,
the Church-Turing thesis, which states that the Turing machine (Turing, 1936) is capable of
computing any computable function, is generally accepted as providing a sufficient definition.
Turing also showed that there were some functions that no Turing machine can compute. For
example, no machine can tell in general whether a given program will return an answer on a
given input, or run forever.

Although undecidability and noncomputability are important to an understanding of com-
WTRACTABILITY putation, the notion of intractability has had a much greater impact. Roughly speaking,

a class of problems is called intractable if the time required to solve instances of the class
grows at least exponentially with the size of the instances. The distinction between polynomial
and exponential growth in complexity was first emphasized in the mid-1960s (Cobham, 1964;
Edmonds, 1965). It is important because exponential growth means that even moderate-sized in-

To understand why Frege's notation was not universally adopted, see the cover of this book.

12 Chapter 1. Introduction

stances cannot be solved in any reasonable time. Therefore, one should strive to divide the overall
problem of generating intelligent behavior into tractable subproblems rather than intractable ones.

REDUCTION The second important concept in the theory of complexity is reduction, which also emerged in
the 1960s (Dantzig, 1960; Edmonds, 1962). A reduction is a general transformation from one
class of problems to another, such that solutions to the first class can be found by reducing them
to problems of the second class and solving the latter problems.

NP COMPLETENESS How can one recognize an intractable problem? The theory of NP-completeness, pioneered
by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp showed
the existence of large classes of canonical combinatorial search and reasoning problems that
are NP-complete. Any problem class to which an NP-complete problem class can be reduced
is likely to be intractable. (Although it has not yet been proved that NP-complete problems
are necessarily intractable, few theoreticians believe otherwise.) These results contrast sharply
with the "Electronic Super-Brain" enthusiasm accompanying the advent of computers. Despite
the ever-increasing speed of computers, subtlety and careful use of resources will characterize
intelligent systems. Put crudely, the world is an extremely large problem instance!

Besides logic and computation, the third great contribution of mathematics to AI is the j
theory of probability. The Italian Gerolamo Cardano (1501-1576) first framed the idea of I
probability, describing it in terms of the possible outcomes of gambling events. Before his time, j
the outcomes of gambling games were seen as the will of the gods rather than the whim of chance, i
Probability quickly became an invaluable part of all the quantitative sciences, helping to deal
with uncertain measurements and incomplete theories. Pierre Fermat (1601-1665), Blaise Pascal I
(1623-1662), James Bernoulli (1654-1705), Pierre Laplace (1749-1827), and others advanced j
the theory and introduced new statistical methods. Bernoulli also framed an alternative view]
of probability, as a subjective "degree of belief" rather than an objective ratio of outcomes.!
Subjective probabilities therefore can be updated as new evidence is obtained. Thomas Bayes j
(1702-1761) proposed a rule for updating subjective probabilities in the light of new evidence!
(published posthumously in 1763). Bayes' rule, and the subsequent field of Bayesian analysis,!
form the basis of the modern approach to uncertain reasoning in AI systems. Debate still rages j
between supporters of the objective and subjective views of probability, but it is not clear if the!
difference has great significance for AI. Both versions obey the same set of axioms. Savage'sJ
(1954) Foundations of Statistics gives a good introduction to the field.

As with logic, a connection must be made between probabilistic reasoning and action.!
DECISION THEORY Decision theory, pioneered by John Von Neumann and Oskar Morgenstern (1944), combines!

probability theory with utility theory (which provides a formal and complete framework forl
specifying the preferences of an agent) to give the first general theory that can distinguish good!
actions from bad ones. Decision theory is the mathematical successor to utilitarianism, and]
provides the theoretical basis for many of the agent designs in this book.

Psychology (1879-present)
Scientific psychology can be said to have begun with the work of the German physicist Hermann i
von Helmholtz (1821-1894) and his student Wilhelm Wundt (1832-1920). Helmholtz applied
the scientific method to the study of human vision, and his Handbook of Physiological Optics \

Section 1.2. The Foundations of Artificial Intelligence 13

BEHAVIORISM

COGNITIVE
PSYCHOLOGY

is even now described as "the single most important treatise on the physics and physiology of
human vision to this day" (Nalwa, 1993, p.15). In 1879, the same year that Frege launched first-
order logic, Wundt opened the first laboratory of experimental psychology at the University of
Leipzig. Wundt insisted on carefully controlled experiments in which his workers would perform
a perceptual or associative task while introspecting on their thought processes. The careful
controls went a long way to make psychology a science, but as the methodology spread, a curious
phenomenon arose: each laboratory would report introspective data that just happened to match
the theories tint were popular in that laboratory. The behaviorism movement of John Watson
(1878-1958) aid Edward Lee Thorndike (1874-1949) rebelled against this subjectivism, rejecting
any theory involving mental processes on the grounds that introspection could not provide reliable
evidence. Behiviorists insisted on studying only objective measures of the percepts (or stimulus)
given to an animal and its resulting actions (or response). Mental constructs such as knowledge,
beliefs, goals, md reasoning steps were dismissed as unscientific "folkpsychology." Behaviorism
discovered a let about rats and pigeons, but had less success understanding humans. Nevertheless,
it had a stronghold on psychology (especially in the United States) from about 1920 to 1960.

The view that the brain possesses and processes information, which is the principal char-
acteristic of cognitive psychology, can be traced back at least to the works of William James9

(1842-1910). Helmholtz also insisted that perception involved a form of unconscious logical in-
ference. The cognitive viewpoint was largely eclipsed by behaviorism until 1943, when Kenneth
Craik published The Nature of Explanation. Craik put back the missing mental step between
stimulus and response. He claimed that beliefs, goals, and reasoning steps could be useful valid
components of a theory of human behavior, and are just as scientific as, say, using pressure and
temperature to talk about gases, despite their being made of molecules that have neither. Craik
specified the tlree key steps of a knowledge-based agent: (1) the stimulus must be translated into
an internal representation, (2) the representation is manipulated by cognitive processes to derive
new internal representations, and (3) these are in turn retranslated back into action. He clearly
explained why this was a good design for an agent:

If the orgmism carries a "small-scale model" of external reality and of its own possible actions
within its head, it is able to try out various alternatives, conclude which is the best of them,
react to fiture situations before they arise, utilize the knowledge of past events in dealing with
the present and future, and in every way to react in a much fuller, safer, and more competent
manner to the emergencies which face it. (Craik, 1943)

An agent designed this way can, for example, plan a long trip by considering various possi-
ble routes, comparing them, and choosing the best one, all before starting the journey. Since
the 1960s, the information-processing view has dominated psychology. It it now almost taken
for granted among many psychologists that "a cognitive theory should be like a computer pro-
gram" (Andersen, 1980). By this it is meant that the theory should describe cognition as consisting
of well-definej transformation processes operating at the level of the information carried by the
input signals.

For most of the early history of AI and cognitive science, no significant distinction was
drawn between the two fields, and it was common to see AI programs described as psychological
9 William James was the brother of novelist Henry James. It is said that Henry wrote fiction as if it were psychology
and William wrot; psychology as if it were fiction.

14 Chapter Introduction

results without any claim as to the exact human behavior they were modelling. In the last decade
or so, however, the methodological distinctions have become clearer, and most work now falls
into one field or the other.

Computer engineering (1940-present)
For artificial intelligence to succeed, we need two things: intelligence and an artifact. The
computer has been unanimously acclaimed as the artifact with the best chance of demonstrating
intelligence. The modern digital electronic computer was invented independently and almost
simultaneously by scientists in three countries embattled in World War II. The first operational
modern computer was the Heath Robinson,10 built in 1940 by Alan Turing's team for the single
purpose of deciphering German messages. When the Germans switched to a more sophisticated
code, the electromechanical relays in the Robinson proved to be too slow, and a new machine
called the Colossus was built from vacuum tubes. It was completed in 1943, and by the end of
the war, ten Colossus machines were in everyday use.

The first operational programmable computer was the Z-3, the invention of Konrad Zuse
in Germany in 1941. Zuse invented floating-point numbers for the Z-3, and went on in 1945 to
develop Plankalkul, the first high-level programming language. Although Zuse received some
support from the Third Reich to apply his machine to aircraft design, the military hierarchy did
not attach as much importance to computing as did its counterpart in Britain.

In the United States, the first electronic computer, the ABC, was assembled by John
Atanasoff and his graduate student Clifford Berry between 1940 and 1942 at Iowa State University.
The project received little support and was abandoned after Atanasoff became involved in military
research in Washington. Two other computer projects were started as secret military research:
the Mark I, If, and III computers were developed at Harvard by a team under Howard Aiken; and
the ENIAC was developed at the University of Pennsylvania by a team including John Mauchly
and John Eckert. ENIAC was the first general-purpose, electronic, digital computer. One of its
first applications was computing artillery firing tables. A successor, the EDVAC, followed John
Von Neumann's suggestion to use a stored program, so that technicians would not have to scurry
about changing patch cords to run a new program.

But perhaps the most critical breakthrough was the IBM 701, built in 1952 by Nathaniel
Rochester and his group. This was the first computer to yield a profit for its manufacturer. IBM
went on to become one of the world's largest corporations, and sales of computers have grown to j
$150 billion/year. In the United States, the computer industry (including software and services) j
now accounts for about 10% of the gross national product.

Each generation of computer hardware has brought an increase in speed and capacity, and I
a decrease in price. Computer engineering has been remarkably successful, regularly doubling j
performance every two years, with no immediate end in sight for this rate of increase. Massively j
parallel machines promise to add several more zeros to the overall throughput achievable.

Of course, there were calculating devices before the electronic computer. The abacus \
is roughly 7000 years old. In the mid-17th century, Blaise Pascal built a mechanical adding 1
10 Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly complicated contraptions for
everyday tasks such as buttering toast.

section 1.2. The Foundations of Artificial Inte l l igence 15

and subtracting machine called the Pascaline. Leibniz improved on this in 1694. building a
mechanical device that multiplied by doing repeated addition. Progress stalled for over a century
unti 1 Charles Babbage (1792-1871) dreamed that logarithm tables could be computed by machine.
He designed a machine for this task, but never completed the project. Instead, he turned to the
design of the Analytical Engine, for which Babbage invented the ideas of addressable memory.
stored programs, and conditional jumps. Although the idea of programmable machines was
not new—in 1805. Joseph Marie Jacquard invented a loom that could be programmed using
punched cards—Babbage's machine was the first artifact possessing the characteristics necessary
for universal computation. Babbage's colleague Ada Lovelace, daughter of the poet Lord Byron,
wrote programs for the Analytical Engine and even speculated that the machine could play chess
or compose music. Lovelace was the world's first programmer, and the first of many to endure
massive cost overruns and to have an ambitious project ultimately abandoned." Babbage's basic
design was proven viable by Doron Swade and his colleagues, who built a working model using
only the mechanical techniques available at Babbage's time (Swade. 1993). Babbage had the
right idea, but lacked the organizational ski l ls to get his machine built .

AI also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to wri te modern programs (and
papers about them). But this is one area where the debt has been repaid: work in AI has pioneered
many ideas that have made their way back to "mainstream" computer science, including t ime
sharing, interactive interpreters, the linked list data type, automatic storage management, and
some of the key concepts of object-oriented programming and integrated program development
environments with graphical user interfaces.

Linguistics (1957-present)
In 1957. B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed account
of the behaviorist approach to language learning, wri t ten by the foremost expert in the field. But
curiously, a review of the book became as well-known as the book itself, and served to almost k i l l
off interest in behaviorism. The author of the review was Noam Chomsky, who had just published
a book on his own theory. Syntactic Structures. Chomsky showed how the behaviorist theory did
not address the notion of creativity in language—it did not explain how a child could understand
and make up sentences that he or she had never heard before. Chomsky's theory—based on
syntactic models going back to the Indian linguist Panini (c. 350 B.C.)—could explain this, and
unlike previous theories, it was formal enough that it could in principle be programmed.

Later developments in linguistics showed the problem to be considerably more complex
than it seemed in 1957. Language is ambiguous and leaves much unsaid. This means that
understanding language requires an understanding of the subject matter and context, not just an
understanding of the structure of sentences. This may seem obvious, but it was not appreciated
until the early 1960s. Much of the early work in knowledge representation (the study of how to
put knowledge into a form that a computer can reason w i th) was tied to language and informed
by research in linguistics, which was connected in turn to decades of work on the philosophical
analysis of language.

She also gave her name to Ada. the U.S. Department of Defense's a l l -purpose programming language.

16 Chapter 1. Introduction

Modern linguistics and AI were "born" at about the same time, so linguistics does not play
a large foundational role in the growth of AI. Instead, the two grew up together, intersecting
in a hybrid field called computational linguistics or natural language processing, which
concentrates on the problem of language use.

1.3 THE HISTORY OF ARTIFICIAL INTELLIGENCE

With the background material behind us, we are now ready to outline the development of AI
proper. We could do this by identifying loosely defined and overlapping phases in its development,
or by chronicling the various different and intertwined conceptual threads that make up the field.
In this section, we will take the former approach, at the risk of doing some degree of violence
to the real relationships among subfields. The history of each subfield is covered in individual
chapters later in the book.

The gestation of artificial intelligence (1943-1956)
The first work that is now generally recognized as AI was done by Warren McCulloch and
Walter Pitts (1943). They drew on three sources: knowledge of the basic physiology and
function of neurons in the brain; the formal analysis of propositional logic due to Russell and
Whitehead; and Turing's theory of computation. They proposed a model of artificial neurons in
which each neuron is characterized as being "on" or "off," with a switch to "on" occurring in
response to stimulation by a sufficient number of neighboring neurons. The state of a neuron
was conceived of as "factually equivalent to a proposition which proposed its adequate stimulus."
They showed, for example, that any computable function could be computed by some network
of connected neurons, and that all the logical connectives could be implemented by simple
net structures. McCulloch and Pitts also suggested that suitably defined networks could learn.
Donald Hebb (1949) demonstrated a simple updating rule for modifying the connection strengths
between neurons, such that learning could take place.

The work of McCulloch and Pitts was arguably the forerunner of both the logicist tradition i
in AI and the connectionist tradition. In the early 1950s, Claude Shannon (1950) and Alan
Turing (1953) were writing chess programs for von Neumann-style conventional computers.12

At the same time, two graduate students in the Princeton mathematics department, Marvin
Minsky and Dean Edmonds, built the first neural network computer in 1951. The SNARC, as
it was called, used 3000 vacuum tubes and a surplus automatic pilot mechanism from a B-24
bomber to simulate a network of 40 neurons. Minsky's Ph.D. committee was skeptical whether
this kind of work should be considered mathematics, but von Neumann was on the committee
and reportedly said, "If it isn't now it will be someday." Ironically, Minsky was later to prove
theorems that contributed to the demise of much of neural network research during the 1970s.

12 Shannon actually had no real computer to work with, and Turing was eventually denied access to his own team's
computers by the British government, on the grounds that research into artificial intelligence was surely frivolous.

Section 1.3. The History of Artificial Intelligence 17

Princeton was home to another influential figure in AI, John McCarthy. After graduation,
McCarthy moved to Dartmouth College, which was to become the official birthplace of the
field. McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him bring
together U.S. researchers interested in automata theory, neural nets, and the study of intelligence.
They organized a two-month workshop at Dartmouth in the summer of 1956. All together there
were ten attendees, including Trenchard More from Princeton, Arthur Samuel from IBM, and
Ray Solomonoff and Oliver Selfridge from MIT.

Two researchers from Carnegie Tech,13 Alien Newell and Herbert Simon, rather stole the
show. Although the others had ideas and in some cases programs for particular applications
such as checkers, Newell and Simon already had a reasoning program, the Logic Theorist (LT),
about which Simon claimed, "We have invented a computer program capable of thinking non-
numerically, and thereby solved the venerable mind-body problem."14 Soon after the workshop,
the program was able to prove most of the theorems in Chapter 2 of Russell and Whitehead's
Principia Mathematica. Russell was reportedly delighted when Simon showed him that the pro-
gram had come up with a proof for one theorem that was shorter than the one in Principia. The
editors of the Journal of Symbolic Logic were less impressed; they rejected a paper coauthored
by Newell, Simon, and Logic Theorist.

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce all
the major figures to each other. For the next 20 years, the field would be dominated by these
people and their students and colleagues at MIT, CMU, Stanford, and IBM. Perhaps the most
lasting thing to come out of the workshop was an agreement to adopt McCarthy's new name for
the field: artificial intelligence.

Early enthusiasm, great expectations (1952-1969)
The early years of AI were full of successes—in a limited way. Given the primitive computers
and programming tools of the time, and the fact that only a few years earlier computers were
seen as things that could do arithmetic and no more, it was astonishing whenever a computer did
anything remotely clever. The intellectual establishment, by and large, preferred to believe that "a
machine can never do X" (see Chapter 26 for a long list of X's gathered by Turing). AI researchers
naturally responded by demonstrating one X after another. Some modern AI researchers refer to
this period as the "Look, Ma, no hands!" era.

Newell and Simon's early success was followed up with the General Problem Solver,
or GPS. Unlike Logic Theorist, this program was designed from the start to imitate human
problem-solving protocols. Within the limited class of puzzles it could handle, it turned out that
the order in which the program considered subgoals and possible actions was similar to the way
humans approached the same problems. Thus, GPS was probably the first program to embody
the "thinking humanly" approach. The combination of AI and cognitive science has continued
at CMU up to the present day.

13 Now Carnegie Mellon University (CMU).
14 Newell and Simon also invented a list-processing language, IPL, to write LT. They had no compiler, and translated it
into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to each other as they
wrote each instruction to make sure they agreed.

Chapter 1. Introduction

At IBM, Nathaniel Rochester and his colleagues produced some of the first AI programs.
Herbert Gelernter (1959) constructed the Geometry Theorem Prover. Like the Logic Theorist,
it proved theorems using explicitly represented axioms. Gelernter soon found that there were
too many possible reasoning paths to follow, most of which turned out to be dead ends. To help
focus the search, he added the capability to create a numerical representation of a diagram—a
particular case of the general theorem to be proved. Before the program tried to prove something,
it could first check the diagram to see if it was true in the particular case.

Starting in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that
eventually learned to play tournament-level checkers. Along the way, he disproved the idea that
computers can only do what they are told to, as his program quickly learned to play a better game
than its creator. The program was demonstrated on television in February 1956, creating a very
strong impression. Like Turing, Samuel had trouble finding computer time. Working at night, he
used machines that were still on the testing floor at IBM's manufacturing plant. Chapter 5 covers
game playing, and Chapter 20 describes and expands on the learning techniques used by Samuel.

John McCarthy moved from Dartmouth to MIT and there made three crucial contributions
in one historic year: 1958. In MIT AI Lab Memo No. 1, McCarthy defined the high-level language
Lisp, which was to become the dominant AI programming language. Lisp is the second-oldest
language in current use.15 With Lisp, McCarthy had the tool he needed, but access to scarce and
expensive computing resources was also a serious problem. Thus, he and others at MIT invented
time sharing. After getting an experimental time-sharing system up at MIT, McCarthy eventually
attracted the interest of a group of MIT grads who formed Digital Equipment Corporation, which
was to become the world's second largest computer manufacturer, thanks to their time-sharing
minicomputers. Also in 1958, McCarthy published a paper entitled Programs with Common
Sense, in which he described the Advice Taker, a hypothetical program that can be seen as the
first complete AI system. Like the Logic Theorist and Geometry Theorem Prover, McCarthy's
program was designed to use knowledge to search for solutions to problems. But unlike the others,
it was to embody general knowledge of the world. For example, he showed how some simple
axioms would enable the program to generate a plan to drive to the airport to catch a plane. The
program was also designed so that it could accept new axioms in the normal course of operation,
thereby allowing it to achieve competence in new areas without being reprogrammed. The Advice
Taker thus embodied the central principles of knowledge representation and reasoning: that it
is useful to have a formal, explicit representation of the world and the way an agent's actions
affect the world, and to be able to manipulate these representations with deductive processes. It
is remarkable how much of the 1958 paper remains relevant after more than 35 years.

1958 also marked the year that Marvin Minsky moved to MIT. For years he and McCarthy
were inseparable as they defined the field together. But they grew apart as McCarthy stressed
representation and reasoning in formal logic, whereas Minsky was more interested in getting
programs to work, and eventually developed an anti-logical outlook. In 1963, McCarthy took
the opportunity to go to Stanford and start the AI lab there. His research agenda of using
logic to build the ultimate Advice Taker was advanced by J. A. Robinson's discovery of the
resolution method (a complete theorem-proving algorithm for first-order logic; see Section 9.6).
Work at Stanford emphasized general-purpose methods for logical reasoning. Applications of

15 FORTRAN is one year older than Lisp.

Section 1.3. The History of Artificial Intelligence 19

logic included Cordell Green's question answering and planning systems (Green, 1969b), and the
Shakey robotics project at the new Stanford Research Institute (SRI). The latter project, discussed
further in Chapter 25, was the first to demonstrate the complete integration of logical reasoning
and physical activity.

Minsky supervised a series of students who chose limited problems that appeared to require
intelligence to solve. These limited domains became known as microworlds. James Slagle's
SAINT program (1963a) was able to solve closed-form integration problems typical of first-year
college calculus courses. Tom Evans's ANALOGY program (1968) solved geometric analogy
problems that appear in IQ tests, such as the one in Figure 1.2. Bertram Raphael's (1968) SIR
(Semantic Information Retrieval) was able to accept input statements in a very restricted subset
of English and answer questions thereon. Daniel Bobrow's STUDENT program (1967) solved
algebra story problems such as

If the number of customers Tom gets is twice the square of 20 percent of the number of
advertisements he runs, and the number of advertisements he runs is 45, what is the number
of customers Tom gets?

is to:

Figure 1.2 An example problem solved by Evans's ANALOGY program.

The most famous microworld was the blocks world, which consists of a set of solid blocks
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.3. A task
in this world is to rearrange the blocks in a certain way, using a robot hand that can pick up one
block at a time. The blocks world was home to the vision project of David Huffman (1971),
the vision and constraint-propagation work of David Waltz (1975), the learning theory of Patrick
Winston (1970), the natural language understanding program of Terry Winograd (1972), and the
planner of Scott Fahlman (1974).

Early work building on the neural networks of McCulloch and Pitts also flourished. The
work of Winograd and Cowan (1963) showed how a large number of elements could collectively
represent an individual concept, with a corresponding increase in robustness and parallelism.
Hebb's learning methods were enhanced by Bernie Widrow (Widrow and Hoff, 1960; Widrow,
1962), who called his networks adalines, and by Frank Rosenblatt (1962) with his perceptrons.

20 Chapter 1. Introduction

Figure 1.3 A scene from the blocks world. A task for the robot might be "Pick up a big red
block," expressed either in natural language or in a formal notation.

Rosenblatt proved the famous perceptron convergence theorem, showing that his learning
algorithm could adjust the connection strengths of a perceptron to match any input data, provided
such a match existed. These topics are covered in Section 19.3.

A dose of reality (1966-1974)
From the beginning, AI researchers were not shy in making predictions of their coming successes.
The following statement by Herbert Simon in 1957 is often quoted:

It is not my aim to surprise or shock you—but the simplest way I can summarize is to say
that there are now in the world machines that think, that learn and that create. Moreover, their
ability to do these things is going to increase rapidly until—in a visible future—the range of
problems they can handle will be coextensive with the range to which human mind has been
applied.

Although one might argue that terms such as "visible future" can be interpreted in various ways,
some of Simon's predictions were more concrete. In 1958, he predicted that within 10 years
a computer would be chess champion, and an important new mathematical theorem would be
proved by machine. Claims such as these turned out to be wildly optimistic. The barrier that
faced almost all AI research projects was that methods that sufficed for demonstrations on one or
two simple examples turned out to fail miserably when tried out on wider selections of problems
and on more difficult problems.

The first kind of difficulty arose because early programs often contained little or no
knowledge of their subject matter, and succeeded by means of simple syntactic manipulations.
Weizenbaum's ELIZA program (1965), which could apparently engage in serious conversation

Section 1.3. The History of Artificial Intelligence 21

MACHINE EVOLUTION

on any topic, actually just borrowed and manipulated the sentences typed into it by a human.
A typical story occurred in early machine translation efforts, which were generously funded by
the National Research Council in an attempt to speed up the translation of Russian scientific
papers in the wake of the Sputnik launch in 1957. It was thought initially that simple syntactic
transformations based on the grammars of Russian and English, and word replacement using
an electronic dictionary, would suffice to preserve the exact meanings of sentences. In fact,
translation requires general knowledge of the subject matter in order to resolve ambiguity and
establish the content of the sentence. The famous retranslation of "the spirit is willing but the
flesh is weak' as "the vodka is good but the meat is rotten" illustrates the difficulties encountered.
In 1966, a report by an advisory committee found that "there has been no machine translation
of general scientific text, and none is in immediate prospect." All U.S. government funding for
academic translation projects was cancelled.

The second kind of difficulty was the intractability of many of the problems that AI was
attempting tosolve. Most of the early AI programs worked by representing the basic facts about
a problem and trying out a series of steps to solve it, combining different combinations of steps
until the right one was found. The early programs were feasible only because microworlds
contained veiy few objects. Before the theory of NP-completeness was developed, it was widely
thought that "scaling up" to larger problems was simply a matter of faster hardware and larger
memories. The optimism that accompanied the development of resolution theorem proving, for
example, wa< soon dampened when researchers failed to prove theorems involving more than a
few dozen facts. The fact that a program can find a solution in principle does not mean that the
program contains an\ of the mechanisms needed to find it in practice.

The illusion of unlimited computational power was not confined to problem-solving pro-
grams. Earh experiments in machine evolution (now called genetic algorithms) (Friedberg,
1958; Friedberg et al,, 1959) were based on the undoubtedly correct belief that by making an
appropriate series of small mutations to a machine code program, one can generate a program
with good performance for any particular simple task. The idea, then, was to try random muta-
tions and then apply a selection process to preserve mutations that seemed to improve behavior.
Despite thousands of hours of CPU time, almost no progress was demonstrated.

Failure to come to grips with the "combinatorial explosion" was one of the main criticisms
of AI contained in the Lighthill report (Lighthill, 1973), which formed the basis for the decision
by the British government to end support for AI research in all but two universities. (Oral
tradition paints a somewhat different and more colorful picture, with political ambitions and
personal animosities that cannot be put in print.)

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, in 1969, Minsky and Papert's book
Perceptrons (1969) proved that although perceptrons could be shown to learn anything they were
capable of representing, they could represent very little. In particular, a two-input perceptron
could not be .rained to recognize when its two inputs were different. Although their results
did not appb to more complex, multilayer networks, research funding for neural net research
soon dwindled to almost nothing. Ironically, the new back-propagation learning algorithms for
multilayer networks that were to cause an enormous resurgence in neural net research in the late
1980s were actually discovered first in 1969 (Bryson and Ho, 1969).

Chapter Introduction

WEAK METHODS

EXPERT SYSTEMS

Knowledge-based systems: The key to power? (1969-1979)
The picture of problem solving that had arisen during the first decade of AI research was of a
general-purpose search mechanism trying to string together elementary reasoning steps to find
complete solutions. Such approaches have been called weak methods, because they use weak
information about the domain. For niany complex domains, it turns out that their performance is
also weak. The only way around this is to use knowledge more suited to making larger reasoning
steps and to solving typically occurring cases in narrow areas of expertise. One might say that to
solve a hard problem, you almost have to know the answer already.

The DENDRAL program (Buchanan et a/., 1969) was an early example of this approach. It
was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon), Bruce
Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel laureate
geneticist) teamed up to solve the problem of inferring molecular structure from the information
provided by a mass spectrometer. The input to the program consists of the elementary formula of
the molecule (e.g., C^H^NCi), and the mass spectrum giving the masses of the various fragments
of the molecule generated when it is bombarded by an electron beam. For example, the mass
spectrum might contain a peak at in- 15 corresponding to the mass of a methyl (CHi) fragment.

The naive version of the program generated all possible structures consistent with the
formula, and then predicted what mass spectrum would be observed for each, comparing this
with the actual spectrum. As one might expect, this rapidly became intractable for decent-sized
molecules. The DENDRAL researchers consulted analytical chemists and found that they worked
by looking for well-known patterns of peaks in the spectrum that suggested common substructures
in the molecule. For example, the following rule is used to recognize a ketone (C=O) subgroup:

if there are two peaks at A"i and,r> such that
(a) x\ +.\i = M + 28 (M is the mass of the whole molecule);
(b) A"i — 28 is a high peak;
(c) A"2 — 28 is a high peak;
(d) At least one of A I and A T is high.
then there is a ketone subgroup

Having recognized that the molecule contains a particular substructure, the number of possible
candidates is enormously reduced. The DENDRAL team concluded that the new system was
powerful because

All the relevant theoretical knowledge to solve these problems has been mapped over from its
general form in the [spectrum prediction component] ("first principles") to efficient special
forms ("cookbook recipes"). (Feigenbaum el al, 1971)

The significance of DENDRAL was that it was arguably the first successful knowledge-intensive
system: its expertise derived from large numbers of special-purpose rules. Later systems also
incorporated the main theme of McCarthy's Advice Taker approach— the clean separation of the
knowledge (in the form of rules) and the reasoning component.

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Program-
ming Project (HPP), to investigate the extent to which the new methodology of expert systems
could be applied to other areas of human expertise. The next major effort was in the area of
medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe developed MYCIN to
diagnose blood infections. With about 450 rules, MYCIN was able to perform as well as some

Section 1.3. The History of Artificial Intelligence 23

FRAMES

experts, and considerably better than junior doctors. It also contained two major differences from
DENDRAL. First, unlike the DENDRAL rules, no general theoretical model existed from which the
MYCIN rules could be deduced. They had to be acquired from extensive interviewing of experts,
who in turn acquired them from direct experience of cases. Second, the rules had to reflect the
uncertainty associated with medical knowledge. MYCIN incorporated a calculus of uncertainty
called certainty factors (see Chapter 14), which seemed (at the time) to fit well with how doctors
assessed the impact of evidence on the diagnosis.

Other approaches to medical diagnosis were also followed. At Rutgers University, Saul
Amarel's Computers in Biomedicine project began an ambitious attempt to diagnose diseases
based on explicit knowledge of the causal mechanisms of the disease process. Meanwhile, large
groups at MIT and the New England Medical Center were pursuing an approach to diagnosis and
treatment based on the theories of probability and utility. Their aim was to build systems that
gave provably optimal medical recommendations. In medicine, the Stanford approach using rules
provided by doctors proved more popular at first. But another probabilistic reasoning system,
PROSPECTOR (Duda et al., 1979), generated enormous publicity by recommending exploratory
drilling at a geological site that proved to contain a large molybdenum deposit.

The importance of domain knowledge was also apparent in the area of understanding
natural language. Although Winograd's SHRDLU system for understanding natural language had
engendered a good deal of excitement, its dependence on syntactic analysis caused some of
the same problems as occurred in the early machine translation work. It was able to overcome
ambiguity and understand pronoun references, but this was mainly because it was designed
specifically for one area—the blocks world. Several researchers, including Eugene Charniak,
a fellow graduate student of Winograd's at MIT, suggested that robust language understanding
would require general knowledge about the world and a general method for using that knowledge.

At Yale, the linguist-turned-Al-researcher Roger Schank emphasized this point by claiming,
"There is no such thing as syntax," which upset a lot of linguists, but did serve to start a useful
discussion. Schank and his students built a series of programs (Schank and Abelson, 1977;
Schank and Riesbeck, 1981; Dyer, 1983) that all had the task of understanding natural language.
The emphasis, however, was less on language per se and more on the problems of representing
and reasoning with the knowledge required for language understanding. The problems included
representing stereotypical situations (Cullingford, 1981), describing human memory organization
(Rieger, 1976; Kolodner, 1983), and understanding plans and goals (Wilensky, 1983). William
Woods (1973) built the LUNAR system, which allowed geologists to ask questions in English
about the rock samples brought back by the Apollo moon mission. LUNAR was the first natural
language program that was used by people other than the system's author to get real work done.
Since then, many natural language programs have been used as interfaces to databases.

The widespread growth of applications to real-world problems caused a concomitant in-
crease in the demands for workable knowledge representation schemes. A large number of
different representation languages were developed. Some were based on logic—for example,
the Prolog language became popular in Europe, and the PLANNER family in the United States.
Others, following Minsky's idea of frames (1975), adopted a rather more structured approach,
collecting together facts about particular object and event types, and arranging the types into a
large taxonomic hierarchy analogous to a biological taxonomy.

24 Chapter 1. Introduction

AI becomes an industry (1980-1988)
The first successful commercial expert system, Rl, began operation at Digital Equipment Cor-
poration (McDermott, 1982). The program helped configure orders for new computer systems,
and by 1986, it was saving the company an estimated $40 million a year. By 1988, DEC's AI
group had 40 deployed expert systems, with more on the way. Du Pont had 100 in use and 500 in
development, saving an estimated $10 million a year. Nearly every major U.S. corporation had
its own AI group and was either using or investigating expert system technology.

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build
intelligent computers running Prolog in much the same way that ordinary computers run machine
code. The idea was that with the ability to make millions of inferences per second, computers
would be able to take advantage of vast stores of rules. The project proposed to achieve full-scale
natural language understanding, among other ambitious goals.

The Fifth Generation project fueled interest in AI, and by taking advantage of fears of j
Japanese domination, researchers and corporations were able to generate support for a similar
investment in the United States. The Microelectronics and Computer Technology Corporation i
(MCC) was formed as a research consortium to counter the Japanese project. In Britain, the
Alvey report reinstated the funding that was cut by the Lighthill report.16 In both cases, AI was
part of a broad effort, including chip design and human-interface research.

The booming AI industry also included companies such as Carnegie Group, Inference,
Intellicorp, and Teknowledge that offered the software tools to build expert systems, and hard-
ware companies such as Lisp Machines Inc., Texas Instruments, Symbolics, and Xerox that;
were building workstations optimized for the development of Lisp programs. Over a hundred
companies built industrial robotic vision systems. Overall, the industry went from a few million \
in sales in 1980 to $2 billion in 1988.

The return of neural networks (1986-present)
Although computer science had neglected the field of neural networks after Minsky and Papert's
Perceptrons book, work had continued in other fields, particularly physics. Large collections '
of simple neurons could be understood in much the same way as large collections of atoms in <
solids. Physicists such as Hopfield (1982) used techniques from statistical mechanics to analyze
the storage and optimization properties of networks, leading to significant cross-fertilization of j
ideas. Psychologists including David Rumelhart and Geoff Hinton continued the study of neural
net models of memory. As we discuss in Chapter 19, the real impetus came in the mid-1980s
when at least four different groups reinvented the back-propagation learning algorithm first found
in 1969 by Bryson and Ho. The algorithm was applied to many learning problems in computer
science and psychology, and the widespread dissemination of the results in the collection Parallel
Distributed Processing (Rumelhart and McClelland, 1986) caused great excitement.

At about the same time, some disillusionment was occurring concerning the applicability
of the expert system technology derived from MYCiN-type systems.- Many corporations and

16 To save embarrassment, a new field called IKBS (Intelligent Knowledge-BasedSystems) was defined because Artificial
Intelligence had been officially cancelled.

Section 1.3. The History of Artificial Intelligence 25

research groups found that building a successful expert system involved much more than simply
buying a reasoning system and filling it with rules. Some predicted an "AI Winter" in which AI
funding would be squeezed severely. It was perhaps this fear, and the historical factors on the
neural network side, that led to a period in which neural networks and traditional AI were seen
as rival fields, rather than as mutually supporting approaches to the same problem.

Recent events (1987-present)
Recent years have seen a sea change in both the content and the methodology of research in
artificial intelligence.17 It is now more common to build on existing theories than to propose
brand new ones, to base claims on rigorous theorems or hard experimental evidence rather than
on intuition, and to show relevance to real-world applications rather than toy examples.

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of
different architectures and approaches were tried. Many of these were rather ad hoc and fragile,
and were demonstrated on a few specially selected examples. In recent years, approaches based
on hidden Markov models (HMMs) have come to dominate the area. Two aspects of HMMs are
relevant to the present discussion. First, they are based on a rigorous mathematical theory. This
has allowed speech researchers to build on several decades of mathematical results developed in
other fields. Second, they are generated by a process of training on a large corpus of real speech
data. This ensures that the performance is robust, and in rigorous blind tests the HMMs have
been steadily improving their scores. Speech technology and the related field of handwritten
character recognition are already making the transition to widespread industrial and consumer
applications.

Another area that seems to have benefitted from formalization is planning. Early work by
Austin Tate (1977), followed up by David Chapman (1987), has resulted in an elegant synthesis
of existing planning programs into a simple framework. There have been a number of advances
that built upon each other rather than starting from scratch each time. The result is that planning
systems that were only good for microworlds in the 1970s are now used for scheduling of factory
work and space missions, among other things. See Chapters 11 and 12 for more details.

Judea Pearl's (1988) Probabilistic Reasoning in Intelligent Systems marked a new accep-
tance of probability and decision theory in AI, following a resurgence of interest epitomized by
Peter Cheeseman's (1985) article "In Defense of Probability." The belief network formalism was
invented to allow efficient reasoning about the combination of uncertain evidence. This approach
largely overcomes the problems with probabilistic reasoning systems of the 1960s and 1970s,
and has come to dominate AI research on uncertain reasoning and expert systems. Work by
Judea Pearl (1982a) and by Eric Horvitz and David Heckerman (Horvitz and Heckerman, 1986;
Horvitz et al., 1986) promoted the idea of normative expert systems: ones that act rationally
according to the laws of decision theory and do not try to imitate human experts. Chapters 14 to
16 cover this area.
17 Some have characterized this change as a victory of the neats—those who think that AI theories should be grounded
in mathematical rigor—over the scruffles—those who would rather try out lots of ideas, write some programs, and then
assess what seems to be working. Both approaches are important. A shift toward increased neatness implies that the field
has reached a level of stability and maturity. (Whether that stability will be disrupted by a new scruffy idea is another
question.)

26 Chapter Introduction

Similar gentle revolutions have occurred in robotics, computer vision, machine learning
(including neural networks), and knowledge representation. A better understanding of the prob-
lems and their complexity properties, combined with increased mathematical sophistication, has
led to workable research agendas and robust methods. Perhaps encouraged by the progress in
solving the subproblems of AI, researchers have also started to look at the "whole agent" problem
again. The work of Alien Newell, John Laird, and Paul Rosenbloom on SOAR (Newell, 1990;
Laird et al., 1987) is the best-known example of a complete agent architecture in AI. The so-called
"situated" movement aims to understand the workings of agents embedded in real environments
with continuous sensory inputs. Many interesting results are coming out of such work, including
the realization that the previously isolated subfields of AI may need to be reorganized somewhat
when their results are to be tied together into a single agent design.

1.4 THE STATE OF THE ART

International grandmaster Arnold Denker studies the pieces on the board in front of him. He
realizes there is no hope; he must resign the game. His opponent, HITECH, becomes the first
computer program to defeat a grandmaster in a game of chess (Berliner, 1989).

"I want to go from Boston to San Francisco," the traveller says into the microphone. "What
date will you be travelling on?" is the reply. The traveller explains she wants to go October 20th,
nonstop, on the cheapest available fare, returning on Sunday. A speech understanding program
named PEGASUS handles the whole transaction, which results in a confirmed reservation that
saves the traveller $894 over the regular coach fare. Even though the speech recognizer gets one
out of ten words wrong,18 it is able to recover from these errors because of its understanding of
how dialogs are put together (Zue et al., 1994).

An analyst in the Mission Operations room of the Jet Propulsion Laboratory suddenly
starts paying attention. A red message has flashed onto the screen indicating an "anomaly" with
the Voyager spacecraft, which is somewhere in the vicinity of Neptune. Fortunately, the analyst
is able to correct the problem from the ground. Operations personnel believe the problem might
have been overlooked had it not been for MARVEL, a real-time expert system that monitors the
massive stream of data transmitted by the spacecraft, handling routine tasks and alerting the
analysts to more serious problems (Schwuttke, 1992).

Cruising the highway outside of Pittsburgh at a comfortable 55 mph, the man in the driver's
seat seems relaxed. He should be—for the past 90 miles, he has not had to touch the steering wheel,
brake, or accelerator. The real driver is a robotic system that gathers input from video cameras,
sonar, and laser range finders attached to the van. It combines these inputs with experience
learned from training runs and succesfully computes how to steer the vehicle (Pomerleau, 1993).

A leading expert on lymph-node pathology describes a fiendishly difficult case to the
expert system, and examines the system's diagnosis. He scoffs at the system's response. Only
slightly worried, the creators of the system suggest he ask the computer for an explanation of

18 Some other existing systems err only half as often on this task.

Section 1.5. Summary 27

the diagnosis. The machine points out the major factors influencing its decision, and explains
the subtle interaction of several of the symptoms in this case. The expert admits his error,
eventually (Heckerman, 1991).

From a camera perched on a street light above the crossroads, the traffic monitor watches
the scene. If any humans were awake to read the main screen, they would see "Citroen 2CV
turning from Place de la Concorde into Champs Ely sees," "Large truck of unknown make stopped
on Place de la Concorde," and so on into the night. And occasionally, "Major incident on Place
de la Concorde, speeding van collided with motorcyclist," and an automatic call to the emergency
services (King et al, 1993; Roller et al., 1994).

These are just a few examples of artificial intelligence systems that exist today. Not magic
or science fiction—but rather science, engineering, and mathematics, to which this book provides
an introduction.

i .5 SUMMARY

This chapter defines Al and establishes the cultural background against which it has developed.
Some of the important points are as follows:

• Different people think of Al differently. Two important questions to ask are: Are you
concerned with thinking or behavior? Do you want to model humans, or work from an
ideal standard?

• In this book, we adopt the view that intelligence is concerned mainly with rational action.
Ideally, an intelligent agent takes the best possible action in a situation. We will study the
problem of building agents that are intelligent in this sense.

• Philosophers (going back to 400 B.C.) made Al conceivable by considering the ideas that
the mind is in some ways like a machine, that it operates on knowledge encoded in some
internal language, and that thought can be used to help arrive at the right actions to take.

• Mathematicians provided the tools to manipulate statements of logical certainty as well
as uncertain, probabilistic statements. They also set the groundwork for reasoning about
algorithms.

• Psychologists strengthened the idea that humans and other animals can be considered
information processing machines. Linguists showed that language use fits into this model.

• Computer engineering provided the artifact that makes Al applications possible. Al pro-
grams tend to be large, and they could not work without the great advances in speed and
memory that the computer industry has provided.

• The history of Al has had cycles of success, misplaced optimism, and resulting cutbacks
in enthusiasm and funding. There have also been cycles of introducing new creative
approaches and systematically refining the best ones.

• Recent progress in understanding the theoretical basis for intelligence has gone hand in
hand with improvements in the capabilities of real systems.

28 Chapter 1. Introduction

BIBLIOGRAPHICAL AND HISTORICAL NOTES
Daniel Crevier's (1993) Artificial Intelligence gives a complete history of the field, and Raymond
Kurzweil's (1990) Age of Intelligent Machines situates AI in the broader context of computer
science and intellectual history in general. Dianne Martin (1993) documents the degree to which
early computers were endowed by the media with mythical powers of intelligence.

The methodological status of artificial intelligence is discussed in The Sciences of the Ar-
tificial, by Herb Simon (1981), which discusses research areas concerned with complex artifacts.
It explains how AI can be viewed as both science and mathematics.

Artificial Intelligence: The Very Idea, by John Haugeland (1985) gives a readable account of
the philosophical and practical problems of AI. Cognitive science is well-described by Johnson-
Laird's The Computer and the Mind: An Introduction to Cognitive Science. Baker (1989)
covers the syntactic part of modern linguistics, and Chierchia and McConnell-Ginet (1990) cover
semantics. Alien (1995) covers linguistics from the AI point of view.

Early AI work is covered in Feigenbaum and Feldman's Computers and Thought, Minsky's
Semantic Information Processing, and the Machine Intelligence series edited by Donald Michie.
A large number of influential papers are collected in Readings in Artificial Intelligence (Webber
and Nilsson, 1981). Early papers on neural networks are collected in Neurocomputing (Anderson
and Rosenfeld, 1988). The Encyclopedia ofAI (Shapiro, 1992) contains survey articles on almost
every topic in AI. These articles usually provide a good entry point into the research literature on
each topic. The four-volume Handbook of Artificial Intelligence (Barr and Feigenbaum, 1981)
contains descriptions of almost every major AI system published before 1981.

The most recent work appears in the proceedings of the major AI conferences: the biennial
International Joint Conference on AI (IJCAI), and the annual National Conference on AI, more
often known as AAAI, after its sponsoring organization. The major journals for general AI are
Artificial Intelligence, Computational Intelligence, the IEEE Transactions on Pattern Analysis
and Machine Intelligence, and the electronic Journal of Artificial Intelligence Research. There
are also many journals devoted to specific areas, which we cover in the appropriate chapters.
Commercial products are covered in the magazines AI Expert and PC AI. The main professional
societies for AI are the American Association for Artificial Intelligence (AAAI), the ACM Special
Interest Group in Artificial Intelligence (SIGART), and the Society for Artificial Intelligence and
Simulation of Behaviour (AISB). AAAFs AI Magazine and the SIGART Bulletin contain many
topical and tutorial articles as well as announcements of conferences and workshops.

EXERCISES
These exercises are intended to stimulate discussion, and some might be set as term projects.
Alternatively, preliminary attempts can be made now, and these attempts can be reviewed after
completing the book.

1.1 Read Turing's original paper on AI (Turing, 1950). In the paper, he discusses several
potential objections to his proposed enterprise and his test for intelligence. Which objections

I
Section 1.5. Summary 29

still carry some weight? Are his refutations valid? Can you think of new objections arising from
developments since he wrote the paper? In the paper, he predicts that by the year 2000, a computer
will have a 30% chance of passing a five-minute Turing Test with an unskilled interrogator. Do
you think this is reasonable?

1.2 We characterized the definitions of AI along two dimensions, human vs. ideal and thought
vs. action. But there are other dimensions that are worth considering. One dimension is whether
we are interested in theoretical results or in practical applications. Another is whether we intend
our intelligent computers to be conscious or not. Philosophers have had a lot to say about this
issue, and although most AI researchers are happy to leave the questions to the philosophers,

STRONG AI there has been heated debate. The claim that machines can be conscious is called the strong AI
W E A K A I claim; the weak AI position makes no such claim. Characterize the eight definitions on page

5 and the seven following definitions according to the four dimensions we have mentioned and
whatever other ones you feel are helpful.

Artificial intelligence is . . .

a. "a collection of algorithms that are computationally tractable, adequate approximations of
intractably specified problems" (Partridge, 1991)

b. "the enterprise of constructing a physical symbol system that can reliably pass the Turing
Test" (Ginsberg, 1993)

c. "the field of computer science that studies how machines can be made to act intelli-
gently" (Jackson, 1986)

d. "a field of study that encompasses computational techniques for performing tasks that
apparently require intelligence when performed by humans" (Tanimoto, 1990)

e. "a very general investigation of the nature of intelligence and the principles and mechanisms
required for understanding or replicating it" (Sharpies et ai, 1989)

f. "the getting of computers to do things that seem to be intelligent" (Rowe, 1988).

1.3 There are well-known classes of problems that are intractably difficult for computers,
and other classes that are provably undecidable by any computer. Does this mean that AI is
impossible?

1.4 Suppose we extend Evans's ANALOGY program so that it can score 200 on a standard IQ
test. Would we then have a program more intelligent than a human? Explain.

1.5 Examine the AI literature to discover whether or not the following tasks can currently be
solved by computers:

a. Playing a decent game of table tennis (ping-pong).
b. Driving in the center of Cairo.
c. Playing a decent game of bridge at a competitive level.
d. Discovering and proving new mathematical theorems.
e. Writing an intentionally funny story.
f. Giving competent legal advice in a specialized area of law.
g. Translating spoken English into spoken Swedish in real time.

30 Chapter 1. Introduction

For the currently infeasible tasks, try to find out what the difficulties are and estimate when they
will be overcome.

1.6 Find an article written by a lay person in a reputable newspaper or magazine claiming
the achievement of some intelligent capacity by a machine, where the claim is either wildly
exaggerated or false.

1.7 Fact, fiction, and forecast:

a. Find a claim in print by a reputable philosopher or scientist to the effect that a certain
capacity will never be exhibited by computers, where that capacity has now been exhibited.

b. Find a claim by a reputable computer scientist to the effect that a certain capacity would
be exhibited by a date that has since passed, without the appearance of that capacity.

c. Compare the accuracy of these predictions to predictions in other fields such as biomedicine,
fusion power, nanotechnology, transportation, or home electronics.

1.8 Some authors have claimed that perception and motor skills are the most important part of
intelligence, and that "higher-level" capacities are necessarily parasitic—simple add-ons to these
underlying facilities. Certainly, most of evolution and a large part of the brain have been devoted
to perception and motor skills, whereas AI has found tasks such as game playing and logical
inference to be easier, in many ways, than perceiving and acting in the real world. Do you think
that AI's traditional focus on higher-level cognitive abilities is misplaced?

1.9 "Surely computers cannot be intelligent—they can only do what their programmers tell
them." Is the latter statement true, and does it imply the former?

1.10 "Surely animals cannot be intelligent—they can only do what their genes tell them." Is
the latter statement true, and does it imply the former?

I
2 INTELLIGENT AGENTS

In which we discuss what an intelligent agent does, how it is related to its environment,
how it is evaluated, and how we might go about building one.

2.1 INTRODUCTION

An agent is anything that can be viewed as perceiving its environment through sensors and acting
upon that environment through effectors. A human agent has eyes, ears, and other organs for
sensors, and hands, legs, mouth, and other body parts for effectors. A robotic agent substitutes
cameras and infrared range finders for the sensors and various motors for the effectors. A
software agent has encoded bit strings as its percepts and actions. A generic agent is diagrammed
in Figure 2.1.

Our aim in this book is to design agents that do a good job of acting on their environment.
First, we will be a little more precise about what we mean by a good job. Then we will talk about
different designs for successful agents—filling in the question mark in Figure 2.1. We discuss
some of the general principles used in the design of agents throughout the book, chief among
which is the principle that agents should know things. Finally, we show how to couple an agent
to an environment and describe several kinds of environments.

How AGENTS SHOULD ACT

RATIONAL AGENT A rational agent is one that does the right thing. Obviously, this is better than doing the wrong
thing, but what does it mean? As a first approximation, we will say that the right action is the
one that will cause the agent to be most successful. That leaves us with the problem of deciding
how and when to evaluate the agent's success.

31

32 Chapter 2. Intelligent Agents

sensors

effectors

Figure 2.1 Agents interact with environments through sensors and effectors.

PERFORMANCE
MEASURE

OMNISCIENCE

We use the term performance measure for the how—the criteria that determine how
successful an agent is. Obviously, there is not one fixed measure suitable for all agents. We
could ask the agent for a subjective opinion of how happy it is with its own performance, but
some agents would be unable to answer, and others would delude themselves. (Human agents in
particular are notorious for "sour grapes"—saying they did not really want something after they
are unsuccessful at getting it.) Therefore, we will insist on an objective performance measure
imposed by some authority. In other words, we as outside observers establish a standard of what
it means to be successful in an environment and use it to measure the performance of agents.

As an example, consider the case of an agent that is supposed to vacuum a dirty floor. A
plausible performance measure would be the amount of dirt cleaned up in a single eight-hour shift.
A more sophisticated performance measure would factor in the amount of electricity consumed
and the amount of noise generated as well. A third performance measure might give highest
marks to an agent that not only cleans the floor quietly and efficiently, but also finds time to go
windsurfing at the weekend.'

The when of evaluating performance is also important. If we measured how much dirt the
agent had cleaned up in the first hour of the day, we would be rewarding those agents that start
fast (even if they do little or no work later on), and punishing those that work consistently. Thus,
we want to measure performance over the long run, be it an eight-hour shift or a lifetime.

We need to be careful to distinguish between rationality and omniscience. An omniscient
agent knows the actual outcome of its actions, and can act accordingly; but omniscience is ;
impossible in reality. Consider the following example: I am walking along the Champs Elysees
one day and I see an old friend across the street. There is no traffic nearby and I'm not otherwise
engaged, so, being rational, I start to cross the street. Meanwhile, at 33,000 feet, a cargo door
falls off a passing airliner,2 and before I make it to the other side of the street I am flattened. Was
I irrational to cross the street? It is unlikely that my obituary would read "Idiot attempts to cross

1 There is a danger here for those who establish performance measures: you often get what you ask for. That is. if
you measure success by the amount of dirt cleaned up, then some clever agent is bound to bring in a load of dirt each
morning, quickly clean it up, and get a good performance score. What you really want to measure is how clean the floor
is, but determining that is more difficult than just weighing the dirt cleaned up.
2 See N. Henderson. "New door latches urged for Boeing 747 jumbo jets." Washington Post, 8/24/89.

I
Section 2.2. How Agents Should Act 33

PERCEPT SEQUENCE

IDEAL RATIONAL
AGENT

street." Rather, this points out that rationality is concerned with expected success given what has
been perceived. Crossing the street was rational because most of the time the crossing would be
successful, and there was no way I could have foreseen the falling door. Note that another agent
that was equipped with radar for detecting falling doors or a steel cage strong enough to repel
them would be more successful, but it would not be any more rational.

In other words, we cannot blame an agent for failing to take into account something it could
not perceive, or for failing to take an action (such as repelling the cargo door) that it is incapable
of taking. But relaxing the requirement of perfection is not just a question of being fair to agents.
The point is that if we specify that an intelligent agent should always do what is actually the right
thing, it will be impossible to design an agent to fulfill this specification—unless we improve the
performance of crystal balls.

In summary, what is rational at any given time depends on four things:

• The performance measure that defines degree of success.
• Everything that the agent has perceived so far. We will call this complete perceptual history

the percept sequence.
• What the agent knows about the environment.
• The actions that the agent can perform.

This leads to a definition of an ideal rational agent: For each possible percept sequence, an
ideal rational agent should do whatever action is expected to maximize its performance measure,
on the basis of the evidence provided by the percept sequence and whatever built-in knowledge
the agent has.

We need to look carefully at this definition. At first glance, it might appear to allow an
agent to indulge in some decidedly underintelligent activities. For example, if an agent does not
look both ways before crossing a busy road, then its percept sequence will not tell it that there is
a large truck approaching at high speed. The definition seems to say that it would be OK for it to
cross the road. In fact, this interpretation is wrong on two counts. First, it would not be rational
to cross the road: the risk of crossing without looking is too great. Second, an ideal rational
agent would have chosen the "looking" action before stepping into the street, because looking
helps maximize the expected performance. Doing actions in order to obtain useful information
is an important part of rationality and is covered in depth in Chapter 16.

The notion of an agent is meant to be a tool for analyzing systems, not an absolute
characterization that divides the world into agents and non-agents. Consider a clock. It can be
thought of as just an inanimate object, or it can be thought of as a simple agent. As an agent,
most clocks always do the right action: moving their hands (or displaying digits) in the proper
fashion. Clocks are a kind of degenerate agent in that their percept sequence is empty; no matter
what happens outside, the clock's action should be unaffected.

Well, this is not quite true. If the clock and its owner take a trip from California to Australia,
the right thing for the clock to do would be to turn itself back six hours. We do not get upset at
our clocks for failing to do this because we realize that they are acting rationally, given their lack
of perceptual equipment.3

One of the authors still gets a small thrill when his computer successfully resets itself at daylight savings time.

34 Chapter 2. Intelligent Agents

MAPPING

IDEAL MAPPINGS

The ideal mapping from percept sequences to actions
Once we realize that an agent's behavior depends only on its percept sequence to date, then we can
describe any particular agent by making a table of the action it takes in response to each possible
percept sequence. (For most agents, this would be a very long list—infinite, in fact, unless we
place a bound on the length of percept sequences we want to consider.) Such a list is called
a mapping from percept sequences to actions. We can, in principle, find out which mapping
correctly describes an agent by trying out all possible percept sequences and recording which
actions the agent does in response. (If the agent uses some randomization in its computations,
then we would have to try some percept sequences several times to get a good idea of the agent's
average behavior.) And if mappings describe agents, then ideal mappings describe ideal agents.
Specifying which action an agent ought to take in response to any given percept sequence provides
a design for an ideal agent.

This does not mean, of course, that we have to create an explicit table with an entry
for every possible percept sequence. It is possible to define a specification of the mapping
without exhaustively enumerating it. Consider a very simple agent: the square-root function
on a calculator. The percept sequence for this agent is a sequence of keystrokes representing a
number, and the action is to display a number on the display screen. The ideal mapping is that
when the percept is a positive number x, the right action is to display a positive number z such
that z2 « x, accurate to, say, 15 decimal places. This specification of the ideal mapping does
not require the designer to actually construct a table of square roots. Nor does the square-root
function have to use a table to behave correctly: Figure 2.2 shows part of the ideal mapping and
a simple program that implements the mapping using Newton's method.

The square-root example illustrates the relationship between the ideal mapping and an
ideal agent design, for a very restricted task. Whereas the table is very large, the agent is a nice,;
compact program. It turns out that it is possible to design nice, compact agents that implement j

Percept x
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Action z
1.000000000000000
1.048808848170152
1.095445115010332
1.140175425099138
1.183215956619923
1.224744871391589
1.264911064067352
1.303840481040530
1.341640786499874
1 .378404875209022

function SQRT(;C)
z <— 1 .0 / * initial guess * 1
repeat until]z2 - x] < 10~15

z *- z - (z2 - x)/(2z)
end
return z

Figure 2.2 Part of the ideal mapping for the square-root problem (accurate to 1 5 digits), and a
corresponding program that implements the ideal mapping.

Section 2.3. Structure of Intelligent Agents 35

the ideal mapping for much more general situations: agents that can solve a limitless variety of
tasks in a limitless variety of environments. Before we discuss how to do this, we need to look
at one more requirement that an intelligent agent ought to satisfy.

Autonomy
There is one more thing to deal with in the definition of an ideal rational agent: the "built-in
knowledge" part. If the agent's actions are based completely on built-in knowledge, such that it

AUTONOMY need pay no attention to its percepts, then we say that the agent lacks autonomy. For example,
if the clock manufacturer was prescient enough to know that the clock's owner would be going
to Australia at some particular date, then a mechanism could be built in to adjust the hands
automatically by six hours at just the right time. This would certainly be successful behavior, but
the intelligence seems to belong to the clock's designer rather than to the clock itself.

An agent's behavior can be based on both its own experience and the built-in knowledge
, . - .<- . . used in constructing the agent for the particular environment in which it operates. A system is

I*E~ autonomous4 to the extent that its behavior is determined b\ its own experience. It would be
too stringent, though, to require complete autonomy from the word go: when the agent has had
little or no experience, it would have to act randomly unless the designer gave some assistance.
So, just as evolution provides animals with enough built-in reflexes so that they can survive long
enough to learn for themselves, it would be reasonable to provide an artificial intelligent agent
with some initial knowledge as well as an ability to learn.

Autonomy not only fits in with our intuition, but it is an example of sound engineering
practices. An agent that operates on the basis of built-in assumptions will only operate success-
fully when those assumptions hold, and thus lacks flexibility. Consider, for example, the lowly
dung beetle. After digging its nest and laying its eggs, it fetches a ball of dung from a nearby heap
to plug the entrance; if the ball of dung is removed from its grasp en route, the beetle continues
on and pantomimes plugging the nest with the nonexistent dung ball, never noticing that it is
missing. Evolution has built an assumption into the beetle's behavior, and when it is violated,
unsuccessful behavior results. A truly autonomous intelligent agent should be able to operate
successfully in a wide variety of environments, given sufficient time to adapt.

STRUCTURE OF INTELLIGENT AGENTS

So far we have talked about agents by describing their behavior—the action that is performed
after any given sequence of percepts. Now, we will have to bite the bullet and talk about how

AGENTPROGRAM the insides work. The job of AI is to design the agent program: a function that implements
the agent mapping from percepts to actions. We assume this program will run on some sort of

ARCHITECTURE computing device, which we will call the architecture. Obviously, the program we choose has

4 The word "autonomous" has also come to mean something like "not under the immediate control of a human," as in
"autonomous land vehicle." We are using it in a stronger sense.

AI All

36 Chapter 2. Intelligent Agents

SOFTWARE AGENTS

SOFTBOTS

to be one that the architecture will accept and run. The architecture might be a plain computer, or
it might include special-purpose hardware for certain tasks, such as processing camera images or
filtering audio input. It might also include software that provides a degree of insulation between
the raw computer and the agent program, so that we can program at a higher level. In general,
the architecture makes the percepts from the sensors available to the program, runs the program,
and feeds the program's action choices to the effectors as they are generated. The relationship
among agents, architectures, and programs can be summed up as follows:

agent = architecture + program

Most of this book is about designing agent programs, although Chapters 24 and 25 deal directly
with the architecture.

Before we design an agent program, we must have a pretty good idea of the possible
percepts and actions, what goals or performance measure the agent is supposed to achieve, and
what sort of environment it will operate in.5 These come in a wide variety. Figure 2.3 shows the
basic elements for a selection of agent types.

It may come as a surprise to some readers that we include in our list of agent types some
programs that seem to operate in the entirely artificial environment defined by keyboard input
and character output on a screen. "Surely," one might say, "this is not a real environment, is
it?" In fact, what matters is not the distinction between "real" and "artificial" environments,
but the complexity of the relationship among the behavior of the agent, the percept sequence
generated by the environment, and the goals that the agent is supposed to achieve. Some "real"
environments are actually quite simple. For example, a robot designed to inspect parts as they
come by on a conveyer belt can make use of a number of simplifying assumptions: that the
lighting is always just so, that the only thing on the conveyer belt will be parts of a certain kind,
and that there are only two actions—accept the part or mark it as a reject.

In contrast, some software agents (or software robots or softbots) exist in rich, unlimited
domains. Imagine a softbot designed to fly a flight simulator for a 747. The simulator is a
very detailed, complex environment, and the software agent must choose from a wide variety of
actions in real time. Or imagine a softbot designed to scan online news sources and show the
interesting items to its customers. To do well, it will need some natural language processing
abilities, it will need to learn what each customer is interested in, and it will need to dynamically
change its plans when, for example, the connection for one news source crashes or a new one
comes online.

Some environments blur the distinction between "real" and "artificial." In the ALIVE
environment (Maes et al., 1994), software agents are given as percepts a digitized camera image
of a room where a human walks about. The agent processes the camera image and chooses an
action. The environment also displays the camera image on a large display screen that the human
can watch, and superimposes on the image a computer graphics rendering of the software agent.
One such image is a cartoon dog, which has been programmed to move toward the human (unless
he points to send the dog away) and to shake hands or jump up eagerly when the human makes
certain gestures.
5 For the acronymically minded, we call this the PAGE (Percepts, Actions, Goals, Environment) description. Note that
the goals do not necessarily have to be represented within the agent; they simply describe the performance measure by
which the agent design will be judged.

Section 2.3. Structure of Intelligent Agents 37

Agent Type

Medical diagnosis
system

Satellite image
analysis system

Part-picking robot

Refinery controller

Interactive English
tutor

Percepts

Symptoms,
findings, patient's
answers

Pixels of varying
intensity, color

Pixels of varying
intensity

Temperature,
pressure readings

Typed words

Actions

Questions, tests,
treatments

Print a
categorization of
scene

Pick up parts and
sort into bins

Open, close
valves; adjust
temperature

Print exercises,
suggestions,
corrections

Goals

Healthy patient,
minimize costs

Correct
categorization

Place parts in
correct bins

Maximize purity,
yield, safety

Maximize
student's score on
test

Environment

Patient, hospital

Images from
orbiting satellite

Conveyor belt
with parts

Refinery

Set of students

Figure 2.3 Examples of agent types and their PAGE descriptions.

The most famous artificial environment is the Turing Test environment, in which the whole
point is that real and artificial agents are on equal footing, but the environment is challenging
enough that it is very difficult for a software agent to do as well as a human. Section 2.4 describes
in more detail the factors that make some environments more demanding than others.

Agent programs
We will be building intelligent agents throughout the book. They will all have the same skeleton,
namely, accepting percepts from an environment and generating actions. The early versions of
agent programs will have a very simple form (Figure 2.4). Each will use some internal data
structures that will be updated as new percepts arrive. These data structures are operated on by
the agent's decision-making procedures to generate an action choice, which is then passed to the
architecture to be executed.

There are two things to note about this skeleton program. First, even though we defined
the agent mapping as a function from percept sequences to actions, the agent program receives
only a single percept as its input. It is up to the agent to build up the percept sequence in memory,
if it so desires. In some environments, it is possible to be quite successful without storing
the percept sequence, and in complex domains, it is infeasible to store the complete sequence.

38 Chapter 2. Intelligent Agents

function SKELETON-AGEN~[(percept) returns action
static: memory, the agent's memory of the world

memory — UPDATE-MEMORY(memory, percept)
action <— CHOOSE-BEST-ACTION(/tt<?mwy)
memory — UPDATE-MEMORY(/wemorv, action)
return action

Figure 2.4 A skeleton agent. On each invocation, the agent's memory is updated to reflect
the new percept, the best action is chosen, and the fact that the action was taken is also stored in
memory. The memory persists from one invocation to the next.

Second, the goal or performance measure is not part of the skeleton program. This is because
the performance measure is applied externally to judge the behavior of the agent, and it is often
possible to achieve high performance without explicit knowledge of the performance measure
(see, e.g., the square-root agent).

Why not just look up the answers?
Let us start with the simplest possible way we can think of to write the agent program—a lookup
table. Figure 2.5 shows the agent program. It operates by keeping in memory its entire percept
sequence, and using it to index into table, which contains the appropriate action for all possible
percept sequences.

It is instructive to consider why this proposal is doomed to failure:

1. The table needed for something as simple as an agent that can only play chess would be
about 3510° entries.

2. It would take quite a long time for the designer to build the table.
3. The agent has no autonomy at all, because the calculation of best actions is entirely built-in.]

So if the environment changed in some unexpected way, the agent would be lost.

function TABLE-DRIVEN-AGENT(percepf) returns action
static: percepts, a sequence, initially empty

table, a table, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action <— L(3OKVf(percepts, table)
return action

Figure 2.5 An agent based on a prespecified lookup table. It keeps track of the percept
sequence and just looks up the best action.

Section 2.3. Structure of Intelligent Agents 39

4. Even if we gave the agent a learning mechanism as well, so that it could have a degree of
autonomy, it would take forever to learn the right value for all the table entries.

Despite all this, TABLE-DRIVEN-AGENT does do what we want: it implements the desired agent
mapping. It is not enough to say, "It can't be intelligent;" the point is to understand why an agent
that reasons (as opposed to looking things up in a table) can do even better by avoiding the four
drawbacks listed here.

An example
At this point, it will be helpful to consider a particular environment, so that our discussion
can become more concrete. Mainly because of its familiarity, and because it involves a broad
range of skills, we will look at the job of designing an automated taxi driver. We should point
out, before the reader becomes alarmed, that such a system is currently somewhat beyond the
capabilities of existing technology, although most of the components are available in some form.6

The full driving task is extremely open-ended—there is no limit to the novel combinations of
circumstances that can arise (which is another reason why we chose it as a focus for discussion).

We must first think about the percepts, actions, goals and environment for the taxi. They
are summarized in Figure 2.6 and discussed in turn.

Agent Type

Taxi driver

Percepts

Cameras,
speedometer, GPS,
sonar, microphone

Actions

Steer, accelerate,
brake, talk to
passenger

Goals

Safe, fast, legal,
comfortable trip,
maximize profits

Environment

Roads, other
traffic, pedestrians,
customers

Figure 2.6 The taxi driver agent type.

The taxi will need to know where it is, what else is on the road, and how fast it is going.
This information can be obtained from the percepts provided by one or more controllable TV
cameras, the speedometer, and odometer. To control the vehicle properly, especially on curves, it
should have an accelerometer; it will also need to know the mechanical state of the vehicle, so it
will need the usual array of engine and electrical system sensors. It might have instruments that
are not available to the average human driver: a satellite global positioning system (GPS) to give
it accurate position information with respect to an electronic map; or infrared or sonar sensors to
detect distances to other cars and obstacles. Finally, it will need a microphone or keyboard for
the passengers to tell it their destination.

The actions available to a taxi driver will be more or less the same ones available to a human
driver: control over the engine through the gas pedal and control over steering and braking. In
addition, it will need output to a screen or voice synthesizer to talk back to the passengers, and
perhaps some way to communicate with other vehicles.

6 See page 26 for a description of an existing driving robot, or look at the conference proceedings on Intelligent Vehicle
and Highway Systems (IVHS).

40 Chapter 2. Intelligent Agents

What performance measure would we like our automated driver to aspire to? Desirable
qualities include getting to the correct destination; minimizing fuel consumption and wear and
tear; minimizing the trip time and/or cost; minimizing violations of traffic laws and disturbances
to other drivers; maximizing safety and passenger comfort; maximizing profits. Obviously, some
of these goals conflict, so there will be trade-offs involved.

Finally, were this a real project, we would need to decide what kind of driving environment
the taxi will face. Should it operate on local roads, or also on freeways? Will it be in Southern
California, where snow is seldom a problem, or in Alaska, where it seldom is not? Will it always
be driving on the right, or might we want it to be flexible enough to drive on the left in case we
want to operate taxis in Britain or Japan? Obviously, the more restricted the environment, the
easier the design problem.

Now we have to decide how to build a real program to implement the mapping from
percepts to action. We will find that different aspects of driving suggest different types of agent
program. We will consider four types of agent program:

• Simple reflex agents
• Agents that keep track of the world
• Goal-based agents
• Utility-based agents

CONDITION-ACTION
RULE

Simple reflex agents
The option of constructing an explicit lookup table is out of the question. The visual input from
a single camera comes in at the rate of 50 megabytes per second (25 frames per second, 1000 x
1000 pixels with 8 bits of color and 8 bits of intensity information). So the lookup table for an
hour would be 260x60x50M entries.

However, we can summarize portions of the table by noting certain commonly occurring
input/output associations. For example, if the car in front brakes, and its brake lights come on,
then the driver should notice this and initiate braking. In other words, some processing is done on
the visual input to establish the condition we call "The car in front is braking"; then this triggers
some established connection in the agent program to the action "initiate braking". We call such
a connection a condition-action rule7 written as

if car-in-front-is-bmking then initiate-braking

Humans also have many such connections, some of which are learned responses (as for driving)
and some of which are innate reflexes (such as blinking when something approaches the eye).
In the course of the book, we will see several different ways in which such connections can be
learned and implemented.

Figure 2.7 gives the structure of a simple reflex agent in schematic form, showing how
the condition-action rules allow the agent to make the connection from percept to action. (Do
not worry if this seems trivial; it gets more interesting shortly.) We use rectangles to denote
7 Also called situation-action rules, productions, or if-then rules. The last term is also used by some authors for
logical implications, so we will avoid it altogether.

Section 2.3. Structure of Intelligent Agents 41

Condition-action rules

Figure 2.7 Schematic diagram of a simple reflex agent.

function SiMPLE-REFLEX-AGENT(/?erc<?/??) returns action
static: rules, a set of condition-action rules

state <— lNTERpRET-lNPUT(/7e;re/«)
rtf/e <- RULE-MATCH(.s?ate, rules)
action <- RULE-AcTiON[rw/e]
return action

Figure 2.8 A simple reflex agent. It works by finding a rule whose condition matches the
current situation (as defined by the percept) and then doing the action associated with that rule.

the current internal state of the agent's decision process, and ovals to represent the background
information used in the process. The agent program, which is also very simple, is shown in
Figure 2.8. The INTERPRET-INPUT function generates an abstracted description of the current
state from the percept, and the RULE-MATCH function returns the first rule in the set of rules that
matches the given state description. Although such agents can be implemented very efficiently
(see Chapter 10), their range of applicability is very narrow, as we shall see.

Agents that keep track of the world
The simple reflex agent described before will work only if the correct decision can be made
on the basis of the current percept. If the car in front is a recent model, and has the centrally
mounted brake light now required in the United States, then it will be possible to tell if it is
braking from a single image. Unfortunately, older models have different configurations of tail

42 Chapter 2. Intelligent Agents

lights, brake lights, and turn-signal lights, and it is not always possible to tell if the car is braking.
Thus, even for the simple braking rule, our driver will have to maintain some sort of internal

INTERNAL STATE state in order to choose an action. Here, the internal state is not too extensive—it just needs the
previous frame from the camera to detect when two red lights at the edge of the vehicle go on or
off simultaneously.

Consider the following more obvious case: from time to time, the driver looks in the
rear-view mirror to check on the locations of nearby vehicles. When the driver is not looking in
the mirror, the vehicles in the next lane are invisible (i.e., the states in which they are present and
absent are indistinguishable); but in order to decide on a lane-change maneuver, the driver needs
to know whether or not they are there.

The problem illustrated by this example arises because the sensors do not provide access to
the complete state of the world. In such cases, the agent may need to maintain some internal state
information in order to distinguish between world states that generate the same perceptual input
but nonetheless are significantly different. Here, "significantly different" means that different
actions are appropriate in the two states.

Updating this internal state information as time goes by requires two kinds of knowledge to
be encoded in the agent program. First, we need some information about how the world evolves
independently of the agent—for example, that an overtaking car generally will be closer behind
than it was a moment ago. Second, we need some information about'how the agent's own actions
affect the world—for example, that when the agent changes lanes to the right, there is a gap (at
least temporarily) in the lane it was in before, or that after driving for five minutes northbound ;
on the freeway one is usually about five miles north of where one was five minutes ago.

Figure 2.9 gives the structure of the reflex agent, showing how the current percept is j
combined with the old internal state to generate the updated description of the current state. The I
agent program is shown in Figure 2.10. The interesting part is the function UPDATE-STATE, which
is responsible for creating the new internal state description. As well as interpreting the new
percept in the light of existing knowledge about the state, it uses information about how the world j
evolves to keep track of the unseen parts of the world, and also must know about what the agent's j
actions do to the state of the world. Detailed examples appear in Chapters 7 and 17.

GOAL

SEARCH

PLANNING

Goal-based agents

Knowing about the current state of the environment is not always enough to decide what to do. j
For example, at a road junction, the taxi can turn left, right, or go straight on. The right decision j
depends on where the taxi is trying to get to. In other words, as well as a current state description,!
the agent needs some sort of goal information, which describes situations that are desirable—j
for example, being at the passenger's destination. The agent program can combine this with!
information about the results of possible actions (the same information as was used to update]
internal state in the reflex agent) in order to choose actions that achieve the goal. Sometimes j
this will be simple, when goal satisfaction results immediately from a single action; sometimes, j
it will be more tricky, when the agent has to consider long sequences of twists and turns to find
a way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 11 to 13) are the j
subfields of AI devoted to finding action sequences that do achieve the agent's goals.

Section 2.3. Structure of Intelligent Agents 43

j;iaijj|jHow the world evolves JESijig

Figure 2.9 A reflex agent with internal state.

function REFLEX-AGENT-WiTH-STATE(percepO returns
static: state, a description of the current world state

rules, a set of condition-action rules

state <— UPDATE-STATE(.stafe, percept)
rule — RULE-MATCHOtate, rules)
action — RULE-ACTION[rwfe]
state <- UPDATE-STATEGstafe, action)
return action

Figure 2.10 A reflex agent with internal state. It works by finding a rule whose condition
matches the current situation (as defined by the percept and the stored internal state) and then
doing the action associated with that rule.

Notice that decision-making of this kind is fundamentally different from the condition-
action rules described earlier, in that it involves consideration of the future—both "What will
happen if I do such-and-such?" and "Will that make me happy?" In the reflex agent designs,
this information is not explicitly used, because the designer has precomputed the correct action
for various cases. The reflex agent brakes when it sees brake lights. A goal-based agent, in
principle, could reason that if the car in front has its brake lights on, it will slow down. From
the way the world usually evolves, the only action that will achieve the goal of not hitting other
cars is to brake. Although the goal-based agent appears less efficient, it is far more flexible. If it
starts to rain, the agent can update its knowledge of how effectively its brakes will operate; this
will automatically cause all of the relevant behaviors to be altered to suit the new conditions. For
the reflex agent, on the other hand, we would have to rewrite a large number of condition-action

44 Chapter 2. Intelligent Agents

rules. Of course, the goal-based agent is also more flexible with respect to reaching different
destinations. Simply by specifying a new destination, we can get the goal-based agent to come
up with a new behavior. The reflex agent's rules for when to turn and when to go straight will
only work for a single destination; they must all be replaced to go somewhere new.

Figure 2.11 shows the goal-based agent's structure. Chapter 13 contains detailed agent
programs for goal-based agents.

How the world evolves BIS

What my actions do JgSlii

Figure 2.11 An agent with explicit goals.

UTILITY

Utility-based agents
Goals alone are not really enough to generate high-quality behavior. For example, there are many
action sequences that will get the taxi to its destination, thereby achieving the goal, but some I
are quicker, safer, more reliable, or cheaper than others. Goals just provide a crude distinction
between "happy" and "unhappy" states, whereas a more general performance measure should j
allow a comparison of different world states (or sequences of states) according to exactly how]
happy they would make the agent if they could be achieved. Because "happy" does not sound I
very scientific, the customary terminology is to say that if one world state is preferred to another,]
then it has higher utility for the agent.8

Utility is therefore a function that maps a state9 onto a real number, which describes the j
associated degree of happiness. A complete specification of the utility function allows rational j
decisions in two kinds of cases where goals have trouble. First, when there are conflicting goals, 1
only some of which can be achieved (for example, speed and safety), the utility function specifies
the appropriate trade-off. Second, when there are several goals that the agent can aim for, none
8 The word "utility" here refers to "the quality of being useful," not to the electric company or water works.
9 Or sequence of states, if we are measuring the utility of an agent over the long run.

2.4. Environments 45

of which can be achieved with certainty, utility provides a way in which the likelihood of success
can be weighed up against the importance of the goals.

In Chapter 16, we show that any rational agent can be described as possessing a utility
function. An agent that possesses an explicit utility function therefore can make rational decisions,
but may have to compare the utilities achieved by different courses of actions. Goals, although
cruder, enable the agent to pick an action right away if it satisfies the goal. In some cases,
moreover, a utility function can be translated into a set of goals, such that the decisions made by
a goal-based agent using those goals are identical to those made by the utility-based agent.

The overall utility-based agent structure appears in Figure 2.12. Actual utility-based agent
programs appeal in Chapter 5, where we examine game-playing programs that must make fine
distinctions amoag various board positions; and in Chapter 17, where we tackle the general
problem of designing decision-making agents.

^ESiS
'\-ySt How the world evolves jSi*

';:?,̂ l̂5
What the world

« is like now
.

._ ;;..;, • '-••• --•*
! jSfwhat my actions do^SSft

- '• '•' '•-"•• ''".̂ ii, 1Mj/V.L.:.°:.:.:v.':. -•..:

What it will be like
if 1 do action A

ll

Hi

1
> •W>S-Sf^fSS^'t?fff':SyKS

•'f^jKff utility ^JfS^SXK How happy 1 will be I
in such a state

.''•^••'.-?S#'J$P"WS'Wr;
What action 1

1 should do now
Ss;s"j?y"™°:"^:Z^0W:'frs°fy'°":>5a::>:-"'= Ar

vf™%:;= =*̂ si£î iS£ii5&^ -^
ii
»?

i^viv^vi^^y^

Figure 2.12 A complete utility-based agent.

In this section and in the exercises at the end of the chapter, you will see how to couple an agent
to an environment. Section 2.3 introduced several different kinds of agents and environments.
In all cases, however, the nature of the connection between them is the same: actions are done
by the agent on tie environment, which in turn provides percepts to the agent. First, we will
describe the different types of environments and how they affect the design of agents. Then we
will describe environment programs that can be used as testbeds for agent programs.

46 Chapter 2. Intelligent Agents

Properties of environments
Environments come in several flavors. The principal distinctions to be made are as follows:

ACCESSIBLE 0 Accessible vs. inaccessible.
If an agent's sensory apparatus gives it access to the complete state of the environment,
then we say that the environment is accessible to that agent. An environment is effectively
accessible if the sensors detect all aspects that are relevant to the choice of action. An
accessible environment is convenient because the agent need not maintain any internal state
to keep track of the world.

DETERMINISTIC 0 Deterministic vs. nondeterministic.
If the next state of the environment is completely determined by the current state and the
actions selected by the agents, then we say the environment is deterministic. In principle,
an agent need not worry about uncertainty in an accessible, deterministic environment. If
the environment is inaccessible, however, then it may appear to be nondeterministic. This
is particularly true if the environment is complex, making it hard to keep track of all the
inaccessible aspects. Thus, it is often better to think of an environment as deterministic or
nondeterministic/rom the point of view of the agent.

EPISODIC 0 Episodic vs. nonepisodic.
In an episodic environment, the agent's experience is divided into "episodes." Each episode
consists of the agent perceiving and then acting. The quality of its action depends just on
the episode itself, because subsequent episodes do not depend on what actions occur in
previous episodes. Episodic environments are much simpler because the agent does not
need to think ahead.

STATIC 0 Static vs. dynamic.
If the environment can change while an agent is deliberating, then we say the environment
is dynamic for that agent; otherwise it is static. Static environments are easy to deal with
because the agent need not keep looking at the world while it is deciding on an action,
nor need it worry about the passage of time. If the environment does not change with the
passage of time but the agent's performance score does, then we say the environment is

SEMIDYNAMIC semidynamic.
DISCRETE 0 Discrete vs. continuous.

If there are a limited number of distinct, clearly defined percepts and actions we say that
the environment is discrete. Chess is discrete—there are a fixed number of possible moves
on each turn. Taxi driving is continuous—the speed and location of the taxi and the other
vehicles sweep through a range of continuous values.10

We will see that different environment types require somewhat different agent programs to deal
with them effectively. It will turn out, as you might expect, that the hardest case is inaccessible,
nonepisodic, dynamic, and continuous. It also turns out that most real situations are so complex
that whether they are really deterministic is a moot point; for practical purposes, they must be
treated as nondeterministic.
10 At a fine enough level of granularity, even the taxi driving environment is discrete, because the camera image is
digitized to yield discrete pixel values. But any sensible agent program would have to abstract above this level, up to a
level of granularity that is continuous.

Section 2.4. Environments 47

Figure 2.13 lists the properties of a number of familiar environments. Note that the answers
can change depending on how you conceptualize the environments and agents. For example,
poker is deterministic if the agent can keep track of the order of cards in the deck, but it is
nondeterministic if it cannot. Also, many environments are episodic at higher levels than the
agent's individual actions. For example, a chess tournament consists of a sequence of games;
each game is an episode, because (by and large) the contribution of the moves in one game to the
agent's overall performance is not affected by the moves in its next game. On the other hand,
moves within a single game certainly interact, so the agent needs to look ahead several moves.

Environment
Chess with a clock
Chess without a clock
Poker
Backgammon
Taxi driving
Medical diagnosis system
Image-analysis system
Part-picking robot
Refinery controller
Interactive English tutor

Accessible
Yes
Yes
No
Yes
No
No
Yes
No
No
No

Deterministic
Yes
Yes
No
No
No
No
Yes
No
No
No

Episodic

No
No
No
No
No
No
Yes
Yes
No
No

Static
Semi
Yes
Yes
Yes
No
No

Semi
No
No
No

Discrete
Yes
Yes
Yes
Yes
No
No
No
No
No
Yes

Figure 2.13 Examples of environments and their characteristics.

Environment programs
The generic environment program in Figure 2.14 illustrates the basic relationship between agents
and environments. In this book, we will find it convenient for many of the examples and exercises
to use an environment simulator that follows this program structure. The simulator takes one or
more agents as input and arranges to repeatedly give each agent the right percepts and receive back
an action. The simulator then updates the environment based on the actions, and possibly other
dynamic processes in the environment that are not considered to be agents (rain, for example).
The environment is therefore defined by the initial state and the update function. Of course, an
agent that works in a simulator ought also to work in a real environment that provides the same
kinds of percepts and accepts the same kinds of actions.

The RUN-ENVIRONMENT procedure correctly exercises the agents in an environment. For
some kinds of agents, such as those that engage in natural language dialogue, it may be sufficient
simply to observe their behavior. To get more detailed information about agent performance, we
insert some performance measurement code. The function RUN-EVAL-ENVIRONMENT, shown in
Figure 2.15, does this; it applies a performance measure to each agent and returns a list of the
resulting scores. The scores variable keeps track of each agent's score.

In general, the performance measure can depend on the entire sequence of environment
states generated during the operation of the program. Usually, however, the performance measure

48 Chapter 2. Intelligent Agents

procedure RuN-ENViRONMENT(>tefc, UPDATE-FN, agents, termination)
inputs: state, the initial state of the environment

UPDATE-FN, function to modify the environment
agents, a set of agents
termination, a predicate to test when we are done

repeat
for each agent in agents do

PERCEPT[agent] <— GEY-PERCEPT(agent, state)
end
for each agent in agents do

ACTlON[agent] — PROGRAM[agent](PERCEPT[agent})
end
state <— UPDATE-FN(acft'o«.s, agents, state)

until termination(state)

Figure 2.14 The basic environment simulator program. It gives each agent its percept, gets an
action from each agent, and then updates the environment.

function RuN-EvAL-ENViRONMENT(itare, UPDATE-FN, agents,
termination, PERFORMANCE-FN) returns scores

local variables: scores, a vector the same size as agents, all 0

repeat
for each agent in agents do

PERCEPT[agent] <- GET-PERCEPT(age«f, state)
end
for each agent in agents do

ACTTONfagenr] *- PROGRAM[agent](PERCEPT[agent])
end
state ^- UPDATE-FN(acrio/w, agents, state)
scores ̂ - PERFORMANCE-FN(>c0n?s, agents, state)

until termination(state)
return scores I * change * I

Figure 2.15 An environment simulator program that keeps track of the performance measure
for each agent.

works by a simple accumulation using either summation, averaging, or taking a maximum. For i
example, if the performance measure for a vacuum-cleaning agent is the total amount of dirt]
cleaned in a shift, scores will just keep track of how much dirt has been cleaned up so far.

RUN-EVAL-ENVIRONMENT returns the performance measure for a a single environment,
defined by a single initial state and a particular update function. Usually, an agent is designed to

Section Summary 49

ENVIRONMENT
CLASS work in an environment class, a whole set of different environments. For example, we design

a chess program to play against any of a wide collection of human and machine opponents. If
we designed it for a single opponent, we might be able to take advantage of specific weaknesses
in that opponent, but that would not give us a good program for general play. Strictly speaking,
in order to measure the performance of an agent, we need to have an environment generator
that selects particular environments (with certain likelihoods) in which to run the agent. We are
then interested in the agent's average performance over the environment class. This is fairly
straightforward to implement for a simulated environment, and Exercises 2.5 to 2.11 take you
through the entire development of an environment and the associated measurement process.

A possible confusion arises between the state variable in the environment simulator and
the state variable in the agent itself (see REFLEX- AGENT-WITH-STATE). As a programmer imple-
menting both the environment simulator and the agent, it is tempting to allow the agent to peek
at the environment simulator's state variable. This temptation must be resisted at all costs! The
agent's version of the state must be constructed from its percepts alone, without access to the
complete state information.

2.5 SUMMARY

This chapter has been something of a whirlwind tour of AI, which we have conceived of as the
science of agent design. The major points to recall are as follows:

• An agent is something that perceives and acts in an environment. We split an agent into
an architecture and an agent program.

• An ideal agent is one that always takes the action that is expected to maximize its perfor-
mance measure, given the percept sequence it has seen so far.

• An agent is autonomous to the extent that its action choices depend on its own experience,
rather than on knowledge of the environment that has been built-in by the designer.

• An agent program maps from a percept to an action, while updating an internal state.
• There exists a variety of basic agent program designs, depending on the kind of information

made explicit and used in the decision process. The designs vary in efficiency, compactness,
and flexibility. The appropriate design of the agent program depends on the percepts,
actions, goals, and environment.

• Reflex agents respond immediately to percepts, goal-based agents act so that they will
achieve their goal(s), and utility-based agents try to maximize their own "happiness."

• The process of making decisions by reasoning with knowledge is central to AI and to
successful agent design. This means that representing knowledge is important.

• Some environments are more demanding than others. Environments that are inaccessible,
nondeterministic, nonepisodic, dynamic, and continuous are the most challenging.

50 Chapter 2. Intelligent Agents

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The analysis of rational agency as a mapping from percept sequences to actions probably stems
ultimately from the effort to identify rational behavior in the realm of economics and other forms
of reasoning under uncertainty (covered in later chapters) and from the efforts of psychological
behaviorists such as Skinner (1953) to reduce the psychology of organisms strictly to input/output
or stimulus/response mappings. The advance from behaviorism to functionalism in psychology,
which was at least partly driven by the application of the computer metaphor to agents (Putnam,
1960; Lewis, 1966), introduced the internal state of the agent into the picture. The philosopher
Daniel Dennett (1969; 1978b) helped to synthesize these viewpoints into a coherent "intentional
stance" toward agents. A high-level, abstract perspective on agency is also taken within the world
of AI in (McCarthy and Hayes, 1969). Jon Doyle (1983) proposed that rational agent design is
the core of AI, and would remain as its mission while other topics in AI would spin off to form
new disciplines. Horvitz et al. (1988) specifically suggest the use of rationality conceived as the
maximization of expected utility as a basis for AI.

The AI researcher and Nobel-prize-winning economist Herb Simon drew a clear distinction
between rationality under resource limitations (procedural rationality) and rationality as making
the objectively rational choice (substantive rationality) (Simon, 1958). Cherniak (1986) explores
the minimal level of rationality needed to qualify an entity as an agent. Russell and Wefald (1991)
deal explicitly with the possibility of using a variety of agent architectures. Dung Beetle Ecol-
ogy (Hanski and Cambefort, 1991) provides a wealth of interesting information on the behavior
of dung beetles.

EXERCISES

2.1 What is the difference between a performance measure and a utility function?

2.2 For each of the environments in Figure 2.3, determine what type of agent architecture is
most appropriate (table lookup, simple reflex, goal-based or utility-based).

2.3 Choose a domain that you are familiar with, and write a PAGE description of an agent
for the environment. Characterize the environment as being accessible, deterministic, episodic,
static, and continuous or not. What agent architecture is best for this domain?

2.4 While driving, which is the best policy?
a. Always put your directional blinker on before turning,
b. Never use your blinker,
c. Look in your mirrors and use your blinker only if you observe a car that can observe you?

What kind of reasoning did you need to do to arrive at this policy (logical, goal-based, or utility-
based)? What kind of agent design is necessary to carry out the policy (reflex, goal-based, or
utility-based)?

Section 2.5. Summary 51

The following exercises all concern the implementation of an environment and set of agents in
the vacuum-cleaner world.

2.5 Implement a performance-measuring environment simulator for the vacuum-cleaner world.
This world can be described as follows:

<) Percepts: Each vacuum-cleaner agent gets a three-element percept vector on each turn.
The first element, a touch sensor, should be a 1 if the machine has bumped into something
and a 0 otherwise. The second comes from a photosensor under the machine, which emits
a 1 if there is dirt there and a 0 otherwise. The third comes from an infrared sensor, which
emits a 1 when the agent is in its home location, and a 0 otherwise.

0 Actions: There are five actions available: go forward, turn right by 90°, turn left by 90°,
suck up dirt, and turn off.

<) Goals: The goal for each agent is to clean up and go home. To be precise, the performance
measure will be 100 points for each piece of dirt vacuumed up, minus 1 point for each
action taken, and minus 1000 points if it is not in the home location when it turns itself off.

<) Environment: The environment consists of a grid of squares. Some squares contain
obstacles (walls and furniture) and other squares are open space. Some of the open squares
contain dirt. Each "go forward" action moves one square unless there is an obstacle in that
square, in which case the agent stays where it is, but the touch sensor goes on. A "suck up
dirt" action always cleans up the dirt. A "turn off" command ends the simulation.

We can vary the complexity of the environment along three dimensions:
<y Room shape: In the simplest case, the room is an n x n square, for some fixed n. We can

make it more difficult by changing to a rectangular, L-shaped, or irregularly shaped room,
or a series of rooms connected by corridors.

0 Furniture: Placing furniture in the room makes it more complex than an empty room. To
the vacuum-cleaning agent, a piece of furniture cannot be distinguished from a wall by
perception; both appear as a 1 on the touch sensor.

0 Dirt placement: In the simplest case, dirt is distributed uniformly around the room. But
it is more realistic for the dirt to predominate in certain locations, such as along a heavily
travelled path to the next room, or in front of the couch.

2.6 Implement a table-lookup agent for the special case of the vacuum-cleaner world consisting
of a 2 x 2 grid of open squares, in which at most two squares will contain dirt. The agent starts
in the upper left corner, facing to the right. Recall that a table-lookup agent consists of a table of
actions indexed by a percept sequence. In this environment, the agent can always complete its
task in nine or fewer actions (four moves, three turns, and two suck-ups), so the table only needs
entries for percept sequences up to length nine. At each turn, there are eight possible percept
vectors, so the table will be of size 89 = 134,217,728. Fortunately, we can cut this down by
realizing that the touch sensor and home sensor inputs are not needed; we can arrange so that
the agent never bumps into a wall and knows when it has returned home. Then there are only
two relevant percept vectors, ?0? and ?!?, and the size of the table is at most 29 = 512. Run the
environment simulator on the table-lookup agent in all possible worlds (how many are there?).
Record its performance score for each world and its overall average score.

52 Chapter 2. Intelligent Agents

2.7 Implement an environment for anxm rectangular room, where each square has a 5% chance
of containing dirt, and n and m are chosen at random from the range 8 to 15, inclusive.

2.8 Design and implement a pure reflex agent for the environment of Exercise 2.7, ignoring
the requirement of returning home, and measure its performance. Explain why it is impossible
to have a reflex agent that returns homeland shuts itself off. Speculate on what the best possible
reflex agent could do. What prevents a reflex agent from doing very well?

2.9 Design and implement several agents with internal state. Measure their performance. How
close do they come to the ideal agent for this environment?

2.10 Calculate the size of the table for a table-lookup agent in the domain of Exercise 2.7.
Explain your calculation. You need not fill in the entries for the table.

2.11 Experiment with changing the shape and dirt placement of the room, and with adding
furniture. Measure your agents in these new environments. Discuss how their performance
might be improved to handle more complex geographies.

Part II
PROBLEM-SOLVING

In this part we show how an agent can act by establishing goals and considering
sequences of actions that might achieve those goals. A goal and a set of means
for achieving the goal is called a problem, and the process of exploring what the
means can do is called search. We show what search can do, how it must be
modified to account for adversaries, and what its limitations are.

I
3 SOLVING PROBLEMS BY

SEARCHING

In which we look at how an agent can decide what to do by systematically considering
the outcomes of various sequences of actions that it might take.

PROBLEM-SOLVING
AGENT

In Chapter 2, we saw that simple reflex agents are unable to plan ahead. They are limited in what
they can do because their actions are determined only by the current percept. Furthermore, they
have no knowledge of what their actions do nor of what they are trying to achieve.

In this chapter, we describe one kind of goal-based agent called a problem-solving agent.
Problem-solving agents decide what to do by finding sequences of actions that lead to desirable
states. We discuss informally how the agent can formulate an appropriate view of the problem it
faces. The problem type that results from the formulation process will depend on the knowledge
available to the agent: principally, whether it knows the current state and the outcomes of actions.
We then define more precisely the elements that constitute a "problem" and its "solution," and
give several examples to illustrate these definitions. Given precise definitions of problems, it
is relatively straightforward to construct a search process for finding solutions. We cover six
different search strategies and show how they can be applied to a variety of problems. Chapter 4
will then cover search strategies that make use of more information about the problem to improve
the efficiency of the search process.

This chapter uses concepts from the analysis of algorithms. Readers unfamiliar with the
concepts of asymptotic complexity and NP-completeness should consult Appendix A.

•LL_PRQBLEM-SOLVING AGENTS

Intelligent agents are supposed to act in such a way that the environment goes through a sequence
of states that maximizes the performance measure. In its full generality, this specification is
difficult to translate into a successful agent design. As we mentioned in Chapter 2, the task is
somewhat simplified if the agent can adopt a goal and aim to satisfy it. Let us first look at how
and why an agent might do this.

55

56 Chapter 3. Solving Problems by Searching

GOAL FORMULATION

PROBLEM
FORMULATION

Imagine our agent in the city of Arad, Romania, toward the end of a touring holiday. The
agent has a ticket to fly out of Bucharest the following day. The ticket is nonrefundable, the
agent's visa is about to expire, and after tomorrow, there are no seats available for six weeks. Now
the agent's performance measure contains many other factors besides the cost of the ticket and
the.undesirability of being arrested aqd deported. For example, it wants to improve its suntan,
improve its Romanian, take in the sights, and so on. All these factors might suggest any of a vast
array of possible actions. Given the seriousness of the situation, however, it should adopt the
goal of driving to Bucharest. Actions that result in a failure to reach Bucharest on time can be
rejected without further consideration. Goals such as this help organize behavior by limiting the
objectives that the agent is trying to achieve. Goal formulation, based on the current situation,
is the first step in problem solving. As well as formulating a goal, the agent may wish to decide
on some other factors that affect the desirability of different ways of achieving the goal.

For the purposes of this chapter, we will consider a goal to be a set of world states—just
those states in which the goal is satisfied. Actions can be viewed as causing transitions between
world states, so obviously the agent has to find out which actions will get it to a goal state. Before
it can do this, it needs to decide what sorts of actions and states to consider. If it were to try
to consider actions at the level of "move the left foot forward 18 inches" or "turn the steering
wheel six degrees left," it would never find its way out of the parking lot, let alone to Bucharest,
because constructing a solution at that level of detail would be an intractable problem. Problem
formulation is the process of deciding what actions and states to consider, and follows goal
formulation. We will discuss this process in more detail. For now, let us assume that the agent
will consider actions at the level of driving from one major town to another. The states it will
consider therefore correspond to being in a particular town.'

Our agent has now adopted the goal of driving to Bucharest, and is considering which town
to drive to from Arad. There are three roads out of Arad, one toward Sibiu, one to Timisoara,
and one to Zerind. None of these achieves the goal, so unless the agent is very familiar with the
geography of Romania, it will not know which road to follow.2 In other words, the agent will not]
know which of its possible actions is best, because it does not know enough about the state that j
results from taking each action. If the agent has no additional knowledge, then it is stuck. The i
best it can do is choose one of the actions at random.

But suppose the agent has a map of Romania, either on paper or in its memory. The point I
of a map is to provide the agent with information about the states it might get itself into, and j
the actions it can take. The agent can use this information to consider subsequent stages of a j
hypothetical journey through each of the three towns, to try to find a journey that eventually gets j
to Bucharest. Once it has found a path on the map from Arad to Bucharest, it can achieve its goal;
by carrying out the driving actions that correspond to the legs of the journey. In general, then, an j
agent with several immediate options of unknown value can decide what to do by first examining ;
different possible sequences of actions that lead to states of known value, and then choosing the j
best one. This process of looking for such a sequence is called search. A search algorithm takes
a problem as input and returns a solution in the form of an action sequence. Once a solution is
1 Notice that these states actually correspond to large sets of world states, because a world state specifies every aspect
of reality. It is important to keep in mind the distinction between states in problem solving and world states.
2 We are assuming that most readers are in the same position, and can easily imagine themselves as clueless as our
agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device.

Section 3.2. Formulating Problems 57

EXECUTION found, the actions it recommends can be carried out. This is called the execution phase. Thus,
we have a simple "formulate, search, execute" design for the agent, as shown in Figure 3.1. After
formulating a goal and a problem to solve, the agent calls a search procedure to solve it. It then
uses the solution to guide its actions, doing whatever the solution recommends as the next thing
to do, and then removing that step from the sequence. Once the solution has been executed, the
agent will find a new goal.

function SIMPLE-PROBLEM-SOLVING-AGENT(P) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty

state, some description of the current world state
g, a goal, initially null
problem, a problem formulation

state <— UPDATE-STATE(sfa/e, p)
if s is empty then

g — FORMULATE-GOAL(,s?afe)
problem <— FORMULATE-PROBLEM(.stafe, g)
s r- SE&RCH(problem)

action — RECOMMENDATION^, state)
s <— REMAINDER^, state)
return action

Figure 3.1 A simple problem-solving agent.

We will not discuss the UPDATE-STATE and FORMULATE-GOAL functions further in this
chapter. The next two sections describe the process of problem formulation, and then the
remainder of the chapter is devoted to various versions of the SEARCH function. The execution
phase is usually straightforward for a simple problem-solving agent: RECOMMENDATION just
takes the first action in the sequence, and REMAINDER returns the rest.

•L2__ FORMULATING PROBLEMS

In this section, we will consider the problem formulation process in more detail. First, we will
look at the different amounts of knowledge that an agent can have concerning its actions and the
state that it is in. This depends on how the agent is connected to its environment through its
percepts and actions. We find that there are four essentially different types of problems—single-
state problems, multiple-state problems, contingency problems, and exploration problems. We
will define these types precisely, in preparation for later sections that address the solution process.

58 Chapter 3. Solving Problems by Searching

Knowledge and problem types
Let us consider an environment somewhat different from Romania: the vacuum world from
Exercises 2.5 to 2.11 in Chapter 2. We will simplify it even further for the sake of exposition. Let
the world contain just two locations. Each location may or may not contain dirt, and the agent
may be in one location or the other. There are 8 possible world states, as shown in Figure 3.2.
The agent has three possible actions in this version of the vacuum world: Left, Right, and Suck.
Assume, for the moment, that sucking is 100% effective. The goal is to clean up all the dirt. That
is, the goal is equivalent to the state set {7,8}.

Figure 3.2 The eight possible states of the simplified vacuum world.

SINGLE-STATE
PROBLEM

MULTIPLE-STATE
PROBLEM

First, suppose that the agent's sensors give it enough information to tell exactly which state
it is in (i.e., the world is accessible); and suppose that it knows exactly what each of its actions
does. Then it can calculate exactly which state it will be in after any sequence of actions. For
example, if its initial state is 5, then it can calculate that the action sequence [Right,Suck] will get
to a goal state. This is the simplest case, which we call a single-state problem.

Second, suppose that the agent knows all the effects of its actions, but has limited access
to the world state. For example, in the extreme case, it may have no sensors at all. In that case,
it knows only that its initial state is one of the set {1,2,3,4,5,6,7,8}. One might suppose that
the agent's predicament is hopeless, but in fact it can do quite well. Because it knows what its
actions do, it can, for example, calculate that the action Right will cause it to be in one of the
states {2,4,6,8}. In fact, the agent can discover that the action sequence [Right,Suck,Left,Suck]
is guaranteed to reach a goal state no matter what the start state. To summarize: when the world
is not fully accessible, the agent must reason about sets of states that it might get to, rather than
single states. We call this a multiple-state problem.

Section 3.2. Formulating Problems 59

CONTINGENCY
PROBLEM

INTERLEAVING

EXPLORATION
PROBLEM

Although it might seem different, the case of ignorance about the effects of actions can be
treated similarly. Suppose, for example, that the environment appears to be nondeterministic in
that it obeys Murphy's Law: the so-called Suck action sometimes deposits dirt on the carpet but
only if there is no dirt there already? For example, if the agent knows it is in state 4, then it
knows that if it sucks, it will reach me of the states {2,4}. For any known initial state, however,
there is an action sequence that is guaranteed to reach a goal state (see Exercise 3.2).

Sometimes ignorance prevents the agent from finding a guaranteed solution sequence.
Suppose, for example, that the agent is in the Murphy's Law world, and that it has a position
sensor and a local dirt sensor, but no sensor capable of detecting dirt in other squares. Suppose
further that the sensors tell it that it is in one of the states {1,3}. The agent might formulate the
action sequence [Suck,Right,Suck]. Sucking would change the state to one of {5,7}, and moving
right would then change the state to one of {6,8}. If it is in fact state 6, then the action sequence
will succeed, but if it is state 8, the plan will fail. If the agent had chosen the simpler action
sequence [Suck], it would also succeed some of the time, but not always. It turns out there is no
fixed action sequence that guarantees a solution to this problem.

Obviously, the agent does have a way to solve the problem starting from one of {1,3}: first
suck, then move right, then suck only if there is dirt there. Thus, solving this problem requires
sensing during the execution phase. Notice that the agent must now calculate a whole tree of
actions, rather than a single action sequence. In general, each branch of the tree deals with a
possible contingency that might arise. For this reason, we call this a contingency problem.
Many problems in the real, physical world are contingency problems, because exact prediction is
impossible. For this reason, many people keep their eyes open while walking around or driving.

Single-state and multiple-state problems can be handled by similar search techniques,
which are covered in this chapter and the next. Contingency problems, on the other hand,
require more complex algorithms, which we cover in Chapter 13. They also lend themselves to a
somewhat different agent design, in which the agent can act before it has found a guaranteed plan.
This is useful because rather than considering in advance every possible contingency that might
arise during execution, it is often better to actually start executing and see which contingencies
do arise. The agent can then continue to solve the problem given the additional information. This
type of interleaving of search and execution is also covered in Chapter 13, and for the limited
case of two-player games, in Chapter 5. For the remainder of this chapter, we will only consider
cases where guaranteed solutions consist of a single sequence of actions.

Finally, consider the plight of an agent that has no information about the effects of its
actions. This is somewhat equivalent to being lost in a strange country with no map at all, and is
the hardest task faced by an intelligent agent.4 The agent must experiment, gradually discovering
what its actions do and what sorts of states exist. This is a kind of search, but a search in the
real world rather than in a model thereof. Taking a step in the real world, rather than in a model,
may involve significant danger for an ignorant agent. If it survives, the agent learns a "map" of
the environment, which it can then use to solve subsequent problems. We discuss this kind of
exploration problem in Chapter 20.

3 We assume that most readers face similar problems, and can imagine themselves as frustrated as our agent. We
apologize to owners of modern, efficient home appliances who cannot take advantage of this pedagogical device.
4 It is also the task faced by newborn babies.

60 Chapter 3. Solving Problems by Searching

PROBLEM

INITIAL STATE

OPERATOR

SUCCESSOR
FUNCTION

STATE SPACE

PATH

GOAL TEST

PATH COST

SOLUTION

Well-defined problems and solutions
A problem is really a collection of information that the agent will use to decide what to do. We
will begin by specifying the information needed to define a single-state problem.

We have seen that the basic elements of a problem definition are the states and actions. To
capture these formally, we need the following:

• ,The initial state that the agent knows itself to be in.
• The set of possible actions available to the agent. The term operator is used to denote

the description of an action in terms of which state will be reached by carrying out the
action in a particular state. (An alternate formulation uses a successor function S. Given
a particular state x, S(x) returns the set of states reachable from x by any single action.)

Together, these define the state space of the problem: the set of all states reachable from the
initial state by any sequence of actions. A path in the state space is simply any sequence of
actions leading from one state to another. The next element of a problem is the following:

• The goal test, which the agent can apply to a single state description to determine if it is
a goal state. Sometimes there is an explicit set of possible goal states, and the test simply
checks to see if we have reached one of them. Sometimes the goal is specified by an
abstract property rather than an explicitly enumerated set of states. For example, in chess,
the goal is to reach a state called "checkmate," where the opponent's king can be captured
on the next move no matter what the opponent does.

Finally, it may be the case that one solution is preferable to another, even though they both reach
the goal. For example, we might prefer paths with fewer or less costly actions.

• A path cost function is a function that assigns a cost to a path. In all cases we will consider,
the cost of a path is the sum of the costs of the individual actions along the path. The path
cost function is often denoted by g.

Together, the initial state, operator set, goal test, and path cost function define a problem.
Naturally, we can then define a datatype with which to represent problems:

datatype PROBLEM
components: INITIAL-STATE, OPERATORS, GOAL-TEST, PATH-COST-FUNCTION

STATE SET SPACE

Instances of this datatype will be the input to our search algorithms. The output of a search
algorithm is a solution, that is, a path from the initial state to a state that satisfies the goal test.

To deal with multiple-state problems, we need to make only minor modifications: a problem
consists of an initial state set; a set of operators specifying for each action the set of states reached
from any given state; and a goal test and path cost function as before. An operator is applied to
a state set by unioning the results of applying the operator to each state in the set. A path now
connects sets of states, and a solution is now a path that leads to a set of states all of which are
goal states. The state space is replaced by the state set space (see Figure 3.7 for an example).
Problems of both types are illustrated in Section 3.3.

Section 3.2. Formulating Problems 61

Measuring problem-solving performance
The effectiveness of a search can be measured in at least three ways. First, does it rind a solution

SEARCH COST at all? Second, is it a good solution (one with a low path cost)? Third, what is the search cost
TOTAL COST associated with the time and memory required to find a solution? The total cost of the search is

the sum of the path cost and the search cost.5
For the problem of finding a route from Arad to Bucharest, the path cost might be pro-

portional to the total mileage of the path, perhaps with something thrown in for wear and tear
on different road surfaces. The search cost will depend on the circumstances. In a static en-
vironment, it will be zero because the performance measure is independent of time. If there is
some urgency to get to Bucharest, the environment is semidynamic because deliberating longer
will cost more. In this case, the search cost might vary approximately linearly with computation
time (at least for small amounts of time). Thus, to compute the total cost, it would appear that
we have to add miles and milliseconds. This is not always easy, because there is no "official
exchange rate" between the two. The agent must somehow decide what resources to devote to
search and what resources to devote to execution. For problems with very small state spaces, it
is easy to find the solution with the lowest path cost. But for large, complicated problems, there
is a trade-off to be made—the agent can search for a very long time to get an optimal solution,
or the agent can search for a shorter time and get a solution with a slightly larger path cost. The
issue of allocating resources will be taken up again in Chapter 16; for now, we concentrate on
the search itself.

Choosing states and actions
Now that we have the definitions out of the way, let us start our investigation of problems with
an easy one: "Drive from Arad to Bucharest using the roads in the map in Figure 3.3." An
appropriate state space has 20 states, where each state is defined solely by location, specified as
a city. Thus, the initial state is "in Arad" and the goal test is "is this Bucharest?" The operators
correspond to driving along the roads between cities.

One solution is the path Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. There are
lots of other paths that are also solutions, for example, via Lugoj and Craiova. To decide which
of these solutions is better, we need to know what the path cost function is measuring: it could
be the total mileage, or the expected travel time. Because our current map does not specify either
of these, we will use the number of steps as the cost function. That means that the path through
Sibiu and Fagaras, with a path cost of 3, is the best possible solution.

The real art of problem solving is in deciding what goes into the description of the states
and operators and what is left out. Compare the simple state description we have chosen, "in
Arad," to an actual cross-country trip, where the state of the world includes so many things: the
travelling companions, what is on the radio, what there is to look at out of the window, the vehicle
being used for the trip, how fast it is going, whether there are any law enforcement officers nearby,
what time it is, whether the driver is hungry or tired or running out of gas, how far it is to the next

5 In theoretical computer science and in robotics, the search cost (the part you do before interacting with the environment)
is called the offline cost and the path cost is called the online cost.

62 Chapter 3. Solving Problems by Searching

Oradea
Neamt

lasi
Arad

Vaslui

Dobreta

Giurgiu

Hirsova

Eforie

Figure 3.3 A simplified road map of Romania.

rest stop, the condition of the road, the weather, and so on. All these considerations are left out
of state descriptions because they are irrelevant to the problem of finding a route to Bucharest.

ABSTRACTION The process of removing detail from a representation is called abstraction.
As well as abstracting the state description, we must abstract the actions themselves. An

action—let us say a car trip from Arad to Zerind—has many effects. Besides changing the
location of the vehicle and its occupants, it takes up time, consumes fuel, generates pollution, and
changes the agent (as they say, travel is broadening). In our formulation, we take into account
only the change in location. Also, there are many actions that we will omit altogether: turning j
on the radio, looking out of the window, slowing down for law enforcement officers, and so on.

Can we be more precise about defining the appropriate level of abstraction? Think of the
states and actions we have chosen as corresponding to sets of detailed world states and sets of j
detailed action sequences. Now consider a solution to the abstract problem: for example, the j
path Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. This solution corresponds to a large |
number of more detailed paths. For example, we could drive with the radio on between Sibiu :
and Rimnicu Vilcea, and then switch it off for the rest of the trip. Each of these more detailed ;
paths is still a solution to the goal, so the abstraction is valid. The abstraction is also useful,
because carrying out each of the actions in the solution, such as driving from Pitesti to Bucharest,
is somewhat easier than the original problem. The choice of a good abstraction thus involves
removing as much detail as possible while retaining validity and ensuring that the abstract actions
are easy to carry out. Were it not for the ability to construct useful abstractions, intelligent agents
would be completely swamped by the real world.

Section 3.3. Example Problems 63

V3__EXAMPLE PROBLEMS

TOY PROBLEMS
REAL-WORLD
PROBLEMS

The range of task environments that can be characterized by well-defined problems is vast. We
can distinguish between so-called, toy problems, which are intended to illustrate or exercise
various problem-solving methods, and so-called real-world problems, which tend to be more
difficult and whose solutions people actually care about. In this section, we will give examples of
both. By nature, toy problems can be given a concise, exact description. This means that they can
be easily used by different researchers to compare the performance of algorithms. Real-world
problems, on the other hand, tend not to have a single agreed-upon description, but we will
attempt to give the general flavor of their formulations.

8-PUZZLE

SLID,NGsBLOCK

Toy problems

The 8-puzzIe

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3x3 board with eight
numbered tiles and a blank space. A tile adjacent to the blank space can slide into the space.
The object is to reach the configuration shown on the right of the figure. One important trick is
to notice that rather than use operators such as "move the 3 tile into the blank space," it is more
sensible to have operators such as "the blank space changes places with the tile to its left." This is
because there are fewer of the latter kind of operator. This leads us to the following formulation:

<) States: a state description specifies the location of each of the eight tiles in one of the nine
squares. For efficiency, it is useful to include the location of the blank.

<> Operators: blank moves left, right, up, or down.
0 Goal test: state matches the goal configuration shown in Figure 3.4.
0 Path cost: each step costs 1, so the path cost is just the length of the path.

The 8-puzzle belongs to the family of sliding-block puzzles. This general class is known
to be NP-complete, so one does not expect to find methods significantly better than the search

5

6

7 I

1 4 ;

5 1 I

S 3 !

8

2

i 1 I

8

7

I 2 \

6

3

4

5

Start State Goal State

Figure 3.4 A typical instance of the 8-puzzle.

64 Chapter 3. Solving Problems by Searching

algorithms described in this chapter and the next. The 8-puzzle and its larger cousin, the 15-
puzzle, are the standard test problems for new search algorithms in Al.

The 8-queens problem

The goal of the 8-queens problem is to place eight queens on a chessboard such that no queen
attacks any other. (A queen attacks any piece in the same row, column or diagonal.) Figure 3.5
shows an attempted solution that fails: the queen in the rightmost column is attacked by the queen
at top left.

Figure 3.5 Almost a solution to the 8-queens problem. (Solution is left as an exercise.)

Although efficient special-purpose algorithms exist for this problem and the whole n-
queens family, it remains an interesting test problem for search algorithms. There are two main
kinds of formulation. The incremental formulation involves placing queens one by one, whereas
the complete-state formulation starts with all 8 queens on the board and moves them around. In .
either case, the path cost is of no interest because only the final state counts; algorithms are thus
compared only on search cost. Thus, we have the following goal test and path cost:

0 Goal test: 8 queens on board, none attacked.
0 Path cost: zero.

There are also different possible states and operators. Consider the following simple-minded
formulation:

0 States: any arrangement of 0 to 8 queens on board.
<C> Operators: add a queen to any square.

In this formulation, we have 648 possible sequences to investigate. A more sensible choice would
use the fact that placing a queen where it is already attacked cannot work, because subsequent
placings of other queens will not undo the attack. So we might try the following:

Section 3.3. Example Problems 65

0 States: arrangements of 0 to 8 queens with none attacked.
0 Operators: place a queen in the left-most empty column such that it is not attacked by any

other queen.

It is easy to see that the actions given can generate only states with no attacks; but sometimes
no actions will be possible. For example, after making the first seven choices (left-to-right) in
Figure 3.5, there is no action available in this formulation. The search process must try another
choice. A quick calculation shows that there are only 2057 possible sequences to investigate. The
right formulation makes a big difference to the size of the search space. Similar considerations
apply for a complete-state formulation. For example, we could set the problem up as follows:

0 States: arrangements of 8 queens, one in each column.
<C> Operators: move any attacked queen to another square in the same column.

This formulation would allow the algorithm to find a solution eventually, but it would be better
to move to an unattacked square if possible.

Cryptarithmetic

In cryptarithmetic problems, letters stand for digits and the aim is to find a substitution of digits
for letters such that the resulting sum is arithmetically correct. Usually, each letter must stand
for a different digit. The following is a well-known example:

FORTY
+ TEN
+ TEN

Solution:

SIXTY

29786
850
850

31486

F=2, 0=9, R=7, etc.

The following formulation is probably the simplest:

<C> States: a cryptarithmetic puzzle with some letters replaced by digits.
0 Operators: replace all occurrences of a letter with a digit not already appearing in the

puzzle.
<> Goal test: puzzle contains only digits, and represents a correct sum.
<C> Path cost: zero. All solutions equally valid.

A moment's thought shows that replacing E by 6 then F by 7 is the same thing as replacing F by
7 then E by 6—order does not matter to correctness, so we want to avoid trying permutations of
the same substitutions. One way to do this is to adopt a fixed order, e.g., alphabetical order. A
better choice is to do whichever is the most constrained substitution, that is, the letter that has
the fewest legal possibilities given the constraints of the puzzle.

The vacuum world

Here we will define the simplified vacuum world from Figure 3.2, rather than the full version
from Chapter 2. The latter is dealt with in Exercise 3.17.

66 Chapter 3. Solving Problems by Searching

First, let us review the single-state case with complete information. We assume that the
agent knows its location and the locations of all the pieces of dirt, and that the suction is still in
good working order.

<} States: one of the eight states shown in Figure 3.2 (or Figure 3.6).
<) Operators: move left, move'right, suck.
<) Goal test: no dirt left in any square.
<> Path cost: each action costs 1.

Figure 3.6 Diagram of the simplified vacuum state space. Arcs denote actions. L = move left,
R = move riaht, S = suck.

Figure 3.6 shows the complete state space showing all the possible paths. Solving the ;
problem from any starting state is simply a matter of following arrows to a goal state. This is the j
case for all problems, of course, but in most, the state space is vastly larger and more tangled.

Now let us consider the case where the agent has no sensors, but still has to clean up all i
the dirt. Because this is a multiple-state problem, we will have the following:

0 State sets: subsets of states 1-8 shown in Figure 3.2 (or Figure 3.6).
<) Operators: move left, move right, suck.
0 Goal test: all states in state set have no dirt.
<) Path cost: each action costs 1.

The start state set is the set of all states, because the agent has no sensors. A solution is any
sequence leading from the start state set to a set of states with no dirt (see Figure 3.7). Similar
state set spaces can be constructed for the case of uncertainty about actions and uncertainty about
both states and actions.

ISection 3.3. Example Problems 67

Figure 3.7 State set space for the simplified vacuum world with no sensors. Each dashed-line
box encloses a set of states. At any given point, the agent is within a state set but does not know
which state of that set it is in. The initial state set (complete ignorance) is the top center box.
Actions are represented by labelled arcs. Self-loops are omitted for clarity.

Missionaries and cannibals

The missionaries and cannibals problem is usually stated as follows. Three missionaries and
three cannibals are on one side of a river, along with a boat that can hold one or two people. Find
a way to get everyone to the other side, without ever leaving a group of missionaries in one place
outnumbered by the cannibals in that place.

This problem is famous in AI because it was the subject of the first paper that approached
problem formulation from an analytical viewpoint (Amarel, 1968). As with travelling in Romania,
the real-life problem must be greatly abstracted before we can apply a problem-solving strategy.

68 Chapter 3. Solving Problems by Searching

Imagine the scene in real life: three members of the Arawaskan tribe, Alice, Bob, and Charles,
stand at the edge of the crocodile-infested Amazon river with their new-found friends, Xavier,
Yolanda, and Zelda. All around them birds cry, a rain storm beats down, Tarzan yodels, and so
on. The missionaries Xavier, Yolanda, and Zelda are a little worried about what might happen if
one of them were caught alone with two or three of the others, and Alice, Bob, and Charles are
concerned that they might be in for a long sermon that they might find equally unpleasant. Both
parties are not quite sure if the small boat they find tied up by the side of the river is up to making
the crossing with two aboard.

To formalize the problem, the first step is to forget about the rain, the crocodiles, and all the
other details that have no bearing in the solution. The next step is to decide what the right operator
set is. We know that the operators will involve taking one or two people across the river in the
boat, but we have to decide if we need a state to represent the time when they are in the boat, or
just when they get to the other side. Because the boat holds only two people, no "outnumbering"
can occur in it; hence, only the endpoints of the crossing are important. Next, we need to abstract
over the individuals. Surely, each of the six is a unique human being, but for the purposes of the
solution, when it comes time for a cannibal to get into the boat, it does not matter if it is Alice,
Bob, or Charles. Any permutation of the three missionaries or the three cannibals leads to the
same outcome. These considerations lead to the following formal definition of the problem:

0 States: a state consists of an ordered sequence of three numbers representing the number
of missionaries, cannibals, and boats on the bank of the river from which they started.
Thus, the start state is (3,3,1).

0 Operators: from each state the possible operators are to take either one missionary, one
cannibal, two missionaries, two cannibals, or one of each across in the boat. Thus, there !
are at most five operators, although most states have fewer because it is necessary to avoid j
illegal states. Note that if we had chosen to distinguish between individual people then j
there would be 27 operators instead of just 5.

0 Goal test: reached state (0,0,0).
<C> Path cost: number of crossings.

This state space is small enough to make it a trivial problem for a computer to solve. People j
have a hard time, however, because some of the necessary moves appear retrograde. Presumably, J
humans use some notion of "progress" to guide their search. We will see how such notions arej
used in the next chapter.

Real-world problems

Route finding

We have already seen how route finding is defined in terms of specified locations and transitions!
along links between them. Route-finding algorithms are used in a variety of applications, such!
as routing in computer networks, automated travel advisory systems, and airline travel planning!
systems. The last application is somewhat more complicated, because airline travel has a very 1
complex path cost, in terms of money, seat quality, time of day, type of airplane, frequent-flyer

Section 3.3. Example Problems 69

mileage awards, and so on. Furthermore, the actions in the problem do not have completely
known outcomes: flights can be late or overbooked, connections can be missed, and fog or
emergency maintenance can cause delays.

TRAVELLING
SALESPERSON
PROBLEM

Touring and travelling salesperson problems

Consider the problem, "Visit every city in Figure 3.3 at least once, starting and ending in
Bucharest." This seems very similar to route finding, because the operators still correspond to
trips between adjacent cities. But for this problem, the state space must record more information.
In addition to the agent's location, each state must keep track of the set of cities the agent has
visited. So the initial state would be "In Bucharest; visited {Bucharest}," a typical intermediate
state would be "In Vaslui; visited {Bucharest,Urziceni,Vaslui}," and the goal test would check if
the agent is in Bucharest and that all 20 cities have been visited.

The travelling salesperson problem (TSP) is a famous touring problem in which each city
must be visited exactly once. The aim is to find the shortest tour.6 The problem is NP-hard (Karp,
1972), but an enormous amount of effort has been expended to improve the capabilities of TSP
algorithms. In addition to planning trips for travelling salespersons, these algorithms have been
used for tasks such as planning movements of automatic circuit board drills.

VLSI layout

The design of silicon chips is one of the most complex engineering design tasks currently
undertaken, and we can give only a brief sketch here. A typical VLSI chip can have as many as
a million gates, and the positioning and connections of every gate are crucial to the successful
operation of the chip. Computer-aided design tools are used in every phase of the process.
Two of the most difficult tasks are cell layout and channel routing. These come after the
components and connections of the circuit have been fixed; the purpose is to lay out the circuit
on the chip so as to minimize area and connection lengths, thereby maximizing speed. In cell
layout, the primitive components of the circuit are grouped into cells, each of which performs
some recognized function. Each cell has a fixed footprint (size and shape) and requires a certain
number of connections to each of the other cells. The aim is to place the cells on the chip so
that they do not overlap and so that there is room for the connecting wires to be placed between
the cells. Channel routing finds a specific route for each wire using the gaps between the cells.
These search problems are extremely complex, but definitely worth solving. In Chapter 4, we
will see some algorithms capable of solving them.

Robot navigation

Robot navigation is a generalization of the route-finding problem described earlier. Rather than
a discrete set of routes, a robot can move in a continuous space with (in principle) an infinite set
of possible actions and states. For a simple, circular robot moving on a flat surface, the space
6 Strictly speaking, this is the travelling salesperson optimization problem; the TSP itself asks if a tour exists with cost
less than some constant.

70 Chapter 3. Solving Problems by Searching

is essentially two-dimensional. When the robot has arms and legs that must also be controlled,
the search space becomes many-dimensional. Advanced techniques are required just to make
the search space finite. We examine some of these methods in Chapter 25. In addition to the
complexity of the problem, real robots must also deal with errors in their sensor readings and
motor controls.

Assembly sequencing

Automatic assembly of complex objects by a robot was first demonstrated by FREDDY the
robot (Michie, 1972). Progress since then has been slow but sure, to the point where assembly of
objects such as electric motors is economically feasible. In assembly problems, the problem is to
find an order in which to assemble the parts of some object. If the wrong order is chosen, there
will be no way to add some part later in the sequence without undoing some of the work already
done. Checking a step in the sequence for feasibility is a complex geometrical search problem
closely related to robot navigation. Thus, the generation of legal successors is the expensive part
of assembly sequencing, and the use of informed algorithms to reduce search is essential.

3.4 SEARCHING FOR SOLUTIONS

We have seen how to define a problem, and how to recognize a solution. The remaining part—
finding a solution—is done by a search through the state space. The idea is to maintain and extend
a set of partial solution sequences. In this section, we show how to generate these sequences and
how to keep track of them using suitable data structures.

Generating action sequences
To solve the route-finding problem from Arad to Bucharest, for example, we start off with just the \
initial state, Arad. The first step is to test if this is a goal state. Clearly it is not, but it is important |
to check so that we can solve trick problems like "starting in Arad, get to Arad." Because this is ;
not a goal state, we need to consider some other states. This is done by applying the operators ;

GENERATING to the current state, thereby generating a new set of states. The process is called expanding the]
EXPANDING state. In this case, we get three new states, "in Sibiu," "in Timisoara," and "in Zerind," because j

there is a direct one-step route from Arad to these three cities. If there were only one possibility,;

we would just take it and continue. But whenever there are multiple possibilities, we must make j
a choice about which one to consider further.

This is the essence of search—choosing one option and putting the others aside for later, in '
case the first choice does not lead to a solution. Suppose we choose Zerind. We check to see if it
is a goal state (it is not), and then expand it to get "in Arad" and "in Oradea." We can then choose
any of these two, or go back and choose Sibiu or Timisoara. We continue choosing, testing, and
expanding until a solution is found, or until there are no more states to be expanded. The choice

SEARCH STRATEGY of which state to expand first is determined by the search strategy.

cection 3.4. Searching for Solutions 71

SEARCH TREE It is helpful to think of the search process as building up a search tree that is superimposed
SEARCH NODE over the state space. The root of the search tree is a search node corresponding to the initial

state. The leaf nodes of the tree correspond to states that do not have successors in the tree,
either because they have not been expanded yet, or because they were expanded, but generated
the empty set. At each step, the search algorithm chooses one leaf node to expand. Figure 3.8
shows some of the expansions in the search tree for route finding from Arad to Bucharest. The
general search algorithm is described informally in Figure 3.9.

It is important to distinguish between the state space and the search tree. For the route-
finding problem, there are only 20 states in the state space, one for each city. But there are an

(a) The initial state

(b) After expanding Arad

Arad

Arad

(c) After expanding Sibiu

Sibiu Timisoara Zerind

Arad

Zerind

Arad Fagaras Oradea Rimnicu Vilcea

Figure 3.8 Partial search tree for route finding from Arad to Bucharest.

function GENERAL-SEARCH(/?roWem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Figure 3.9 An informal description of the general search algorithm.

72 Chapter 3. Solving Problems by Searching

infinite number of paths in this state space, so the search tree has an infinite number of nodes.
For example, in Figure 3.8, the branch Arad-Sibiu-Arad continues Arad-Sibiu-Arad-Sibiu-
Arad, and so on, indefinitely. Obviously, a good search algorithm avoids following such paths.
Techniques for doing this are discussed in Section 3.6.

PARENT NODE

DEPTH

FRINGE

FRONTIER

QUEUE

Data structures for search trees
There are many ways to represent nodes, but in this chapter, we will assume a node is a data
structure with five components:

• the state in the state space to which the node corresponds;
• the node in the search tree that generated this node (this is called the parent node);
• the operator that was applied to generate the node;
• the number of nodes on the path from the root to this node (the depth of the node);
• the path cost of the path from the initial state to the node.

The node data type is thus:

datatype node
components: STATE, PARENT-NODE, OPERATOR, DEPTH, PATH-COST

It is important to remember the distinction between nodes and states. A node is a bookkeeping
data structure used to represent the search tree for a particular problem instance as generated by
a particular algorithm. A state represents a configuration (or set of configurations) of the world.
Thus, nodes have depths and parents, whereas states do not. (Furthermore, it is quite possible for
two different nodes to contain the same state, if that state is generated via two different sequences
of actions.) The EXPAND function is responsible for calculating each of the components of the
nodes it generates.

We also need to represent the collection of nodes that are waiting to be expanded—this
collection is called the fringe or frontier. The simplest representation would be a set of nodes.
The search strategy then would be a function that selects the next node to be expanded from
this set. Although this is conceptually straightforward, it could be computationally expensive,
because the strategy function might have to look at every element of the set to choose the best
one. Therefore, we will assume that the collection of nodes is a implemented as a queue. The
operations on a queue are as follows:

• MAKE-Q\JEUE(Elements) creates a queue with the given elements.
• EMPTY?'(Queue) returns true only if there are no more elements in the queue.
• REMOVE-FRONT(gweMe) removes the element at the front of the queue and returns it.
• QUEUlNG-FN(Elements,Queue) inserts a set of elements into the queue. Different varieties

of the queuing function produce different varieties of the search algorithm.
With these definitions, we can write a more formal version of the general search algorithm. This
is shown in Figure 3.10.

Section 3.5. Search Strategies 73

function GENERAL-SEARCH(/?roWem, QUEUING-FN) returns a solution, or failure

nodes *— MAKE-QUEUE(MAKE-NODE(lNiTlAL-STATE[prob;em]))
loop do

if nodes is empty then return failure
node <- REMOVE-FRONT(rcode.s)
if GOAL-TEST[proWem] applied to STATE(woflfe) succeeds then return node
nodes <- QuEUlNG-FN(n0<fe.y, E\PAND(node, OPERATORS\pmblem]))

end

Figure 3.10 The general search algorithm. (Note that QuEUiNG-FN is a variable whose value
will be a function.)

3.5 SEARCH STRATEGIES

COMPLETENESS

TIME COMPLEXITY

SPACE COMPLEXITY

OPTIMALITY

UNARMED

BLIND SEARCH

INFORMED SEARCH

HEURISTIC SEARCH

The majority of work in the area of search has gone into finding the right search strategy for a
problem. In our study of the field we will evaluate strategies in terms of four criteria:

{> Completeness: is the strategy guaranteed to find a solution when there is one?
<) Time complexity: how long does it take to find a solution?
<) Space complexity: how much memory does it need to perform the search?
<} Optimality: does the strategy find the highest-quality solution when there are several

different solutions?7

This section covers six search strategies that come under the heading of uninformed
search. The term means that they have no information about the number of steps or the path cost
from the current state to the goal—all they can do is distinguish a goal state from a nongoal state.
Uninformed search is also sometimes called blind search.

Consider again the route-finding problem. From the initial state in Arad, there are three
actions leading to three new states: Sibiu, Timisoara, and Zerind. An uninformed search has
no preference among these, but a more clever agent might notice that the goal, Bucharest, is
southeast of Arad, and that only Sibiu is in that direction, so it is likely to be the best choice.
Strategies that use such considerations are called informed search strategies or heuristic search
strategies, and they will be covered in Chapter 4. Not surprisingly, uninformed search is less
effective than informed search. Uninformed search is still important, however, because there are
many problems for which there is no additional information to consider.

The six uninformed search strategies are distinguished by the order in which nodes are
expanded. It turns out that this difference can matter a great deal, as we shall shortly see.

L
7 This is the way "optimality" is used in the theoretical computer science literature. Some AI authors use "optimality"
to refer to time of execution and "admissibility" to refer to solution optimality.

74 Chapter 3. Solving Problems by Searching

BREADTH-FIRST
SEARCH

BRANCHING FACTOR

Breadth-first search
One simple search strategy is a breadth-first search. In this strategy, the root node is expanded
first, then all the nodes generated by the root node are expanded next, and then their successors,
and so on. In general, all the nodes at depth d in the search tree are expanded before the nodes at
depth d + 1. Breadth-first search can be implemented by calling the GENERAL-SEARCH algorithm
with a queuing function that puts the newly generated states at the end of the queue, after all the
previously generated states:

function BREADTH-FlRST-SEARCH(/wWem) returns a solution or failure
return GENERAL-SEARCH(problem,ENQUEUE- AT-END)

Breadth-first search is a very systematic strategy because it considers all the paths of length 1
first, then all those of length 2, and so on. Figure 3.11 shows the progress of the search on a
simple binary tree. If there is a solution, breadth-first search is guaranteed to find it, and if there
are several solutions, breadth-first search will always find the shallowest goal state first. In terms
of the four criteria, breadth-first search is complete, and it is optimal provided the path cost is a
nondecreasing function of the depth of the node. (This condition is usually satisfied only when
all operators have the same cost. For the general case, see the next section.)

So far, the news about breadth-first search has been good. To see why it is not always the
strategy of choice, we have to consider the amount of time and memory it takes to complete a
search. To do this, we consider a hypothetical state space where every state can be expanded to
yield b new states. We say that the branching factor of these states (and of the search tree) is b.
The root of the search tree generates b nodes at the first level, each of which generates b more
nodes, for a total of b2 at the second level. Each of these generates b more nodes, yielding b3

nodes at the third level, and so on. Now suppose that the solution for this problem has a path
length of d. Then the maximum number of nodes expanded before finding a solution is

1 + b + b2 + b3 + • • • + bd

This is the maximum number, but the solution could be found at any point on the Jth level. In
the best case, therefore, the number would be smaller.

Those who do complexity analysis get nervous (or excited, if they are the sort of people
who like a challenge) whenever they see an exponential complexity bound like O(bd). Figure 3.12
shows why. It shows the time and memory required for a breadth-first search with branching
factor b = 10 and for various values of the solution depth d. The space complexity is the same
as the time complexity, because all the leaf nodes of the tree must be maintained in memory

Figure 3.11 Breadth-first search trees after 0, 1, 2, and 3 node expansions.

Section Search Strategies 75

at the same time. Figure 3.12 assumes that 1000 nodes can be goal-checked and expanded per
second, and that a node requires 100 bytes of storage. Many puzzle-like problems fit roughly
within these assumptions (give or take a factor of 100) when run on a modern personal computer
or workstation.

Depth
0
2
4
6
8

10
12
14

Figure 3.12

Nodes

1
111

11,111
106

108

10'°
10' 2

1014

Time and
assume branching factor b

Time

1 millisecond
. 1 seconds
1 1 seconds
18 minutes
3 1 hours

128 days
35 years

3500 years 11,

memory requirements for breadth-first search
= 10; 1000 nodes/second; 1 00 bytes/node.

Memory

100 bytes
1 1 kilobytes

1 megabyte
1 1 1 megabytes

1 1 gigabytes
1 terabyte

1 1 1 terabytes
1 1 1 terabytes

. The figures shown

UNIFORM COST
SEARCH

There are two lessons to be learned from Figure 3.12. First, the memory requirements are
a bigger problem for breadth-first search than the execution time. Most people have the patience
to wait 18 minutes for a depth 6 search to complete, assuming they care about the answer, but not
so many have the 111 megabytes of memory that are required. And although 31 hours would not
be too long to wait for the solution to an important problem of depth 8, very few people indeed
have access to the 11 gigabytes of memory it would take. Fortunately, there are other search
strategies that require less memory.

The second lesson is that the time requirements are still a major factor. If your problem
has a solution at depth 12, then (given our assumptions) it will take 35 years for an uninformed
search to find it. Of course, if trends continue then in 10 years, you will be able to buy a computer
that is 100 times faster for the same price as your current one. Even with that computer, however,
it will still take 128 days to find a solution at depth 12—and 35 years for a solution at depth
14. Moreover, there are no other uninformed search strategies that fare any better. In general,
exponential complexity search problems cannot be solved for any but the smallest instances.

Uniform cost search
Breadth-first search finds the shallowest goal state, but this may not always be the least-cost
solution for a general path cost function. Uniform cost search modifies the breadth-first strategy
by always expanding the lowest-cost node on the fringe (as measured by the path cost g(n)),
rather than the lowest-depth node. It is easy to see that breadth-first search is just uniform cost
search with g(n) = DEPTH(«).

When certain conditions are met, the first solution that is found is guaranteed to be the
cheapest solution, because if there were a cheaper path that was a solution, it would have been
expanded earlier, and thus would have been found first. A look at the strategy in action will help
explain. Consider the route-finding problem in Figure 3.13. The problem is to get from S to G,

76 Chapter 3. Solving Problems by Searching

and the cost of each operator is marked. The strategy first expands the initial state, yielding paths
to A, B, and C. Because the path to A is cheapest, it is expanded next, generating the path SAG,
which is in fact a solution, though not the optimal one. However, the algorithm does not yet
recognize this as a solution, because it has cost 11, and thus is buried in the queue below the path
SB, which has cost 5. It seems a shame to generate a solution just to bury it deep in the queue,
but it is necessary if we want to find the optimal solution rather than just any solution. The next
step is to expand SB, generating SBG, which is now the cheapest path remaining in the queue, so
it is goal-checked and returned as the solution.

Uniform cost search finds the cheapest solution provided a simple requirement is met: the
cost of a path must never decrease as we go along the path. In other words, we insist that

g(SlJCCESSOR(n)) > g(n)

for every node n.
The restriction to nondecreasing path cost makes sense if the path cost of a node is taken to

be the sum of the costs of the operators that make up the path. If every operator has a nonnegative
cost, then the cost of a path can never decrease as we go along the path, and uniform-cost search
can find the cheapest path without exploring the whole search tree. But if some operator had a
negative cost, then nothing but an exhaustive search of all nodes would find the optimal solution,
because we would never know when a path, no matter how long and expensive, is about to run
into a step with high negative cost and thus become the best path overall. (See Exercise 3.5.)

15

(a)

Figure 3.13 A route-finding problem, (a) The state space, showing the cost for each operator,
(b) Progression of the search. Each node is labelled with g(n). At the next step, the goal node
with g = 10 will be selected.

Section 3.5. Search Strategies 77

nEpTH-FIRST
SEARCH

Depth-first search
Depth-first search always expands one of the nodes at the deepest level of the tree. Only when
the search hits a dead end (a nongoal node with no expansion) does the search go back and
expand nodes at shallower levels. This strategy can be implemented by GENERAL-SEARCH with
a queuing function that always puts the newly generated states at the front of the queue. Because
the expanded node was the deepest, its successors will be even deeper and are therefore now the
deepest. The progress of the search is illustrated in Figure 3.14.

Depth-first search has very modest memory requirements. As the figure shows, it needs
to store only a single path from the root to a leaf node, along with the remaining unexpanded
sibling nodes for each node on the path. For a state space with branching factor b and maximum
depth m, depth-first search requires storage of only bm nodes, in contrast to the bd that would be
required by breadth-first search in the case where the shallowest goal is at depth d. Using the
same assumptions as Figure 3.12, depth-first search would require 12 kilobytes instead of 111
terabytes at depth d=12,a factor of 10 billion times less space.

The time complexity for depth-first search is O(bm). For problems that have very many
solutions, depth-first may actually be faster than breadth-first, because it has a good chance of

A

Figure 3.14 Depth-first search trees for a binary search tree. Nodes at depth 3 are assumed to
have no successors.

78 Chapter 3. Solving Problems by Searching

finding a solution after exploring only a small portion of the whole space. Breadth-first search
would still have to look at all the paths of length d - 1 before considering any of length d.
Depth-first search is still O(bm) in the worst case.

The drawback of depth-first search is that it can get stuck going down the wrong path.
Many problems have very deep or even infinite search trees, so depth-first search will never be
able to recover from an unlucky choice at one of the nodes near the top of the tree. The search
will always continue downward without backing up, even when a shallow solution exists. Thus,
on these problems depth-first search will either get stuck in an infinite loop and never return a
solution, or it may eventually find a solution path that is longer than the optimal solution. That
means depth-first search is neither complete nor optimal. Because of this, depth-first search
should be avoided for search trees with large or infinite maximum depths.

It is trivial to implement depth-first search with GENERAL-SEARCH:

function DEPTH-FlRST-SEARCH(proWem) returns a solution, or failure
GENERAL-SEARCH(/7roWem,ENQUEUE-AT-FRONT)

It is also common to implement depth-first search with a recursive function that calls itself on
each of its children in turn. In this case, the queue is stored implicitly in the local state of each
invocation on the calling stack.

DEPTH-LIMITED
SEARCH

Depth-limited search
Depth-limited search avoids the pitfalls of depth-first search by imposing a cutoff on the max-
imum depth of a path. This cutoff can be implemented with a special depth-limited search
algorithm, or by using the general search algorithm with operators that keep track of the depth.
For example, on the map of Romania, there are 20 cities, so we know that if there is a solution,
then it must be of length 19 at the longest. We can implement the depth cutoff using operators
of the form "If you are in city A and have travelled a path of less than 19 steps, then generate
a new state in city B with a path length that is one greater." With this new operator set, we are
guaranteed to find the solution if it exists, but we are still not guaranteed to find the shortest
solution first: depth-limited search is complete but not optimal. If we choose a depth limit that
is too small, then depth-limited search is not even complete. The time and space complexity of
depth-limited search is similar to depth-first search. It takes O(b') time and O(bl) space, where /
is the depth limit.

Iterative deepening search
The hard part about depth-limited search is picking a good limit. We picked 19 as an "obvious"
depth limit for the Romania problem, but in fact if we studied the map carefully, we would
discover that any city can be reached from any other city in at most 9 steps. This number, known
as the diameter of the state space, gives us a better depth limit, which leads to a more efficient
depth-limited search. However, for most problems, we will not know a good depth limit until we
have solved the problem.

Secti'"1 3.5. Search Strategies 79

£|ERPAENING SEARCH Iterative deepening search is a strategy that sidesteps the issue of choosing the best depth
limit by trying all possible depth limits: first depth 0, then depth 1, then depth 2, and so on.
The algorithm is shown in Figure 3.15. In effect, iterative deepening combines the benefits of
depth-first and breadth-first search. It is optimal and complete, like breadth-first search, but has
only the modest memory requirements of depth-first search. The order of expansion of states is
similar to breadth-first, except that some states are expanded multiple times. Figure 3.16 shows
the first four iterations of ITERATIVE-DEEPENING-SEARCH on a binary search tree.

Iterative deepening search may seem wasteful, because so many states are expanded
multiple times. For most problems, however, the overhead of this multiple expansion is actually

function iTERATiVE-DEEPENiNG-SEARCH(praWem) returns a solution sequence
inputs: problem, a problem

for depth <— 0 to oo do
if DEPTH-LlMITED-SEARCH(proWem, depth) succeeds then return its result

end
return failure

Figure 3.15 The iterative deepening search algorithm.

Limit = 0

Limit = 1 ®

Limit = 2

Limit = 3

Figure 3.16 Four iterations of iterative deepening search on a binary tree.

80 Chapter 3. Solving Problems by Searching

rather small. Intuitively, the reason is that in an exponential search tree, almost all of the nodes
are in the bottom level, so it does not matter much that the upper levels are expanded multiple
times. Recall that the number of expansions in a depth-limited search to depth d with branching
factor b is

• -

To make this concrete, for b = 10 and d = 5. the number is

1 + 10+100+1,000+10,000+ 100,000= 111,111
In an iterative deepening search, the nodes on the bottom level are expanded once, those on the
next to bottom level are expanded twice, and so on, up to the root of the search tree, which is
expanded d + 1 times. So the total number of expansions in an iterative deepening search is

(d + 1)1 + (d)b + (d- \)b2 + ••• + 3bd~2 + 2bd~l + \bd

Again, for b = 10 and d = 5 the number is

6 + 50 + 400 + 3,000 + 20,000+100,000= 123,456
All together, an iterative deepening search from depth 1 all the way down to depth d expands
only about 11 % more nodes than a single breadth-first or depth-limited search to depth d, when
b = 10. The higher the branching factor, the lower the overhead of repeatedly expanded states,
but even when the branching factor is 2, iterative deepening search only takes about twice as long
as a complete breadth-first search. This means that the time complexity of iterative deepening is
still O(bd), and the space complexity is O(bd). In general, iterative deepening is the preferred
search method when there is a large search space and the depth of the solution is not known.

PREDECESSORS

Bidirectional search
The idea behind bidirectional search is to simultaneously search both forward from the initial state j
and backward from the goal, and stop when the two searches meet in the middle (Figure 3.17). j
For problems where the branching factor is b in both directions, bidirectional search can make a j
big difference. If we assume as usual that there is a solution of depth d, then the solution will j
be found in O(2bd/2) = O(bd/2) steps, because the forward and backward searches each have to I
go only half way. To make this concrete: for b = 10 and d = 6, breadth-first search generates!
1,111,111 nodes, whereas bidirectional search succeeds when each direction is at depth 3, at!
which point 2,222 nodes have been generated. This sounds great in theory. Several issues need j
to be addressed before the algorithm can be implemented.

• The main question is, what does it mean to search backwards from the goal? We define j
the predecessors of a node n to be all those nodes that have n as a successor. Searching j
backwards means generating predecessors successively starting from the goal node.

• When all operators are reversible, the predecessor and successor sets are identical; for j
some problems, however, calculating predecessors can be very difficult.

• What can be done if there are many possible goal states? If there is an explicit list of goal
states, such as the two goal states in Figure 3.2, then we can apply a predecessor function
to the state set just as we apply the successor function in multiple-state search. If we only

Section 3.5. Search Strategies 81

Figure 3.17 A schematic view of a bidirectional breadth-first search that is about to succeed,
when a branch from the start node meets a branch from the goal node.

have a description of the set, it may be possible to figure out the possible descriptions of
"sets of states that would generate the goal set," but this is a very tricky thing to do. For
example, what are the states that are the predecessors of the checkmate goal in chess?

• There must be an efficient way to check each new node to see if it already appears in the
search tree of the other half of the search.

• We need to decide what kind of search is going to take place in each half. For example,
Figure 3.17 shows two breadth-first searches. Is this the best choice?

The O(bdl2) complexity figure assumes that the process of testing for intersection of the two
frontiers can be done in constant time (that is, is independent of the number of states). This often
can be achieved with a hash table. In order for the two searches to meet at all, the nodes of at
least one of them must all be retained in memory (as with breadth-first search). This means that
the space complexity of uninformed bidirectional search is O(bdl2).

Comparing search strategies
Figure 3.18 compares the six search strategies in terms of the four evaluation criteria set forth in
Section 3.5.

Criterion

Time
Space
Optimal?
Complete?

Breadth- Uniform-
First Cost

bd b"
b" b"

Yes Yes
Yes Yes

Depth- Depth-
First Limited

bm b1

bm bl
No No
No Yes, ifl>d

Iterative
Deepening

b"
bd
Yes
Yes

Bidirectional
(if applicable)

bdn

Yes
Yes

Figure 3.18 Evaluation of search strategies, b is the branching factor; d is the depth of solution;
m is the maximum depth of the search tree; / is the depth limit.

L

82 Chapter 3. Solving Problems by Searching

3.6 AVOIDING REPEATED STATES

Up to this point, we have all but ignored one of the most important complications to the search
process: the possibility of wasting time by expanding states that have already been encountered
and expanded before on some other path. For some problems, this possibility never comes up;
each state can only be reached one way. The efficient formulation of the 8-queens problem is
efficient in large part because of this—each state can only be derived through one path.

For many problems, repeated states are unavoidable. This includes all problems where
the operators are reversible, such as route-finding problems and the missionaries and cannibals
problem. The search trees for these problems are infinite, but if we prune some of the repeated
states, we can cut the search tree down to finite size, generating only the portion of the tree that
spans the state space graph. Even when the tree is finite, avoiding repeated states can yield an
exponential reduction in search cost. The classic example is shown in Figure 3.19. The space
contains only m + 1 states, where in is the maximum depth. Because the tree includes each
possible path through the space, it has 2m branches.

There are three ways to deal with repeated states, in increasing order of effectiveness and
computational overhead:

• Do not return to the state you just came from. Have the expand function (or the operator
set) refuse to generate any successor that is the same state as the node's parent.

• Do not create paths with cycles in them. Have the expand function (or the operator set)
refuse to generate any successor of a node that is the same as any of the node's ancestors.

• Do not generate any state that was ever generated before. This requires every state that is
generated to be kept in memory, resulting in a space complexity of O(bd), potentially. It is
better to think of this as O(s), where s is the number of states in the entire state space.

To implement this last option, search algorithms often make use of a hash table that stores all
the nodes that are generated. This makes checking for repeated states reasonably efficient. The
trade-off between the cost of storing and checking and the cost of extra search depends on the
problem: the "loopier" the state space, the more likely it is that checking will pay off.

Figure 3.19 A state space that generates an exponentially larger search tree. The left-hand
side shows the state space, in which there are two possible actions leading from A to B, two from
B to C, and so on. The right-hand side shows the corresponding search tree.

cection 3.7. Constraint Satisfaction Search 83

3 7 CONSTRAINT SATISFACTION SEARCH

DOMAIN

A constraint satisfaction problem (or CSP) is a special kind of problem that satisfies some
additional structural properties beyond the basic requirements for problems in general. In a CSP,
the states are defined by the values of a set of variables and the goal test specifies a set of
constraints that the values must obey. For example, the 8-queens problem can be viewed as a
CSP in which the variables are the locations of each of the eight queens; the possible values are
squares on the board; and the constraints state that no two queens can be in the same row, column
or diagonal. A solution to a CSP specifies values for all the variables such that the constraints
are satisfied. Cryptarithmetic and VLSI layout can also be described as CSPs (Exercise 3.20).
Many kinds of design and scheduling problems can be expressed as CSPs, so they form a very
important subclass. CSPs can be solved by general-purpose search algorithms, but because of
their special structure, algorithms designed specifically for CSPs generally perform much better.

Constraints come in several varieties. Unary constraints concern the value of a single vari-
able. For example, the variables corresponding to the leftmost digit on any row of acryptarithmetic
puzzle are constrained not to have the value 0. Binary constraints relate pairs of variables. The
constraints in the 8-queens problem are all binary constraints. Higher-order constraints involve
three or more variables—for example, the columns in the cryptarithmetic problem must obey
an addition constraint and can involve several variables. Finally, constraints can be absolute
constraints, violation of which rules out a potential solution, or preference constraints that say
which solutions are preferred.

Each variable V/ in a CSP has a domain £>,, which is the set of possible values that the
variable can take on. The domain can be discrete or continuous. In designing a car, for instance,
the variables might include component weights (continuous) and component manufacturers (dis-
crete). A unary constraint specifies the allowable subset of the domain, and a binary constraint
between two variables specifies the allowable subset of the cross-product of the two domains. In
discrete CSPs where the domains are finite, constraints can be represented simply by enumerating
the allowable combinations of values. For example, in the 8-queens problem, let V\ be the row
that the first queen occupies in the first column, and let V2 be the row occupied by the second
queen in the second column. The domains of V\ and ¥2 are {1,2,3,4,5,6,7,8}. The no-attack
constraint linking V\ and lA can be represented by a set of pairs of allowable values for V\ and
V2: {{1,3}, (1,4),{1,5},. . . ,(2,4), (2,5) , . . .} and so on. Altogether, the no-attack constraint
between V\ and Vi rules out 22 of the 64 possible combinations. Using this idea of enumeration,
any discrete CSP can be reduced to a binary CSP.

Constraints involving continuous variables cannot be enumerated in this way, and solving
continuous CSPs involves sophisticated algebra. In this chapter, we will handle only discrete,
absolute, binary (or unary) constraints. Such constraints are still sufficiently expressive to handle
a wide variety of problems and to introduce most of the interesting solution methods.

Eet us first consider how we might apply a general-purpose search algorithm to a CSP. The
initial state will be the state in which all the variables are unassigned. Operators will assign a
value to a variable from the set of possible values. The goal test will check if all variables are
assigned and all constraints satisfied. Notice that the maximum depth of the search tree is fixed

84 Chapter 3. Solving Problems by Searching

BACKTRACKING
SEARCH

FORWARD
CHECKING

ARC CONSISTENCY

CONSTRAINT
PROPAGATION

at n, the number of variables, and that all solutions are at depth n. We are therefore safe in using
depth-first search, as there is no danger of going too deep and no arbitrary depth limit is needed.

In the most naive implementation, any unassigned variable in a given state can be assigned
a value by an operator, in which case the branching factor would be as high as ̂ |£),|, or
64 in the 8-queens problem. A better approach is to take advantage of the fact that the order
of variable assignments makes no difference to the final solution. Almost all CSP algorithms
therefore generate successors by choosing values for only a single variable at each node. For
example, in the 8-queens problem, one can assign a square for the first queen at level 0, for the
second queen at level 1, and so on. This results in a search space of size Y[, |A|> °r 88 in the
8-queens problem. A straightforward depth-first search will examine all of these possibilities.
Because CSPs include as special cases some well-known NP-complete problems such as 3SAT
(see Exercise 6.15 on page 182), we cannot expect to do better than exponential complexity in
the worst case. In most real problems, however, we can take advantage of the problem structure
to eliminate a large fraction of the search space. The principal source of structure in the problem
space is that, in CSPs, the goal test is decomposed into a set of constraints on variables rather
than being a "black box."

Depth-first search on a CSP wastes time searching when constraints have already been
violated. Because of the way that the operators have been defined, an operator can never redeem
a constraint that has already been violated. For example, suppose that we put the first two
queens in the top row. Depth-first search will examine all 86 possible positions for the remaining
six queens before discovering that no solution exists in that subtree. Our first improvement is
therefore to insert a test before the successor generation step to check whether any constraint has
been violated by the variable assignments made up to this point. The resulting algorithm, called /
backtracking search, then backtracks to try something else.

Backtracking also has some obvious failings. Suppose that the squares chosen for the first I
six queens make it impossible to place the eighth queen, because they attack all eight squares in]
the last column. Backtracking will try all possible placings for the seventh queen, even though!
the problem is already rendered unsolvable, given the first six choices. Forward checking]
avoids this problem by looking ahead to detect unsolvability. Each time a variable is instantiated,!
forward checking deletes from the domains of the as-yet-uninstantiated variables all of those!
values that conflict with the variables assigned so far. If any of the domains becomes empty, thenl
the search backtracks immediately. Forward checking often runs far faster than backtracking and j
is very simple to implement (see Exercise 3.21).

Forward checking is a special case of arc consistency checking. A state is arc-consistent j
if every variable has a value in its domain that is consistent with each of the constraints on that I
variable. Arc consistency can be achieved by successive deletion of values that are inconsistent!
with some constraint. As values are deleted, other values may become inconsistent because they |
relied on the deleted values. Arc consistency therefore exhibits a form of constraint propagation,
as choices are gradually narrowed down. In some cases, achieving arc consistency is enough to!
solve the problem completely because the domains of all variables are reduced to singletons. Arc |
consistency is often used as a preprocessing step, but can also be used during the search.

Much better results can often be obtained by careful choice of which variable to instantiate]
and which value to try. We examine such methods in the next chapter.

Section 3.8^ Summary 85

This chapter has introduced methods that an agent can use when it is not clear which immediate
action is best. In such cases, the agent can consider possible sequences of actions; this process is
called search.

• Before an agent can start searching for solutions, it must formulate a goal and then use the
goal to formulate a problem.

• A problem consists of four parts: the initial state, a set of operators, a goal test function,
and a path cost function. The environment of the problem is represented by a state space.
A path through the state space from the initial state to a goal state is a solution.

• In real life most problems are ill-defined; but with some analysis, many problems can fit
into the state space model.

• A single general search algorithm can be used to solve any problem; specific variants of
the algorithm embody different strategies.

• Search algorithms are judged on the basis of completeness, optimality, time complexity,
and space complexity. Complexity depends on b, the branching factor in the state space,
and d, the depth of the shallowest solution.

• Breadth-first search expands the shallowest node in the search tree first. It is complete,
optimal for unit-cost operators, and has time and space complexity of O(b''). The space
complexity makes it impractical in most cases.

• Uniform-cost search expands the least-cost leaf node first. It is complete, and unlike
breadth-first search is optimal even when operators have differing costs. Its space and time
complexity are the same as for breadth-first search.

• Depth-first search expands the deepest node in the search tree first. It is neither complete
nor optimal, and has time complexity of 0(bm) and space complexity of O(bm), where m is
the maximum depth. In search trees of large or infinite depth, the time complexity makes
this impractical.

• Depth-limited search places a limit on how deep a depth-first search can go. If the limit
happens to be equal to the depth of shallowest goal state, then time and space complexity
are minimized.

• Iterative deepening search calls depth-limited search with increasing limits until a goal is
found. It is complete and optimal, and has time complexity of O(bd) and space complexity
of O(bd).

• Bidirectional search can enormously reduce time complexity, but is not always applicable.
Its memory requirements may be impractical.

86 Chapter 3. Solving Problems by Searching

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Most of the state-space search problems analyzed in this chapter have a long history in the
literature, and are far less trivial than they may seem. The missionaries and cannibals problem
was analyzed in detail from an artificial intelligence perspective by Amarel (1968), although
Amarel's treatment was by no means the first; it had been considered earlier in AI by Simon
and Newell (1961), and elsewhere in computer science and operations research by Bellman and
Dreyfus (1962). Studies such as these led to the establishment of search algorithms as perhaps the
primary tools in the armory of early AI researchers, and the establishment of problem solving as
the canonical AI task. (Of course, one might well claim that the latter resulted from the former.)

Amarel's treatment of the missionaries and cannibals problem is particularly noteworthy
because it is a classic example of formal analysis of a problem stated informally in natural
language. Amarel gives careful attention to abstracting from the informal problem statement
precisely those features that are necessary or useful in solving the problem, and selecting a formal
problem representation that represents only those features. A more recent treatment of problem
representation and abstraction, including AI programs that themselves perform these tasks (in
part), is to be found in Knoblock (1990).

The 8-queens problem was first published anonymously in the German chess magazine
Schach in 1848; it was later attributed to one Max Bezzel. It was republished in 1850, and at that
time drew the attention of the eminent mathematician Carl Friedrich Gauss, who attempted to
enumerate all possible solutions. Even Gauss was able to find only 72 of the 92 possible solutions
offhand, which gives some indication of the difficulty of this apparently simple problem. (Nauck,
who had republished the puzzle, published all 92 solutions later in 1850.) Netto(1901) generalized
the problem to "n-queens" (on an n x n chessboard).

The 8-puzzle initially appeared as the more complex 4 x 4 version, called the 15-puzzle. It
was invented by the famous American game designer Sam Loyd (1959) in the 1870s and quickly
achieved immense popularity in the United States, comparable to the more recent sensation caused
by the introduction of Rubik's Cube. It also quickly attracted the attention of mathematicians
(Johnson and Story, 1879; Tail, 1880). The popular reception of the puzzle was so enthusiastic
that the Johnson and Story article was accompanied by a note in which the editors of the American
Journal of Mathematics felt it necessary to state that "The '15' puzzle for the last few weeks
has been prominently before the American public, and may safely be said to have engaged the
attention of nine out of ten persons of both sexes and all ages and conditions of the community.
But this would not have weighed with the editors to induce them to insert articles upon such a
subject in the American Journal of Mathematics, but for the fact that ..." (there follows a brief
summary of the reasons for the mathematical interest of the 15-puzzle). The 8-puzzle has often
been used in AI research in place of the 15-puzzle because the search space is smaller and thus
more easily subjected to exhaustive analysis or experimentation. An exhaustive analysis was
carried out with computer aid by P. D. A. Schofield (1967). Although very time-consuming,
this analysis allowed other, faster search methods to be compared against theoretical perfection
for the quality of the solutions found. An in-depth analysis of the 8-puzzle, using heuristic
search methods of the kind described in Chapter 4, was carried out by Doran and Michie (1966).
The 15-puzzle, like the 8-queens problem, has been generalized to the n x n case. Ratner and

Section 3.8. Summary 87

Warmuth (1986) showed that finding the shortest solution in the generalized n x n version belongs
to the class of NP-complete problems.

"Uninformed" search algorithms for finding shortest paths that rely on current path cost
alone, rather than an estimate of the distance to the goal, are a central topic of classical computer
science, applied mathematics, and a related field known as operations research. Uniform-cost
search as a way of finding shortest paths was invented by Dijkstra (1959). A survey of early
work in uninformed search methods for shortest paths can be found in Dreyfus (1969); Deo
and Pang (1982) give a more recent survey. For the variant of the uninformed shortest-paths
problem that asks for shortest paths between all pairs of nodes in a graph, the techniques of
dynamic programming and memoization can be used. For a problem to be solved by these
techniques, it must be capable of being divided repeatedly into subproblems in such a way
that identical subproblems arise again and again. Then dynamic programming or memoization
involves systematically recording the solutions to subproblems in a table so that they can be
looked up when needed and do not have to be recomputed repeatedly during the process of
solving the problem. An efficient dynamic programming algorithm for the all-pairs shortest-paths
problem was found by Bob Floyd (1962a; 1962b), and improved upon by Karger et al. (1993).
Bidirectional search was introduced by Pohl (1969; 1971); it is often used with heuristic guidance
techniques of the kind discussed in Chapter 4. Iterative deepening was first used by Slate and
Atkin (1977) in the CHESS 4.5 game-playing program.

The textbooks by Nilsson (1971; 1980) are good general sources of information about
classical search algorithms, although they are now somewhat dated. A comprehensive, and much
more up-to-date, survey can be found in (Korf, 1988).

EXERCISES

3.1 Explain why problem formulation must follow goal formulation.

3.2 Consider the accessible, two-location vacuum world under Murphy's Law. Show that for
each initial state, there is a sequence of actions that is guaranteed to reach a goal state.

3.3 Give the initial state, goal test, operators, and path cost function for each of the following.
There are several possible formulations for each problem, with varying levels of detail. The
main thing is that your formulations should be precise and "hang together" so that they could be
implemented.

a. You want to find the telephone number of Mr. Jimwill Zollicoffer, who lives in Alameda,
given a stack of directories alphabetically ordered by city.

b. As for part (a), but you have forgotten Jimwill's last name.
c. You are lost in the Amazon jungle, and have to reach the sea. There is a stream nearby.
d. You have to color a complex planar map using only four colors, with no two adjacent

regions to have the same color.

Chapter 3. Solving Problems by Searching

e. A monkey is in a room with a crate, with bananas suspended just out of reach on the ceiling.
He would like to get the bananas.

f. You are lost in a small country town, and must find a drug store before your hay fever
becomes intolerable. There are no maps, and the natives are all locked indoors.

3.4 Implement the missionaries and cannibals problem and use breadth-first search to find the
shortest solution. Is it a good idea to check for repeated states? Draw a diagram of the complete
state space to help you decide.

3.5 On page 76, we said that we would not consider problems with negative path costs. In this
exercise, we explore this in more depth.

a. Suppose that a negative lower bound c is placed on the cost of any given step—that is,
negative costs are allowed, but the cost of a step cannot be less than c. Does this allow
uniform-cost search to avoid searching the whole tree?

b. Suppose that there is a set of operators that form a loop, so that executing the set in some
order results in no net change to the state. If all of these operators have negative cost, what
does this imply about the optimal behavior for an agent in such an environment? :

c. One can easily imagine operators with high negative cost, even in domains such as route- !
finding. For example, some stretches of road might have such beautiful scenery as to far j
outweigh the normal costs in terms of time and fuel. Explain, in precise terms, why humans
do not drive round scenic loops indefinitely, and explain how to define the state space and I
operators for route-finding so that artificial agents can also avoid looping.

d. Can you think of a real domain in which step costs are such as to cause looping?

3.6 The GENERAL-SEARCH algorithm consists of three steps: goal test, generate, and ordering!
function, in that order. It seems a shame to generate a node that is in fact a solution, but to fail to|
recognize it because the ordering function fails to place it first.

a. Write a version of GENERAL-SEARCH that tests each node as soon as it is generated and|
stops immediately if it has found a goal.

b. Show how the GENERAL-SEARCH algorithm can be used unchanged to do this by giving it|
the proper ordering function.

3.7 The formulation of problem, solution, and search algorithm given in this chapter explicitly!
mentions the path to a goal state. This is because the path is important in many problems. For 1
other problems, the path is irrelevant, and only the goal state matters. Consider the problem!
"Find the square root of 123454321." A search through the space of numbers may pass through]
many states, but the only one that matters is the goal state, the number 11111. Of course, from a 1
theoretical point of view, it is easy to run the general search algorithm and then ignore all of the f
path except the goal state. But as a programmer, you may realize an efficiency gain by coding a]
version of the search algorithm that does not keep track of paths. Consider a version of problem I
solving where there are no paths and only the states matter. Write definitions of problem and •
solution, and the general search algorithm. Which of the problems in Section 3.3 would best use
this algorithm, and which should use the version that keeps track of paths?

Section 3.8. Summary 89

3.8 Given a pathless search algorithm such as the one called for in Exercise 3.7, explain how
you can modify the operators to keep track of the paths as part of the information in a state. Show
the operators needed to solve the route-finding and touring problems.

3.9 Describe a search space in which iterative deepening search performs much worse than
depth-first search.

3.10 Figure 3.17 shows a schematic view of bidirectional search. Why do you think we chose
to show trees growing outward from the start and goal states, rather than two search trees growing
horizontally toward each other?

3.11 Write down the algorithm for bidirectional search, in pseudo-code or in a programming
language. Assume that each search will be a breadth-first search, and that the forward and
backward searches take turns expanding a node at a time. Be careful to avoid checking each node
in the forward search against each node in the backward search!

3.12 Give the time complexity of bidirectional search when the test for connecting the two
searches is done by comparing a newly generated state in the forward direction against all the
states generated in the backward direction, one at a time.

3.13 We said that at least one direction of a bidirectional search must be a breadth-first search.
What would be a good choice for the other direction? Why?

3.14 Consider the following operator for the 8-queens problem: place a queen in the column
with the fewest unattacked squares, in such a way that it does not attack any other queens. How
many nodes does this expand before it finds a solution? (You may wish to have a program
calculate this for you.)

3.15 The chain problem (Figure 3.20) consists of various lengths of chain that must be recon-
figured into new arrangements. Operators can open one link and close one link. In the standard
form of the problem, the initial state contains four chains, each with three links. The goal state
consists of a single chain of 12 links in a circle. Set this up as a formal search problem and find
the shortest solution.

f-TT~s — ^ Li
f*"" ^"^ 0 ~*^ U"

r~TT~TT~^ I
Start state

n o

— S-iL-
Goal state

h
=1
•1
»>

Figure 3.20 The chain problem. Operators can open, remove, reattach, and close a single link
at a time.

90 Chapter 3. Solving Problems by Searching

3.16 Tests of human intelligence often contain sequence prediction problems. The aim in
such problems is to predict the next member of a sequence of integers, assuming that the number
in position n of the sequence is generated using some sequence function s(n), where the first
element of the sequence corresponds to n = 0. For example, the function s(n) - 2" generates the
sequence [1,2,4,8,16, ...].

In this exercise, you will design a problem-solving system capable of solving such pre-
diction problems. The system will search the space of possible functions until it finds one that
matches the observed sequence. The space of sequence functions that we will consider consists
of all possible expressions built from the elements 1 and n, and the functions +, x, —, /, and
exponentiation. For example, the function 2" becomes (1 + 1)" in this language. It will be useful
to think of function expressions as binary trees, with operators at the internal nodes and 1 's and
«'s at the leaves.

a. First, write the goal test function. Its argument will be a candidate sequence function s. It
will contain the observed sequence of numbers as local state.

b. Now write the successor function. Given a function expression s, it should generate all
expressions one step more complex than s. This can be done by replacing any leaf of the
expression with a two-leaf binary tree.

c. Which of the algorithms discussed in this chapter would be suitable for this problem?
Implement it and use it to find sequence expressions for the sequences [1,2,3,4,5],
[1,2,4,8,16, . . .] ,and [0.5,2,4.5,8].

d. If level d of the search space contains all expressions of complexity d +1, where complexity
is measured by the number of leaf nodes (e.g., n + (1 x n) has complexity 3), prove by
induction that there are roughly 20d(d +1)1 expressions at level d.

e. Comment on the suitability of uninformed search algorithms for solving this problem. Can
you suggest other approaches?

3.17 The full vacuum world from the exercises in Chapter 2 can be viewed as a search problem
in the sense we have defined, provided we assume that the initial state is completely known.

a. Define the initial state, operators, goal test function, and path cost function.
b. Which of the algorithms defined in this chapter would be appropriate for this problem?
c. Apply one of them to compute an optimal sequence of actions for a 3 x 3 world with dirt in

the center and home squares.
d. Construct a search agent for the vacuum world, and evaluate its performance in a set of

3x3 worlds with probability 0.2 of dirt in each square. Include the search cost as well as
path cost in the performance measure, using a reasonable exchange rate.

e. Compare the performance of your search agent with the performance of the agents con-
structed for the exercises in Chapter 2. What happens if you include computation time in
the performance measure, at various "exchange rates" with respect to the cost of taking a
step in the environment?

f. Consider what would happen if the world was enlarged tonxn. How does the performance
of the search agent vary with «? Of the reflex agents?

Section 3.8. Summary 91

:

MAP-COLORING

FLOOR-PLANNING

3.18 The search agents we have discussed make use of a complete model of the world to
construct a solution that they then execute. Modify the depth-first search algorithm with repeated
state checking so that an agent can use it to explore an arbitrary vacuum world even without a
model of the locations of walls and dirt. It should not get stuck even with loops or dead ends.
You may also wish to have your agent construct an environment description of the type used by
the standard search algorithms.

3.19 In discussing the cryptarithmetic problem, we proposed that an operator should assign
a value to whichever letter has the least remaining possible values. Is this rule guaranteed to
produce the smallest possible search space? Why (not)?

3.20 Define each of the following as constraint satisfaction problems:

a. The cryptarithmetic problem.
b. The channel-routing problem in VLSI layout.
c. The map-coloring problem. In map-coloring, the aim is to color countries on a map using

a given set of colors, such that no two adjacent countries are the same color.
d. The rectilinear floor-planning problem, which involves finding nonoverlapping places in

a large rectangle for a number of smaller rectangles.

3.21 Implement a constraint satisfaction system as follows:
a. Define a datatype for CSPs with finite, discrete domains. You will need to find a way to

represent domains and constraints.
b. Implement operators that assign values to variables, where the variables are assigned in a

fixed order at each level of the tree.
c. Implement a goal test that checks a complete state for satisfaction of all the constraints.
d. Implement backtracking by modifying DEPTH-FIRST-SEARCH.
e. Add forward checking to your backtracking algorithm.
f. Run the three algorithms on some sample problems and compare their performance.

4
INFORMED SEARCH
METHODS

In which we see how information about the state space can prevent algorithms from
blundering about in the dark.

Chapter 3 showed that uninformed search strategies can find solutions to problems by systemati-
cally generating new states and testing them against the goal. Unfortunately, these strategies are
incredibly inefficient in most cases. This chapter shows how an informed search strategy—one
that uses problem-specific knowledge—can find solutions more efficiently. It also shows how
optimization problems can be solved.

4.1 BEST-FIRST SEARCH

EVALUATION
FUNCTION

BEST-FIRST SEARCH

In Chapter 3, we found several ways to apply knowledge to the process of formulating a problem
in terms of states and operators. Once we are given a well-defined problem, however, our options
are more limited. If we plan to use the GENERAL-SEARCH algorithm from Chapter 3, then
the only place where knowledge can be applied is in the queuing function, which determines
the node to expand next. Usually, the knowledge to make this determination is provided by an
evaluation function that returns a number purporting to describe the desirability (or lack thereof)
of expanding the node. When the nodes are ordered so that the one with the best evaluation is
expanded first, the resulting strategy is called best-first search. It can be implemented directly
with GENERAL-SEARCH, as shown in Figure 4.1.

The name "best-first search" is a venerable but inaccurate one. After all, if we could really
expand the best node first, it would not be a search at all; it would be a straight march to the goal.
All we can do is choose the node that appears to be best according to the evaluation function.
If the evaluation function is omniscient, then this will indeed be the best node; in reality, the
evaluation function will sometimes be off, and can lead the search astray. Nevertheless, we will
stick with the name "best-first search," because "seemingly-best-first search" is a little awkward.

Just as there is a whole family of GENERAL-SEARCH algorithms with different ordering
functions, there is also a whole family of BEST-FIRST-SEARCH algorithms with different evaluation

92

Section 4.1. Best-First Search 93

function BEST-FiRST-SEARCH(/7/-oWew?, EVAL-FN) returns a solution sequence
inputs: problem, a problem

Eval-Fn, an evaluation function

Queueing-Fn <— a function that orders nodes by EVAL-FN
return GENERAL-SEARCH(proW<?m, Queueing-Fn)

Figure 4.1 An implementation of best-first search using the general search algorithm.

functions. Because they aim to find low-cost solutions, these algorithms typically use some
estimated measure of the cost of the solution and try to minimize it. We have already seen one
such measure: the use of the path cost g to decide which path to extend. This measure, however,
does not direct search toward the goal. In order to focus the search, the measure must incorporate
some estimate of the cost of the path from a state to the closest goal state. We look at two basic
approaches. The first tries to expand the node closest to the goal. The second tries to expand the
node on the least-cost solution path.

Minimize estimated cost to reach a goal: Greedy search

HEURISTIC
FUNCTION

GREEDY SEARCH

STRAIGHT-LINE
DISTANCE

One of the simplest best-first search strategies is to minimize the estimated cost to reach the goal.
That is, the node whose state is judged to be closest to the goal state is always expanded first.
For most problems, the cost of reaching the goal from a particular state can be estimated but
cannot be determined exactly. A function that calculates such cost estimates is called a heuristic
function, and is usually denoted by the letter h:

h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

A best-first search that uses h to select the next node to expand is called greedy search, for
reasons that will become clear. Given a heuristic function h, the code for greedy search is just
the following:

function GREEDY-SEARCH(proWewi) returns a solution or failure
return BEST-FiRST-SEARCH(proWem, h)

Formally speaking, h can be any function at all. We will require only that h(ri) = 0 if n is a goal.
To get an idea of what a heuristic function looks like, we need to choose a particular

problem, because heuristic functions are problem-specific. Let us return to the route-finding
problem from Arad to Bucharest. The map for that problem is repeated in Figure 4.2.

A good heuristic function for route-finding problems like this is the straight-line distance
to the goal. That is,

hsLo(n) = straight-line distance between n and the goal location.

94 Chapter 4. Informed Search Methods

HISTORY OF "HEURISTIC"

By now the space aliens had mastered my own language, but they still made
simple mistakes like using "hermeneutic" when they meant "heuristic."
— a Louisiana factory worker in Woody Alien's The UFO Menace

The word "heuristic" is derived from the Greek verb heuriskein, meaning "to find"
or "to discover." Archimedes is said to have run naked down the street shouting
"Heureka" (I have found it) after discovering the principle of flotation in his bath.
Later generations converted this to Eureka.

The technical meaning of "heuristic" has undergone several changes in the history
of AI. In 1957, George Polya wrote an influential book called How to Solve It that used
"heuristic" to refer to the study of methods for discovering and inventing problem-
solving techniques, particularly for the problem of coming up with mathematical
proofs. Such methods had often been deemed not amenable to explication.

Some people use heuristic as the opposite of algorithmic. For example, Newell,
Shaw, and Simon stated in 1963, "A process that may solve a given problem, but offers
no guarantees of doing so, is called a heuristic for that problem." But note that there
is nothing random or nondeterministic about a heuristic search algorithm: it proceeds
by algorithmic steps toward its result. In some cases, there is no guarantee how long
the search will take, and in some cases, the quality of the solution is not guaranteed
either. Nonetheless, it is important to distinguish between "nonalgorithmic" and "not
precisely characterizable."

Heuristic techniques dominated early applications of artificial intelligence. The
first "expert systems" laboratory, started by Ed Feigenbaum, Brace Buchanan, and
Joshua Lederberg at Stanford University, was called the Heuristic Programming
Project (HPP). Heuristics were viewed as "rules of thumb" that domain experts could
use to generate good solutions without exhaustive search. Heuristics were initially
incorporated directly into the structure of programs, but this proved too inflexible
when a large number of heuristics were needed. Gradually, systems were designed
that could accept heuristic information expressed as "rules," and rule-based systems
were born.

Currently, heuristic is most often used as an adjective, referring to any technique
that improves the average-case performance on a problem-solving task, but does
not necessarily improve the worst-case performance. In the specific area of search
algorithms, it refers to a function that provides an estimate of solution cost.

A good article on heuristics (and one on hermeneutics!) appears in the Encyclo-
pedia of AI (Shapiro, 1992).

Section 4.1. Best-First Search 95

Neamt

lasi

Giurgiu

Straight-line distanc
to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi
Lugoj
Mehadia
Neamt
Oradea

] Hirsova J"'.teSt!Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Eforie Vaslui
Zerind

366
o

] 60
242
161
1 78
77

1 5]
226
244
24 1
234
380
98

1 93
253
329
80
199
374

Figure 4.2 Map of Romania with road distances in km, and straight-line distances to Bucharest.

Notice that we can only calculate the values of HSLD if we know the map coordinates of the cities
in Romania. Furthermore, hsio is only useful because a road from A to B usually tends to head
in more or less the right direction. This is the sort of extra information that allows heuristics to
help in reducing search cost.

Figure 4.3 shows the progress of a greedy search to find a path from Arad to Bucharest.
With the straight-line-distance heuristic, the first node to be expanded from Arad will be Sibiu,
because it is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded
will be Fagaras, because it is closest. Fagaras in turn generates Bucharest, which is the goal. For
this particular problem, the heuristic leads to minimal search cost: it finds a solution without ever
expanding a node that is not on the solution path. However, it is not perfectly optimal: the path
it found via Sibiu and Fagaras to Bucharest is 32 miles longer than the path through Rimnicu
Vilcea and Pitesti. This path was not found because Fagaras is closer to Bucharest in straight-line
distance than Rimnicu Vilcea, so it was expanded first. The strategy prefers to take the biggest
bite possible out of the remaining cost to reach the goal, without worrying about whether this
will be best in the long run—hence the name "greedy search." Although greed is considered
one of the seven deadly sins, it turns out that greedy algorithms often perform quite well. They
tend to find solutions quickly, although as shown in this example, they do not always find the
optimal solutions: that would take a more careful analysis of the long-term options, not just the
immediate best choice.

Greedy search is susceptible to false starts. Consider the problem of getting from lasi to
Fagaras. The heuristic suggests that Neamt be expanded first, but it is a dead end. The solution is
to go first to Vaslui—a step that is actually farther from the goal according to the heuristic—and
then to continue to Urziceni, Bucharest, and Fagaras. Hence, in this case, the heuristic causes
unnecessary nodes to be expanded. Furthermore, if we are not careful to detect repeated states,
the solution will never be found—the search will oscillate between Neamt and lasi.

96 Chapter 4. Informed Search Methods

Aradjj
h=366

Arad

Sibiu^r Timisoara f§ ^^ Zerind
h=253 h=329 h=374

Timisoara j| \o Zerind
h=329 h=374

Arad ̂ i Fagaras Jf Oradea ® Rimnici
h=366 h=178 h=380 h=193

Arad i

Timisoara^ ^^m Zerind
h=329 h=374

Arad ̂ r Fagaras
h=366

Figure 4.3 Stages in a greedy search for Bucharest, using the straight-line distance to Bucharest
as the heuristic function IISLD- Nodes are labelled with their /j-values.

Greedy search resembles depth-first search in the way it prefers to follow a single path all
the way to the goal, but will back up when it hits a dead end. It suffers from the same defects
as depth-first search—it is not optimal, and it is incomplete because it can start down an infinite
path and never return to try other possibilities. The worst-case time complexity for greedy search
is O(bm~), where m is the maximum depth of the search space. Because greedy search retains
all nodes in memory, its space complexity is the same as its time complexity. With a good
heuristic function, the space and time complexity can be reduced substantially. The amount of
the reduction depends on the particular problem and quality of the h function.

Minimizing the total path cost: A* search

Greedy search minimizes the estimated cost to the goal, h(n), and thereby cuts the search cost
considerably. Unfortunately, it is neither optimal nor complete. Uniform-cost search, on the
other hand, minimizes the cost of the path so far, g(ri); it is optimal and complete, but can be
very inefficient. It would be nice if we could combine these two strategies to get the advantages
of both. Fortunately, we can do exactly that, combining the two evaluation functions simply by
summing them:

f(n) = g(n) + h(n).

Section 4.1. Best-First Search 97

ADMISSIBLE
HEURISTIC

A'SEARCH

Since g(n) gives the path cost from the start node to node n, and h(ri) is the estimated cost of the
cheapest path from n to the goal, we have

/(«) = estimated cost of the cheapest solution through n

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the node with
the lowest value off. The pleasant thing about this strategy is that it is more than just reasonable.
We can actually prove that it is complete and optimal, given a simple restriction on the h function.

The restriction is to choose an h function that never overestimates the cost to reach the
goal. Such an h is called an admissible heuristic. Admissible heuristics are by nature optimistic,
because they think the cost of solving the problem is less than it actually is. This optimism
transfers to the/ function as well: Ifh is admissible, f (n) never overestimates the actual cost of
the best solution through n. Best-first search using/ as the evaluation function and an admissible
h function is known as A* search

function A*-SEARCH(problem) returns a solution or failure
return BEST-FlRST-SEARCH(/?roWem,g + h)

Perhaps the most obvious example of an admissible heuristic is the straight-line distance
that we used in getting to Bucharest. Straight-line distance is admissible because the shortest

path between any two points is a straight line. In Figure 4.4, we show the first few steps of an A*
search for Bucharest using the hSLD heuristic. Notice that the A* search prefers to expand from
Rimnicu Vilcea rather than from Fagaras. Even though Fagaras is closer to Bucharest, the path
taken to get to Fagaras is not as efficient in getting close to Bucharest as the path taken to get to
Rimnicu. The reader may wish to continue this example to see what happens next.

MONOTONICITY

The behavior of A* search

Before we prove the completeness and optimality of A*, it will be useful to present an intuitive
picture of how it works. A picture is not a substitute for a proof, but it is often easier to remember
and can be used to generate the proof on demand. First, a preliminary observation: if you examine
the search trees in Figure 4.4, you will notice an interesting phenomenon. Along any path from
the root, the/-cost never decreases. This is no accident. It holds true for almost all admissible
heuristics. A heuristic for which it holds is said to exhibit monotonicity.'

If the heuristic is one of those odd ones that is not monotonic, it turns out we can make a
minor correction that restores monotonicity. Let us consider two nodes n and n', where n is the
parent of n'. Now suppose, for example, thatg(«) = 3 and/?(n) = 4. Then/(n) = g(ri)+h(ri) - 1—
that is, we know that the true cost of a solution path through n is at least 7. Suppose also that
g(n') = 4 and h(n') - 2, so that/(n') = 6. Clearly, this is an example of a nonmonotonic heuristic.
Fortunately, from the fact that any path through n' is also a path through n, we can see that the
value of 6 is meaningless, because we already know the true cost is at least 7. Thus, we should
1 It can be proved (Pearl, 1984) that a heuristic is monotonic if and only if it obeys the triangle inequality. The triangle
inequality says that two sides of a triangle cannot add up to less than the third side (see Exercise 4.7). Of course,
straight-line distance obeys the triangle inequality and is therefore monotonic.

98 Chapter 4. Informed Search Methods

Arad

Zerind

Arad

Zerind

Arad Fagaras|
f=280+366 f=239+178 f=146+380
=646 =417 =526

Craiova (
f=366+160
=526

Figure 4.4 Stages in an A* search for Bucharest. Nodes are labelled with / = g + h. The h
values are the straight-line distances to Bucharest taken from Figure 4.1.

check, each time we generate a new node, to see if its/-cost is less than its parent's/-cost; if it
is, we use the parent's/-cost instead:

/(«') = max(f(n), g(n') + h(n'}).

In this way, we ignore the misleading values that may occur with a nonmonotonic heuristic. This
PATHMAX equation is called the pathmax equation. If we use it, then/ will always be nondecreasing along

any path from the root, provided h is admissible.
The purpose of making this observation is to legitimize a certain picture of what A* does.

CONTOURS If/ never decreases along any path out from the root, we can conceptually draw contours in the
state space. Figure 4.5 shows an example. Inside the contour labelled 400, all nodes have/(n)
less than or equal to 400, and so on. Then, because A* expands the leaf node of lowest/, we can
see that an A* search fans out from the start node, adding nodes in concentric bands of increasing
/-cost.

With uniform-cost search (A* search using h = 0), the bands will be "circular" around the
start state. With more accurate heuristics, the bands will stretch toward the goal state and become
more narrowly focused around the optimal path. If we define/* to be the cost of the optimal
solution path, then we can say the following:

• A* expands all nodes with/(n) </*.
• A* may then expand some of the nodes right on the "goal contour," for which/(«) =/*,

before selecting a goal node.
Intuitively, it is obvious that the first solution found must be the optimal one, because nodes in
all subsequent contours will have higher/-cost, and thus higher g-cost (because all goal states
have h(n) = 0). Intuitively, it is also obvious that A* search is complete. As we add bands of

Section 4.1. Best-First Search 99

OPTIMALLY
EFFICIENT

Figure 4.5 Map of Romania showing contours at/ = 380./ = 400 and/ = 420, with Arad as
the start state. Nodes inside a given contour have /-costs lower than the contour value.

increasing/, we must eventually reach a band where/ is equal to the cost of the path to a goal
state. We will turn these intuitions into proofs in the next subsection.

One final observation is that among optimal algorithms of this type—algorithms that extend
search paths from the root—A* is optimally efficient for any given heuristic function. That is,
no other optimal algorithm is guaranteed to expand fewer nodes than A*. We can explain this
as follows: any algorithm that does not expand all nodes in the contours between the root and
the goal contour runs the risk of missing the optimal solution. A long and detailed proof of this
result appears in Dechter and Pearl (1985).

Proof of the optimality of A*
Let G be an optimal goal state, with path cost/*. Let G2 be a suboptimal goal state, that is, a
goal state with path cost g(G2) >/*. The situation we imagine is that A* has selected G2 from
the queue. Because G2 is a goal state, this would terminate the search with a suboptimal solution
(Figure 4.6). We will show that this is not possible.

Consider a node « that is currently a leaf node on an optimal path to G (there must be some
such node, unless the path has been completely expanded — in which case the algorithm would
have returned G). Because h is admissible, we must have

r >/(«).
Furthermore, if n is not chosen for expansion over G2, we must have

Combining these two together, we get
r >

100 Chapter 4. Informed Search Methods

Start

Figure 4.6 Situation at the point where a suboptimal goal state 62 is about to be expanded.
Node n is a leaf node on an optimal path from the start node to the optimal goal state G.

But because GI is a goal state, we have h(G2) = 0; hence
from our assumptions, that

a) = g(G2). Thus, we have proved,

This contradicts the assumption that G^_ is suboptimal, so it must be the case that A* never selects
a suboptimal goal for expansion. Hence, because it only returns a solution after selecting it for
expansion, A* is an optimal algorithm.

LOCALLY FINITE
GRAPHS

Proof of the completeness of A*

We said before that because A* expands nodes in order of increasing/, it must eventually expand
to reach a goal state. This is true, of course, unless there are infinitely many nodes with/(«) </*.
The only way there could be an infinite number of nodes is either (a) there is a node with an
infinite branching factor, or (b) there is a path with a finite path cost but an infinite number of
nodes along it.2

Thus, the correct statement is that A* is complete on locally finite graphs (graphs with a
finite branching factor) provided there is some positive constant 6 such that every operator costs
at least 6.

Complexity of A*

That A* search is complete, optimal, and optimally efficient among all such algorithms is rather
satisfying. Unfortunately, it does not mean that A* is the answer to all our searching needs. The
catch is that, for most problems, the number of nodes within the goal contour search space is still
exponential in the length of the solution. Although the proof of the result is beyond the scope of
this book, it has been shown that exponential growth will occur unless the error in the heuristic
2 Zeno's paradox, which purports to show that a rock thrown at a tree will never reach it, provides an example that
violates condition (b). The paradox is created by imagining that the trajectory is divided into a series of phases, each of
which covers half the remaining distance to the tree; this yields an infinite sequence of steps with a finite total cost.

Section 4.2. Heuristic Functions 101

function grows no faster than the logarithm of the actual path cost. In mathematical notation, the
condition for subexponential growth is that

\h(n) -A*(n)|<0(log/.*(«)),
where h* (n) is the true cost of getting from n to the goal. For almost all heuristics in practical use,
the error is at least proportional to the path cost, and the resulting exponential growth eventually
overtakes any computer. Of course, the use of a good heuristic still provides enormous savings
compared to an uninformed search. In the next section, we will look at the question of designing
good heuristics.

Computation time is not, however, A*'s main drawback. Because it keeps all generated
nodes in memory, A* usually runs out of space long before it runs out of time. Recently developed
algorithms have overcome the space problem without sacrificing optimality or completeness.
These are discussed in Section 4.3.

4.2 HEURISTIC FUNCTIONS

So far we have seen just one example of a heuristic: straight-line distance for route-finding
problems. In this section, we will look at heuristics for the 8-puzzle. This will shed light on the
nature of heuristics in general.

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Section 3.3,
the object of the puzzle is to slide the tiles horizontally or vertically into the empty space until
the initial configuration matches the goal configuration (Figure 4.7).

5 |

6 \

7 1

i 4]
\ 1 I
\ 3 !

ilPilK

I 8

! 2

Start State

' I
8 I

7 i

\ 2 ;

1 6 i

; 3

: 4

5

Goal State

Figure 4.7 A typical instance of the 8-puzzle.

The 8-puzzle is just the right level of difficulty to be interesting. A typical solution is about
20 steps, although this of course varies depending on the initial state. The branching factor is
about 3 (when the empty tile is in the middle, there are four possible moves; when it is in a corner
there are two; and when it is along an edge there are three). This means that an exhaustive search
to depth 20 would look at about 320 = 3.5 x 109 states. By keeping track of repeated states, we
could cut this down drastically, because there are only 9! = 362,880 different arrangements of
9 squares. This is still a large number of states, so the next order of business is to find a good

102 Chapter 4. Informed Search Methods

MANHATTAN
DISTANCE

heuristic function. If we want to find the shortest solutions, we need a heuristic function that
never overestimates the number of steps to the goal. Here are two candidates:

• h\ = the number of tiles that are in the wrong position. For Figure 4.7, none of the 8 tiles
is in the goal position, so the start state would have h\ = 8. h\ is an admissible heuristic,
because it is clear that any tile that is out of place must be moved at least once.

• h2 = the sum of the distances of the tiles from their goal positions. Because tiles cannot
move along diagonals, the distance we will count is the sum of the horizontal and vertical
distances. This is sometimes called the city block distance or Manhattan distance. h2 is
also admissible, because any move can only move one tile one step closer to the goal. The
8 tiles in the start state give a Manhattan distance of

h2 = 2 + 3 + 2 + 1+2 + 2+ 1+2 =15

EFFECTIVE
BRANCHING FACTOR

DOMINATES

The effect of heuristic accuracy on performance
One way to characterize the quality of a heuristic is the effective branching factor b*. If the \
total number of nodes expanded by A* for a particular problem is N, and the solution depth is ;

d, then b* is the branching factor that a uniform tree of depth d would have to have in order to ~>
contain N nodes. Thus,

N= l+b* +(b*)2 + --- + (b~)d.

For example, if A* finds a solution at depth 5 using 52 nodes, then the effective branching factor is •
1.91. Usually, the effective branching factor exhibited by a given heuristic is fairly constant over !

a large range of problem instances, and therefore experimental measurements of b" on a small i
set of problems can provide a good guide to the heuristic's overall usefulness. A well-designed!
heuristic would have a value of b* close to 1, allowing fairly large problems to be solved. To !
test the heuristic functions h\ and h2, we randomly generated 100 problems each with solution
lengths 2,4, . . . , 20, and solved them using A* search with h\ and h2, as well as with uninformed ;
iterative deepening search. Figure 4.8 gives the average number of nodes expanded by each
strategy, and the effective branching factor. The results show that h2 is better than h\, and that,
uninformed search is much worse.

One might ask if h2 is always better than h\. The answer is yes. It is easy to see from the j
definitions of the two heuristics that for any node n, h2(n) > h\(n). We say that h2 dominates h\. •
Domination translates directly into efficiency: A* using h2 will expand fewer nodes, on average,
than A* using h\. We can show this using the following simple argument. Recall the observation !j
on page 98 that every node with/(w) </* will be expanded. This is the same as saying that every ;
node with h(n) </* — g(n) will be expanded. But because h2 is at least as big as h\ for all nodes,
every node that is expanded by A* search with h2 will also be expanded with h\, and h\ may also I
cause other nodes to be expanded as well. Hence, it is always better to use a heuristic function 1
with higher values, as long as it does not overestimate.

Section 4.2. Heuristic Functions 103

d

2
4
6
8

10
12
14
16
18
20
22
24

Search Cost
IDS

10
112
680

6384
47127

364404
3473941

-
-
-
-
-

A*(A,)
6

13
20 ,
39
93

227
539

1301
3056
7276

18094
39135

A*(/z2)

6
12
18
25
39
73

113
211
363
676

1219
1641

Effective Branching Factor
IDS

2.45
2.87
2.73
2.80
2.79
2.78
2.83
-
-
-
-
-

A*(Ai)
1.79
1.48
1.34
1.33
1.38
1.42
1.44
1.45
1.46
1.47
1.48
1.48

A*(/z2)
1.79
1.45
1.30
1.24
1.22
1.24
1.23
1.25
1.26
1.27
1.28
1.26

Figure 4.8 Comparison of the search costs and effective branching factors for the
ITERATIVE-DEEPENING-SEARCH and A* algorithms with h\, hi. Data are averaged over 100
instances of the 8-puzzle, for various solution lengths.

Inventing heuristic functions
We have seen that both h\ and /z2 are fairly good heuristics for the 8-puzzle, and that hi is better.
But we do not know how to invent a heuristic function. How might one have come up with /z2?
Is it possible for a computer to mechanically invent such a heuristic?

h\ and /z2 are estimates to the remaining path length for the 8-puzzle, but they can also
be considered to be perfectly accurate path lengths for simplified versions of the puzzle. If
the rules of the puzzle were changed so that a tile could move anywhere, instead of just to the
adjacent empty square, then h \ would accurately give the number of steps to the shortest solution.
Similarly, if a tile could move one square in any direction, even onto an occupied square, then hi
would give the exact number of steps in the shortest solution. A problem with less restrictions on

RELAXED PROBLEM the operators is called a relaxed problem. It is often the case that the cost of an exact solution
igg^ to a relaxed problem is a good heuristic for the original problem.

*"• If a problem definition is written down in a formal language, it is possible to construct
relaxed problems automatically.3 For example, if the 8-puzzle operators are described as

A tile can move from square A to square B if A is adjacent to B and B is blank,
we can generate three relaxed problems by removing one or more of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can move from square A to square B if B is blank.
(c) A tile can move from square A to square B.

Recently, a program called ABSOLVER was written that can generate heuristics automatically from
problem definitions, using the "relaxed problem" method and various other techniques (Prieditis,
1993). ABSOLVER generated a new heuristic for the 8-puzzle better than any existing heuristic,
and found the first useful heuristic for the famous Rubik's cube puzzle.
3 In Chapters 7 and 11, we will describe formal languages suitable for this task. For now, we will use English.

104 Chapter 4. Informed Search Methods

One problem with generating new heuristic functions is that one often fails to get one
"clearly best" heuristic. If a collection of admissible heuristics h\...hm is available for a
problem, and none of them dominates any of the others, which should we choose? As it turns
out, we need not make a choice. We can have the best of all worlds, by defining

h(n) = max(hi(n),...,hm(n)).,
This composite heuristic uses whichever function is most accurate on the node in question.
Because the component heuristics are admissible, h is also admissible. Furthermore, h dominates
all of the individual heuristics from which it is composed.

Another way to invent a good heuristic is to use statistical information. This can be
gathered by running a search over a number of training problems, such as the 100 randomly
chosen 8-puzzle configurations, and gathering statistics. For example, we might find that when
h2(n) = 14, it turns out that 90% of the time the real distance to the goal is 18. Then when faced
with the "real" problem, we can use 18 as the value whenever hi(n) reports 14. Of course, if we
use probabilistic information like this, we are giving up on the guarantee of admissibility, but we
are likely to expand fewer nodes on average.

FEATURES Often it is possible to pick out features of a state that contribute to its heuristic evaluation
function, even if it is hard to say exactly what the contribution should be. For example, the goal
in chess is to checkmate the opponent, and relevant features include the number of pieces of each
kind belonging to each side, the number of pieces that are attacked by opponent pieces, and so
on. Usually, the evaluation function is assumed to be a linear combination of the feature values.
Even if we have no idea how important each feature is, or even if a feature is good or bad, it
is still possible to use a learning algorithm to acquire reasonable coefficients for each feature,
as demonstrated in Chapter 18. In chess, for example, a program could learn that one's own
queen should have a large positive coefficient, whereas an opponent's pawn should have a small
negative coefficient.

Another factor that we have not considered so far is the search cost of actually running the
heuristic function on a node. We have been assuming that the cost of computing the heuristic
function is about the same as the cost of expanding a node, so that minimizing the number of
nodes expanded is a good thing. But if the heuristic function is so complex that computing its
value for one node takes as long as expanding hundreds of nodes, then we need to reconsider.
After all, it is easy to have a heuristic that is perfectly accurate—if we allow the heuristic to do,
say, a full breadth-first search "on the sly." That would minimize the number of nodes expanded
by the real search, but it would not minimize the overall search cost. A good heuristic function
must be efficient as well as accurate.

Heuristics for constraint satisfaction problems
In Section 3.7, we examined a class of problems called constraint satisfaction problems (CSPs).
A constraint satisfaction problem consists of a set of variables that can take on values from a given
domain, together with a set of constraints that specify properties of the solution. Section 3.7
examined uninformed search methods for CSPs, mostly variants of depth-first search. Here,
we extend the analysis by considering heuristics for selecting a variable to instantiate and for
choosing a value for the variable.

Section 4.2. Heuristic Functions 105

MOST-
CONSTRAINED-
VARIABLE

LEAST-
^STRAINING-

To illustrate the basic idea, we will use the map-coloring problem shown in Figure 4.9.
(The idea of map coloring is to avoid coloring adjacent countries with the same color.) Suppose
that we can use at most three colors (red, green, and blue), and that we have chosen green for
country A and red for country B. Intuitively, it seems obvious that we should color E next, because
the only possible color for E is blue. All the other countries have a choice of colors, and we
might make the wrong choice and have to backtrack. In fact, once we have colored E blue, then
we are forced to color C red and F green. After that, coloring D either blue or red results in a
solution. In other words, we have solved the problem with no search at all.

GREEN

RED

Figure 4.9 A map-coloring problem after the first two variables (A and B) have been selected.
Which country should we color next?

This intuitive idea is called the most-constrained-variable heuristic. It is used with
forward checking (see Section 3.7), which keeps track of which values are still allowed for each
variable, given the choices made so far. At each point in the search, the variable with the fewest
possible values is chosen to have a value assigned. In this way, the branching factor in the search
tends to be minimized. For example, when this heuristic is used in solving «-queens problems,
the feasible problem size is increased from around 30 for forward checking to approximately
100. The most-constraining-variable heuristic is similarly effective. It attempts to reduce the
branching factor on future choices by assigning a value to the variable that is involved in the
largest number of constraints on other unassigned variables.

Once a variable has been selected, we still need to choose a value for it. Suppose that
we decide to assign a value to country C after A and B. One's intuition is that red is a better
choice than blue, because it leaves more freedom for future choices. This intuition is the
least-constraining-value heuristic—choose a value that rules out the smallest number of values
in variables connected to the current variable by constraints. When applied to the «-queens
problem, it allows problems up to n=1000 to be solved.

106 Chapter 4. Informed Search Methods

4.3 MEMORY BOUNDED SEARCH

Despite all the clever search algorithms that have been invented, the fact remains that some prob-
lems are intrinsically difficult, by the nature of the problem. When we run up against these expo-
nentially complex problems, something has to give. Figure 3.12 shows that the first thing to give
is usually the available memory. In this section, we investigate two algorithms that are designed
to conserve memory. The first, IDA*, is a logical extension of ITERATIVE-DEEPENING-SEARCH
to use heuristic information. The second, SMA*, is similar to A*, but restricts the queue size to
fit into the available memory.

IDA'

6-ADMISSIBLE

Iterative deepening A* search (IDA*)
In Chapter 3, we showed that iterative deepening is a useful technique for reducing memory
requirements. We can try the same trick again, turning A* search into iterative deepening A*, or
IDA* (see Figure 4.10). In this algorithm, each iteration is a depth-first search, just as in regular
iterative deepening. The depth-first search is modified to use an/-cost limit rather than a depth
limit. Thus, each iteration expands all nodes inside the contour for the current/-cost, peeping
over the contour to find out where the next contour lies. (See the DPS-CONTOUR function in
Figure 4.10.) Once the search inside a given contour has been completed, a new iteration is
started using a new/-cost for the next contour.

IDA* is complete and optimal with the same caveats as A* search, but because it is depth-
first, it only requires space proportional to the longest path that it explores. If b is the smallest
operator cost and/* the optimal solution cost, then in the worst case, IDA* will require bf*!8
nodes of storage. In most cases, bd is a good estimate of the storage requirements.

The time complexity of IDA* depends strongly on the number of different values that the
heuristic function can take on. The Manhattan distance heuristic used in the 8-puzzle takes on
one of a small number of integer values. Typically,/ only increases two or three times along any
solution path. Thus, IDA* only goes through two or three iterations, and its efficiency is similar
to that of A*—in fact, the last iteration of IDA* usually expands roughly the same number of
nodes as A*. Furthermore, because IDA* does not need to insert and delete nodes on a priority
queue, its overhead per node can be much less than that for A*. Optimal solutions for many
practical problems were first found by IDA*, which for several years was the only optimal,
memory-bounded, heuristic algorithm.

Unfortunately, IDA* has difficulty in more complex domains. In the travelling salesperson
problem, for example, the heuristic value is different for every state. This means that each contour
only includes one more state than the previous contour. If A* expands N nodes, IDA* will have
to go through N iterations and will therefore expand 1 +2 + • • - + N = O(N2) nodes. Now if N is
too large for the computer's memory, then N2 is almost certainly too long to wait!

One way around this is to increase the/-cost limit by a fixed amount e on each iteration, so
that the total number of iterations is proportional to 1/e. This can reduce the search cost, at the
expense of returning solutions that can be worse than optimal by at most e. Such an algorithm is
called f -admissible.

Section 4.3. Memory Bounded Search 107

SMA'

function IDA*(pmblem) returns a solution sequence
inputs: problem, a problem
static: f-limit, the current/- COST limit

mot, a node

root <— MAKE-NODE(lNlTIAL-STATE[prt>W<?m])
f-limit <—f- CoSJ(mot)
loop do

solution, f-limit — DFS-CONTOUR(root, f-limit)
if solution is non-null then return solution
it f-limit = oo then return failure; end

function DFS-CoNTOUR(norfe, f-limit) returns a solution sequence and a new/- COST limit
inputs: rcorfe, a node

f-limit, the current/- COST limit
static: nexf-/, the/- COST limit for the next contour, initially oc

if/- CoSTfnode] > f-limit then return null,/- CoST[node]
if GoAL-TEST[proWem](STATE[node]) then return node, f-limit
for each node j in SucCESSORS(norfe) do

solution, new-f— DFS-CoNTOUR(s, f-limit)
if solution is non-null then return solution, f-limit
next-f<— MiN(next-f, new-f); end

return null, next-f

Figure 4.10 The IDA* (Iterative Deepening A*) search algorithm.

SMA* search
IDA*'s difficulties in certain problem spaces can be traced to using too little memory. Between
iterations, it retains only a single number, the current/-cost limit. Because it cannot remember
its history, IDA* is doomed to repeat it. This is doubly true in state spaces that are graphs rather
than trees (see Section 3.6). IDA* can be modified to check the current path for repeated states,
but is unable to avoid repeated states generated by alternative paths.

In this section, we describe the SMA* (Simplified Memory-Bounded A*) algorithm, which
can make use of all available memory to carry out the search. Using more memory can only
improve search efficiency—one could always ignore the additional space, but usually it is better to
remember a node than to have to regenerate it when needed. SMA* has the following properties:

• It will utilize whatever memory is made available to it.
• It avoids repeated states as far as its memory allows.
• It is complete if the available memory is sufficient to store the shallowest solution path.
• It is optimal if enough memory is available to store the shallowest optimal solution path.

Otherwise, it returns the best solution that can be reached with the available memory.
• When enough memory is available for the entire search tree, the search is optimally efficient.

108 Chapter 4. Informed Search Methods

The one unresolved question is whether SMA* is always optimally efficient among all algorithms
given the same heuristic information and the same memory allocation.

The design of SMA* is simple, at least in overview. When it needs to generate a successor
but has no memory left, it will need to make space on the queue. To do this, it drops a node from
the queue. Nodes that are dropped from the queue in this way are called forgotten nodes. It
prefers to drop nodes that are unpromising—that is, nodes with high/-cost. To avoid reexploring
subtrees that it has dropped from memory, it retains in the ancestor nodes information about the
quality of the best path in the forgotten subtree. In this way, it only regenerates the subtree when
all other paths have been shown to look worse than the path it has forgotten. Another way of
saying this is that if all the descendants of a node n are forgotten, then we will not know which
way to go from «, but we will still have an idea of how worthwhile it is to go anywhere from n.

SMA* is best explained by an example, which is illustrated in Figure 4.11. The top of the
figure shows the search space. Each node is labelled with g + h — f values, and the goal nodes (D,
F, I, J) are shown in squares. The aim is to find the lowest-cost goal node with enough memory
for only three nodes. The stages of the search are shown in order, left to right, with each stage
numbered according to the explanation that follows. Each node is labelled with its current/-cost,
which is continuously maintained to reflect the least/-cost of any of its descendants.4 Values in
parentheses show the value of the best forgotten descendant. The algorithm proceeds as follows:

1. At each stage, one successor is added to the deepest lowest-/-cost node that has some
successors not currently in the tree. The left child B is added to the root A.

2. Now/(A) is still 12, so we add the right child G (/' = 13). Now that we have seen all the
children of A, we can update its/-cost to the minimum of its children, that is, 13. The
memory is now full.

3. G is now designated for expansion, but we must first drop a node to make room. We drop
the shallowest highest-/-cost leaf, that is, B. When we have done this, we note that A's best
forgotten descendant has/ = 15, as shown in parentheses. We then add H, with/(//) =18.
Unfortunately, H is not a goal node, but the path to H uses up all the available memory.
Hence, there is no way to find a solution through H, so we set/'(//) = oo.

4. G is expanded again. We drop H, and add I, with/(7) = 24. Now we have seen both
successors of G, with values of oo and 24, so/(G) becomes 24. f(A) becomes 15, the
minimum of 15 (forgotten successor value) and 24. Notice that I is a goal node, but it
might not be the best solution because A's/-cost is only 15.

5. A is once again the most promising node, so B is generated for the second time. We have
found that the path through G was not so great after all.

6. C, the first successor of B, is a nongoal node at the maximum depth, so/(C) = oo.
7. To look at the second successor, D, we first drop C. Then/(D) = 20, and this value is

inherited by B and A.
8. Now the deepest, lowest-/-cost node is D. D is therefore selected, and because it is a goal

node, the search terminates.

4 Values computed in this way are called backed-up values. Because/(n) is supposed to be an estimate of the least-cost
solution path through n, and a solution path through n is bound to go through one of n's descendants, backing up the least
/-cost among the descendants is a sound policy.

Section 4.3. Memory Bounded Search 109

0+12=12

24+0=24

24+5=29

12'

15

A

/ A
15 13

13(15)

15(15)

24(oo) A15 24

20(24)

20(oo)

Figure 4.11 Progress of an SMA* search with a memory size of three nodes, on the state space
shown at the top. Each node is labelled with its current f'-cost. Values in parentheses show the
value of the best forgotten descendant.

no Chapter 4. Informed Search Methods

In this case, there is enough memory for the shallowest optimal solution path. If J had had a cost
of 19 instead of 24, however, SMA* still would not have been able to find it because the solution
path contains four nodes. In this case, SMA* would have returned D, which would be the best
reachable solution. It is a simple matter to have the algorithm signal that the solution found may
not be optimal.

A rough sketch of SMA* is shown in Figure 4.12. In the actual program, some gymnastics
are necessary to deal with the fact that nodes sometimes end up with some successors in memory
and some forgotten. When we need to check for repeated nodes, things get even more complicated.
SMA* is the most complicated search algorithm we have seen yet.

function SMA*(pmblem) returns a solution sequence
inputs: problem, a problem
static: Queue, a queue of nodes ordered by/-cost

Queue — MAKE-QUEUE({MAKE-NODE(lNITIAL-STATE[proWem])})
loop do

if Queue is empty then return failure
n — deepest least-f-cost node in Queue
if GoAL-TEST(n) then return success
S — NEXT-SUCCESSOR(rc)
if s is not a goal and is at maximum depth then

f(.v) - oc
else

f(s) <- MAX(f(n), g(i)+h(j))
if all of ;j's successors have been generated then

update n's/-cost and those of its ancestors if necessary
if SUCCESSORS(») all in memory then remove n from Queue
if memory is full then

delete shallowest, highest-f-cost node in Queue
remove it from its parent's successor list
insert its parent on Queue if necessary

insert s on Queue
end

Figure 4.12 Sketch of the SMA* algorithm. Note that numerous details have been omitted in
the interests of clarity.

Given a reasonable amount of memory, SMA* can solve significantly more difficult prob-
lems than A* without incurring significant overhead in terms of extra nodes generated. It performs
well on problems with highly connected state spaces and real-valued heuristics, on which IDA*
has difficulty. On very hard problems, however, it will often be the case that SMA* is forced
to continually switch back and forth between a set of candidate solution paths. Then the extra
time required for repeated regeneration of the same nodes means that problems that would be
practically solvable by A*, given unlimited memory, become intractable for SMA*. That is to

Section 4.4. Iterative Improvement Algorithms 111

say, memory limitations can make a problem intractable from the point of view of computation
time. Although there is no theory to explain the trade-off between time and memory, it seems
that this is an inescapable problem. The only way out is to drop the optimality requirement.

4. A ITERATIVE IMPROVEMENT ALGORITHMS

ITERATIVE
IMPROVEMENT

HILL-CLIMBING

GRADIENT DESCENT
SIMULATED
ANNEALING

We saw in Chapter 3 that several well-known problems (for example, 8-queens and VLSI layout)
have the property that the state description itself contains all the information needed for a solution.
The path by which the solution is reached is irrelevant. In such cases, iterative improvement
algorithms often provide the most practical approach. For example, we start with all 8 queens on
the board, or all wires routed through particular channels. Then, we might move queens around
trying to reduce the number of attacks; or we might move a wire from one channel to another
to reduce congestion. The general idea is to start with a complete configuration and to make
modifications to improve its quality.

The best way to understand iterative improvement algorithms is to consider all the states
laid out on the surface of a landscape. The height of any point on the landscape corresponds to
the evaluation function of the state at that point (Figure 4.13). The idea of iterative improvement
is to move around the landscape trying to find the highest peaks, which are the optimal solutions.
Iterative improvement algorithms usually keep track of only the current state, and do not look
ahead beyond the immediate neighbors of that state. This resembles trying to find the top of
Mount Everest in a thick fog while suffering from amnesia. Nonetheless, sometimes iterative
improvement is the method of choice for hard, practical problems. We will see several applications
in later chapters, particularly to neural network learning in Chapter 19.

Iterative improvement algorithms divide into two major classes. Hill-climbing (or, alter-
natively, gradient descent if we view the evaluation function as a cost rather than a quality)
algorithms always try to make changes that improve the current state. Simulated annealing
algorithms can sometimes make changes that make things worse, at least temporarily.

Hill-climbing search
The hill-climbing search algorithm is shown in Figure 4.14. It is simply a loop that continually
moves in the direction of increasing value. The algorithm does not maintain a search tree, so the
node data structure need only record the state and its evaluation, which we denote by VALUE.
One important refinement is that when there is more than one best successor to choose from, the
algorithm can select among them at random. This simple policy has three well-known drawbacks:

<) Local maxima: a local maximum, as opposed to a global maximum, is a peak that is lower
than the highest peak in the state space. Once on a local maximum, the algorithm will halt
even though the solution may be far from satisfactory.

<> Plateaux: a plateau is an area of the state space where the evaluation function is essentially
flat. The search will conduct a random walk.

112 Chapter 4. Informed Search Methods

evaluation

Figure 4.13 Iterative improvement algorithms try to find peaks on a surface of states where
height is defined by the evaluation function.

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node

next, a node

current <— MAKE-NODE(lNlTIAL-STATE[proW(?m])
loop do

next'— a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current *—next

end

Figure 4.14 The hill-climbing search algorithm.

RANDOM-RESTART
HILL-CLIMBING

<) Ridges: a ridge may have steeply sloping sides, so that the search reaches the top of the
ridge with ease, but the top may slope only very gently toward a peak. Unless there happen
to be operators that move directly along the top of the ridge, the search may oscillate from
side to side, making little progress.

In each case, the algorithm reaches a point at which no progress is being made. If this happens, an
obvious thing to do is start again from a different starting point. Random-restart hill-climbing
does just this: it conducts a series of hill-climbing searches from randomly generated initial
states, running each until it halts or makes no discernible progress. It saves the best result found
so far from any of the searches. It can use a fixed number of iterations, or can continue until the
best saved result has not been improved for a certain number of iterations.

ISection 4.4. Iterative Improvement Algorithms 113

Clearly, if enough iterations are allowed, random-restart hill-climbing will eventually find
the optimal solution. The success of hill-climbing depends very much on the shape of the state-
space "surface": if there are only a few local maxima, random-restart hill-climbing will find a
good solution very quickly. A realistic problems has surface that looks more like a porcupine.
If the problem is NP-complete, then in all likelihood we cannot do better than exponential time.
It follows that there must be an exponential number of local maxima to get stuck on. Usually,
however, a reasonably good solution can be found after a small number of iterations.

Simulated annealing
Instead of starting again randomly when stuck on a local maximum, we could allow the search
to take some downhill steps to escape the local maximum. This is roughly the idea of simulated
annealing (Figure 4.15). The innermost loop of simulated annealing is quite similar to hill-
climbing. Instead of picking the best move, however, it picks a random move. If the move
actually improves the situation, it is always executed. Otherwise, the algorithm makes the move
with some probability less than 1. The probability decreases exponentially with the "badness" of
the move—the amount AE by which the evaluation is worsened.

A second parameter 7is also used to determine the probability. At higher values of T, "bad"
moves are more likely to be allowed. As T tends to zero, they become more and more unlikely,
until the algorithm behaves more or less like hill-climbing. The schedule input determines the
value of T as a function of how many cycles already have been completed.

The reader by now may have guessed that the name "simulated annealing" and the parameter
names A£ and T were chosen for a good reason. The algorithm was developed from an explicit
analogy with annealing—the process of gradually cooling a liquid until it freezes. The VALUE
function corresponds to the total energy of the atoms in the material, and T corresponds to the

function SIMULATED-ANNEALiNCXproWewi, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to "temperature"
static: current, a node

next, a node
T, a "temperature" controlling the probability of downward steps

current^ MAKE-NODE(lNITIAL-STATE[/>roWeTO])
for t <— 1 to oo do

T'<— schedule[t]
if T=0 then return current
next <— a randomly selected successor of current
A.E«- VALUEfnexf] - VALUE[current]
if A£ > 0 then current^ next
else current^- nexton\y with probability e^17

Figure 4.15 The simulated annealing search algorithm.

114 Chapter 4. Informed Search Methods

temperature. The schedule determines the rate at which the temperature is lowered. Individual
moves in the state space correspond to random fluctuations due to thermal noise. One can prove
that if the temperature is lowered sufficiently slowly, the material will attain a lowest-energy
(perfectly ordered) configuration. This corresponds to the statement that if schedule lowers T
slowly enough, the algorithm will,find a global optimum.

Simulated annealing was first used extensively to solve VLSI layout problems in the
early 1980s. Since then, it has been applied widely to factory scheduling and other large-scale
optimization tasks. In Exercise 4.12, you are asked to compare its performance to that of
random-restart hill-climbing on the «-queens puzzle.

HEURISTIC REPAIR

MIN-CONFLICTS

Applications in constraint satisfaction problems

Constraint satisfaction problems (CSPs) can be solved by iterative improvement methods by
first assigning values to all the variables, and then applying modification operators to move the
configuration toward a solution. Modification operators simply assign a different value to a
variable. For example, in the 8-queens problem, an initial state has all eight queens on the board,
and an operator moves a queen from one square to another.

Algorithms that solve CSPs in this fashion are often called heuristic repair methods,
because they repair inconsistencies in the current configuration. In choosing a new value for a
variable, the most obvious heuristic is to select the value that results in the minimum number of
conflicts with other variables—the min-conflicts heuristic. This is illustrated in Figure 4.16 for
an 8-queens problem, which it solves in two steps.

Min-conflicts is surprisingly effective for many CSPs, and is able to solve the million-
queens problem in an average of less than 50 steps. It has also been used to schedule observations
for the Hubble space telescope, reducing the time taken to schedule a week of observations from
three weeks (!) to around ten minutes. Min-conflicts is closely related to the GSAT algorithm
described on page 182, which solves problems in propositional logic.

Figure 4.16 A two-step solution for an 8-queens problem using min-conflicts. At each stage, a
queen is chosen for reassignment in its column. The number of conflicts (in this case, the number
of attacking queens) is shown in each square. The algorithm moves the queen to the min-conflict
square, breaking ties randomly.

Section 4.5. Summary

4 j_ SUMMARY

115

This chapter has examined the application of heuristics to reduce search costs. We have looked
at number of algorithms that use heuristics, and found that optimality comes at a stiff price in
terms of search cost, even with good heuristics.

• Best-first search is just GENERAL-SEARCH where the minimum-cost nodes (according to
some measure) are expanded first.

• If we minimize the estimated cost to reach the goal, h(n), we get greedy search. The
search time is usually decreased compared to an uninformed algorithm, but the algorithm
is neither optimal nor complete.

• Minimizing/(n) = g(ri) + h(n) combines the the advantages of uniform-cost search and
greedy search. If we handle repeated states and guarantee that h(n) never overestimates,
we get A* search.

• A* is complete, optimal, and optimally efficient among all optimal search algorithms. Its
space complexity is still prohibitive.

• The time complexity of heuristic algorithms depends on the quality of the heuristic function.
Good heuristics can sometimes be constructed by examining the problem definition or by
generalizing from experience with the problem class.

• We can reduce the space requirement of A* with memory-bounded algorithms such as
IDA* (iterative deepening A*) and SMA* (simplified memory-bounded A*).

• Iterative improvement algorithms keep only a single state in memory, but can get stuck
on local maxima. Simulated annealing provides a way to escape local maxima, and is
complete and optimal given a long enough cooling schedule.

• For constraint satisfaction problems, variable and value ordering heuristics can provide
huge performance gains. Current algorithms often^solve very large problems very quickly.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The same paper that introduced the phrase "heuristic search" (Newell and Ernst, 1965) also
introduced the concept of an evaluation function, understood as an estimate of the distance to
the goal, to guide search; this concept was also proposed in the same year by Lin (1965). Doran
and Michie (1966) did extensive experimental studies of heuristic search as applied to a number
of problems, especially the 8-puzzle and the 15-puzzle. Although Doran and Michie carried out
theoretical analyses of path length and "penetrance" (the ratio of path length to the total number
of nodes examined so far) in heuristic search, they appear to have used their heuristic functions as
the sole guiding element in the search, ignoring the information provided by current path length
that is used by uniform-cost search and by A*.

The A* algorithm, incorporating the current path length into heuristic search, was developed
by Hart, Nilsson, and Raphael (1968). Certain subtle technical errors in the original presentation

116 Chapter 4. Informed Search Methods

of A* were corrected in a later paper (Hart et al., 1972). An excellent summary of early work in
search is provided by Nilsson (1971).

The original A* paper introduced a property of heuristics called "consistency." The
monotonicity property of heuristics was introduced by Pohl (1977) as a simpler replacement for
the consistency property. Pearl (19,84) showed that consistency and monotonicity were equivalent
properties. The pathmax equation was first used in A* search by Mero (1984).

Pohl (1970; 1977) pioneered the study of the relationship between the error in A*'s heuristic
function and the time complexity of A*. The proof that A* runs in linear time if the error in the
heuristic function is bounded by a constant can be found in Pohl (1977) and in Gaschnig (1979).
Pearl (1984) strengthened this result to allow a logarithmic growth in the error. The "effective
branching factor" measure of the efficiency of heuristic search was proposed by Nilsson (1971).

A* and other state-space search algorithms are closely related to the branch-and-bound
techniques that are widely used in operations research. An early survey of branch-and-bound
techniques is given by Lawler and Wood (1966). The seminal paper by Held and Karp (1970)
considers the use of the minimum-spanning-tree heuristic (see Exercise 4.11) for the travelling
salesperson problem, showing how such admissible heuristics can be derived by examining
relaxed problems. Generation of effective new heuristics by problem relaxation was successfully
implemented by Prieditis (1993), building on earlier work with Jack Mostow (Mostow and
Prieditis, 1989). The probabilistic interpretation of heuristics was investigated in depth by
Hansson and Mayer (1989).

The relationships between state-space search and branch-and-bound have been investigated
in depth by Dana Nau,Laveen Kanal, andVipinKumar(KumarandKanal, 1983;Naue?a/., 1984;
Kumar et al., 1988). Martelli and Montanari (1978) demonstrate a connection between dynamic
programming (see Chapter 17) and certain types of state-space search. Kumar and Kanal (1988)
attempt a "grand unification" of heuristic search, dynamic programming, and branch-and-bound
techniques under the name of CDP—the "composite decision process." More material along
these lines is found in Kumar (1991).

There are a large number of minor and major variations on the A* algorithm. Pohl (1973)
proposed the use of dynamic weighting, which uses a weighted sum/w,(n) = wgg(n) + wi,h(n) of
the current path length and the heuristic function as an evaluation function, rather than the simple
sum/(n) = g(ri) + h(n) used in A*, and dynamically adjusts the weights wg and w/, according
to certain criteria as the search progresses. Dynamic weighting usually cannot guarantee that
optimal solutions will be found, as A* can, but under certain circumstances dynamic weighting
can find solutions much more efficiently than A*.

The most-constrained-variable heuristic was introduced by Bitner and Reingold (1975), and
further investigated by Purdom (1983). Empirical results on the n-queens problem were obtained
by Stone and Stone (1986). Brelaz (1979) used the most-constraining-variable heuristic as a tie-
breaker after applying the most-constrained-variable heuristic. The resulting algorithm, despite
its simplicity, is still the best method for yt-coloring arbitrary graphs. The least-constraining-value
heuristic was developed and analyzed in Haralick and Elliot (1980). The min-conflicts heuristic
was first proposed by Gu (1989), and was developed independently by Steve Minton (Minton et
al., 1992). Minton explains the remarkable performance of min-conflicts by modelling the search
process as a random walk that is biased to move toward solutions. The effectiveness of algorithms
such as min-conflicts and the related GSAT algorithm (see Exercise 6.15) in solving randomly

Section 4.5. Summary 117

TABU SEARCH

PARALLEL SEARCH

generated problems almost "instantaneously," despite the NP-completeness of the associated
problem classes, has prompted an intensive investigation. It turns out that almost all randomly
generated problems are either trivially easy or have no solutions. Only if the parameters of the
problem generator are set in a certain narrow range, within which roughly half of the problems
are solvable, do we find "hard" problem instances (Kirkpatrick and Selman, 1994).

Because computers in the late 1950s and early 1960s had at most a few thousand words
of main memory, memory-bounded heuristic search was an early research topic. Doran and
Michie's (1966) Graph Traverser, one of the earliest search programs, commits to an operator
after searching best-first up to the memory limit. As with other "staged search" algorithms,
optimality cannot be ensured because until the best path has been found the optimality of the
first step remains in doubt. IDA* was the first widely used optimal, memory-bounded, heuristic
search algorithm, and a large number of variants have been developed. The first reasonably public
paper dealing specifically with IDA* was Korf's (1985b), although Korf credits the initial idea
to a personal communication from Judea Pearl and also mentions Berliner and Goetsch's (1984)
technical report describing their implementation of IDA* concurrently with Korf's own work.
A more comprehensive exposition of IDA* can be found in Korf (1985a). A thorough analysis
of the efficiency of IDA*, and its difficulties with real-valued heuristics, appears in Patrick
et al. (1992). The SMA* algorithm described in the text was based on an earlier algorithm
called MA* (Chakrabarti et al, 1989), and first appeared in Russell (1992). The latter paper
also introduced the "contour" representation of search spaces. Kaindl and Khorsand (1994)
apply SMA* to produce a bidirectional search algorithm that exhibits significant performance
improvements over previous algorithms.

Three other memory-bounded algorithms deserve mention. RBFS (Korf, 1993) and
IE (Russell, 1992) are two very similar algorithms that use linear space and a simple recur-
sive formulation, like IDA*, but retain information from pruned branches to improve efficiency.
Particularly in tree-structured search spaces with discrete-valued heuristics, they appear to be
competitive with SMA* because of their reduced overhead. RBFS is also able to carry out a
best-first search when the heuristic is inadmissible. Finally, tabu search algorithms (Glover,
1989), which maintain a bounded list of states that must not be revisited, have proved effective
for optimization problems in operations research.

Simulated annealing was first described by Kirkpatrick, Gelatt, and Vecchi (1983), who
borrowed the algorithm directly from the Metropolis algorithm used to simulate complex
systems in statistical physics (Metropolis et al., 1953). Simulated annealing is now a subfield in
itself, with several hundred papers published every year.

The topic of parallel search algorithms was not covered in the chapter, partly because it
requires a lengthy discussion of parallel architectures. As parallel computers are becoming widely
available, parallel search is becoming an important topic in both Al and theoretical computer
science. A brief introduction to the Al literature can be found in Mahanti and Daniels (1993).

By far the most comprehensive source on heuristic search algorithms is Pearl's (1984)
Heuristics text. This book provides especially good coverage of the wide variety of offshoots and
variations of A*, including rigorous proofs of their formal properties. Kanal and Kumar (1988)
present an anthology of substantive and important articles on heuristic search. New results on
search algorithms appear regularly in the journal Artificial Intelligence.

118 Chapter 4. Informed Search Methods

EXERCISES

4.1 Suppose that we run a greedy search algorithm with h(ri) = —g(n). What sort of search will
the greedy search emulate?

4.2 Come up with heuristics for the following problems. Explain whether they are admissible,
and whether the state spaces contain local maxima with your heuristic:

a. The general case of the chain problem (i.e., with an arbitrary goal state) from Exercise 3.15.
b. Algebraic equation solving (e.g., "solve jr>'3 = 3 — xy for*").
c. Path planning in the plane with rectangular obstacles (see also Exercise 4.13).
d. Maze problems, as defined in Chapter 3.

4.3 Consider the problem of constructing crossword puzzles: fitting words into a grid of
intersecting horizontal and vertical squares. Assume that a list of words (i.e., a dictionary) is
provided, and that the task is to fill in the squares using any subset of this list. Go through a
complete goal and problem formulation for this domain, and choose a search strategy to solve it.
Specify the heuristic function, if you think one is needed.

4.4 Sometimes there is no good evaluation function for a problem, but there is a good comparison
method: a way to tell if one node is better than another, without assigning numerical values to
either. Show that this is enough to do a best-first search. What properties of best-first search do
we give up if we only have a comparison method?

4.5 We saw on page 95 that the straight-line distance heuristic is misleading on the problem of
going from lasi to Fagaras. However, the heuristic is perfect on the opposite problem: going from
Fagaras to lasi. Are there problems for which the heuristic is misleading in both directions?

4.6 Invent a heuristic function for the 8-puzzle that sometimes overestimates, and show how it
can lead to a suboptimal solution on a particular problem.

4.7 Prove that if the heuristic function h obeys the triangle inequality, then the/-cost along any
path in the search tree is nondecreasing. (The triangle inequality says that the sum of the costs
from A to B and B to C must not be less than the cost from A to C directly.)
4.8 We showed in the chapter that an admissible heuristic heuristic (when combined with
pathmax) leads to monotonically nondecreasing/ values along any path (i.e.,f(successor(n)) >
/(«)). Does the implication go the other way? That is, does monotonicity in/ imply admissibility
of the associated hi

4.9 We gave two simple heuristics for the 8-puzzle: Manhattan distance and misplaced tiles.
Several heuristics in the literature purport to be better than either of these. (See, for example, Nils-
son (1971) for additional improvements on Manhattan distance, and Mostow and Prieditis (1989)
for heuristics derived by semimechanical methods.) Test these claims by implementing the
heuristics and comparing the performance of the resulting algorithms.

4.10 Would a bidirectional A* search be a good idea? Under what conditions would it be
applicable? Describe how the algorithm would work.

Section 4.5. Summary 119

i-sss£j?%!£ 4.11 The travelling salesperson problem (TSP) can be solved using the minimum spanning tree
55?=^-" (MST) heuristic, which is used to estimate the cost of completing a tour, given that a partial tour

has already been constructed. The MST cost of a set of cities is the smallest sum of the link costs
of any tree that connects all the cities.

a. Show how this heuristic can be derived using a relaxed version of the TSP.
b. Show that the MST heuristic dominates straight-line distance.
c. Write a problem generator for instances of the TSP where cities are represented by random

points in the unit square.
d. Find an efficient algorithm in the literature for constructing the MST, and use it with an

admissible search algorithm to solve instances of the TSP.

4.12 Implement the n-queens problem and solve it using hill-climbing, hill-climbing with
random restart, and simulated annealing. Measure the search cost and percentage of solved
problems using randomly generated start states. Graph these against the difficulty of the problems
(as measured by the optimal solution length). Comment on your results.

4.13 Consider the problem of finding the shortest path between two points on a plane that has
convex polygonal obstacles as shown in Figure 4.17. This is an idealization of the problem that
a robot has to solve to navigate its way around a crowded environment.

a. Suppose the state space consists of all positions (x,y) in the plane. How many states are
there? How many paths are there to the goal?

b. Explain briefly why the shortest path from one polygon vertex to any other in the scene
must consist of straight-line segments joining some of the vertices of the polygons. Define
a good state space now. How large is this state space?

c. Define the necessary functions to implement the search problem, including a successor
function that takes a vertex as input and returns the set of vertices that can be reached in
a straight line from the given vertex. (Do not forget the neighbors on the same polygon.)
Use the straight-line distance for the heuristic function.

d. Implement any of the admissible algorithms discussed in the chapter. Keep the implemen-
tation of the algorithm completely independent of the specific domain. Then apply it to
solve various problem instances in the domain.

4.14 In this question, we will turn the geometric scene from a simple data structure into a
complete environment. Then we will put the agent in the environment and have it find its way to
the goal.

a. Implement an evaluation environment as described in Chapter 2. The environment should
behave as follows:

• The percept at each cycle provides the agent with a list of the places that it can see
from its current location. Each place is a position vector (with an x and y component)
giving the coordinates of the place relative to the agent. Thus, if the agent is at (1,1)
and there is a visible vertex at (7,3), the percept will include the position vector (6,2).
(It therefore will be up to the agent to find out where it is! It can assume that all
locations have a different "view.")

120 Chapter 4. Informed Search Methods

Figure 4.17 A scene with polygonal obstacles.

• The action returned by the agent will be the vector describing the straight-line path
it wishes to follow (thus, the relative coordinates of the place it wishes to go). If the
move does not bump into anything, the environment should "move" the agent and
give it the percept appropriate to the next place; otherwise it stays put. If the agent
wants to move (0,0) and is at the goal, then the environment should move the agent
to a random vertex in the scene. (First pick a random polygon, and then a random
vertex on that polygon.)

b. Implement an agent function that operates in this environment as follows:

• If it does not know where it is, it will need to calculate that from the percept.
• If it knows where it is and does not have a plan, it must calculate a plan to get home

to the goal, using a search algorithm.
• Once it knows where it is and has a plan, it should output the appropriate action from

the plan. It should say (0,0) once it gets to the goal.

c. Show the environment and agent operating together. The environment should print out
some useful messages for the user showing what is going on.

d. Modify the environment so that 30% of the time the agent ends up at an unintended
destination (chosen randomly from the other visible vertices if any, otherwise no move at
all). This is a crude model of the actual motion errors from which both humans and robots
suffer. Modify the agent so that it always tries to get back on track when this happens.
What it should do is this: if such an error is detected, first find out where it is and then
modify its plan to first go back to where it was and resume the old plan. Remember that
sometimes getting back to where it was may fail also! Show an example of the agent
successfully overcoming two successive motion errors and still reaching the goal.

e. Now try two different recovery schemes after an error: head for the closest vertex on
the original route; and replan a route to the goal from the new location. Compare the

Section 4.5. Summary 121

performance of the three recovery schemes using a variety of exchange rates between
search cost and path cost.

4.15 In this exercise, we will examine hill-climbing in the context of robot navigation, using
the environment in Figure 4.17 as an example.

a. Repeat Exercise 4.14 using hill-climbing. Does your agent ever get stuck on a local
maximum? Is it possible for it to get stuck with convex obstacles?

b. Construct a nonconvex polygonal environment in which the agent gets stuck.
c. Modify the hill-climbing algorithm so that instead of doing a depth-1 search to decide

where to go next, it does a depth-& search. It should find the best &-step path and do one
step along it, and then repeat the process.

d. Is there some k for which the new algorithm is guaranteed to escape from local maxima?

4.16 Prove that IDA* returns optimal solutions whenever there is sufficient memory for the
longest path with cost < /*. Could it be modified along the lines of SMA* to succeed even with
enough memory for only the shortest solution path?

4.17 Compare the performance of A*, SMA*, and IDA* on a set of randomly generated
problems in the 8-puzzle (with Manhattan distance) and TSP (with minimum spanning tree)
domains. Discuss your results. What happens to the performance of IDA* when a small random
number is added to the heuristic values in the 8-puzzle domain?

4.18 Proofs of properties of SMA*:
a. SMA* abandons paths that fill up memory by themselves but do not contain a solution.

Show that without this check, SMA" will get stuck in an infinite loop whenever it does not
have enough memory for the shortest solution path.

b. Prove that SMA* terminates in a finite space or if there is a finite path to a goal. The proof
will work by showing that it can never generate the same tree twice. This follows from the
fact that between any two expansions of the same node, the node's parent must increase its
/-cost. We will prove this fact by a downward induction on the depth of the node.

(i) Show that the property holds for any node at depth d = MAX.
(ii) Show that if it holds for all nodes at depth d + 1 or more, it must also hold for all

nodes at depth d.

5 GAME PLAYING

In which we examine the problems that arise when we try to plan ahead in a world
that includes a hostile agent.

5.1 INTRODUCTION: GAMES AS SEARCH PROBLEMS

Games have engaged the intellectual faculties of humans—sometimes to an alarming degree—for
as long as civilization has existed. Board games such as chess and Go are interesting in part
because they offer pure, abstract competition, without the fuss and bother of mustering up two
armies and going to war. It is this abstraction that makes game playing an appealing target of AI
research. The state of a game is easy to represent, and agents are usually restricted to a fairly
small number of well-defined actions. That makes game playing an idealization of worlds in
which hostile agents act so as to diminish one's well-being. Less abstract games, such as croquet
or football, have not attracted much interest in the AI community.

Game playing is also one of the oldest areas of endeavor in artificial intelligence. In 1950,
almost as soon as computers became programmable, the first chess programs were written by
Claude Shannon (the inventor of information theory) and by Alan Turing. Since then, there has
been steady progress in the standard of play, to the point where current systems can challenge
the human world champion without fear of gross embarrassment.

Early researchers chose chess for several reasons. A chess-playing computer would be an
existence proof of a machine doing something thought to require intelligence. Furthermore, the
simplicity of the rules, and the fact that the world state is fully accessible to the program1 means
that it is easy to represent the game as a search through a space of possible game positions. The
computer representation of the game actually can be correct in every relevant detail—unlike the
representation of the problem of fighting a war, for example.

' Recall from Chapter 2 that accessible means that the agent can perceive everything there is to know about the
environment. In game theory, chess is called a game of perfect information.

122

Section 5.2. Perfect Decisions in Two-Person Games 123

The presence of an opponent makes the decision problem somewhat more complicated
than the search problems discussed in Chapter 3. The opponent introduces uncertainty, because
one never knows what he or she is going to do. In essence, all game-playing programs must deal
with the contingency problem denned in Chapter 3. The uncertainty is not like that introduced,
say, by throwing dice or by the weather. The opponent will try as far as possible to make the least
benign move, whereas the dice arid the weather are assumed (perhaps wrongly!) to be indifferent
to the goals of the agent. This complication is discussed in Section 5.2.

But what makes games really different is that they are usually much too hard to solve.
Chess, for example, has an average branching factor of about 35, and games often go to 50
moves by each player, so the search tree has about 35100 nodes (although there are "only" about
1040 different legal positions). Tic-Tac-Toe (noughts and crosses) is boring for adults precisely
because it is easy to determine the right move. The complexity of games introduces a completely
new kind of uncertainty that we have not seen so far; the uncertainty arises not because there is
missing information, but because one does not have time to calculate the exact consequences of
any move. Instead, one has to make one's best guess based on past experience, and act before
one is sure of what action to take. In this respect, games are much more like the real world than

I ;~ the standard search problems we have looked at so far.
Because they usually have time limits, games also penalize inefficiency very severely.

Whereas an implementation of A* search that is 10% less efficient will simply cost a little bit
extra to run to completion, a chess program that is 10% less effective in using its available time
probably will be beaten into the ground, other things being equal. Game-playing research has
therefore spawned a number of interesting ideas on how to make the best use of time to reach
good decisions, when reaching optimal decisions is impossible. These ideas should be kept in
mind throughout the rest of the book, because the problems of complexity arise in every area of
AI. We will return to them in more detail in Chapter 16.

We begin our discussion by analyzing how to find the theoretically best move. We then
look at techniques for choosing a good move when time is limited. Pruning allows us to ignore
portions of the search tree that make no difference to the final choice, and heuristic evaluation
functions allow us to approximate the true utility of a state without doing a complete search.
Section 5.5 discusses games such as backgammon that include an element of chance. Finally, we
look at how state-of-the-art game-playing programs succeed against strong human opposition.

5^2PERFECT DECISIONS IN TWO-PERSON GAMES

We will consider the general case of a game with two players, whom we will call MAX and M1N,
for reasons that will soon become obvious. MAX moves first, and then they take turns moving
until the game is over. At the end of the game, points are awarded to the winning player (or
sometimes penalties are given to the loser). A game can be formally defined as a kind of search
problem with the following components:

• The initial state, which includes the board position and an indication of whose move it is.
• A set of operators, which define the legal moves that a player can make.

124 Chapter 5. Game Playing

TERMINAL TEST • A terminal test, which determines when the game is over. States where the game has
ended are called terminal states.

PAYOFF FUNCTION • A utility function (also called a payoff function), which gives a numeric value for the
outcome of a game. In chess, the outcome is a win, loss, or draw, which we can represent
by the values +1, —1, or 0. Some games have a wider variety of possible outcomes; for
example, the payoffs in backgammon range from +192 to —192.
If this were a normal search problem, then all MAX would have to do is search for a sequence

of moves that leads to a terminal state that is a winner (according to the utility function), and
then go ahead and make the first move in the sequence. Unfortunately, MIN has something to say

STRATEGY about it. MAX therefore must find a strategy that will lead to a winning terminal state regardless
of what MIN does, where the strategy includes the correct move for MAX for each possible move
by MIN. We will begin by showing how to find the optimal (or rational) strategy, even though
normally we will not have enough time to compute it.

Figure 5.1 shows part of the search tree for the game of Tic-Tac-Toe. From the initial state,
MAX has a choice of nine possible moves. Play alternates between MAX placing x's and MIN
placing o's until we reach leaf nodes corresponding to terminal states: states where one player
has three in a row or all the squares are filled. The number on each leaf node indicates the utility
value of the terminal state from the point of view of MAX; high values are assumed to be good
for MAX and bad for MIN (which is how the players get their names). It is MAX'S job to use the
search tree (particularly the utility of terminal states) to determine the best move.

Even a simple game like Tic-Tac-Toe is too complex to show the whole search tree, so we
will switch to the absolutely trivial game in Figure 5.2. The possible moves for MAX are labelled
A I , AT, and AS. The possible replies loA\ for MIN are A H , A\2, AH, and so on. This particular
game ends after one move each by MAX and MIN. (In game parlance, we say this tree is one move
deep, consisting of two half-moves or two ply.) The utilities of the terminal states in this game
range from 2 to 14.

The mininiax algorithm is designed to determine the optimal strategy for MAX, and thus
to decide what the best first move is. The algorithm consists of five steps:

• Generate the whole game tree, all the way down to the terminal states.
• Apply the utility function to each terminal state to get its value.
• Use the utility of the terminal states to determine the utility of the nodes one level higher

up in the search tree. Consider the leftmost three leaf nodes in Figure 5.2. In the V node
above it, MIN has the option to move, and the best MIN can do is choose AI i , which leads
to the minimal outcome, 3. Thus, even though the utility function is not immediately
applicable to this V node, we can assign it the utility value 3, under the assumption that
MIN will do the right thing. By similar reasoning, the other two V nodes are assigned the
utility value 2.

• Continue backing up the values from the leaf nodes toward the root, one layer at a time.
• Eventually, the backed-up values reach the top of the tree; at that point, MAX chooses the

move that leads to the highest value. In the topmost A node of Figure 5.2, MAX has a choice
of three moves that will lead to states with utility 3, 2, and 2, respectively. Thus, MAX's

MINIMAXDECISION best opening move is A] \. This is called the mininiax decision, because it maximizes the
utility under the assumption that the opponent will play perfectly to minimize it.

PLY

MINIMAX

Section 5.2. Perfect Decisions in Two-Person Games 125

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

X

X o

X o

1
X o

o
o

y
^?

X

^

X
X

-1

——

=\

==\

^=

^^^
X

^^
X o

^=
X
X

o

==;

X
o
X

o
o
X

~~~~^

X
X
0

X
o
_

^^^
V

:
^

X

X
0

=^^^/ \^^^^^r^^
X

X X X
X X X

r~^ ̂

r^^- —5E ...
ym̂-—^
0 X
X
0 O
+1

Figure 5.1 A (partial) search tree for the game of Tic-Tac-Toe. The top node is the initial
state, and MAX moves first, placing an x in some square. We show part of the search tree, giving
alternating moves by MIN (o) and MAX, until we eventually reach terminal states, which can be
assigned utilities according to the rules of the game.

MAX

MIN

Figure 5.2 A two-ply game tree as generated by the minimax algorithm. The A nodes ars
moves by MAX and the V nodes UK moves by MIN. The terminal nodes show the utility value for
MAX computed by the utility function (i.e., by the rules of the game), whereas the utilities of the
other nodes are computed by the minimax algorithm from the utilities of their successors. MAX'S
best move is A\, andMlN's best reply is A\\.



126 Chapter 5. Game Playing

Figure 5.3 shows a more formal description of the minimax algorithm. The top level func-
tion, MINIMAX-DECISION, selects from the available moves, which are evaluated in turn by the
MINIMAX-VALUE function.

If the maximum depth of the tree is m, and there are b legal moves at each point, then
the time complexity of the minirnax algorithm is O(bm). The algorithm is a depth-first search
(although here the implementation is through recursion rather than using a queue of nodes), so
its space requirements are only linear in m and b. For real games, of course, the time cost is
totally impractical, but this algorithm serves as the basis for more realistic methods and for the
mathematical analysis of games.

function MiNlMAX-DECisiON(gam<?) returns an operator

for each op in OPERATORSfgame] do
VALUE[op] — MINIMAX-VALUE(APPLY(op, game), game)

end
return the op with the highest VALUE[op]

function MiNlMAX-VALUE(5fafe, game) returns a utility value

if TERMiNAL-TEST[gamel(.stofc) then
return VT]UT^[game](state)

else if MAX is to move in state then
return the highest MINI MAX-VALUE of SuccESSORS(.sto/e)

else
return the lowest MINIMAX-VALUE of SucCESSORS(.sfate)

Figure 5.3 An algorithm for calculating minimax decisions. It returns the operator that
corresponding to the best possible move, that is, the move that leads to the outcome with the
best utility, under the assumption that the opponent plays to minimize utility. The function
MINIMAX-VALUE goes through the whole game tree, all the way to the leaves, to determine the
backed-up value of a state.

5.3 IMPERFECT DECISIONS

The minimax algorithm assumes that the program has time to search all the way to terminal
states, which is usually not practical. Shannon's original paper on chess proposed that instead of
going all the way to terminal states and using the utility function, the program should cut off the
search earlier and apply a heuristic evaluation function to the leaves of the tree. In other words,
the suggestion is to alter minimax in two ways: the utility function is replaced by an evaluation
function EVAL, and the terminal test is replaced by a cutoff test CUTOFF-TEST.



Section 5.3. Imperfect Decisions 127

Evaluation functions
An evaluation function returns an estimate of the expected utility of the game from a given
position. The idea was not new when Shannon proposed it. For centuries, chess players (and, of
course, aficionados of other games) have developed ways of judging the winning chances of each
side based on easily calculated features of a position. For example, introductory chess books

MATERIAL VALUE give an approximate material value for each piece: each pawn is worth 1, a knight or bishop
is worth 3, a rook 5, and the queen 9. Other features such as "good pawn structure" and "king
safety" might be worth half a pawn, say. All other things being equal, a side that has a secure
material advantage of a pawn or more will probably win the game, and a 3-point advantage is
sufficient for near-certain victory. Figure 5.4 shows four positions with their evaluations.

It should be clear that the performance of a game-playing program is extremely dependent
on the quality of its evaluation function. If it is inaccurate, then it will guide the program toward
positions that are apparently "good," but in fact disastrous. How exactly do we measure quality?

First, the evaluation function must agree with the utility function on terminal states. Second,
it must not take too long! (As mentioned in Chapter 4, if we did not limit its complexity, then it
could call minimax as a subroutine and calculate the exact value of the position.) Hence, there is
a trade-off between the accuracy of the evaluation function and its time cost. Third, an evaluation
function should accurately reflect the actual chances of winning.

One might well wonder about the phrase "chances of winning." After all, chess is not a
game of chance. But if we have cut off the search at a particular nonterminal state, then we do not
know what will happen in subsequent moves. For concreteness, assume the evaluation function
counts only material value. Then, in the opening position, the evaluation is 0, because both sides
have the same material. All the positions up to the first capture will also have an evaluation of
0. If MAX manages to capture a bishop without losing a piece, then the resulting position will
have an evaluation value of 3. The important point is that a given evaluation value covers many
different positions—all the positions where MAX is up by a bishop are grouped together into
a category that is given the label "3." Now we can see how the word "chance" makes sense:
the evaluation function should reflect the chance that a position chosen at random from such a
category leads to a win (or draw or loss), based on previous experience.2

This suggests that the evaluation function should be specified by the rules of probability:
if position A has a 100% chance of winning, it should have the evaluation 1.00, and if positions
has a 50% chance of winning, 25% of losing, and 25% of being a draw, its evaluation should be
+1 x .50 + -1 x .25 + 0 x .25 = .25. But in fact, we need not be this precise; the actual numeric
values of the evaluation function are not important, as long as A is rated higher than B.

The material advantage evaluation function assumes that the value of a piece can be judged
independently of the other pieces present on the board. This kind of evaluation function is called
a weighted linear function, because it can be expressed as

W]/i + W2/2 + • • • + Wnfn

where the w's are the weights, and the/'s are the features of the particular position. The w's
would be the values of the pieces (1 for pawn, 3 for bishop, etc.), and the/'s would be the numbers
2 Techniques for automatically constructing evaluation functions with this property are discussed in Chapter 18. In
assessing the value of a category, more normally occurring positions should be given more weight.



128 Chapter 5. Game Playing

(a) White to move
Fairly even

(b) Black to move
White slightly better

(c) White to move
Black winning

(d) Black to move
White about to lose

Figure 5.4 Some chess positions and their evaluations.

of each kind of piece on the board. Now we can see where the particular piece values come from:
they give the best approximation to the likelihood of winning in the individual categories.

Most game-playing programs use a linear evaluation function, although recently nonlinear
functions have had a good deal of success. (Chapter 19 gives an example of a neural network that
is trained to learn a nonlinear evaluation function for backgammon.) In constructing the linear
formula, one has to first pick the features, and then adjust the weights until the program plays
well. The latter task can be automated by having the program play lots of games against itself,
but at the moment, no one has a good idea of how to pick good features automatically.



Section 5.4. Alpha-Beta Pruning 129

QUIESCENT

QUIESCENCE
SEARCH

HORIZON PROBLEM

Cutting off search
The most straightforward approach to controlling the amount of search is to set a fixed depth
limit, so that the cutoff test succeeds for all nodes at or below depth d. The depth is chosen so
that the amount of time used will not exceed what the rules of the game allow. A slightly more
robust approach is to apply iterative deepening, as defined in Chapter 3. When time runs out, the
program returns the move selected by the deepest completed search.

These approaches can have some disastrous consequences because of the approximate
nature of the evaluation function. Consider again the simple evaluation function for chess based
on material advantage. Suppose the program searches to the depth limit, reaching the position
shown in Figure 5.4(d). According to the material function, white is ahead by a knight and
therefore almost certain to win. However, because it is black's move, white's queen is lost
because the black knight can capture it without any recompense for white. Thus, in reality the
position is won for black, but this can only be seen by looking ahead one more ply.

Obviously, a more sophisticated cutoff test is needed. The evaluation function should only
be applied to positions that are quiescent, that is, unlikely to exhibit wild swings in value in the
near future. In chess, for example, positions in which favorable captures can be made are not
quiescent for an evaluation function that just counts material. Nonquiescent positions can be
expanded further until quiescent positions are reached. This extra search is called a quiescence
search; sometimes it is restricted to consider only certain types of moves, such as capture moves,
that will quickly resolve the uncertainties in the position.

The horizon problem is more difficult to eliminate. It arises when the program is facing
a move by the opponent that causes serious damage and is ultimately unavoidable. Consider the
chess game in Figure 5.5. Black is slightly ahead in material, but if white can advance its pawn
from the seventh row to the eighth, it will become a queen and be an easy win for white. Black can
forestall this for a dozen or so ply by checking white with the rook, but inevitably the pawn will
become a queen. The problem with fixed-depth search is that it believes that these stalling moves
have avoided the queening move—we say that the stalling moves push the inevitable queening
move "over the horizon" to a place where it cannot be detected. At present, no general solution
has been found for the horizon problem.

54ALPHA-BETA PRUNING

Let us assume we have implemented a minimax search with a reasonable evaluation function for
chess, and a reasonable cutoff test with a quiescence search. With a well-written program on an
ordinary computer, one can probably search about 1000 positions a second. How well will our
program play? In tournament chess, one gets about 150 seconds per move, so we can look at
150,000 positions. In chess, the branching factor is about 35, so our program will be able to look
ahead only three or four ply, and will play at the level of a complete novice! Even average human
players can make plans six or eight ply ahead, so our program will be easily fooled.

Fortunately, it is possible to compute the correct minimax decision without looking at every
node in the search tree. The process of eliminating a branch of the search tree from consideration



130 Chapter 5. Game Playing

PRUNING
ALPHA-BETA
PRUNING

Black to move

Figure 5.5 The horizon problem. A series of checks by the black rook forces the inevitable
queening move by white "over the horizon" and makes this position look like a slight advantage
for black, when it is really a sure win for white.

without examining it is called pruning the search tree. The particular technique we will examine
is called alpha-beta pruning. When applied to a standard minimax tree, it returns the same move
as minimax would, but prunes away branches that cannot possibly influence the final decision.

Consider the two-ply game tree from Figure 5.2, shown again in Figure 5.6. The search
proceeds as before: A\, then A\\, A\2, A[$, and the node under AI gets minimax value 3. Now
we follow A2, and AI\, which has value 2. At this point, we realize that if MAX plays AI, MlNhas
the option of reaching a position worth 2, and some other options besides. Therefore, we can say
already that move A2 is worth at most 2 to MAX. Because we already know that move A \ is worth
3, there is no point at looking further under AI- In other words, we can prune the search tree at
this point and be confident that the pruning will have no effect on the outcome.

The general principle is this. Consider a node n somewhere in the tree (see Figure 5.7),
such that Player has a choice of moving to that node. If Player has a better choice ra either at the
parent node of n, or at any choice point further up, then n will never be reached in actual play.
So once we have found out enough about n (by examining some of its descendants) to reach this
conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to consider
the nodes along a single path in the tree. Let a be the value of the best choice we have found so
far at any choice point along the path for MAX, and /? be the value of the best (i.e., lowest-value)
choice we have found so far at any choice point along the path for MTN. Alpha-beta search updates
the value of a and 8 as it goes along, and prunes a subtree (i.e., terminates the recursive call) as
soon as it is known to be worse than the current a or 13 value.

The algorithm description in Figure 5.8 is divided into a MAX-VALUE function and a
MlN-VALUE function. These apply to MAX nodes and MIN nodes, respectively, but each does the
same thing: return the minimax value of the node, except for nodes that are to be pruned (in



Section 5.4. Alpha-Beta Pruning 131

MAX

MIN

12 8 2 14 5

Figure 5.6 The two-ply game tree as generated by alpha-beta.

Player

Opponent \m

Player

Opponent

Figure 5.7 Alpha-beta pruning: the general case. If m is better than n for Player, we will never
get to n in play.

which case the returned value is ignored anyway). The alpha-beta search function itself is just a
copy of the MAX-VALUE function with extra code to remember and return the best move found.

Effectiveness of alpha-beta pruning
The effectiveness of alpha-beta depends on the ordering in which the successors are examined.
This is clear from Figure 5.6, where we could not prune A 3 at all because AJI and A^ (the worst
moves from the point of view of MIN) were generated first. This suggests it might be worthwhile
to try to examine first the successors that are likely to be best.

If we assume that this can be done,3 then it turns out that alpha-beta only needs to examine
O(bd/2) nodes to pick the best move, instead of O(b'') with minimax. This means that the effective
branching factor is \/b instead of b—for chess, 6 instead of 35. Put another way, this means

Obviously, it cannot be done perfectly, otherwise the ordering function could be used to play a perfect game!



132 Chapter 5. Game Playing

function MAX-VA.LVE(state, game, a, ft) returns the minimax value of state
inputs: state, current state in game

game, game description
a, the best score for MAX along the path to state
ft, the best score for MIN along the path to state

if CuTOFF-TEST(state) then return EvAL(state)
for each s in SuccESSORsOtafe) do

a <— MAX(Q , MlN-VALUE(.«, game, a, ft))
if a > ft then return ft

end
return a

function MiN-VALUE(.vfate, game, a, ft) returns the minimax value of state

if CuTOFF-TEST(stafe) then return Ev&L(state)
for each s in SucCESSORS(.sta?e) do

ft — MlN( ft, MAX -VALUER, game, a, ft))
if ft < a then return a

end
return ft

Figure 5.8 The alpha-beta search algorithm,
minimax, but prunes the search tree.

It does the same computation as a normal

TREE MODEL

that alpha-beta can look ahead twice as far as minimax for the same cost. Thus, by generating
150,000 nodes in the time allotment, a program can look ahead eight ply instead of four. By
thinking carefully about which computations actually affect the decision, we are able to transform
a program from a novice into an expert.

The effectiveness of alpha-beta pruning was first analyzed in depth by Knuth and Moore
(1975). As well as the best case described in the previous paragraph, they analyzed the
case in which successors are ordered randomly. It turns out that the asymptotic complexity
is O((b/\ogb)d), which seems rather dismal because the effective branching factor b/logb is not
much less than b itself. On the other hand, the asymptotic formula is only accurate for b > 1000
or so—in other words, not for any games we can reasonably play using these techniques. For
reasonable b, the total number of nodes examined will be roughly O(b3dl4). In practice, a fairly
simple ordering function (such as trying captures first, then threats, then forward moves, then
backward moves) gets you fairly close to the best-case result rather than the random result.
Another popular approach is to do an iterative deepening search, and use the backed-up values
from one iteration to determine the ordering of successors in the next iteration.

It is also worth noting that all complexity results on games (and, in fact, on search problems
in general) have to assume an idealized tree model in order to obtain their results. For example,
the model used for the alpha-beta result in the previous paragraph assumes that all nodes have the
same branching factor b; that all paths reach the fixed depth limit d; and that the leaf evaluations



Section 5.5. Games That Include an Element of Chance 133

are randomly distributed across the last layer of the tree. This last assumption is seriously flawed:
for example, if a move higher up the tree is a disastrous blunder, then most of its descendants
will look bad for the player who made the blunder. The value of a node is therefore likely to
be highly correlated with the values of its siblings. The amount of correlation depends very
much on the particular game and indeed the particular position at the root. Hence, there is
an unavoidable component of empirical science involved in game-playing research, eluding the
power of mathematical analysis.

5.5 GAMES THAT INCLUDE AN ELEMENT OF CHANCE

In real life, unlike chess, there are many unpredictable external events that put us into unforeseen
situations. Many games mirror this unpredictability by including a random element such as
throwing dice. In this way, they take us a step nearer reality, and it is worthwhile to see how this
affects the decision-making process.

Backgammon is a typical game that combines luck and skill. Dice are rolled at the
beginning of a player's turn to determine the set of legal moves that is available to the player. In
the backgammon position of Figure 5.9, white has rolled a 6-5, and has four possible moves.

Although white knows what his or her own legal moves are, white does not know what
black is going to roll, and thus does not know what black's legal moves will be. That means white
cannot construct a complete game tree of the sort we saw in chess and Tic-Tac-Toe. A game tree

CHANCE NODES in backgammon must include chance nodes in addition to MAX and MIN nodes. Chance nodes
are shown as circles in Figure 5.10. The branches leading from each chance node denote the
possible dice rolls, and each is labelled with the roll and the chance that it will occur. There are
36 ways to roll two dice, each equally likely; but because a 6-5 is the same as a 5-6, there are
only 21 distinct rolls. The six doubles (1-1 through 6-6) have a 1/36 chance of coming up, the
other fifteen distinct rolls a 1/18 chance.

The next step is to understand how to make correct decisions. Obviously, we still want
to pick the move from A\,..., An that leads to the best position. However, each of the possible
positions no longer has a definite minimax value (which in deterministic games was the utility

EXPECTED VALUE of the leaf reached by best play). Instead, we can only calculate an average or expected value,
where the average is taken over all the possible dice rolls that could occur.

It is straightforward to calculate expected values of nodes. For terminal nodes, we use the
utility function, just like in deterministic games. Going one step up in the search tree, we hit a
chance node. In Figure 5.10, the chance nodes are circles; we will consider the one labelled C.
Let di be a possible dice roll, and P(dt) be the chance or probability of obtaining that roll. For
each dice roll, we calculate the utility of the best move for MIN, and then add up the utilities,
weighted by the chance that the particular dice roll is obtained. If we let S(C, di) denote the set
of positions generated by applying the legal moves for dice roll P(dt) to the position at C, then

EXPECTMAX VALUE we can calculate the so-called expectimax value of C using the formula

expectimax(C) =



134 Chapter 5. Game Playing

8 9 10 11 12

25 24 23 22 21 20 19 18 17 16 15 14 13

Figure 5.9 A typical backgammon position. The aim of the game is to move all one's pieces
off the board. White moves clockwise toward 25, and black moves counterclockwise toward 0. A
piece can move to any position except one where there are two or more of the opponent's pieces.
If it moves to a position with one opponent piece, that piece is captured and has to start its journey
again from the beginning. In this position, white has just rolled 6-5 and has four legal moves:
(5-10,5-11), (5-11,19-24), (5-10,10-16), and (5-11,11-16).

MAX

DICE

MIN

DICE

MAX

TERMINAL 2 -1 1 -1 1

Figure 5.10 Schematic game tree for a backgammon position.



Section Games That Include an Element of Chance 135

This gives us the expected utility of the position at C assuming best play. Going up one more
level to the MIN nodes (y in Figure 5.10), we can now apply the normal minimax-value formula,
because we have assigned utility values to all the chance nodes. We then move up to chance node

EXPECTIMIN VALUE B, where we can compute the expectimin value using a formula that is analogous to expectimax.
This process can be applied recursively all the way up the tree, except at the top level

where the dice roll is already known. To calculate the best move, then, we simply replace
MINIMAX-VALUE in Figure 5.3 by EXPECTIMINIMAX-VALUE, the implementation of which we
leave as an exercise.

Position evaluation in games with chance nodes
As with minimax, the obvious approximation to make with expectiminimax is to cut off search
at some point and apply an evaluation function to the leaves. One might think that evaluation
functions for games such as backgammon are no different, in principle, from evaluation functions
for chess—they should just give higher scores to better positions.

In fact, the presence of chance nodes means one has to be more careful about what the
evaluation values mean. Remember that for minimax, any order-preserving transformation of
the leaf values does not affect the choice of move. Thus, we can use either the values 1, 2, 3, 4
or the values 1, 20, 30, 400, and get the same decision. This gives us a good deal of freedom in
designing the evaluation function: it will work fine as long as positions with higher evaluations
lead to wins more often, on average.

With chance nodes, we lose this freedom. Figure 5.11 shows what happens: with leaf
values 1, 2, 3, 4, move A\ is best; with leaf values 1, 20, 30, 400, move AI is best. Hence,
the program behaves totally differently if we make a change in the scale of evaluation values!
It turns out that to avoid this sensitivity, the evaluation function can be only a positive linear
transformation of the likelihood of winning from a position (or, more generally, of the expected
utility of the position). This is an important and general property of situations in which uncertainty
is involved, and we discuss it further in Chapter 16.

Complexity of expectiminimax
If the program knew in advance all the dice rolls that would occur for the rest of the game, solving
a game with dice would be just like solving a game without dice, which minimax does in O(bm)
time. Because expectiminimax is also considering all the possible dice-roll sequences, it will
take O(bmnm), where n is the number of distinct rolls.

Even if the depth of the tree is limited to some small depth d, the extra cost compared to
minimax makes it unrealistic to consider looking ahead very far in games such as backgammon,
where « is 21 and b is usually around 20, but in some situations can be as high as 4000. Two ply
is probably all we could manage.

Another way to think about the problem is this: the advantage of alpha-beta is that it ignores
future developments that just are not going to happen, given best play. Thus, it concentrates on
likely occurrences. In games with dice, there are no likely sequences of moves, because for those
moves to take place, the dice would first have to come out the right way to make them legal.



136 Chapter 5. Game Playing

MAX

MIN

2 2 3

21

20 20 30 30 1 1 400 400

Figure 5.11 An order-preserving transformation on leaf values changes the best move.

This is a general problem whenever uncertainty enters the picture: the possibilities are multiplied
enormously, and forming detailed plans of action becomes pointless because the world probably
will not play along.

No doubt it will have occurred to the reader that perhaps something like alpha-beta pruning
could be applied to game trees with chance nodes. It turns out that it can, with a bit of ingenuity.
Consider the chance node C in Figure 5.10, and what happens to its value as we examine and
evaluate its children; the question is, is it possible to find an upper bound on the value of C
before we have looked at all its children? (Recall that this is what alpha-beta needs in order to
prune a node and its subtree.) At first sight, it might seem impossible, because the value of C is
the average of its children's values, and until we have looked at all the dice rolls, this average
could be anything, because the unexamined children might have any value at all. But if we put
boundaries on the possible values of the utility function, then we can arrive at boundaries for the
average. For example, if we say that all utility values are between +1 and -1, then the value of
leaf nodes is bounded, and in turn we can place an upper bound on the value of a chance node
without looking at all its children. Designing the pruning process is a little bit more complicated
than for alpha-beta, and we leave it as an exercise.

5.6 STATE-OF-THE-ART GAME PROGRAMS

Designing game-playing programs has a dual purpose: both to better understand how to choose
actions in complex domains with uncertain outcomes and to develop high-performance systems
for the particular game studied. In this section, we examine progress toward the latter goal.



Section 5.6. State-of-the-Art Game Programs 137

Chess
Chess has received by far the largest share of attention in game playing. Although not meeting
the promise made by Simon in 1957 that within 10 years, computers would beat the human world
champion, they are now within reach of that goal. In speed chess, computers have defeated the
world champion, Gary Kasparov, In both 5-minute and 25-minute games, but in full tournament
games are only ranked among the top 100 players worldwide at the time of writing. Figure5.12
shows the ratings of human and computer champions over the years. It is tempting to try to
extrapolate and see where the lines will cross.

Progress beyond a mediocre level was initially very slow: some programs in the early
1970s became extremely complicated, with various kinds of tricks for eliminating some branches
of search, generating plausible moves, and so on, but the programs that won the ACM North
American Computer Chess Championships (initiated in 1970) tended to use straightforward alpha-
beta search, augmented with book openings and infallible endgame algorithms. (This offers an
interesting example of how high performance requires a hybrid decision-making architecture to
implement the agent function.)

The first real jump in performance came not from better algorithms or evaluation functions,
but from hardware. Belle, the first special-purpose chess computer (Condon and Thompson,
1982), used custom integrated circuits to implement move generation and position evaluation,
enabling it to search several million positions to make a single move. Belle's rating was around
2250, on a scale where beginning humans are 1000 and the world champion around 2750; it
became the first master-level program.

The HITECH system, also a special-purpose computer, was designed by former world
correspondence champion Hans Berliner and his student Carl Ebeling to allow rapid calculation
of very sophisticated evaluation functions. Generating about 10 million positions per move
and using probably the most accurate evaluation of positions yet developed, HITECH became

3000—,

_
-
-

2000 —

-^

1000 —

0

19

I

Ol

03

60

>
I

O

^

CL.

1

I '

€

a

I

19

5 <j

Ch
es

s 
3.

0 
(1

50
0)

1 1

65

P

3
CN

Q.

I

>

Fi
sc

hc
r(

27
85

)

1 '
1970

> •

€

C
he

ss
 4

.6
 (1

90
0)

1 1

19

)

§

75

>l

K
or

ch
no

i (
26

45
)

1 *

9

<N

JJ

03

1 ' 1 '
1980

3

I
1 ' 1

1985

» '
0

Q

H
ite

ch
 (

24
00

)
D

ee
p 

Th
ou

gh
t (

25
5 

1

o

0

I
S3

1 1 '
1990

1
0

K

D
ee

p 
Th

ou
gh

t 2
 (a

pp

1 1

Figure 5.12 Ratings of human and machine chess champions.



138 Chapter 5. Game Playing

computer world champion in 1985, and was the first program to defeat a human grandmaster,
Arnold Denker, in 1987. At the time it ranked among the top 800 human players in the world.

The best current system is Deep Thought 2. It is sponsored by IBM, which hired part of the
team that built the Deep Thought system at Carnegie Mellon University. Although Deep Thought
2 uses a simple evaluation function, it examines about half a billion positions per move, allowing
it to reach depth 10 or 11, with a special provision to follow lines of forced moves still further
(it once found a 37-move checkmate). In February 1993, Deep Thought 2 competed against the
Danish Olympic team and won, 3-1, beating one grandmaster and drawing against another. Its
FIDE rating is around 2600, placing it among the top 100 human players.

The next version of the system, Deep Blue, will use a parallel array of 1024 custom VLSI
chips. This will enable it to search the equivalent of one billion positions per second (100-200
billion per move) and to reach depth 14. A 10-processor version is due to play the Israeli national
team (one of the strongest in the world) in May 1995, and the full-scale system will challenge
the world champion shortly thereafter.

Checkers or Draughts

Beginning in 1952, Arthur Samuel of IBM, working in his spare time, developed a checkers
program that learned its own evaluation function by playing itself thousands of times. We
describe this idea in more detail in Chapter 20. Samuel's program began as a novice, but after
only a few days' self-play was able to compete on equal terms in some very strong human
tournaments. When one considers that Samuel's computing equipment (an IBM 704) had 10,000
words of main memory, magnetic tape for long-term storage, and a cycle time of almost a
millisecond, this remains one of the great feats of AI.

Few other people attempted to do better until Jonathan Schaeffer and colleagues developed
Chinook, which runs on ordinary computers using alpha-beta search, but uses several techniques,
including perfect solution databases for all six-piece positions, that make its endgame play
devastating. Chinook won the 1992 U.S. Open, and became the first program to officially
challenge for a real world championship. It then ran up against a problem, in the form of Marion
Tinsley. Dr. Tinsley had been world champion for over 40 years, losing only three games in all that
time. In the first match against Chinook, Tinsley suffered his fourth and fifth losses, but won the
match 21.5-18.5. More recently, the world championship match in August 1994 between Tinsley
and Chinook ended prematurely when Tinsley had to withdraw for health reasons. Chinook
became the official world champion.

Othello

Othello, also called Reversi, is probably more popular as a computer game than as a board game.
It has a smaller search space than chess, usually 5 to 15 legal moves, but evaluation expertise
had to be developed from scratch. Even so, Othello programs on normal computers are far better
than humans, who generally refuse direct challenges in tournaments.



ISection 5.7. Discussion 139

Backgammon
As mentioned before, the inclusion of uncertainty from dice rolls makes search an expensive
luxury in backgammon. The first program to make a serious impact, BKG, used only a one-ply
search but a very complicated evaluation function. In an informal match in 1980, it defeated the
human world champion 5-1, but was quite lucky with the dice. Generally, it plays at a strong
amateur level.

More recently, Gerry Tesauro (1992) combined Samuel's learning method with neural
network techniques (Chapter 19) to develop a new evaluation function. His program is reliably
ranked among the top three players in the world.

Go
Go is the most popular board game in Japan, requiring at least as much discipline from its
professionals as chess. The branching factor approaches 360, so that regular search methods are
totally lost. Systems based on large knowledge bases of rules for suggesting plausible moves
seem to have some hope, but still play very poorly. Particularly given the $2,000,000 prize for the
first program to defeat a top-level player, Go seems like an area likely to benefit from intensive
investigation using more sophisticated reasoning methods.

5.7 DISCUSSION

Because calculating optimal decisions in games is intractable in most cases, all algorithms
must make some assumptions and approximations. The standard approach, based on minimax,
evaluation functions, and alpha-beta, is just one way to do this. Probably because it was proposed
so early on, it has been developed intensively and dominates other methods in tournament
play. Some in the field believe that this has caused game playing to become divorced from the
mainstream of AI research, because the standard approach no longer provides much room for
new insight into general questions of decision making. In this section, we look at the alternatives,
considering how to relax the assumptions and perhaps derive new insights.

First, let us consider minimax. Minimax is an optimal method for selecting a move from
a given search tree provided the leaf node evaluations are exactly correct. In reality, evaluations
are usually crude estimates of the value of a position, and can be considered to have large
errors associated with them. Figure 5.13 shows a two-ply game tree for which minimax seems
inappropriate. Minimax suggests taking the right-hand branch, whereas it is quite likely that
true value of the left-hand branch is higher. The minimax choice relies on the assumption that
all of the nodes labelled with values 100, 101, 102, and 100 are actually better than the node
labelled with value 99. One way to deal with this problem is to have an evaluation that returns a
probability distribution over possible values. Then one can calculate the probability distribution
for the parent's value using standard statistical techniques. Unfortunately, the values of sibling
nodes are usually highly correlated, so this can be an expensive calculation and may require
detailed correlation information that is hard to obtain.



140 Chapter 5. Game Playing

MAX

MIN 100

1000 1000 1000 100 101 102 100

Figure 5.13 A two-ply game tree for which minimax may be inappropriate.

METAREASONING

Next, we consider the search algorithm that generates the tree. The aim of an algorithm
designer is to specify a computation that completes in a timely manner and results in a good move
choice. The most obvious problem with the alpha-beta algorithm is that it is designed not just to
select a good move, but also to calculate the values of all the legal moves. To see why this extra
information is unnecessary, consider a position in which there is only one legal move. Alpha-beta
search still will generate and evaluate a large, and totally useless, search tree. Of course, we
can insert a test into the algorithm, but this merely hides the underlying problem—many of the
calculations done by alpha-beta are largely irrelevant. Having only one legal move is not much
different from having several legal moves, one of which is fine and the rest of which are obviously
disastrous. In a "clear-favorite" situation like this, it would be better to reach a quick decision
after a small amount of search than to waste time that could be better used later for a more
problematic position. This leads to the idea of the utility of a node expansion. A good search
algorithm should select node expansions of high utility—that is, ones that are likely to lead to the
discovery of a significantly better move. If there are no node expansions whose utility is higher
than their cost (in terms of time), then the algorithm should stop searching and make a move.
Notice that this works not only for clear-favorite situations, but also for the case of symmetrical
moves, where no amount of search will show that one move is better than another.

This kind of reasoning about what computations to do is called metareasoning (reasoning
about reasoning). It applies not just to game playing, but to any kind of reasoning at all. All
computations are done in the service of trying to reach better decisions, all have costs, and
all have some likelihood of resulting in a certain improvement in decision quality. Alpha-beta
incorporates the simplest kind of metareasoning, namely, a theorem to the effect that certain
branches of the tree can be ignored without loss. It is possible to do much better. In Chapter 16,
we will see how these ideas can be made precise and implementable.

Finally, let us reexamine the nature of search itself. Algorithms for heuristic search and
for game playing work by generating sequences of concrete states starting from the initial state
and then applying an evaluation function. Clearly, this is not how humans play games. In
chess, one often has a particular goal in mind—for example, trapping the opponent's queen—and
can use this to selectively generate plausible plans for achieving it. This kind of goal-directed
reasoning or planning sometimes eliminates combinatorial search altogether (see Part IV). David
Wilkins' (1980) PARADISE is the only program to have used goal-directed reasoning successfully



ISection 5.8. Summary 141

in chess: it was capable of solving some chess problems requiring an 18-move combination. As
yet, however, there is no good understanding of how to combine the two kinds of algorithm into
a robust and efficient system. Such a system would be a significant achievement not just for
game-playing research, but also for AI research in general, because it would be much more likely
to apply to the problem faced by a general intelligent agent.

5.8 SUMMARY______________________________

Games are fascinating, and writing game-playing programs perhaps even more so. We might
say that game playing is to AI as Grand Prix motor racing is to the car industry: although the
specialized task and extreme competitive pressure lead one to design systems that do not look
much like your garden-variety, general-purpose intelligent system, a lot of leading-edge concepts
and engineering ideas come out of it. On the other hand, just as you would not expect a Grand
Prix racing car to perform well on a bumpy dirt road, you should not expect advances in game
playing to translate immediately into advances in less abstract domains.

The most important ideas are as follows:
• A game can be defined by the initial state (how the board is set up), the operators (which

define the legal moves), a terminal test (which says when the game is over), and a utility
or payoff function (which says who won, and by how much).

• In two-player games with perfect information, the minimax algorithm can determine the
best move for a player (assuming the opponent plays perfectly) by enumerating the entire
game tree.

• The alpha-beta algorithm does the same calculation as minimax, but is more efficient
because it prunes away branches of the search tree that it can prove are irrelevant to the
final outcome.

• Usually, it is not feasible to consider the whole game tree (even with alpha-beta), so we
need to cut off the search at some point and apply an evaluation function that gives an
estimate of the utility of a state.

• Games of chance can be handled by an extension to the minimax algorithm that evaluates
chance nodes by taking the average utility of all its children nodes, weighted by the
probability of the child.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The early history of mechanical game playing was marred by numerous frauds. The most
notorious of these was Baron Wolfgang von Kempelen's "Turk," exhibited in 1769, a supposed
chess-playing automaton whose cabinet actually concealed a diminutive human chess expert
during play. The Turk is described in Harkness and Battell (1947). In 1846, Charles Babbage
appears to have contributed the first serious discussion of the feasibility of computer game playing



142 Chapter 5. Game Playing

(Morrison and Morrison, 1961). He believed that if his most ambitious design for a mechanical
digital computer, the Analytical Engine, were ever completed, it could be programmed to play
checkers and chess. He also designed, but did not build, a special-purpose machine for playing
Tic-Tac-Toe. Ernst Zermelo, the designer of modern axiomatic set theory, later speculated on
the rather quixotic possibility of searching the entire game tree for chess in order to determine
a perfect strategy (Zermelo, 1976). The first functioning (and nonfraudulent) game-playing
machine was designed and built around 1890 by the Spanish engineer Leonardo Torres y Quevedo.
It specialized in the "KRK" chess endgame (king and rook vs. king), playing the side with the
king and rook against a human opponent attempting to defend with the lone king. Its play was
correct and it was capable of forcing mate from any starting position (with the machine moving
first). The "Nimotron" (Condon et al., 1940) demonstrated perfect play for the very simple
game of Nim. Significantly, a completely optimal strategy for Nim and an adequate strategy for
the KRK chess endgame (i.e., one which will always win when given the first move, although
not necessarily in the minimal number of moves) are both simple enough to be memorized and
executed algorithmically by humans.

Torres y Quevedo's achievement, and even Babbage's and Zermelo's speculations, re-
mained relatively isolated until the mid-1940s—the era when programmable electronic digital
computers were first being developed. The comprehensive theoretical analysis of game strategy
in Theory of Games and Economic Behavior (Von Neumann and Morgenstern, 1944) placed
emphasis on minimaxing (without any depth cutoff) as a way to define mathematically the
game-theoretic value of a position in a game. Konrad Zuse (1945), the first person to design
a programmable computer, developed ideas as to how mechanical chess play might be accom-
plished. Adriaan de Groot (1946) carried out in-depth psychological analysis of human chess
strategy, which was useful to designers of computer chess programs. Norbert Wiener's (1948)
book Cybernetics included a brief sketch of the functioning of a possible computer chess-playing
program, including the idea of using minimax search with a depth cutoff and an evaluation func-
tion to select a move. Claude Shannon (1950) wrote a highly influential article that laid out the
basic principles underlying modern computer game-playing programs, although the article did
not actually include a program of his own. Shannon described minimaxing with a depth cutoff
and evaluation function more clearly and in more detail than had Wiener, and introduced the
notion of quiescence of a position. Shannon also described the possibility of using nonexhaustive
("type B") as opposed to exhaustive ("type A") minimaxing. Slater (1950) and the commentators
on his article in the same volume also explored the possibilities for computer chess play. In
particular, Good (1950) developed the notion of quiescence independently of Shannon.

In 1951, Alan Turing wrote the first actual computer program capable of playing a full
game of chess. (The program was published in Turing (1953).) But Turing's program never
actually ran on a computer; it was tested by hand simulation against a very weak human player,
who defeated it. Meanwhile D. G. Prinz (1952) had written, and actually run, a program that
solved chess problems, although it did not play a full game.

Checkers, rather than chess, was the first of the classic games for which a program actually
running on a computer was capable of playing out a full game. Christopher Strachey (1952) was
the first to publish such research, although Slagle (1971) mentions a checkers program written
by Arthur Samuel as early as 1947. Chinook, the checkers program that recently took over the
world title from Marion Tinsley, is described by Schaeffer et al. (1992).



Section 5.8. Summary________ 143

A group working at Los Alamos (Kister et ai, 1957) designed and ran a program that
played a full game of a variant of chess using a 6 x 6 board. Alex Bernstein wrote the first
program to play a full game of standard chess (Bernstein and Roberts, 1958; Bernstein et al.,
1958), unless possibly this feat was accomplished by the Russian BESM program mentioned in
Newell et al. (1958), about which little information is available.

John McCarthy conceived the idea of alpha-beta search in 1956, although he did not publish
it. The NSS chess program (Newell et al., 1958) used a simplified version of alpha-beta; it was
the first chess program to do so. According to Nilsson (1971), Arthur Samuel's checkers program
(Samuel, 1959; Samuel, 1967) also used alpha-beta, although Samuel did not mention it in the
published reports on the system. Papers describing alpha-beta were published in the early 1960s
(Hart and Edwards, 1961; Brudno, 1963; Slagle, 1963b). An implementation of full alpha-beta
is described by Slagle and Dixon (1969) in a program for playing the game of kalah. Alpha-beta
was also used by the "Kotok-McCarthy" chess program written by a student of John McCarthy
(Kotok, 1962) and by the MacHack 6 chess program (Greenblatt et al., 1967). MacHack 6 was
the first chess program to compete successfully with humans, although it fell considerably short
of Herb Simon's prediction in 1957 that a computer program would be world chess champion
within 10 years (Simon and Newell, 1958). Knuth and Moore (1975) provide a history of alpha-
beta, along with a proof of its correctness and a time complexity analysis. Further analysis of
the effective branching factor and time complexity of alpha-beta is given by Pearl (1982b). Pearl
shows alpha-beta to be asymptotically optimal among all game-searching algorithms.

It would be a mistake to infer that alpha-beta's asymptotic optimality has completely
suppressed interest in other game-searching algorithms. The best-known alternatives are probably
the B* algorithm (Berliner, 1979), which attempts to maintain interval bounds on the possible
value of a node in the game tree, rather than giving it a single point-valued estimate as minimax
and alpha-beta do, and SSS* (Stockman, 1979), which dominates alpha-beta in the sense that
the set of nodes in the tree that it examines is a (sometimes proper) subset of those examined by
alpha-beta. Palay (1985) uses probability distributions in place of the point values of alpha-beta
or the intervals of B*. David McAllester's (1988) conspiracy number search is an interesting
generalization of alpha-beta. MGSS* (Russell and Wefald, 1989) uses the advanced decision-
theoretic techniques of Chapter 16 to decide which nodes to examine next, and was able to
outplay an alpha-beta algorithm at Othello despite searching an order of magnitude fewer nodes.
Individual games are subject to ad hoc mathematical analysis; a fascinating study of a huge
number of games is given by Berlekamp et al. (1982).

D. F. Beal (1980) and Dana Nau (1980; 1983) independently and simultaneously showed
that under certain assumptions about the game being analyzed, any form of minimaxing, including
alpha-beta, using an evaluation function, yields estimates that are actually less reliable than the
direct use of the evaluation function, without any search at all! Heuristics (Pearl, 1984) gives
a thorough analysis of alpha-beta and describes B*, SSS*, and other alternative game search
algorithms. It also explores the reasons for the Beal/Nau paradox, and why it does not apply
to chess and other games commonly approached via automated game-tree search. Pearl also
describes AND/OR graphs (Slagle, 1963a), which generalize game-tree search but can be applied
to other types of problems as well, and the AO* algorithm (Martelli and Montanari, 1973;
Martelli and Montanari, 1978) for searching them. Kaindl (1990) gives another survey of
sophisticated search algorithms.



144 Chapter 5. Game Playing

The first two computer chess programs to play a match against each other were the Kotok-
McCarthy program and the "ITEP" program written at Moscow's Institute of Theoretical and
Experimental Physics (Adelson-Velsky et ai, 1970). This intercontinental match was played by
telegraph. It ended in 1967 with a 3-1 victory for the ITEP program. The first ACM North
American Computer Chess Championship tournament was held in New York City in 1970. The
first World Computer Chess Championship was held in 1974 in Stockholm (Hayes and Levy,
1976). It was won by Kaissa (Adelson-Velsky et al., 1975), another program from ITEP.

A later version of Greenblatt's MacHack 6 was the first chess program to run on custom
hardware designed specifically for chess (Moussouris etal.,1919), but the first program to achieve
notable success through the use of custom hardware was Belle (Condon and Thompson, 1982).
Most of the strongest recent programs, such as HITECH (Ebeling, 1987; Berliner and Ebeling,
1989) and Deep Thought (Hsu et al., 1990) have run on custom hardware. Major exceptions
are Cray Blitz (Hyatt et al., 1986), which runs on a general-purpose Cray supercomputer, and
Socrates II, winner of the 23rd ACM North American Computer Chess Championship in 1993,
which runs on an Intel 486-based microcomputer. It should be noted that Deep Thought was not
there to defend its title. Deep Thought 2 regained the championship in 1994. It should also be
noted that even custom-hardware machines can benefit greatly from improvements purely at the
software level (Berliner, 1989).

The Fredkin Prize, established in 1980, offered $5000 to the first program to achieve a
Master rating, $10,000 to the first program to achieve a USCF (United States Chess Federation)
rating of 2500 (near the grandmaster level), and $100,000 for the first program to defeat the
human world champion. The $5000 prize was claimed by Belle in 1983, and the $10,000 prize
by Deep Thought in 1989. The $100,000 prize remains unclaimed, in view of convincing wins
in extended play by world champion Gary Kasparov over Deep Thought (Hsu et al., 1990).

The literature for computer chess is far better developed than for any other game played
by computer programs. Aside from the tournaments already mentioned, the rather misleadingly
named conference proceedings Heuristic Programming in Artificial Intelligence report on the
Computer Chess Olympiads. The International Computer Chess Association (ICCA), founded
in 1977, publishes the quarterly ICCA Journal. Important papers have been published in the
numbered serial anthology Advances in Computer Chess, starting with (Clarke, 1977). Some
early general AI textbooks (Nilsson, 1971; Slagle, 1971) include extensive material on game-
playing programs, including chess programs. David Levy's Computer Chess Compendium (Levy,
1988a) anthologizes many of the most important historical papers in the field, together with the
scores of important games played by computer programs. The edited volume by Marsland and
Schaeffer (1990) contains interesting historical and theoretical papers on chess and Go along
with descriptions of Cray Blitz, HlTECH, and Deep Thought. Several important papers on chess,
along with material on almost all games for which computer game-playing programs have been
written (including checkers, backgammon, Go, Othello, and several card games) can be found in
Levy (1988b). There is even a textbook on how to write a computer game-playing program, by
one of the major figures in computer chess (Levy, 1983).

The expectimax algorithm described in the text was proposed by Donald Michie (1966),
although of course it follows directly from the principles of game-tree evaluation due to Von
Neumann and Morgenstern. Bruce Ballard (1983) extended alpha-beta pruning to cover trees
with chance nodes. The backgammon program BKG (Berliner, 1977; Berliner, 1980b) was



Section 5.8. Summary 145

the first program to defeat a human world champion at a major classic game (Berliner, 1980a),
although Berliner was the first to acknowledge that this was a very short exhibition match (not a
world championship match) and that BKG was very lucky with the dice.

The first Go-playing programs were developed somewhat later than those for checkers and
chess (Lefkovitz, 1960; Remus, 1962) and have progressed more slowly. Ryder (1971) used a
search-based approach similar to that taken by most chess programs but with more selectivity to
overcome the enormous branching factor. Zobrist (1970) used a pattern-recognition approach.
Reitman and Wilcox (1979) used condition-action rules based on complex patterns, combined
with highly selective localized search. The Go Explorer and its successors (Kierulf et al., 1990)
continue to evolve along these lines. YUGO (Shirayanagi, 1990) places heavy emphasis on
knowledge representation and pattern knowledge. The Computer Go Newsletter, published by
the Computer Go Association, describes current developments.

EXERCISES

5.1 This problem exercises the basic concepts of game-playing using Tic-Tac-Toe (noughts and
crosses) as an example. We define Xn as the number of rows, columns, or diagonals with exactly
nX'sandno O's. Similarly, On is the number of rows, columns, or diagonals with just n O's. The
utility function thus assigns +1 to any position with XT, = 1 and —1 to any position with OT, - 1.
All other terminal positions have utility 0. We will use a linear evaluation function defined as

a. Approximately how many possible games of Tic-Tac-Toe are there?
b. Show the whole game tree starting from an empty board down to depth 2, (i.e., one X and

one O on the board), taking symmetry into account. You should have 3 positions at level
1 and 12 at level 2.

c. Mark on your tree the evaluations of all the positions at level 2.
d. Mark on your tree the backed-up values for the positions at levels 1 and 0, using the

minimax algorithm, and use them to choose the best starting move.
e. Circle the nodes at level 2 that would not be evaluated if alpha-beta pruning were applied,

assuming the nodes are generated in the optimal order for alpha-beta pruning.

5.2 Implement a general game-playing agent for two-player deterministic games, using alpha-
beta search. You can assume the game is accessible, so the input to the agent is a complete
description of the state.

5.3 Implement move generators and evaluation functions for one or more of the following
games: kalah, Othello, checkers, chess. Exercise your game-playing agent using the implemen-
tation. Compare the effect of increasing search depth, improving move ordering, and improving
the evaluation function. How close does your effective branching factor come to the ideal case
of perfect move ordering?



146 Chapter 5. Game Playing

5.4 The algorithms described in this chapter construct a search tree for each move from scratch.
Discuss the advantages and disadvantages of retaining the search tree from one move to the next
and extending the appropriate portion. How would tree retention interact with the use of selective
search to examine "useful" branches of the tree?

5.5 Develop a formal proof of'correctness of alpha-beta pruning. To do this, consider the
situation shown in Figure 5.14. The question is whether to prune node «/, which is a max-node
and a descendant of node n\. The basic idea is to prune it if and only if the minimax value of n\
can be shown to be independent of the value of «,.

a. The value of n\ is given by

M I = min(«2,«2i,- • • ,«26i)

By writing a similar expression for the value of «2, find an expression for n\ in terms of rij.
b. Let /, be the minimum (or maximum) of the node values to the left of node «, at depth i.

These are the nodes whose minimax value is already known. Similarly, let r, be the
minimum (or maximum) of the node values to the right of n, at depth i. These nodes have
not yet been explored. Rewrite your expression for n\ in terms of the /, and r, values.

c. Now reformulate the expression to show that in order to affect n\, «/ must not exceed a
certain bound derived from the /, values.

d. Repeat the process for the case where «/ is a min-node.

You might want to consult Wand (1980), who shows how the alpha-beta algorithm can be auto-
matically synthesized from the minimax algorithm, using some general program-transformation
techniques.

Figure 5.14 Situation when considering whether to prune node n/.



Section 5.8. Summary 147

5.6 Prove that with a positive linear transformation of leaf values, the move choice remains
unchanged in a game tree with chance nodes.

5.7 Consider the following procedure for choosing moves in games with chance nodes:

• Generate a suitable number (say, 50) dice-roll sequences down to a suitable depth (say, 8).
• With known dice rolls, the game tree becomes deterministic. For each dice-roll sequence,

solve the resulting deterministic game tree using alpha-beta.
• Use the results to estimate the value of each move and choose the best.

Will this procedure work correctly? Why (not)?

5.8 Let us consider the problem of search in a three-player game. (You can assume no alliances
are allowed for now.) We will call the players 0, 1, and 2 for convenience. The first change is
that the evaluation function will return a list of three values, indicating (say) the likelihood of
winning for players 0, 1, and 2, respectively.

a. Complete the following game tree by filling in the backed-up value triples for all remaining
nodes, including the root:

to move
0

( 1 2 3 ) ( 4 2 1 ) ( 6 1 2 ) (74 -1 ) (5-1-1) (-1 5 2) (77-1) ( 5 4 5 )

Figure 5.15 The first three ply of a game tree with three players (0, 1, and 2).

b. Rewrite MlNMAX-DECiSiON and MINIMAX-VALUE so that they work correctly for the
three-player game.

c. Discuss the problems that might arise if players could form and terminate alliances as well
as make moves "on the board." Indicate briefly how these problems might be addressed.

5.9 Describe and implement a general game-playing environment for an arbitrary number of
players. Remember that time is part of the environment state, as well as the board position.

5.10 Suppose we play a variant of Tic-Tac-Toe in which each player sees only his or her own
moves. If the player makes a move on a square occupied by an opponent, the board "beeps" and
the player gets another try. Would the backgammon model suffice for this game, or would we
need something more sophisticated? Why?



148 Chapter 5. Game Playing

5.11 Describe and/or implement state descriptions, move generators, and evaluation functions
for one or more of the following games: backgammon, Monopoly, Scrabble, bridge (declarer
play is easiest).

5.12 Consider carefully the interplay of chance events and partial information in each of the
games in Exercise 5.11.

a. For which is the standard expectiminimax model appropriate? Implement the algorithm
and run it in your game-playing agent, with appropriate modifications to the game-playing
environment.

b. For which would the scheme described in Exercise 5.7 be appropriate?
c. Discuss how you might deal with the fact that in some of the games, the players do not

have the same knowledge of the current state.

5.13 The Chinook checkers program makes extensive use of endgame databases, which provide
exact values for every position within 6 moves of the end of the game. How might such databases
be generated efficiently?

5.14 Discuss how well the standard approach to game playing would apply to games such as
tennis, pool, and croquet, which take place in a continuous, physical state space.

5.15 For a game with which you are familiar, describe how an agent could be denned with
condition-action rules, subgoals (and their conditions for generation), and action-utility rules,
instead of by minimax search.

5.16 The minimax algorithm returns the best move for MAX under the assumption that MIN
plays optimally. What happens when MIN plays suboptimally?

5.17 We have assumed that the rules of each game define a utility function that is used by both
players, and that a utility of x for MAX means a utility of — x for MIN. Games with this property
are called zero-sum games. Describe how the minimax and alpha-beta algorithms change when
we have nonzero-sum games—that is, when each player has his or her own utility function. You
may assume that each player knows the other's utility function.



Part III
KNOWLEDGE AND REASONING

In Part II, we showed that an agent that has goals and searches for solutions to
the goals can do better than one that just reacts to its environment. We focused
mainly on the question of how to carry out the search, leaving aside the question
of general methods for describing states and actions.

In this part, we extend the capabilities of our agents by endowing them with
the capacity for general logical reasoning. A logical, knowledge-based agent
begins with some knowledge of the world and of its own actions. It uses logical
reasoning to maintain a description of the world as new percepts arrive, and to
deduce a course of action that will achieve its goals.

In Chapter 6, we introduce the basic design for a knowledge-based agent.
We then present a simple logical language for expressing knowledge, and show
how it can be used to draw conclusions about the world and to decide what to
do. In Chapter 7, we augment the language to make it capable of expressing a
wide variety of knowledge about complex worlds. In Chapter 8, we exercise this
capability by expressing a significant fragment of commonsense knowledge about
the real world, including time, change, objects, categories, events, substances,
and of course money. In Chapters 9 and 10 we discuss the theory and practice of
computer systems for logical reasoning.



6 AGENTS THAT REASON
LOGICALLY

In which we design agents that can form representations of the world, use a process
of inference to derive new representations about the world, and use these new
representations to deduce what to do.

LOGIC

In this chapter, we introduce the basic design for a knowledge-based agent. As we discussed
in Part I (see, for example, the statement by Craik on page 13), the knowledge-based approach
is a particularly powerful way of constructing an agent program. It aims to implement a view
of agents in which they can be seen as knowing about their world, and reasoning about their
possible courses of action. Knowledge-based agents are able to accept new tasks in the form of
explicitly described goals; they can achieve competence quickly by being told or learning new
knowledge about the environment; and they can adapt to changes in the environment by updating
the relevant knowledge. A knowledge-based agent needs to know many things: the current state
of the world; how to infer unseen properties of the world from percepts; how the world evolves
over time; what it wants to achieve; and what its own actions do in various circumstances.

We begin in Section 6.1 with the overall agent design. Section 6.2 introduces a simple new
environment, the wumpus world, where a knowledge-based agent can easily attain a competence
that would be extremely difficult to obtain by other means. Section 6.3 discusses the basic
elements of the agent design: a formal language in which knowledge can be expressed, and a
means of carrying out reasoning in such a language. These two elements constitute what we
call a logic. Section 6.4 gives an example of how these basic elements work in a logic called
propositional logic, and Section 6.5 illustrates the use of propositional logic to build a logical
agent for the wumpus world.

A KNOWLEDGE-BASED AGENT

KNOWLEDGE BASE The central component of a knowledge-based agent is.its knowledge base, or KB. Informally, a
knowledge base is a set of representations of facts about the world. Each individual representation

SENTENCE " is called a sentence. (Here "sentence" is used as a technical term. It is related to the sentences

151



152 Chapter 6. Agents that Reason Logically

KNOWLEDGE
REPRESENTATION
LANGUAGE

INFERENCE

BACKGROUND
KNOWLEDGE

of English and other natural languages, but is not identical.) The sentences are expressed in a
language called a knowledge representation language.

There must be a way to add new sentences to the knowledge base, and a way to query what
is known. The standard names for these tasks are TELL and ASK, respectively. The fundamental
requirement that we will impose on TELL and ASK is that when one ASKS a question of the
knowledge base, the answer should follow from what has been told (or rather, TELLed) to the
knowledge base previously. Later in the chapter, we will be more precise about the crucial word
"follow." For now, take it to mean that the knowledge base should not just make up things as
it goes along. Determining what follows from what the KB has been TELLed is the job of the
inference mechanism, the other main component of a knowledge-based agent.

Figure 6.1 shows the outline of a knowledge-based agent program. Like all our agents, it
takes a percept as input and returns an action. The agent maintains a knowledge base, KB, which
may initially contain some background knowledge. Each time the agent program is called, it
does two things. First, it TELLS the knowledge base what it perceives.1 Second, it ASKS the
knowledge base what action it should perform. In the process of answering this query, logical
reasoning is used to prove which action is better than all others, given what the agent knows and
what its goals are. The agent then performs the chosen action.

function KB-AGEN1( percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(A'S, MAKE-PERCEPT-SENTENCE(percepf, t))
action — ASK(KB, MAKE-ACTION-QUERY(f))
TELL(A"B, MAKE-ACTION-SENTENCE(flCf(0«, t))
t^t+ 1
return action

Figure 6.1 A generic knowledge-based agent.

The details of the representation language are hidden inside two functions that implement
the interface between the agent program "shell" and the core representation and reasoning system.
MAKE-PERCEPT-SENTENCE takes a percept and a time and returns a sentence representing the fact
that the agent perceived the percept at the given time, and MAKE-ACTION-QUERY takes a time as
input and returns a sentence that is suitable for asking what action should be performed at that
time. The details of the inference mechanism are hidden inside TELL and ASK. Later sections
will reveal these details.

A careful examination of Figure 6.1 reveals that it is quite similar to the design of agents
with internal state described in Chapter 2. Because of the definitions of TELL and ASK, however,
the knowledge-based agent is not an arbitrary program for calculating actions based on the internal
state variable. At any point, we can describe a knowledge-based agent at three levels:
1 You might think of TELL and ASK as procedures that humans can use to communicate with knowledge bases. Don't
be confused by the fact that here it is the agent that is TELLing things to its own knowledge base.



Section The Wumpus World Environment 153

KNOWLEDGE LEVEL
cpiSTEMOLOGICAL
LEVEL

LOGICAL LEVEL

IMPLEMENTATION
LEVEL

DECLARATIVE

• The knowledge level or epistemological level is the most abstract; we can describe the
agent by saying what it knows. For example, an automated taxi might be said to know that
the Golden Gate Bridge links San Francisco and Marin County. If TELL and ASK work
correctly, then most of the time we can work at the knowledge level and not worry about
lower levels.

• The logical level is the level at which the knowledge is encoded into sentences. For example,
the taxi might be described as having the logical sentence Links(GGBridge, SF, Marin) in
its knowledge base.

• The implementation level is the level that runs on the agent architecture. It is the
level at which there are physical representations of the sentences at the logical level. A
sentence such as Links(GGBridge, SF, Marin) could be represented in the KB by the string
"Links (GGBridge, SF,Marin) " contained in a list of strings; or by a "1" entry in
a three-dimensional table indexed by road links and location pairs; or by a complex set
of pointers connecting machine addresses corresponding to the individual symbols. The
choice of implementation is very important to the efficient performance of the agent, but it
is irrelevant to the logical level and the knowledge level.

We said that it is possible to understand the operation of a knowledge-based agent in terms of
what it knows. It is possible to construct a knowledge-based agent by TELLing it what it needs
to know. The agent's initial program, before it starts to receive percepts, is built by adding one
by one the sentences that represent the designer's knowledge of the environment. Provided that
the representation language makes it easy to express this knowledge in the form of sentences,
this simplifies the construction problem enormously. This is called the declarative approach
to system building. Also, one can design learning mechanisms that output general knowledge
about the environment given a series of percepts. By hooking up a learning mechanism to a
knowledge-based agent, one can make the agent fully autonomous.

6,2 THE WUMPUS WORLD ENVIRONMENT

Before launching into a full exposition of knowledge representation and reasoning, we will
WUMPUS WORLD describe a simple environment class—the wumpus world—that provides plenty of motivation

for logical reasoning. Wumpus was an early computer game, based on an agent who explores
a cave consisting of rooms connected by passageways. Lurking somewhere in the cave is the
wumpus, a beast that eats anyone who enters its room. To make matters worse, some rooms
contain bottomless pits that will trap anyone who wanders into these rooms (except for the
wumpus, who is too big to fall in). The only mitigating feature of living in this environment is
the occasional heap of gold.

It turns out that the wumpus game is rather tame by modern computer game standards.
However, it makes an excellent testbed environment for intelligent agents. Michael Genesereth
was the first to suggest this.



154 Chapter 6. Agents that Reason Logically

Specifying the environment
Like the vacuum world, the wumpus world is a grid of squares surrounded by walls, where each
square can contain agents and objects. The agent always starts in the lower left corner, a square
that we will label [1,1]. The agent's task is to find the gold, return to [1,1] and climb out of the
cave. An example wumpus world is, shown in Figure 6.2.

?<r T?? 5
S stench ^>

START

' Breeze -

- Breeze -

' Breeze -

' Breeze -

' Breeze -

Figure 6.2 A typical wumpus world.

To specify the agent's task, we specify its percepts, actions, and goals. In the wumpus
world, these are as follows:

• In the square containing the wumpus and in the directly (not diagonally) adjacent squares
the agent will perceive a stench.

• In the squares directly adjacent to a pit, the agent will perceive a breeze.
• In the square where the gold is, the agent will perceive a glitter.
• When an agent walks into a wall, it will perceive a bump.
• When the wumpus is killed, it gives out a woeful scream that can be perceived anywhere

in the cave.
• The percepts will be given to the agent in the form of a list of five symbols; for example,

if there is a stench, a breeze, and a glitter but no bump and no scream, the agent will
receive the percept [Stench,Breeze, Glitter,None,None]. The agent cannot perceive its
own location.

• Just as in the vacuum world, there are actions to go forward, turn right by 90°, and turn left
by 90°. In addition, the action Grab can be used to pick up an object that is in the same
square as the agent. The action Shoot can be used to fire an arrow in a straight line in the
direction the agent is facing. The arrow continues until it either hits and kills the wumpus
or hits the wall. The agent only has one arrow, so only the first Shoot action has any effect.



Section 6.2. The Wumpus World Environment 155

Finally, the action Climb is used to leave the cave; it is effective only when the agent is in
the start square.

• The agent dies a miserable death if it enters a square containing a pit or a live wumpus. It
is safe (but smelly) to enter a square with a dead wumpus.

• The agent's goal is to find the gold and bring it back to the start as quickly as possible,
without getting killed. To be precise, 1000 points are awarded for climbing out of the
cave while carrying the gold, but there is a 1-point penalty for each action taken, and a
10,000-point penalty for getting killed.

As we emphasized in Chapter 2, an agent can do well in a single environment merely by
memorizing the sequence of actions that happens to work in that environment. To provide a real
test, we need to specify a complete class of environments, and insist that the agent do well, on
average, over the whole class. We will assume a 4 x 4 grid surrounded by walls. The agent
always starts in the square labeled (1,1), facing toward the right. The locations of the gold and
the wumpus are chosen randomly, with a uniform distribution, from the squares other than the
start square. In addition, each square other than the start can be a pit, with probability 0.2.

In most of the environments in this class, there is a way for the agent to safely retrieve the
gold. In some environments, the agent must choose between going home empty-handed or taking
a chance that could lead either to death or to the gold. And in about 21% of the environments
(the ones where the gold is in a pit or surrounded by pits), there is no way the agent can get a
positive score. Sometimes life is just unfair.

After gaining experience with this class of environments, we can experiment with other
classes. In Chapter 22 we consider worlds where two agents explore together and can commu-
nicate with each other. We could also consider worlds where the wumpus can move, or where
there are multiple troves of gold, or multiple wumpuses.2

Acting and reasoning in the wumpus world
We now know the rules of the wumpus world, but we do not yet have an idea of how a wumpus
world agent should act. An example will clear this up and will show why a successful agent
will need to have some kind of logical reasoning ability. Figure 6.3(a) shows an agent's state of
knowledge at the start of an exploration of the cave in Figure 6.2, after it has received its initial
percept. To emphasize that this is only a representation, we use letters such as A and OK to
represent sentences, in contrast to Figure 6.2, which used (admittedly primitive) pictures of the
wumpus and pits.

From the fact that there was no stench or breeze in [1,1], the agent can infer that [1,2] and
[2,1] are free of dangers. They are marked with an OK to indicate this. From the fact that the
agent is still alive, it can infer that [1,1 ] is also OK. A cautious agent will only move into a square
that it knows is OK. Let us suppose the agent decides to move forward to [2,1], giving the scene
in Figure 6.3(b).

The agent detects a breeze in [2,1], so there must be a pit in a neighboring square, either
[2,2] or [3,1]. The notation PI indicates a possible pit. The pit cannot be in [1,1], because the

2 Or is it wumpi?



156 Chapter 6. Agents that Reason Logically

1,4

1,3

1,2

OK

1,1

OK

2,4

2,3

2,2

2,1

OK

3,4

3,3

3,2

3,1

4,4

4,3

4,2

4,1

[X] = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

1,4

1,3

1,2

OK

1,1

V
OK

2,4

2,3

2,2
P?

2,1 ,— |
* *

B
OK

3,4

3,3

3,2

3,1 p?

4,4

4,3

4,2

4,1

(a) (b)

Figure 6.3 The first step taken by the agent in the wumpus world, (a) The initial sit-
uation, after percept [None, None, None, None, None]. (b) After one move, with percept
[None, Breeze, None, None, None].

1,4

1 '3w<

120
S

OK

1,1

V
OK

2,4

2,3

2,2

OK

2,1 „o
V

OK

3,4

3,3

3,2

3 1
P!

4,4

4,3

4,2

4,1

[A | = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

1,4

1,3 w.

1 < 2 s
V

OK

1,1

V
OK

2,4
P?

2'30
S G

B

2,2

V
OK

2'1 RK

V
OK

3,4

3,3 p?

3,2

3 1' P!

4,4

4,3

4,2

4,1

(a) (b)

Figure 6.4 Two later stages in the progress of the agent, (a) After the third move,
with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept
[Stench, Breeze, Glitter, None, None].

agent was already there and did not fall in. At this point, there is only one known square that is
OK and has not been visited yet. So the prudent agent will turn around, go back to [1,1], and
then proceed to [1,2], giving the state of knowledge in Figure 6.4(a).

The agent detects a stench in [1,2], which means that there must be a wumpus nearby. But
the wumpus cannot be in [1,1] (or it would have eaten the agent at the start), and it cannot be in



Section 6.3. Representation, Reasoning, and Logic 157

[2,2] (or the agent would have detected a stench when it was in [2,1]). Therefore, the agent can
infer that the wumpus is in [1,3]. The notation Wl indicates this. More interesting is that the
lack of a Breeze percept in [1,2] means that there must be a pit in [3,1]. The reasoning is that no
breeze in [1,2] means there can be no pit in [2,2]. But we already inferred that there must be a
pit in either [2,2] or [3,1], so this means it must be in [3,1]. This is a fairly difficult inference,
because it combines knowledge gained at different times in different places, and relies on the
lack of a percept to make one crucial step. The inference is beyond the abilities of most animals,
but it is typical of the kind of reasoning that a logical agent does.

After these impressive deductions, there is only one known unvisited OK square left, [2,2],
so the agent will move there. We will not show the agent's state of knowledge at [2,2]; we just
assume the agent turns and moves to [2,3], giving us Figure 6.4(b). In [2,3], the agent detects a
glitter, so it should grab the gold and head for home, making sure its return trip only goes through
squares that are known to be OK.

In the rest of this chapter, we describe how to build a logical agent that can represent beliefs
such as "there is a pit in [2,2] or [3,1]" and "there is no wumpus in [2,2]," and that can make all
the inferences that were described in the preceding paragraphs.

6.3 REPRESENTATION. REASONING. AND LOGIC

KNOWLEDGE
REPRESENTATION

SYNTAX

SEMANTICS

In this section, we will discuss the nature of representation languages, and of logical languages
in particular, and explain in detail the connection between the language and the reasoning
mechanism that goes with it. Together, representation and reasoning support the operation of a
knowledge-based agent.

The object of knowledge representation is to express knowledge in computer-tractable
form, such that it caiTbe used to help agents perform well. A knowledge representation language
is defined by two aspects:

• The syntax of a language describes the possible configurations that can constitute sentences.
Usually, we describe syntax in terms of how sentences are represented on the printed page,
but the real representation is inside the computer: each sentence is implemented by a
physical configuration or physical property of some part of the agent. For now, think of
this as being a physical pattern of electrons in the computer's memory.

• The semantics determines the facts in the world to which the sentences refer. Without
semantics, a sentence is just an arrangement of electrons or a collection of marks on a page.
With semantics, each sentence makes a claim about the world. And with semantics, we
can say that when a particular configuration exists within an agent, the agent believes the
corresponding sentence.

For example, the syntax of the language of arithmetic expressions says that if x and y are
expressions denoting numbers, then x > y is a sentence about numbers. The semantics of the
language says that x > y is false when y is a bigger number than x, and true otherwise.



158 Chapter 6. Agents that Reason Logically

Provided the syntax and semantics are defined precisely, we can call the language a logic.3
From the syntax and semantics, we can derive an inference mechanism for an agent that uses the
language. We now explain how this comes about.

First, recall that the semantics of the language determine the fact to which a given sentence
refers (see Figure 6.5). It is impprtant to distinguish between facts and their representations.
Facts are part of the world,4 whereas their representations must be encoded in some way that can
be physically stored within an agent. We cannot put the world inside a computer (nor can we put
it inside a human), so all reasoning mechanisms must operate on representations of facts, rather
than on the facts themselves. Because sentences are physical configurations of parts of the agent,
reasoning must be a process of constructing new physical configurations from old ones. Proper
reasoning should ensure that the new configurations represent facts that actually follow from the
facts that the old configurations represent.

Sentences

Representation

World

Entails
-•- Sentence

Facts
Follows

Fact

Figure 6.5 The connection between sentences and facts is provided by the semantics of the
language. The property of one fact following from some other facts is mirrored by the property of
one sentence being entailed by some other sentences. Logical inference generates new sentences
that are entailed by existing sentences.

ENTAILMENT

Consider the following example. From the fact that the solar system obeys the laws of
gravitation, and the fact of the current arrangement of the sun, planets, and other bodies, it follows
(so the astronomers tell us) thatpluto will eventually spin off into the interstellar void. But if our
agent reasons improperly, it might start with representations of the first two facts and end with a
representation that means that Pluto will shortly arrive in the vicinity of Bucharest. Or we might
end up with "logical" reasoning like that in Figure 6.6. Y

We want to generate new sentences that are necessarily true, given that the old sentences
are true. This relation between sentences is called entailment, and mirrors the relation of on'e
fact following from another (Figure 6.5). In mathematical notation, the relation of entailment
between a knowledge base KB and a sentence a is pronounced "KB entails a" and written as

An inference procedure can do one of two things: given a knowledge base KB, it can generate
3 This is perhaps a rather broad interpretation of the term "logic," one that makes "representation language" and "logic"
synonymous. However, most of the principles of logic apply at this general level, rather than just at the level of the
particular languages most often associated with the term.
4 As Wittgenstein (1922) put it in his famous Tractatus Logico-Philosophicus: "The world is everything that is the
case." We are using the word "fact" in this sense: as an "arrangement" of the world that may or may not be the case.



Section 6.3. Representation, Reasoning, and Logic 159

FIRST VILLAGER: We have found a witch. May we burn her?
ALL: A witch! Burn her!
BEDEVERE: Why do you think she is a witch?
SECOND VILLAGER: She turned me into a newt.
BEDEVERE: A newt?
SECOND VILLAGER (after looking at himself for some time): I got better.
ALL: Burn her anyway.
BEDEVERE: Quiet! Quiet! There are ways of telling whether she is a witch.
BEDEVERE: Tell me . . . what do you do with witches?
ALL: Burn them.
BEDEVERE: And what do you burn, apart from witches?
FOURTH VILLAGER: ... Wood?
BEDEVERE: So why do witches burn?
SECOND VILLAGER: (pianissimo) Because they're made of wood?
BEDEVERE: Good.
ALL: I see. Yes, of course.
BEDEVERE: So how can we tell if she is made of wood?
FIRST VILLAGER: Make a bridge out of her.
BEDEVERE: Ah ... but can you not also make bridges out of stone?
ALL: Yes, of course ... um . . . er ...
BEDEVERE: Does wood sink in water?
ALL: No, no, it floats. Throw her in the pond.
BEDEVERE: Wait. Wait... tell me, what also floats on water?
ALL: Bread? No, no no. Apples ... gravy . . . very small rocks ...
BEDEVERE: No, no no,
KING ARTHUR: A duck!
(They all turn and look at ARTHUR. BEDEVERE looks up very impressed.)
BEDEVERE: Exactly. So ... logically ...
FIRST VILLAGER (beginning to pick up the thread): If she . . . weighs the same as

a duck . . . she's made of wood.
BEDEVERE: And therefore?
ALL: A witch!

Figure 6.6 An example of "logical" reasoning gone wrong. (Excerpted with permission from
Monty Python and the Holy Grail, © 1977, Reed Consumer Books.)

SOUND

TRUTH-PRESERVING

new sentences a that purport to be entailed by KB. Or, given a knowledge base KB and another
sentence a, it can report whether or not a is entailed by KB. An inference procedure that generates
only entailed sentences is called sound or truth-preserving.

An inference procedure z can be described by the sentences that it can derive. If z can
derive a from KB, a logician would write

KB



160 Chapter 6. Agents that Reason Logically

PROOF

COMPLETE

PROOF THEORY

which is pronounced "Alpha is derived from KB by /" or "/' derives alpha from KBT Sometimes
the inference procedure is implicit and the i is omitted. The record of operation of a sound
inference procedure is called a proof.

In understanding entailment and proof, it may help to think of the set of all consequences
of KB as a haystack and a as a ne,edle. Entailment is like the needle being in the haystack; proof
is like finding it. For real haystacks, which are finite in extent, it seems obvious that a systematic
examination can always decide whether the needle is in the haystack. This is the question
of completeness: an inference procedure is complete if it can find a proof for any sentence
that is entailed. But for many knowledge bases, the haystack of consequences is infinite, and
completeness becomes an important issue.5

We have said that sound inference is desirable. How is it achieved? The key to sound
inference is to have the inference steps respect the semantics of the sentences they operate upon.
That is, given a knowledge base, KB, the inference steps should only derive new sentences that
represent facts that follow from the facts represented by KB. By examining the semantics of
logical languages, we can extract what is called the proof theory of the language, which specifies
the reasoning steps that are sound. Consider the following familiar example from mathematics,
which illustrates syntax, semantics, and proof theory. Suppose we have the following sentence:

E = me2

The syntax of the "equation language" allows two expressions to be connected by an "=" sign.
An expression can be a simple symbol or number, a concatenation of two expressions, two
expressions joined by a "+" sign, and so on. The semantics of the language says that the
two expressions on each side of "=" refer to the same quantity; that the concatenation of two
expressions refers to the quantity that is the product of the quantities referred to by each of the
expressions; and so on. From the semantics, we can show that a new sentence can be generated
by, for example, concatenating the same expression to both sides of the equation:

ET = mc2T
Most readers will have plenty of experience with inference of this sort. Logical languages are like
this simple equation language, but rather than dealing with algebraic properties and numerical
quantities, they must deal with more or less everything we might want to represent and about
which we might want to reason.

Representation
We will now look a little more deeply into the nature of knowledge representation languages,
with the aim of designing an appropriate syntax and semantics. We will begin with two familiar
classes of languages, programming languages and natural languages, to see what they are good
at representing and where they have problems.

Programming languages (such as C or Pascal or Lisp) are good for describing algorithms
and concrete data structures. We could certainly imagine using an 4 x 4 array to represent
the contents of the wumpus world, for example. Thus, the programming language statement
World[2,2] «—Pit is a fairly natural way to say that there is a pit in square [2,2]. However, most
5 Compare with the case of infinite search spaces in Chapter 3, where depth-first search is not complete.



Section 6.3. Representation, Reasoning, and Logic 161

programming languages do not offer any easy way to say "there is a pit in [2,2] or [3,1]" or
"there is a wumpus in some square." The problem is that programming languages are designed to
completely describe the state of the computer and how it changes as the program executes. But
we would like our knowledge representation language to support the case where we do not have
complete information—where we do not know for certain how things are, but only know some
possibilities for how they might or might not be. A language that does not let us do this is not
expressive enough.

Natural languages (such as English or Spanish) are certainly expressive—we managed to
write this whole book using natural language with only occasional lapses into other languages
(including logic, mathematics, and the language of diagrams). But natural languages have evolved
more to meet the needs of communication rather than representation. When a speaker points
and says, "Look!" the listener comes to know that, say, Superman has finally appeared over the
rooftops. But we would not want to say that the sentence "Look!" encoded that fact. Rather,
the meaning of the sentence depends both on the sentence itself and on the context in which the
sentence was spoken. A natural language is a good way for a speaker to get a listener to come
to know something, but often this sharing of knowledge is done without explicit representation
of the knowledge itself. Natural languages also suffer from ambiguity—in a phrase such as
"small dogs and cats," it is not clear whether the cats are small. Contrast this to the programming
language construct "-d + c," where the precedence rules for the language tell us that the minus
sign applies to d, not to d + c.

A good knowledge representation language should combine the advantages of natural
languages and formal languages. It should be expressive and concise so that we can say everything
we need to say succinctly. It should be unambiguous and independent of context, so that what we
say today will still be interpretable tomorrow. And it should be effective in the sense that there
should be an inference procedure that can make new inferences from sentences in our language.

Many representation languages have been designed to try to achieve these criteria. In
this book, we concentrate on first-order logic as our representation language because it forms
the basis of most representation schemes in AI. Just as it would be overoptimistic to believe
that one can make real progress in physics without understanding and using equations, it is
important to develop a talent for working with logical notation if one is to make progress in
artificial intelligence. However, it is also important not to get too concerned with the specifics
of logical notation—after all, there are literally dozens of different versions, some with x's and
>''s and exotic mathematical symbols, and some with rather visually appealing diagrams with
arrows and bubbles. The main thing to keep hold of is how a precise, formal language can
represent knowledge, and how mechanical procedures can operate on expressions in the language
to perform reasoning. The fundamental concepts remain the same no matter what language is
being used to represent the knowledge.

'INTERPRETATION

Semantics

In logic, the meaning of a sentence is what it states about the world, that the world is this way and
not that way. So how does a sentence get its meaning? How do we establish the correspondence
between sentences and facts? Essentially, this is up to the person who wrote the sentence. In
order to say what it means, the writer has to provide an interpretation for it; to say what fact



162 Chapter 6. Agents that Reason Logically

THE LANGUAGE OF THOUGHT

Philosophers and psychologists have long pondered how it is that humans and other
animals represent knowledge. It is clear that the evolution of natural language has
played an important role in developing this ability in humans. But it is also true that
humans seem to represent much of their knowledge in a nonverbal form. Psychologists
have done studies to confirm that humans remember the "gist" of something they have
read rather than the exact words. You could look at Anderson's (1980, page 96)
description of an experiment by Wanner, or you could perform your own experiment
by deciding which of the following two phrases formed the opening of Section 6.3:

"In this section, we will discuss the nature of representation languages..."

"This section covers the topic of knowledge representation languages..."
In Wanner's experiment, subjects made the right choice at chance level—about 50%
of the time—but remembered the overall idea of what they read with better than
90% accuracy. This indicates that the exact words are not part of the representations
they formed. A similar experiment (Sachs, 1967) showed that subjects remember the
words for a short time (seconds to tens of seconds), but eventually forget the words
and remember only the meaning. This suggests that people process the words to form
some kind of nonverbal representation which they maintain as memories.

The exact mechanism by which language enables and shapes the representation of
ideas in humans remains a fascinating question. The famous Sapir-Whorf hypothesis
claims that the language we speak profoundly influences the way in which we think
and make decisions, in particular by setting up the category structure by which we
divide up the world into different sorts of objects. Whorf (1956) claimed that Eskimos
have many words for snow, and thus experience snow in a different way from speakers
of other languages. His analysis has since been discredited (Pullum, 1991); Inuit,
Yupik, and other related languages seem to have about the same number of words
for snow-related concepts as English (consider blizzard, sprinkling, flurries, powder,
slush, snowbank, snowdrift, etc.). Of course, different languages do carve up the
world differently. Spanish has two words for "fish," one for the live animal and one
for the food. English does not make this distinction, but it does have the cow/beef
distinction. There is no evidence that this means that English and Spanish speakers
think about the world in fundamentally different ways.

For our purposes, it is important to remember that the language used to represent
an agent's internal knowledge is quite different from the external language used to
communicate with other agents. (See Chapter 22 for the study of communication.)



Section 6.3. Representation, Reasoning, and Logic 163

it corresponds to. A sentence does not mean something by itself. This is a difficult concept to
accept, because we are used to languages like English where the interpretation of most things
was fixed a long time ago.

The idea of interpretation is easier to see in made-up languages. Imagine that one spy
wants to pass a message to another, but worries that the message may be intercepted. The two
spies could agree in advance on a "nonstandard interpretation in which, say, the interpretation of
"Pope" is a particular piece of microfilm and the interpretation of "Denver" is the pumpkin left
on the porch, and so forth. Then, when the first spy sends a newspaper clipping with the headline
"The Pope is in Denver," the second spy will know that the microfilm is in the pumpkin.

It is possible, in principle, to define a language in which every sentence has a completely
arbitrary interpretation. But in practice, all representation languages impose a systematic relation-

COMPOSITIONAL ship between sentences and facts. The languages we will deal with are all compositional—the
meaning of a sentence is a function of the meaning of its parts. Just as the meaning of the math-
ematical expression jc2 + y2 is related to the meanings of r2 and y2, we would like the meaning
of the sentence "S\^ and £1,2" to be related to the meanings of "£1.4" and "Si,2-" It would be
very strange if "51,4" meant there is a stench in square [1,4] and "$1,2" meant there is a stench in
square [1,2], but "Si ,4 and £1,2" meant that France and Poland drew 1-1 in last week's ice-hockey
qualifying match. In Section 6.4, we describe the semantics of a simple language, the language
of prepositional logic, that obeys constraints like these. Such constraints make it easy to specify
a proof theory that respects the semantics.

Once a sentence is given an interpretation by the semantics, the sentence says that the
" world is this way and not that way. Hence, it can be true or false. A sentence is true under a

particular interpretation if the state of affairs it represents is the case. Note that truth depends
both on the interpretation of the sentence and on the actual state of the world. For example, the
sentence "5],2" would be true under the interpretation in which it means that there is a stench in
[1,2], in the world described in Figure 6.2. But it would be false in worlds that do not have a
stench in [1,2], and it would be false in Figure 6.2 under the interpretation in which it means that
there is a breeze in [1,2].

LOGICAL INFERENCE

DEDUCTION

Inference
The terms "reasoning" and "inference" are generally used to cover any process by which con-
clusions are reached. In this chapter, we are mainly concerned with sound reasoning, which
we will call logical inference or deduction. Logical inference is a process that implements the
entailment relation between sentences. There are a number of ways to approach the design of
logical inference systems. We will begin with the idea of a necessarily true sentence.

VALID

Validity and satisfiability

A sentence is valid or necessarily true if and only if it is true under all possible interpretations in
all possible worlds, that is, regardless of what it is supposed to mean and regardless of the state
of affairs in the universe being described. For example, the sentence

"There is a stench at [1,1] or there is not a stench at [1,1]."



164 Chapter 6. Agents that Reason Logically

SATISFIABLE

UNSATISFIABLE

is valid, because it is true whether or not "there is a stench in [1,1]" is true, and it is true regardless
of the interpretation of "there is a stench in [ 1,1]." In contrast,

"There is an open area in the square in front of me or there is a wall in the square in
front of me."

is not valid by itself. It is only valid under the assumption that every square has either a wall or
an open area in it. So the sentence

"If every square has either a wall or an open area in it, then there is an open area in
the square in front of me, or there is a wall in the square in front of me."

is valid.6 There are several synonyms for valid sentences. Some authors use the terms analytic^
sentences or tautologies for valid sentences.

A sentence is satisfiable if and only if there is some interpretation in some world for
which it is true. The sentence "there is a wumpus at [1,2]" is satisfiable because there might
well be a wumpus in that square, even though there does not happen to be one in Figure 6.2. A
sentence that is not satisfiable is unsatisfiable. Self-contradictory sentences are unsatisfiable, if
the contradictoriness does not depend on the meanfiTgs of the symbols. For example, the sentence

"There is a wall in front of me and there is no wall in front of me"
is unsatisfiable.

Inference in computers

It might seem that valid and unsatisfiable sentences are useless, because they can only express
things that are obviously true or false. In fact, we will see that validity and unsatisfiability are
crucial to the ability of a computer to reason. ""

The computer suffers from two handicaps: it does not necessarily know the interpretation
you are using for the sentences in the knowledge base, and it knows nothing at all about the world
except what appears in the knowledge base. Suppose we ask the computer if it is OK to move to
square [2,2]. The computer does not know what OK means, nor does it know what a wumpus or
a pit is. So it cannot reason informally as we did on page 155. All it can do is see if its knowledge
base entails the sentence "[2,2] is OK." In other words, the inference procedure has to show that
the sentence "If KB is true then [2,2] is OK" is a valid sentence. If it is valid, then it does not
matter that the computer does not know the interpretation you are using or that it does not know
much about the world—the conclusion is guaranteed to be correct under all interpretations in all
worlds in which the original KB is true. In Section 6.4, we will give an example of a formal
procedure for deciding if a sentence is valid.

What makes formal inference powerful is that there is no limit to the complexity of the
sentences it can handle. When we think of valid sentences, we usually think of simple examples
like "The wumpus is dead or the wumpus is not dead." But the formal inference mechanism can
just as well deal with valid sentences of the form "If KB then P" where KB is a conjunction of
thousands of sentences describing the laws of gravity and the current state of the solar system,
and P i s a long description of the eventual departure of Pluto from the system.
6 In these examples, we are assuming that words like "if." "then," "every," "or" and "not" are part of the standard syntax
of the language, and thus are not open to varying interpretation.



Section 6.3. Representation, Reasoning, and Logic 165

To reiterate, the great thing about formal inference is that it can be used to derive valid
conclusions even when the computer does not know the interpretation you are using. The
computer only reports valid conclusions, which must be true regardless of your interpretation.
Because you know the interpretation, the conclusions will be meaningful to you, and they are
guaranteed to follow from your premises. The word "you" in this paragraph can be applied
equally to human and computer agents.

PROPOSITIONAL
LOGIC

BOOLEAN
CONNECTIVES

ONTOLOGICAL
COMMITMENTS

TEMPORAL LOGIC

S'STEMOLOGICAL
COMMITMENTS

Logics
To summarize, we can say that a logic consists of the following:

1. A formal system for describing states of affairs, consisting of
(a) the syntax of the language, which describes how to make sentences, and
(b) the semantics of the language, which states the systematic constraints on how sen-

tences relate to states of affairs.
2. The proof theory—a set of rules for deducing the entailments of a set of sentences.

We will concentrate on two kinds of logic: propositional or Boolean logic, and first-order logic
(more precisely, first-order predicate calculus with equality).

In propositional logic, symbols represent whole propositions (facts); for example, D
might have the interpretation "the wumpus is dead." which may or may not be a true proposition.
Proposition symbols can be combined using Boolean connectives to generate sentences with more
complex meanings. Such a logic makes very little commitment to how things are represented, so
it is not surprising that it does not give us much mileage as a representation language.

First-order logic commits to the representation of worlds in terms of objects and predicates
on objects (i.e., properties of objects or relations between objects), as well as using connectives
and quantifiers, which allow sentences to be written about everything in the universe at once.
First-order logic seems to be able to capture a good deal of what we know about the world, and
has been studied for about a hundred years. We will spend therefore a good deal of time looking
at how to do representation and deduction using it.

It is illuminating to consider logics in the light of their ontological and epistemological
commitments. Ontological commitments have to do with the nature of reality. For example,
propositional logic assumes that there are facts that either hold or do not in the world. Each fact
can be in one of two states: true or false. First-order logic assumes more: namely, that the world
consists of objects with certain relations between them that do or do not hold. Special-purpose
logics make still further ontological commitments; for example, temporal logic assumes that
the world is ordered by a set of time points or intervals, and includes built-in mechanisms for
reasoning about time.

Epistemological commitments have to do with the possible states of knowledge an agent
can have using various types of logic. In both propositional and first-order logic, a sentence
represents a fact and the agent either believes the sentence to be true, believes it to be false,
or is unable to conclude either way. These logics therefore have three possible states of belief
regarding any sentence. Systems using probability theory, on the other hand, can have any
degree of belief, ranging from 0 (total disbelief) to 1 (total belief). For example, a probabilistic



166 Chapter 6. Agents that Reason Logically

wumpus-world agent might believe that the wumpus is in [1,3] with probability 0.75. Systems
FUZZY LOGIC based on fuzzy logic can have degrees of belief in a sentence, and also allow degrees of truth:

a fact need not be true or false in the world, but can be true to a certain degree. For example,
"Vienna is a large city" might be true only to degree 0.6. The ontological and epistemological
commitments of various logics are summarized in Figure 6.7. '/-;

Language

Prepositional logic
First-order logic
Temporal logic
Probability theory
Fuzzy logic

Ontological Commitment
(What exists in the world)

facts
facts, objects, relations
facts, objects, relations, times
facts
degree of truth

Epistemological Commitment
(What an agent believes about facts)

true/false/unknown
true/false/unknown
true/false/unknown
degree of belief 0...1
degree of belief 0...1

Figure 6.7 Formal languages and their ontological and epistemological commitments.

6.4 PROPOSITIONAL LOGIC: A VERY SIMPLE LOGIC

Despite its limited expressiveness, prepositional logic serves to illustrate many of the concepts
of logic just as well as first-order logic. We will describe its syntax, semantics, and associated
inference procedures.

CONJUNCTION
(LOGIC)

DISJUNCTION

Syntax
The syntax of prepositional logic is simple. The symbols of prepositional logic are the logical
constants True and False, proposition symbols such as P and Q, the logical connectives A, V, •&,
=>, and -i, and parentheses, (). All sentences are made by putting these symbols together using
the following rules:

• The logical constants True and False are sentences by themselves.
• A prepositional symbol such as P or Q is a sentence by itself.
• Wrapping parentheses around a sentence yields a sentence, for example, (P A Q).
• A sentence can be formed by combining simpler sentences with one of the five logical

connectives:
A (and). A sentence whose main connective is A, such as P A (Q V R), is called a

conjunction (logic); itsparts are the conjuncts. (The A looks like an "A" for "And.")
V (or). A sentence using V, such as A V (P A Q), is a disjunction of the disjuncts A

and (P A Q). (Historically, the V comes from the Latin "vel," which means "or." For
most people, it is easier to remember as an upside-down and.)



Section 6.4. Prepositional Logic: A Very Simple Logic 167

^PLICATION =>• (implies). A sentence such as (PA Q) =>• R is called ani implication (or conditional).
PREMISE Its premise or antecedent is P A Q, and its conclusion or consequent is R. Impli-
CONCLUSION cations are also known as rules or if-then statements. The implication symbol is

sometimes written in other books as D or —.
EQUIVALENCE <£> (equivalent). The sentence (P A Q) & (Q A P) is an equivalence (also called a

biconditional).
-NEGATION -1 (not). A sentence such as -<P is called the negation of P. All the other connectives

combine two sentences into one; -> is the only connective that operates on a single
sentence.

Figure 6.8 gives a formal grammar of propositional logic; see page 854 if you are not fa-
ATOMIC SENTENCES miliar with the BNF notation. The grammar introduces atomic sentences, which in propositional
SENTENCES logic consist of a single symbol (e.g., P), and complex sentences, which contain connectives or
LITERAL parentheses (e.g., P A Q). The term literal is also used, meaning either an atomic sentences or a

negated atomic sentence.

Sentence — AtomicSentence ComplexSentence

AtomicSentence

ComplexSentence —

True | False
P Q R . . .
( Sentence )
Sentence Connective Sentence
-^Sentence

Connective — A | V

Figure 6.8 A BNF (Backus-Naur Form) grammar of sentences in propositional logic.

Strictly speaking, the grammar is ambiguous — a sentence such as P A Q V R could be
parsed as either (P A Q) V R or as P A (Q V R). This is similar to the ambiguity of arithmetic
expressions such as P + Q x R, and the way to resolve the ambiguity is also similar: we pick an
order of precedence for the operators, but use parentheses whenever there might be confusion.
The order of precedence in propositional logic is (from highest to lowest): ->, A, V, =>•, and -O.
Hence, the sentence

is equivalent to the sentence

((-iP) V (Q A R)) => S.



168 Chapter 6. Agents that Reason Logically

TRUTH TABLE

Semantics
The semantics of prepositional logic is also quite straightforward. We define it by specifying
the interpretation of the proposition symbols and constants, and specifying the meanings of the
logical connectives.

A proposition symbol cari mean whatever you want. That is, its interpretation can be any
arbitrary fact. The interpretation of P might be the fact that Paris is the capital of France or that
the wumpus is dead. A sentence containing just a proposition symbol is satisiiable but not valid:
it is true just when the fact that it refers to is the case.

With logical constants, you have no choice; the sentence True always has as its interpretation
the way the world actually is—the true fact. The sentence False always has as its interpretation
the way the world is not.

A complex sentence has a meaning derived from the meaning of its parts. Each connective_
can be thought of as a function. Just as addition is a function that takes two numbers as input
and returns a number, so and is a function that takes two truth values as input and returns a truth
value. We know that one way to define a function is to make a table that gives the output value
for every possible input value. For most functions (such as addition), this is impractical because
of the size of the table, but there are only two possible truth values, so a logical function with
two arguments needs a table with only four entries. Such a table is called a truth table. We give
truth tables for the logical connectives in Figure 6.9. To use the table to determine, for example,
the value of True V False, first look on the left for the row where P is true and Q is false (the third
row). Then look in that row under the P V Q column to see the result: True.

P
False
False
True
True

Q
False
True
False '
True

^P

True
True
False
False

P f\Q

False
False
False
True

P\/Q
False
True
True
True

P => Q
True
True

'False "
True

P ̂  Q
True
False
False
True

Figure 6.9 Truth tables for the five logical connectives.

Truth tables define the semantics of sentences such as True A True. Complex sentences
such as (P V 0 A -iS1 are defined by a process of decomposition: first, determine the meaning of
(P A Q) and of -iS, and then combine them using the definition of the A function. This is exactly
analogous to the way a complex arithmetic expression such as (p x q) + —s is evaluated.

The truth tables for "and," "or," and "not" are in close accord with our intuitions about the
English words. The main point of possible confusion is that P V Q is true when either or both P
and Q are true. There is a different connective called "exclusive or" ("xor" for short) that gives
false when both disjuncts are true.7 There is no consensus on the symbol for exclusive or; two
choices are V and -£.

In some ways, the implication connective =>• is the most important, and its truth table might
seem puzzling at first, because it does not quite fit our intuitive understanding of "P implies <2"

Latin has a separate word, out, for exclusive or.



ISection 6.4. Prepositional Logic: A Very Simple Logic 169

or "if P then Q." For one thing, propositional logic does not require any relation of causation or
relevance between P andQ. The sentence "5 is odd implies Tokyo is the capital of Japan" is a true
sentence of propositional logic (under the normal interpretation), even though it is a decidedly
odd sentence of English. Another point of confusion is that any implication is true whenever its
antecedent is false. For example, "5 is even implies Sam is smart" is true, regardless of whether
Sam is smart. This seems bizarre, but it makes sense if you think of "P => Q" as saying, "If P
is true, then I am claiming that Q is true. Otherwise I am making no claim."

Validity and inference
Truth tables can be used not only to define the connectives, but also to test for valid sentences.
Given a sentence, we make a truth table with one row for each of the possible combinations of
truth values for the proposition symbols in the sentence. For each row, we can calculate the truth
value of the entire sentence. If the sentence is true in every row, then the sentence is valid. For
example, the sentence

((P V H) A -.#) => P

is valid, as can be seen in Figure 6.10. We include some intermediate columns to make it clear
how the final column is derived, but it is not important that the intermediate columns are there, as
long as the entries in the final column follow the definitions of the connectives. Suppose P means
that there is a wumpus in [1,3] and H means there is a wumpus in [2,2]. If at some point we learn
(P V H) and then we also learn ->//, then we can use the valid sentence above to conclude that P
is true—that the wumpus is in [1,3J.

P
False
False
True
True

H

False
True
False
True

PVH

False
True
True
True

(PVH)/\ -.//

False
False
True
False

( (PVtf)A-iH) => P
True
True
True
True

Figure 6.10 Truth table showing validity of a complex sentence.

This is important. It says that if a machine has some premises and a possible conclusion,
it can determine if the conclusion is true. It can do this by building a truth table for the sentence
Premises => Conclusion and checking all the rows. If every row is true, then the conclusion is
entailed by the premises, which means that the fact represented by the conclusion follows from
the state of affairs represented by the premises. Even though the machine has no idea what the
conclusion means, the user could read the conclusions and use his or her interpretation of the
proposition symbols to see what the conclusions mean—in this case, that the wumpus is in [1,3].
Thus, we have fulfilled the promise made in Section 6.3.

It will often be the case that the sentences input into the knowledge base by the user refer
to a world to which the computer has no independent access, as in Figure 6.11, where it is the
user who observes the world and types sentences into the computer. It is therefore essential



170 Chapter 6. Agents that Reason Logically

that a reasoning system be able to draw conclusions that follow from the premises, regardless
of the world to which the sentences are intended to refer. But it is a good idea for a reasoning
system to follow this principle in any case. Suppose we replace the "user" in Figure 6.11 with
a camera-based visual processing system that sends input sentences to the reasoning system. It
makes no difference! Even though the computer now has "direct access" to the world, inference
can still take place through direct operations on the syntax of sentences, without any additional
information as to their intended meaning.

input sentences

Figure 6.11 Sentences often refer to a world to which the agent has no independent access.

MODEL

Models
Any world in which a sentence is true under a particular interpretation is called a model of that
sentence under that interpretation. Thus, the world shown in Figure 6.2 is a model of the sentence
"Si>2" under the interpretation in which it means that there is a stench in [1,2]. There are many
other models of this sentence—you can make up a world that does or does not have pits and gold
in various locations, and as long as the world has a stench in [1,2], it is a model of the sentence.
The reason there are so many models is because "£1,2" makes a very weak claim about the world.
The more we claim (i.e., the more conjunctions we add into the knowledge base), the fewer the
models there will be.

Models are very important in logic, because, to restate the definition of entailment, a
sentence a is entailed by a knowledge base KB if the models of KB are all models of a. If this is
the case, then whenever KB is true, a must also be true.

In fact, we could define the meaning of a sentence by means of set operations on sets of
models. For example, the set of models of P A Q is the intersection of the models of P and the
models of Q. Figure 6.12 diagrams the set relationships for the four binary connectives.

We have said that models are worlds. One might feel that real worlds are rather messy
things on which to base a formal system. Some authors prefer to think of models as mathematical
objects. In this view, a model in prepositional logic is simply a mapping from proposition symbols



Section 6.4. Propositional Logic: A Very Simple Logic 171

PvQ PAQ

Figure 6.12 Models of complex sentences in terms of the models of their components. In each
diagram, the shaded parts correspond to the models of the complex sentence.

directly to truth and falsehood, that is, the label for a row in a truth table. Then the models of
a sentence are just those mappings that make the sentence true. The two views can easily be
reconciled because each possible assignment of true and false to a set of proposition symbols
can be viewed as an equivalence class of worlds that, under a given interpretation, have those
truth values for those symbols. There may of course be many different "real worlds" that have
the same truth values for those symbols. The only requirement to complete the reconciliation is
that each proposition symbol be either true or false in each world. This is, of course, the basic
ontological assumption of propositional logic, and is what allows us to expect that manipulations
of symbols lead to conclusions with reliable counterparts in the actual world.

INFERENCE RULE

Rules of inference for propositional logic
The process by which the soundness of an inference is established through truth tables can be
extended to entire classes of inferences. There are certain patterns of inferences that occur over
and over again, and their soundness can be shown once and for all. Then the pattern can be
captured in what is called an inference rule. Once a rule is established, it can be used to make
inferences without going through the tedious process of building truth tables.

We have already seen the notation a h /? to say that /3 can be derived from a by inference.
There is an alternative notation,

a

which emphasizes that this is not a sentence, but rather an inference rule. Whenever something in
the knowledge base matches the pattern above the line, the inference rule concludes the premise



172 Chapter 6. Agents that Reason Logically

below the line. The letters a, f3, etc., are intended to match any sentence, not just individual
proposition symbols. If there are several sentences, in either the premise or the conclusion, they
are separated by commas. Figure 6.13 gives a list of seven commonly used inference rules.

An inference rule is sound if the conclusion is true in all cases where the premises are true.
To verify soundness, we therefore construct a truth table with one line for each possible model
of the proposition symbols in the premise, and show that in all models where the premise is true,
the conclusion is also true. Figure 6.14 shows the truth table for the resolution rule.

<C> Modus Ponens or Implication-Elimination: (From an implication and the
premise of the implication, you can infer the conclusion.)

a =/•/?, a
~3

0 And-Elimination: (From a conjunction, you can infer any of the conjuncts.)
a\ A 02 A ... A an

«/
<) And-Introduction: (From a list of sentences, you can infer their conjunction.)

Q l , Q2. • • • , un

QI A 02 A . . . A an

0 Or-Introduction: (From a sentence, you can infer its disjunction with anything
else at all.)

a i
«, V a-2 V . . . V a,,

<0> Double-Negation Elimination: (From a doubly negated sentence, you can infer
a positive sentence.)

-i-i a

<) Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
can infer the other one is true.)

a V /?, -n/j
a

<) Resolution: (This is the most difficult. Because 0 cannot be both true and false,
one of the other disjuncts must be true in one of the premises. Or equivalently,
implication is transitive.)

a V/3, -v/i V 7
a V - v

or equivalently
-1Q => /?,

Figure 6.13 Seven inference rules for prepositional logic. The unit resolution rule is a special
case of the resolutLoJX-Cule,_ which in turn is a special case of the full resolution rule for first-order
logic discussed in Chapter 9.



Section 6.4. Prepositional Logic: A Very Simple Logic 173

ft

False
False
False
False
True
True
True
True

13
False
False
True
True
False
False
True
True

7
False
True
False

- True
False
True
False
True

aV 13
False
False
True
True
True
True
True
True

^0 V 7

True
True
False
True
True
True
False
True

a V 7

False
True
False
True
True
True
True
True

Figure 6.14 A truth table demonstrating the soundness of the resolution inference rule. We
have underlined the rows where both premises are true.

As we mentioned above, a logical proof consists of a sequence of applications of inference
rules, starting with sentences initially in the KB, and culminating in the generation of the sentence
whose proof is desired. To prove that P follows from (P V H) and ~^H, for example, we simply
require one application of the resolution rule, with a as P, i3 as H, and 7 empty. The job of an
inference procedure, then, is to construct proofs by finding appropriate sequences of applications
of inference rules.

MONOTONICITY

Complexity of prepositional inference
The truth-table method of inference described on page 169 is complete, because it is always
possible to enumerate the 2" rows of the table for any proof involving n proposition symbols.
On the other hand, the computation time is exponential in n, and therefore impractical. One
might wonder whether there is a polynomial-time proof procedure for prepositional logic based
on using the inference rules from Section 6.4.

In fact, a version of this very problem was the first addressed by Cook (1971) in his theory
of NP-completeness. (See also the appendix on complexity.) Cook showed that checking a set of
sentences for satisfiability is NP-complete, and therefore unlikely to yield to a polynomial-time
algorithm. However, this does not mean that all instances of prepositional inference are going to
take time proportional to 2". In many cases, the proof of a given sentence refers only to a small
subset of the KB and can be found fairly quickly. In fact, as Exercise 6.15 shows, really hard
problems are quite rare.

The use of inference rules to draw conclusions from a knowledge base relies implicitly
on a general property of certain logics (including prepositional and first-order logic) called
monotonicity. Suppose that a knowledge base KB entails some set of sentences. A logic is
rnooQtonic if when we add some new sentences to the knowledge base, all the sentences entailed
by the original KB are still entailed by the new larger knowledge base. Formally, we can state
the property of monotonicity of a logic as follows:

if KB\ \= a then (KBt U KB2) \= a

This is true regardless of the contents of KB^—it can be irrelevant or even contradictory to KB\.



174 Chapter 6. Agents that Reason Logically

It is fairly easy to show that prepositional and first-order logic are monotonic in this sense;
one can also show that probability theory is not monotonic (see Chapter 14). An inference rule"

LOCAL such as Modus Ponens is local because its premise need only be compared with a small portion
of the KB (two sentences, in fact). Were it not for monotonicity, we could not have any local
inference rules because the rest of the KB might affect the soundness of the inference. This
would potentially cripple any inference procedure.

There is also a useful class of sentences for which a polynomial-time inference procedure
HORN SENTENCES exists. This is the class called Horn sentences.8 A Horn sentence has the form:

PI A P2 A ... A Pn => Q

where the P, and Q are nonnegated atoms. There are two important special cases: -First, when
Q is the constant False, we get a sentence that is equivalent to ->P] V ... V ->Pn. Second, when
n = 1 and PI = True, we get True => Q, which is equivalent to the atomic sentence Q. Not every
knowledge base can be written as a collection of Horn sentences, but for those that can, we can use
a simple inference procedure: apply Modus Ponens wherever possible until no new inferences
remain to be made. We discuss Horn sentences and their associated inference procedures in more
detail in the context of first-order logic (Section 9.4).

6.5 AN AGENT FOR THE WUMPUS WORLD

In this section, we show a snapshot of a propositional logic agent reasoning about the wumpus
world. We assume that the agent has reached the point shown in Figure 6.4(a), repeated here as
Figure 6.15, and show how the agent can conclude that the wumpus is in [1,3].

The knowledge base
On each turn, the agent's percepts are converted into sentences and entered into the knowledge
base, along with some valid sentences that are entailed by the percept sentences. Let us assume
that the symbol9 £1,2, for example, means "There is a stench in [1,2]." Similarly, BI,\ means
"There is a breeze in [2,1]." At this point, then, the knowledge base contains, among others, the
percept sentences

#2,

In addition, the agent must start out with some knowledge of the environment. For example, the
agent knows that if a square has no smell, then neither the square nor any of its adjacent squares

8 Also known as Horn clauses. The name honors the logician Alfred Horn.
9 The subscripts make these symbols look like they have some kind of internal structure, but do not let that mislead you.
We could have used Q or StenchOneTwo instead of S1-2, but we wanted symbols that are both mnemonic and succinct.



Section 6.5. An Agent for the Wumpus World 175

1,4

1,3
W!

1,2,— |

S
OK

1,1

V
OK

2,4

2,3

2,2

OK

2,1
B
V

OK

3,4

3,3

3,2

3,1
P!

4,4

4,3

4,2

4,1

[T] = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

Figure 6.15 The agent's knowledge after the third move. The current percept is
[Stench, None, None, None, None].

can house a wumpus. The agent needs to know this for each square in the world, but here we just
show sentences for three relevant squares, labeling each sentence with a rule number:

RI : -,5],i => -iWi.i A-iWi.2 A-iW2 ,i
^2: -^2,1 => -1^1,1 A-iW2,i A-1^2,2 A-iW3,i
fl3; -,5,>2 => ->WM A -nWi,2 A -.W2>2 A -Wi,3

Another useful fact is that if there is a stench in [1,2], then there must be a wumpus in [1,2] or in
one or more of the neighboring squares. This fact can be represented by the sentence

R4: Si,2 => W\,3 V W,,2 V W2,2 V Wu

Finding the wumpus
Given these sentences, we will now show how an agent can mechanically conclude Wi,3. All the
agent has to do is construct the truth table for KB => W\^ to show that this sentence is valid.
There are 12 prepositional symbols,10 so the truth table will have 212 = 4096 rows, and every
row in which the sentence KB is true also has W\$ true. Rather than show all 4096 rows, we use
inference rules instead, but it is important to recognize that we could have done it in one (long)
step just by following the truth-table algorithm.

First, we will show that the wumpus is not in one of the other squares, and then conclude
by elimination that it must be in [ 1 ,3] :

1. Applying Modus Ponens with ->Si,i and the sentence labelled R\, we obtain
A A

2. Applying And-Elimination to this, we obtain the three separate sentences

10 The 12 symbols are S,,,, 52,i,5i,2, Wu , Wu, W2,i, W2,2, Wj.i, W,,3,BM,52,i,Bi,2.



176 Chapter 6. Agents that Reason Logically

3. Applying Modus Ponens to -182,1 and the sentence labelled R2, and then applying And-
Elimination to the result, we obtain the three sentences

4. Applying Modus Ponens to £1,2 and the sentence labelled /?4, we obtain

W|,3 V W\,2 V W2,2 V W i . i

5. Now we apply the unit resolution rule, where a is Vt^j V W\^ V ^2,2 and J3 is W^i. (We
derived -*W\,\ in step 2.) Unit resolution yields

Wl,3 V Wi.2 V W2,2

6. Applying unit resolution again with W\j V W|,2 as a and W2,2 as /? (-1^2,2 was derived in
step 3), we obtain

Wi,3 V Wi,2

1 . Finally, one more resolution with W[j as Q and W\^ as /3 (we derived -W\,2 in step 2)
gives us the answer we want, namely, that the wumpus is in [1,3]:

Translating knowledge into action
We have shown how prepositional logic can be used to infer knowledge such as the whereabouts
of the wumpus. But the knowledge is only useful if it helps the agent take action. To do that,
we will need additional rules that relate the current state of the world to the actions the agent
should take. For example, if the wumpus is in the square straight ahead, then it is a bad idea to
execute the action Forward. We can represent this with a series of rules, one for each location
and orientation in which the agent might be. Here is the rule for the case where the agent is in
[1,1] facing east:

A\t\ A East^ A W2,\ => -^Forward
Once we have these rules, we need a way to ASK the knowledge base what action to take.
Unfortunately, propositional logic is not powerful enough to represent or answer the question
"what action should I take?," but it is able to answer a series of questions such as "should I go
forward?" or "should I turn right?" That means that the algorithm for a knowledge-based agent
using propositional logic would be as in Figure 6.16.

Problems with the propositional agent
Propositional logic allows us to get across all the important points about what a logic is and how
it can be used to perform inference that eventually results in action. But propositional logic is so
weak that it really cannot handle even a domain as simple as the wumpus world.

The main problem is that there are just too many propositions to handle. The simple rule
"don't go forward if the wumpus is in front of you" can only be stated in propositional logic by
a set of 64 rules (16 squares x 4 orientations for the agent). Naturally, it just gets worse if the



Section 6.5. An Agent for the Wumpus World 177

function PROPOSITIONAL-KB-AGENltpercepf) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(A'B, MAKE-PERCEPT-SENTENCE(perce/7/, /))
for each action in the list of possible actions do

if ASK(KB, MAKE-ACTION-QUERY(f, action)) then
t — t + 1
return action

end

Figure 6.16 A knowledge-based agent using propositional logic.

world is larger than a 4 x 4 grid. Given this multiplication of rules, it will take thousands of rules
to define a competent agent. The problem is not just that it is taxing to write the rules down, but
also that having so many of them slows down the inference procedure. Remember that the size
of a truth table is 2", where n is the number of propositional symbols in the knowledge base.

Another problem is dealing with change. We showed a snapshot of the agent reasoning at
a particular point in time, and all the propositions in the knowledge base were true at that time.
But in general the world changes over time. When the agent makes its first move, the proposition
A], i becomes false and A2,i becomes true. But it may be important for the agent to remember
where it was in the past, so it cannot just forget A I I . To avoid confusion, we will need different
propositional symbols for the agent's location at each time step. This causes difficulties in two
ways. First, we do not know how long the game will go on, so we do not know how many of these
time-dependent propositions we will need. Second, we will now have to go back and rewrite
time-dependent versions of each rule. For example, we will need

=>• -^Forward01??1 A East°A A
\\{ f\East\f\
\\ , A East % A

-i Forward1

^Fonvard2

A° , A North°A A W?2
A]^ A North\ A W\2
A{, f\North2

Af\W'l2

•^Forward0

^Forward1

^Forward2

where the superscripts indicate times. If we want the agent to run for 100 time steps, we will
need 6400 of these rules, just to say one should not go forward when the wumpus is there.

In summary, the problem with propositional logic is that it only has one representational
device: the proposition. In the next chapter, we will introduce first-order logic, which can
represent objects and relations between objects in addition to propositions. In first-order logic,
the 6400 propositional rules can be reduced to one.



178 Chapter 6. Agents that Reason Logically

6.6 SUMMARY

We have introduced the idea of a knowledge-based agent, and showed how we can define a logic
with which the agent can reason, about the world and be guaranteed to draw correct conclusions,
given correct premises. We have also showed how an agent can turn this knowledge into action.
The main points are as follows:

• Intelligent agents need knowledge about the world in order to reach good decisions.
• Knowledge is contained in agents in the form of sentences in a knowledge representation

language that are stored in a knowledge base.
• A knowledge-based agent is composed of a knowledge base and an inference mechanism.

It operates by storing sentences about the world in its knowledge base, using the inference
mechanism to infer new sentences, and using them to decide what action to take.

• A representation language is defined by its syntax and semantics, which specify the
structure of sentences and how they relate to facts in the world.

• The interpretation of a sentence is the fact to which it refers. If it refers to a fact that is
part of the actual world, then it is true.

• Inference is the process of deriving new sentences from old ones. We try to design sound
inference processes that derive true conclusions given true premises. An inference process
is complete if it can derive all true conclusions from a set of premises.

• A sentence that is true in all worlds under all interpretations is called valid. If an implication
sentence can be shown to be valid, then we can derive its consequent if we know its premise.
The ability to show validity independent of meaning is essential.

• Different logics make different commitments about what the world is made of and what
kinds of beliefs we can have regarding facts.

• Logics are useful for the commitments they do not make, because the lack of commitment
gives the knowledge base writer more freedom.

• Prepositional logic commits only to the existence of facts that may or may not be the case in
the world being represented. It has a simple syntax and semantics, but suffices to illustrate
the process of inference.

• Prepositional logic can accommodate certain inferences needed by a logical agent, but
quickly becomes impractical for even very small worlds.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
Logic had its origins in ancient Greek philosophy and mathematics. Logical principles—
principles connecting the syntactic structure of sentences with their truth and falsity, their
meaning, or the validity of arguments in which they figure—can be found in scattered loca-
tions in the works of Plato (428-348 B.C.). The first known systematic study of logic was carried



Section 6.6. Summary 179

out by Aristotle, whose work was assembled by his students after his death in 322 B.C. as a
treatise called the Organon, the first systematic treatise on logic. However, Aristotle's logic
was very weak by modern standards; except in a few isolated instances, he did not take account
of logical principles that depend essentially on embedding one entire syntactic structure within
another structure of the same type, in the way that sentences are embedded within other sentences
in modern prepositional logic. Because of this limitation, there was a fixed limit on the amount
of internal complexity within a sentence that could be analyzed using Aristotelian logic.

The closely related Megarian and Stoic schools (originating in the fifth century B.C. and
continuing for several centuries thereafter) introduced the systematic study of implication and
other basic constructs still used in modern prepositional logic. The Stoics claimed that their logic
was complete in the sense of capturing all valid inferences, but what remains is too fragmentary
to tell. A good account of the history of Megarian and Stoic logic, as far as it is known, is given
by Benson Mates (1953).

The ideas of creating an artificial formal language patterned on mathematical notation
in order to clarify logical relationships, and of reducing logical inference to a purely formal
and mechanical process, were due to Leibniz (1646-1716). Leibniz's own mathematical logic,
however, was severely defective, and he is better remembered simply for introducing these ideas
as goals to be attained than for his attempts at realizing them.

George Boole (1847) introduced the first reasonably comprehensive and approximately
correct system of logic based on an artificial formal language with his book The Mathematical
Analysis of Logic. Boole's logic was closely modeled on the ordinary algebra of real numbers.
Boole's system subsumed the main parts of Aristotelian logic and also contained a close analogue
to modern prepositional logic. Although Boole's system still fell short of full prepositional logic,
it was close enough that other 19th-century writers following Boole could quickly fill in the gaps.
The first comprehensive exposition of modern prepositional logic (and first-order logic) is found
in Gottlob Frege's (1879) Begriffschrift ("Concept Writing" or "Conceptual Notation").

Truth tables as a method of testing the validity or unsatisfiability of sentences in the lan-
guage of prepositional logic were independently introduced simultaneously by Ludwig Wittgen-
stein (1922) and by Emil Post (1921). (As a method of explaining the meanings of propositional
connectives, truth tables go back to Philo of Megara.)

Quine (1982) describes "truth-value analysis," a proof method closely resembling truth
tables but more efficient because, in effect, it can handle multiple lines of the truth table si-
multaneously. Wang (1960) takes a general proof method for first-order logic designed by
Gentzen (1934) and selects a convenient and efficient subset of inference rules for use in a
tree-based procedure for deciding validity in propositional logic.

John McCarthy's (1968) paper "Programs with Common Sense" promulgated the notion
of agents that use logical reasoning to mediate between percepts and actions. This paper was the
first to make this conception widely known, although it draws on much earlier work (McCarthy,
1958). The 1968 paper is also called the "Advice Taker" paper because it introduces a hypothetical
program by that name which uses logic to enable its designers to communicate useful knowledge to
it without having to write further directly executable computer code. Alien Newell's (1982) article
"The Knowledge Level" focuses on the use of logic by agent designers to describe the knowledge
that is, in effect, being used by the agents they are designing, whether or not the agents themselves
use explicit logical formulas to represent this knowledge internally. This theme of Newell's was



180 Chapter 6. Agents that Reason Logically

hinted at in 1943 by the psychologist Kenneth Craik, who writes, "My hypothesis then is that
thought models, or parallels, reality—that its essential feature is not 'the mind,' 'the self,' 'sense-
data,' nor propositions but symbolism, and that this symbolism is largely of the same kind as that
which is familiar to us in mechanical devices which aid thought and calculation..." (Craik, 1943).
Further work along these lines has been done by Rosenschein and Kaelbling (Rosenschein, 1985;
Kaelbling and Rosenschein, 1990). Rosenschein and Genesereth (1987) have researched the
problem of cooperative action among agents using propositional logic internally to represent
the world. Gabbay (1991) has explored extensions to standard logic to enhance guidance of
reasoning and retrieval from large knowledge bases.

EXERCISES

6.1 We said that truth tables can be used to establish the validity of a complex sentence. Show
how they can be used to decide if a given sentence is valid, satisfiable, or unsatisfiable.

6.2 Use truth tables to show that the following sentences are valid, and thus that the equivalences
hold. Some of these equivalence rules have standard names, which are given in the right column.

P A (Q A R)
P V (Q V R)

P/\Q
PV Q

P f \ ( Q \ / K )
P V (£> A ft)

-CPA0
->(P V 0
P => Q

-.-.p
p ̂  e

- ~ P <=> 2p o g
PA-P
P V ^ P

<=>

<=>

o-

(P A 2) A ft
(P V 0 V ft
G A P
2 v P
(P A 0 V (P A ft)
(P V 0 A (P V ft)
-.PV-ig
-.PA-.Q
-2 => -P
P
^PV Q
(P => 0 A (Q =>
(P A 0 V (-iP A -
False
True

Associativity of conjunction
Associativity of disjunction
Commutativity of conjunction
Commutativity of disjunction
Distributivity of A over V
Distributivity of V over A
de Morgan's Law
de Morgan's Law
Contraposition
Double Negation

P)
Q)

6.3 Look at the following sentences and decide for each if it is valid, unsatisfiable, or neither.
Verify your decisions using truth tables, or by using the equivalence rules of Exercise 6.2. Were
there any that initially confused you?

a. Smoke => Smoke
b. Smoke => Fire
c. (Smoke => Fire} => (^Smoke => -'Fire)
d. Smoke V Fire V —iFire



Section 6.6. Summary 181

e. ((Smoke A Heat) => Fire) O ((Smoke => Fire) V (Heat
f. (Smoke => Fire) => ((Smoke A /fetf) =^ Fire)
g. Big V Dumb V (Big => Dumb)
h. (Big f\ Dumb) \l

Fire))

6.4 Is the sentence "Either 2 + 2 = 4 and it is raining, or 2 + 2 = 4 and it is not raining" making
a claim about arithmetic, weather, or neither? Explain.

6.5 (Adapted from (Barwise and Etchemendy, 1993).) Given the following, can you prove that
the unicorn is mythical? How about magical? Horned?

* ' If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a
mortal mammal. If the unicorn is either immortal or a mammal, then it is horned.
The unicorn is magical if it is horned.

6.6 What ontological and epistemological commitments are made by the language of real-
number arithmetic?

6.7 Consider a world in which there are only four propositions, A, B, C, and D. How many
models are there for the following sentences?

a. A f\B
b. A V B
C. A A B A C

6.8 We have defined four different binary logical connectives.

a. Are there any others that might be useful?
b. How many binary connectives can there possibly be?
c. Why are some of them not very useful?

6.9 Some agents make inferences as soon as they are told a new sentence, while others wait until
they are asked before they do any inferencing. What difference does this make at the knowledge
level, the logical level, and the implementation level?

6.10 We said it would take 64 prepositional logic sentences to express the simple rule "don't
go forward if the wumpus is in front of you." What if we represented this fact with the single rule

WumpmAhead => -^Forward

Is this feasible? What effects does it have on the rest of the knowledge base?

6.11 Provide a formal syntax, semantics, and proof theory for algebraic equations including
variables, numbers, +, —, x, and -K You should be able to provide inference steps for most
standard equation manipulation techniques.



182 Chapter 6. Agents that Reason Logically

6.12 (Adapted from (Davis, 1990).) Jones, Smith, and Clark hold the jobs of programmer,
knowledge engineer, and manager (not necessarily in that order). Jones owes the programmer
$10. The manager's spouse prohibits borrowing money. Smith is not married. Your task is to
figure out which person has which job.

Represent the facts in prepositional logic. You should have nine propositional symbols to
represent the possible person/job assignments. For example, you might use the symbol SM to
indicate that Smith is the manager. You do not need to represent the relation between owing and
borrowing, or being married and having a spouse; you can just use these to draw conclusions (e.g,
from "Smith is not married" and "the manager's spouse" we know that Smith can't be the manager,
which you can represent as ->5M). The conjunction of all the relevant facts forms a sentence
which you can call KB. The possible answers to the problem are sentences like JP A SK A CM.
There are six such combinations of person/job assignments. Solve the problem by showing that
only one of them is implied by KB, and by saying what its interpretation is.

6.13 What is the performance score that one could expect from the optimal wumpus world
agent? Design an experiment wherein you look at all possible 4 x 4 wumpus worlds (or a random
sample of them if there are too many), and for each one determine the shortest safe path to pick
up the gold and return to start, and thus the best score. This gives you an idea of the expected
performance score for an ideal omniscient agent. How could you determine the expected score
for an optimal non-omniscient agent?

(=^sf^ 6.14 Implement a function VALIDITY that takes a sentence as input and returns either valid,
—^ " satisfiable, or unsatisfiable. Use it to answer the questions in Exercise 6.12. You will need

to define an implementation-level representation of sentences. The cleanest way to do this is
to define an abstract data type for compound sentences. Begin by writing EVAL-TRUTH as a
recursive function that takes a sentence and an assignment of truth values to proposition symbols,
and returns true or false. Then call EVAL-TRUTH for all possible assignments of truth values to
the proposition symbols.

hgvj- = - v 6.15 SAT is the abbreviation for the satisfiability problem: given a propositional sentence,
=4^=— determine if it is satisfiable, and if it is, show which propositions have to be true to make the

sentence true. 3SAT is the problem of finding a satisfying truth assignment for a sentence in a
special format called 3-CNF, which is defined as follows:

• A literal is a proposition symbol or its negation (e.g., P or -if).
• A clause is a disjunction of literals; a 3-clause is a disjunction of exactly 3 literals (e.g.,

P V Q V -./?).
• A sentence in CNF or conjunctive normal form is a conjunction of clauses; a 3-CNF

sentence is a conjunction of 3-clauses.
For example,

(P V Q V -iS) A (-.P V 2 V R) A (->P V -i/? V ->S) A (P V ->S V T)
is a 3-CNF sentence with four clauses and five proposition symbols.

In this exercise, you will implement and test GSAT, an algorithm for solving SAT problems
that has been used to investigate how hard 3SAT problems are. GSAT is a random-restart, hill-



ISection 6.6. Summary 183

climbing search algorithm. The initial state is a random assignment of true and false to the
proposition symbols. For example, for the preceding 3-CNF sentence, we might start with P and
Q false and R, S, and T true.

The evaluation function measures the number of satisfied clauses, that is, clauses with at
least one true disjunct. Thus, the initial state gets an evaluation of 3, because the second, third,
and fourth clauses are true. If there are n proposition symbols, then there are n operators, where
each operator is to change the truth assignment for one of the symbols. As a hill-climbing search,
we always use the operator that yields the best evaluation (randomly choosing one if there are
several equally good operators). Our example 3-CNF sentence is solved in one step, because
changing S from true to false yields a solution. As with a random-restart algorithm, unless we
find a solution after a certain amount of hill-climbing, we give up and start over from a new
random truth assignment. After a certain number of restarts, we give up entirely. The complete
algorithm is shown in Figure 6.17.

function GSAT(sentence, max-restarts, max-climbs) returns a truth assignment or failure

for i — 1 to max-restarts do
A — A randomly generated truth assignment
for j — 1 to max-climbs do

if A satisfies sentence then return A
A — a random choice of one of the best successors of A

end
end
return failure

Figure 6.17 The GsAT algorithm for satisfiability testing. The successors of an assignment A
are truth assignment with one symbol flipped. A "best assignment" is one that makes the most
clauses true.

Answer the following questions about the algorithm:

a. Is the GSAT algorithm sound?
b. Is it complete?
c. Implement GSAT and use it to solve the problems in Exercise 6.3.
d. Use GSAT to solve randomly generated 3SAT problems of different sizes. There are two

key parameters: N, the number of propositional symbols, and C, the number of clauses.
We will investigate the effects of the ratio C/N on the execution time of GSAT. With ,/V
fixed at 20, make a graph of the median execution time versus C/N for C/N from 1 to 10.
(The median is a better statistic than the mean because one or two outliers can really throw
off the mean.) Use N as the value of max-restarts and 5N as the value of max-climbs.

e. Repeat for other values of N as time permits.
f. What can you conclude about the difficulty of 3SAT problems for different values of C, N,

and the ratio C/N?



184 Chapter Agents that Reason Logically

See Selman et al. (\ 992) for more on GSAT. They present an implementation of GSAT that solves
even the hardest 3SAT problems with N = 70 in under a second. GSAT can be used to solve a
wide variety of problems by constructing a reduction from each class of problems to 3SAT. It
is so efficient that it often outperforms special-purpose algorithms that are expertly designed for
specific problems.

6.16 Consider the problem of designing a logical agent for the wumpus world using a Boolean
circuit—that is, a collection of logic gates connecting the inputs (percept values) to outputs
(action values).

a. Explain why you would need flip-flops.
b. Give an order-of-magnitude estimate of how many gates and flip-flops would you need.



7 FIRST-ORDER LOGIC

In which we introduce a logic that is sufficient for building knowledge-based agents.

In Chapter 6, we showed how a knowledge-based agent could represent the world in which it
operates and use those representations to deduce what actions to take. We used propositional
logic as our representation language because it is one of the simplest languages that demonstrates
all the important points. UnfortunatelyLpjopqsitional logic has a very limited ontology, making
only the commitment that .the world consists of facts. This made it difficult to represent even
something as simple as the wumpus world.

FIRST-ORDER LOGIC In this chapter, we examine first-order logic,1 which makes a stronger set of ontological
OBJECTS commitments. The main one is that the world consists of objects, that is, things with individual
PROPERTIES identities and properties that distinguish them from other objects.
RELATIONS Among these objects, various relations hold. Sqme..Qfjhese relations are functions—
FUNCTIONS relations in which there is only one "value" for a given "input." It is easy to start listing examples

of objects, properties, relations, and functions:
• Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games,

wars, centuries . . .
• Relations: brother of, bigger than, inside, part of, has color, occurred after, owns . . .
• Properties: red, round, bogus, prime, multistoried...

.-j» Functions: father of, best friend, third inning of, one more than ...

Indeed, almost any fact can be thought of as referring to objects and properties or relations. Some
examples follow:

• "One plus two equals three"
Objects: one, two, three, one plus two; Relation: equals; Function: plus. (One plus two is
a name for the object that is obtained by applying the function plus to the objects one and
two. Three is another name for this object.)

• "Squares neighboring the wumpus are smelly."
Objects: wumpus, square; Property: smelly; Relation: neighboring.

Also called first-order predicate calculus, and sometimes abbreviated as FOL or FOPC.

185



186 Chapter 7. First-Order Logic

• "Evil King John ruled England in 1200."
Objects: John, England, 1200; Relation: ruled; Properties: evil, king.

First-order logic has been so important to mathematics, philosophy, and artificial intelligence
precisely because those fields—and indeed, much of everyday human existence—can be usefully
thought of as dealing with objects and the relations between them. ,We_are not claiming that the
world really is made up of objects and relations, just that dividing up the world that way helps us
reason about it. First-order logic can also express facts about all of the objects in the! universe.^ .
This, together with the implication connective from propositional logic, enables one to represent^ :
general laws or rules, such as the statement "Squares neighboring the wumpus are smelly."

Although first-order logic commits to the existence of objects and relations, it does not
make an ontological commitment to such things as categories, time, and events, which also seem
to show up in most facts about the world. Strangely enough, this reluctance to tackle categories,
time, and events has not hurt the popularity of first-order logic; in fact it has'contributed^ its
success. Important as these things are, there are just too many different ways to deal with them,
and a logic that committed to a single treatment would only have limited appeal. By remaining
neutral, first-order logic gives its users the freedom to describe these things in a way that is
appropriate for the domain. This freedom of choice is a general characteristic of first-order logic.
In the previous example we listed King as a property of people, but we could just as well have
made King-a.relation between people and countries, or a function from countries to people (in a
world in which each country has only one king).

There are many different representation schemes in use in AI, some of which we will
discuss in later chapters. Some are theoretically equivalent to first-order logic and some are not.
B.ut_fiistorder logic is universal in the sense that it can express anything that can be programmed-
We choose to study knowledge representation and reasoning using first-order logic because it
is by far the most studied and best understood scheme yet devised. Generally speaking, other
proposals involving additional capabilities are still hotly debated and only partially understood.
Other proposals that are a subset of first-order logic are useful only in limited domains. Despite
its limitations, first-order logic will be around for a long time.

7.1 SYNTAX AND SEMANTICS

TERMS

CONSTANT SYMBOLS

In propositional logic every expression is a sentence, which represents a fact. First-order logic
has sentences, but it also has terms, which represent objects. Constant symbols, variables-,-arid
function symbols are used to build terms, and quantifiers and predicate symbols are used to build
sentences. Figure 7.1 gives a complete grammar of first-order logic, using Backus-Naur form
(see page 854 if you are not familiar with this notation). A more detailed explanation of each
element, describing both syntax and semantics, follows:

<C> Constant symbols: A, B, C, John ...
An interpretation must specify which object in the world is referred to by each constant

symbol. Each constant symbol names exactly one object, but not all objects need to
have names, and some can have several names. Thus, the symbol John, in one particular



ISection 7. Syntax and Semantics 187

PREDICATE
SYMBOLS

TUPLES

Sentence — AtomicSentence
Sentence Connective Sentence
Quantifier Variable, . . . Sentence
-i Sentence
(Sentence)

AtomicSentence — Predicate(Term, . . .) Term = Term

Term — » Function(Term, . . .)
| Constant
\ Variable

Connective
Quantifier
Constant
Variable

Predicate
Function

A V |

V | 3

A \ X\ \ John
a | x s • • •
Before \ HasColor \ Raining \
Mother \ LeftLegOf \

Figure 7.1 The syntax of first-order logic (with equality) in BNF (Backus-Naur Form).

interpretation, might refer to the evil King John, king of England from 1199 to 1216
and younger brother of Richard the Lionheart. The symbol King could refer to the same
object/person in the same interpretation.

<> Predicate symbols: Round, Brother,...
An interpretation specifies that a predicate symbol refers to a particular relation in

the model. For example, the Brother symbol might refer to the relation of brotherhood.
Brother is a binary predicate symbol, and accordingly brotherhood is a relation that holds
(or fails to hold) between pairs of objects. In any given model, the relation is defined by
the set of tuples of objects that satisfy it. A tuple is a collection of objects arranged in
a fixed order. They are written with angle brackets surrounding the objects. In a model
containing three objects, King John, Robin Hood, and Richard the Lionheart, the relation
of brotherhood is defined by the set of tuples

{ (King John, Richard the Lionheart},
(Richard the Lionheart, King John}}

Thus, formally speaking, Brother refers to this set of tuples under the interpretation we
have chosen.



188 Chapter 7. First-Order Logic

FUNCTION SYMBOLS 0 Function symbols: Cosine. FatherOf, LeftLegOf...
Some relations are functional—that is, any given object is related to exactly one other

object by the relation. For example, any angle has only one number that is its cosine; any
person has only one person that is his or her father. In such cases, it is often more convenient
to define a function symbol (e.g., Cosine) that refers to the appropriate relation between
angles and numbers. In the model, the mapping is just a set of n + 1-tuples with a special
property, namely, that the last element of each tuple is the value of the function for the
first n elements, and each combination of the first n elements appears in exactly one tuple.
A table of cosines is just such a set of tuples—for each possible angle of interest, it gives
the cosine of the angle. Unlike predicate symbols, which are. used to state that relations
hold among certain objects, function symbols are used to refer to particular objects without
using their_narnesT-as-wejyill see In the next section.

The choice of constant, predicate, and function symbols is entirely up to the user. A mathematician
might want to use + and Cosine, a composer Crescendo and F-sharp. The names do not matter
from a formal point of view, but it enhances readability if the intended interpretation of the
symbols is clear. We return to this point in Section 8.1.

Terms

A term is a logical expression that refers to an object. Constant symbols are therefore terms.
Sometimes, it is more convenient to use an expression to refer to an object. For example,
in English we might use the expression "King John's left leg" rather than giving a name to
his leg. This is what function symbols are for: instead of using a constant symbol, we use
LeftLegOf (John). In the general case, a complex term is formed by a function symbol followed
by a parenthesized list of terms as arguments to the function symbol. It is important to remember^
that a complex term is just a complicated kind of name. It is not a "subroutine call" that "returns
a value." There is no LeftLegOf subroutine that takes a person as input and returns a leg. We can
reason about left legs (e.g., stating the general rule that everyone has one and then deducing that
John must have one) without ever providing a definition of LeftLegOf. This is something that
cannot be done with subroutines in programming languages.

The formal semantics of terms is straightforward. An interpretation specifies a functional
relation referred to by the function symbol, and objects referred to by the terms that are its
arguments. Thus, the whole term refers to the object that appears as the («+l)-th entry in that
tuple in the relation whose first n elements are the objects referred to by the arguments. Thus,
the LeftLegOf function symbol might refer to the following functional relation:

{ (King John, King John's left leg),
(Richard the Lionheart, Richard's left leg)}

and if King John refers to King John, then LeftLegOf (King John) refers, according to the relation,
to King John's left leg.



Section 7.1. Syntax and Semantics 189

Atomic sentences
Now that we have^terms for referring to objects, and predicate symbols for referring to relations,
we can put them togetHef to make atomic sentenctssTfiaT state" facts. An atomic sentence is
formed from a predicate symbol followed by a parenthesized list of terms. For example,

Brother(Richard, John)
states, under the interpretation given before, that Richard the Lionheart is the brother of King
John.2 Atomic sentences can have arguments that are complex terms:

Married(FatherOf (Richard),MotherOf (John))
states that Richard the Lionheart's father is married to King John's mother (again, under a suitable
interpretation). An atomic sentence is true if the relatiqn referred to by the predicate symbol
holds between the objects referred to by the argumentsi^he relation holds just in case the tuple
of objects is in the relation! The truth of a sentence therefore depends on both the interpretation
and the world.

Complex sentences
We can use logical connectives to construct more complex sentences, just as in propositional
calculus. The semantics of sentences formed using logical connectives is identical to that in the
propositional case. For example:

• Brother(Richard,John) A Brother(John, Richard) is true just when John is the brother of
Richard and Richard is the brother of John.

• Older(John, 30) V Younger(John, 30) is true just when John is older than 30 or John is
younger than 30.

• Older(John, 30) => -^Younger(John, 30) states that if John is older than 30, then he is not
younger than 30.3

• -^Bmther(Robin, John) is true just when Robin is not the brother of John.

QUANTIFIERS

Quantifiers
Once we have a logic that allows objects, it is only natural to want to express properties of entire
collections of objects, rather than having to enumerate the objects by name. Quantifiers let us
do this. First-order logic contains two standard quantifiers, called universal and existential.

Universal quantification (V)

Recall the difficulty we had in Chapter 6 with the problem of expressing general rules in propo-
sitional logic. Rules such as "All cats are mammals" are the bread and butter of first-order logic.
2 We will usually follow the argument ordering convention that P(x, y) is interpreted as "jc is a P of y."
3 Although these last two sentences may seem like tautologies, they are not. There are interpretations of Younger and
Older in which they are false.



190 Chapter 7. First-Order Logic

VARIABLE

To express this particular rule, we will use unary predicates Cat and Mammal, thus, "Spot is a
cat" is represented by Cat(Spof), and "Spot is a mammal" by Mammal(Spot). In English, what
we want to say is that for any object x, if x is a cat then x is a mammal. First-order logic lets us
do this as follows:

V;c Cat(x) => Mammal(x)

V is usually pronounced "For all...". Remember that the upside-down A stands for "all." You
can think of a sentence MX P, where P is any logical expression, as being equivalent to the
conjunction (i.e., the A) of all the sentences obtained by substituting the name of an object for
the variable x wherever it appears in P. The preceding sentence is therefore equivalent to

Cat(Spot) => Mammal(Spot) A
Cat(Rebecca) =>• Mammal(Rebecca) A
Cat(Felix) => Mammal(Felix) A
Cat(Richard) => Mammal(Richard) A
Cat(John) => Mammal(John) A

Thus, it is true if and only if all these sentences are true, that is, if P is true for all objects x in the
universe. Hence V is called a universal quantifier.

We use the convention that all variables start with a lowercase letter, and that all constant,
predicate, and function symbols are capitalized. A variable is a term all by itself, and as such can
also serve as the argument of a function, for example, ChildOf(x). A term with no variables is

GROUND TERM called a ground term.
It is worth looking carefully at the conjunction of sentences given before. If Spot, Rebecca,

and Felix are known to be cats, then the first three conjuncts allow us to conclude that they are
mammals. But what about the next two conjuncts, which appear to make claims about King John
and Richard the Lionheart? Is that part of the meaning of "all cats are mammals"? In fact, these
conjuncts are true, but make no claim whatsoever about the mammalian qualifications of John
and Richard. This is because Cat(Richard) and Cat(John) are (presumably) false. Looking at
the truth table for => (Figure 6.9), we see that the whole sentence is true whenever the left-hand
side of the implication is false—regardless of the truth of the right-hand side. Thus, by asserting
the universally quantified sentence, which is equivalent to asserting a whole list of individual
implication sentences, we end up asserting the right-hand side of the rule just for those individuals
for whom the left-hand side is true, and saying nothing at all about those individuals for whom
the left-hand side is false. Thus, the truth-table entries for =>• turn out to be perfect for writing
general rules with universal quantifiers.

It is tempting to think that the presence of the condition Cat(x) on the left-hand side of the
implication means that somehow the universal quantifier ranges only over cats. This is perhaps
helpful but not technically correct. Again, the universal quantification makes a statement about
everything, but it does not make any claim about whether non-cats are mammals or not. On the
other hand, if we tried to express "all cats are mammals" using the sentence

MX Cat(x) A Mammal(x)



Section 7.1. Syntax and Semantics 191

this would be equivalent to

Cat(Spot) A Mammal(Spot) A
Cat(Rebecca) A Mammal(Rebecca) A
Cat(Felix) A Mammal(Felix) A
Cat(Richard) A Mammal (Richard) A
Cat(John) A Mammal(John) A

Obviously, this does not capture what we want, because it says that Richard the Lionheart is both
a cat and a mammal.

Existential quantification (3)

Universal quantification makes statements about every object. Similarly, we can make a statement
about some object in the universe without naming it, by using an existential quantifier. To say,
for example, that Spot has a sister who is a cat, we write

3 x Sister(x, Spot) A Cat(x)

3 is pronounced "There exists ...". In general, 3 x P is true if P is true for some object in the
universe. It therefore can be thought of as equivalent to the disjunction (i.e., the V) of all the
sentences obtained by substituting the name of an object for the variable*. Doing the substitution
for the above sentence, we would get

(Sister(Spot, Spot) A Cat(Spot)) V
(Sister(Rebecca, Spot) A Cat(Rebecca)) V
(Sister(Felix, Spot) A Cat(Fdix)) V
(Sister(Richard, Spot) A Cat(Richard)) V
(Sister(John, Spot) A Cat(John)) V

The existentially quantified sentence is true just in case at least one of these disjuncts is true. If
Spot had two sisters who were cats, then two of the disjuncts would be true, making the whole
disjunction true also. This is entirely consistent with the original sentence "Spot has a sister who
is a cat."4

Just as => appears to be the natural connective to use with V, A is the natural connective
to use with 3. Rising A as the main connective with V ledJo .an .overly strong statement in the
example in the previous section; vising =^ with 3 usually leads to a very weak statement indeed.
Consider the following representation:

3x Sister(x,Spot) => Cat(x)

4 There is a variant of the existential quantifier, usually written 3' or 3!, that means "There exists exactly one ...". The
same meaning can be expressed using equality statements, as we show in Section 7.1.



192 Chapter 7. First-Order Logic

On the surface, this might look like a reasonable rendition of our sentence. But expanded out
into a disjunction, it becomes

(Sister(Spot, Spot) => Cat(Spot)) V
(Sister(Rebecca, Spot} =>• Cat(Rebecca)) V
(Sister(Felix, Spot) => Cat(Felix)) V
(Sister(Richard, Spot) => Cat(Richard)) V
(Sister(John, Spot) => Cat(John)) V

Now, this disjunction will be satisfied if any of its disjuncts are true. An implication is true
if both premise and conclusion are true, or if its premise is false. So if Richard the Lionheart
is not Spot's sister, then the implication Sister(Spot, Richard) => Cat(Richard) is true and the
entire disjunction is therefore true. So, an existentially quantified implication sentence is true in
a universe containing any object for which the premise of the implication is false; hence
sentences really do not say much at all.

Nested quantifiers

We will often want to express more complex sentences using multiple quantifiers. The simplest
case is where the quantifiers are of the same type. For example, "For all x and all y, if x is the
parent of y then y is the child of x" becomes

Child(y,x)
V y. Similarly, the fact that a person's brother has that person as a

Mx,y Parent(x,y)
Mx,y is equivalent to V x
sibling is expressed by

V x,y Brother(x,y) => Sibling(y,x~)
In other cases we will have mixtures. "Everybody loves somebody" means that for every person,
there is someone that person loves:

MX 3y Loves(x,y)
On the other hand, to say "There is someone who is loved by everyone" we write

3>' V x Loves(x,y)
The order of quantification is therefore very important. It becomes clearer if we put in parentheses.
In general, V* (3 v P(x,yj), where P(x,y) is some arbitrary sentence involving * and y, says
that every object in the universe has a particular property, namely, the property that it is related_tp_
some object by the jelatiQn_P._On the other hand, 3x (V>> P(x,y) says that there is some object
in the world that has a particular property, namely the property of being related by P to every
object in the world.

A minor difficulty arises when two quantifiers are used with the same variable name.
Consider the sentence

\tx [Cat(x)V(3x Bmther(Richard,xy)}
Here the x in Brother(Richard,x) is existentially quantified. The rule is that the variable belongs

\ to the innermost quantifier that mentions it; then it will not be subject to any other quantification.



Section 7.1. Syntax and Semantics 193

WFF

This is just like variable scoping in block-structured programming languages like Pascal and Lisp,
where an occurrence of a variable name refers to the innermost block that declared the variable.
Another way to think of it is this: 3x Brother(Richard,x) is a sentence about Richard (that he
has a brother), not about x; so putting a Vx outside it has no effect. It could equally well have
been written 3 z Brother(Richard, z). Because this can be a source of confusion, we will always
use different variables.

Every variable must be introduced by a quantifier before it is used. A sentence like MX P(y),
in which y does not have a quantifier, is incorrect.5 The term well-formed formula or wff is
sometimes used for sentences that have all their variables properly introduced.

Connections between V and 3

The two quantifiers are actually intimately connected with each other, through negation. When
one says that everyone dislikes parsnips, one is also saying that there does not exist someone who
likes them; and vice versa:

Vx ~^Likes(x, Parsnips) is equivalent to -*3x Likes(x, Parsnips)

We can go one step further. "Everyone likes ice cream" means that there is no one who does not
like ice cream:

Vjc Likes(x, IceCream) is equivalent to ^3 x ^Likes(xJceCream) \ ,
-A".'w . -^Because V is really a conjunction over the universe of objects and 3 is a disjunction,^! should

not be surprising that they obey De Morgan's rules. The De Morgan rules for quantified and
unqualified sentences are as follows:

V* -iP = ->3x P -.PA-"(2 = ->(PV0
-A/x P = 3x -.P ->(PA0 = -.PV-.g
MX P = ->3x -.P Pf\Q = -.(-.PV-.0
3* P = -A/x -.P PVQ = -n(^PA --0

Thus, we do not really need both V and 3, just as we do not really need both A and V. Some
formal logicians adopt a principal of parsimony, throwing out any syntactic item that is not strictly
necessary. For the purposes of AI, the content, and hence the readability, of the sentences are
important. Therefore, we will keep both of the quantifiers.

Equality
First-order logic includes one more way to make atomic sentences, other than using a predicate

EQUALITY SYMBOL and terms as described earlier. We can use the equality symbol to make statements to the effect
that two terms refer to the same object. For example,

Father(John) = Henry

says that the object referred to by Father(John) and the object referred to by Henry are the same.
5 Sometimes there is an assumption that all unquantifled variables are introduced with an implicit V. This is the case in
most logic programming languages.



194 Chapter 7. First-Order Logic

Equalitj^can be .viewed as a predicatejymbol with a predefined meaning, jiamely, that it
IDENTITY RELATION is fixecTto refer to the identity relation. The identity relation is the set of all pairs of objects in

~'~' which both elements of each pair are the same object:
{ (Spot,Spot),

(Rebecca,Rebecca), ,
(Felix, Felix),
(Richard the Lionheart, Richard the Lionheart),
(King John, King John),
(Henry II, Henry II),

Thus, to see if Father(John)= Henry is true in a particular interpretation, we first look in the
functional relation for Father and find the entry

(King John, Henry II),

Then, because Henry refers to Henry I I , the equality statement is true because (Henry II, Henry II)
is in the equality relation.

The equality symbol can be used to describe the properties of a given function, as we did
above for the Father symbol. It can also be used with negation to insist that two terms are not
the same object. To say that Spot has at least two sisters, we would write

3 A, y Sister(Spot, x) A Sister(Spot, y) A -i(jt = y)
If we simply wrote

3 x, y Sister(Spot, x) A Sister(Spot, y)
that would not assert the existence of two distinct sisters, because nothing says that A- and y have
to be different. Consider the expansion of the existential statement into a disjunction: it will
include as a disjunct

... V (Sister(Spot, Rebecca) A Si.ster(Spot, Rebecca)) V . . .
which occurs when Rebecca is substituted for both x and y. If Rebecca is indeed Spot's sister,
then the existential will be satisfied because this disjunct will be true. The addition of -*(x = y)
makes the disjunct false, because Rebecca-Rebecca is necessarily true. The notation x^y is
sometimes used as an abbreviation for -i(x = y).

7.2 EXTENSIONS AND NOTATIONAL VARIATIONS

In this section we look at three types of alternatives to first-order logic. First, we look at an
extension called higher-order logic. Second, we consider some abbreviations that add no new
power to first-order logic but do make the resulting sentences more concise. Third, we look at
variations on our notation for first-order logic.



Section 7.2. Extensions and Notational Variations 195

HIGHER-ORDER
LOGIC

A-EXPRESSION

Higher-order logic
First-order logic gets its name from the fact that one can quantify over objects (the first-order
entities that actually exist in the world) but not over relations or functions on those objects.
Higher-order logic allows us to quantify over relations and functions as well as over objects. For
example, in higher-order logic we,can say that two objects are equal if and only if all properties
applied to them are equivalent:

Vx,y (x = y) & (Vp p(x) O p(y))

Or we could say that two functions are equal if and only if they have the same value for all
arguments:

V/,£ (f = g) «• (V */(*) = £(*))

Higher-order logics have strictly more expressive power than first-order logic. As yet, however,
logicians have little understanding of how to reason effectively with sentences in higher-order
logic, and the general problem is known to be undecidable. In this book, we will stick to first-order
logic, which is much better understood and still very expressive.

Functional and predicate expressions using the A operator
It is often useful to be able to construct complex predicates and functions from simpler compo-
nents, just as we can construct complex sentences from simpler components (e.g., P A Q), or
complex terms from simpler ones (e.g., x2 +y3). To turn the term x2 - y2 into a function, we need
to say what its arguments are: is it the function where you square the first argument and subtract
the square of the second argument, or vice versa? The operator A (the Greek letter lambda) is
traditionally used for this purpose. The function that takes the difference of the squares of its first
and second argument is written as

Xx,yx2-y2

This A-expression6 can then be applied to arguments to yield a logical term in the same way that
an ordinary, named function can:

(\x,y x2 - y2)(25,24) =252 - 242 = 49

We will also find it useful (in Chapter 22) to generate A-expressions for predicates. For example,
the two-place predicate "are of differing gender and of the same address" can be written

\x,y Gender(x)^Gender(y) f\Address(x) = Address(y)

As one would expect, the application of a predicate A-expression to an appropriate number of
arguments yields a logical sentence. Notice that the use of A in this way does not increase the
formal expressive power of first-order logic, because any sentence that includes a A-expression
can be rewritten by "plugging in" its arguments to yield a standard term or sentence.

The same terminology is used in Lisp, where lambda plays exactly the same role as the A operator.



196 Chapter 7. First-Order Logic

The uniqueness quantifier 3!
We have seen how to use 3 to say that some objects exist, but there is no concise way to say that
a unique object satisfying some predicate exists. Some authors use the notation

31 x King(x)
to mean "there exists a unique object x satisfying King(x)" or more informally, "there's exactly
one King." You should think of this not as adding a new quantifier, 3!, but rather as being a
convenient abbreviation for the longer sentence

3x King(x) f\M y King(y) => x = y
Of course, if we knew from the start there was only one King, we probably would have used the
constant King rather than the predicate King(x). A more complex example is "Every country has
exactly one ruler":

V c Country(c) =>• 3! r Ruler(r, c)

The uniqueness operator t.
It is convenient to use 3! to state uniqueness, but sometimes it is even more convenient to have
a term representing the unique object directly. The notation / xP(x) is commonly used for this.
(The symbol L is the Greek letter iota.) To say that "the unique ruler of Freedonia is dead" or
equivalently "the r that is the ruler of Freedonia is dead," we would write:

Dead(i r Ruler(r, Freedonia))
This is just an abbreviation for the following sentence:

3! r Ruler(r, Freedonia) A Dead(r)

Notational variations
The first-order logic notation used in this book is the de facto standard for artificial intelligence;
one can safely use the notation in a journal article without defining it, because it is recognizable
to most readers. Several other notations have been developed, both within AI and especially in
other fields that use logic, including mathematics, computer science, and philosophy. Here are
some of the variations:

Syntax item
Negation (not)
Conjunction (and)
Disjunction (or)
Implication (if)
Equivalence (iff)
Universal (all)
Existential (exists)
Relation

This book
-.f
P f \ Q
P\IQ
P => Q
P o Q
MX P(x)
3x P(x)
R(x,y)

Others
~P P
P&Q P Q PQ P,Q
P \ Q P;Q P + Q
P^Q P^Q
p=Q p^Q

(Mx)P(x) f\xP(x) P(x)
(3x)P(x) V x pW P(Skolemi)
(R x y) Rxy xRy



Section 7.3. Using First-Order Logic 197

Two other common notations derive from implementations of logic in computer systems. The
logic programming language Prolog (which we discuss further in Chapter 10) has two main
differences. It uses uppercase letters for variables and lowercase for constants, whereas most
other notations do the reverse. Prolog also reverses the order of implications, writing Q :- P
instead of P => Q. A comma is used both to separate arguments and for conjunction, and a
period marks the end of a sentence:

cat(X) :- furry(X), meows(X), has(X,claws).

In reasoning systems implemented in Lisp, a consistent prefix notation is common. Each sentence
and nonconstant term is surrounded by parentheses, and the connectives come first, just like the
predicate and function symbols. Because Lisp does not distinguish between uppercase and
lowercase symbols, variables are usually distinguished by an initial ? or $ character, as in this
example:

(forall ?x
(implies (and

(cat
(furry ?x) (meows ?x) (has ?x claws))

7.3 USING FIRST-ORDER LOGIC

DOMAIN In knowledge representation, a domain is a section of the world about which we wish to express
some knowledge. In this chapter, we start with some simple domains, using first-order logic to
represent family relationships and mathematical sets. We then move on to show the knowledge
that an agent in the wumpus world would need. Chapter 8 goes into more depth on the use of
first-order logic for knowledge representation.

The kinship domain
The first example we consider is the domain of family relationships, or kinship. This domain
includes facts such as "Elizabeth is the mother of Charles" and "Charles is the father of William,"
and rules such as "If x is the mother of y and y is a parent of z, then x is a grandmother of z."

Clearly, the objects in our domain are people. The properties they have include gender,
and they are related by relations such as parenthood, brotherhood, marriage, and so on. Thus,
we will are have two unary predicates, Male and Female. Most of the kinship relations will be
binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, Son, Spouse, Wife, Husband,
Grandparent, Grandchild, Cousin, Aunt, Uncle. We will use functions for Mother and Father,
because every person has exactly one of each of these (at least according to nature's design).

We can go through each function and predicate, writing down what we know in terms of
the other symbols. For example, one's mother is one's female parent:

V m, c Mother(c) = m O Female(m) A Parent(m, c)



198 Chapter 7. First-Order Logic

One's husband is one's male spouse:
Vw,A Husband(h,w) O- Male(h) A Spouse(h, w)

Male and female are disjoint categories:

V* Male(x) <=> -^Female(x)
Parent and child are inverse relations:

Vp,c Parent(p,c) O Child(c,p)
A grandparent is a parent of one's parent:

Vg, c Grandparent(g,c) <^> 3/7 Parent(g,p) A Parent(p, c)
A sibling is another child of one's parents:

V;t,y Sibling(x,y) <$• x f y f \ 3 p Parent (p, x)/\ Parent (p,y)
We could go on for several more pages like this, and in Exercise 7.6 we ask you to do just that.

Axioms, definitions, and theorems
AXIOMS Mathematicians write axioms to capture the basic facts about a domain, define other concepts
THEOREMS in terms of those basic facts, and then use the axioms and definitions to prove theorems. In

AI, we rarely use the term "theorem," but the sentences that are in the knowledge base initially
are sometimes called "axioms," and it is common to talk of "definitions." This brings up an
important question: how do we know when we have written down enough axioms to fully specify
a domain? One way to approach this is to decide on a set of basic predicates in terms of which
all the other predicates can be defined. In the kinship domain, for example, Child, Spouse, Male,
and Female would be reasonable candidates for basic predicates. In other domains, as we will
see, there is no clearly identifiable basic set.7

The converse problem also arises: do we have too many sentences? For example, do we
need the following sentence, specifying that siblinghoodis a symmetric relation?

\fx,y Sibling(x,y) <=> Sibling(y,x)
In this case, we do not. From Sibling(John, Richard), we can infer that

3 p Parent(p, John) A Parent(p, Richard),
and from that we can infer Sibling(Richard, John). In mathematics, an independent axiom is one
that cannot be derived from all the other axioms. Mathematicians strive to produce a minimal set
of axioms that are all independent. In AI it is common to include redundant axioms, not because
they can have any effect on what can be proved, but because they can make the process of finding
a proof more efficient.

DEFINITION An axiom of the form V x,y P(x,y) = . . . is often called a definition of P, because it
serves to define exactly for what objects P does and does not hold. It is possible to have several
definitions for the same predicate; for example, a triangle could be defined both as a polygon
7 In all cases, the set of sentences.,will have models other than the intended model; this follows from a theorem of
Lowenheim's stating that al{ consistent axiom sets have a model whose domain is the integers.

INDEPENDENT
AXIOM



ISection 7.3. Using First-Order Logic 199

with three sides and as a polygon with three angles. Many predicates will have no complete
definition of this kind, because we do not know enough to fully characterize them. For example,
how would you complete the sentence:

\/x Person(x) <=> . . .

Fortunately, first-order logic allows us to make use of the Person predicate without completely
defining it. Instead we can write partial specifications of properties that every person has and
properties that make something a person:

V* Person(x) =>• . ..
V* . . . => Person(x)

The domain of sets
The domain of mathematical sets is somewhat more abstract than cats or kings, but nevertheless
forms a coherent body of knowledge that we would like to be able to represent. We want to be
able to represent individual sets, including the empty set. We need a way to build up sets by
adding an element to a set or taking the union or intersection of two sets. We will want to know
if an element is a member of a set, and to be able to distinguish sets from objects that are not sets.

We will use the normal vocabulary of set theory: EmptySet is a constant; Member and
Subset are predicates; and Intersection, Union, and Adjoin are functions. (Adjoin is the function
that adds one element to a set.) Set is a predicate that is true only of sets. The following eight
axioms provide this:

1. The only sets are the empty set and those made by adjoining something to a set.

Vs Set(s) •» (s = EmptySet) V (3x,s2 Set(s2) A s = Adjoin(x,s2))
2. The empty set has no elements adjoined into it. (In other words, there is no way to

decompose EmptySet into a smaller set and an element.)
-*3x,s Adjoin(x, s) - EmptySet

3. Adjoining an element already in the set has no effect:

V*, s Member(x,s) o- s=Adjoin(x,s)
4. The only members of a set are the elements that were adjoined into it. We express this

recursively, saying that x is a member of s if and only if 5 is equal to some set s2 adjoined
with some element y, where either y is the same as x or x is a member of s2.

\/x,s Member(x,s) <^>
3 y, s2 (s = Adjoin(y, s2) A (x = y V Member(x, s2)))

5. A set is a subset of another if and only if all of the first set's members are members of the
second set.

Vs\,s2 Subset(si,s2) •<=> (Vx Member(x,si) => Member(x,s2))
6. Two sets are equal if and only if each is a subset of the other.

\/s\,s2 (s\=s2) •£> (Subset(s\,S2) /\ Subset(s2,s\))



200 Chapter 7. First-Order Logic

7. An object is a member of the intersection of two sets if and only if it is a member of each
of the sets.

Vx,si,$2 Member(x,Intersection(s\,s2)) O-
Member(x, s\) A Member(x, $2)

8. An object is a member of the union of two sets if and only if it is a member of either set.

Vx,si,S2 Member(x,Union(S[,S2)) -O-
Member(x, s\) V Member(x, .$2)

The domain of lists is very similar to the domain of sets. The difference is that lists are ordered,
and the same element can appear more than once in a list. We can use the vocabulary of Lisp for
lists: Nil is the constant list with no elements; Cons, Append, First, and Rest are functions; and
Find is the predicate that does for lists what Member does for sets. List! is a predicate that is true
only of lists. Exercise 7.8 asks you to write axioms for the list domain.

Special notations for sets, lists and arithmetic
Because sets and lists are so common, and because there is a well-defined mathematical notation
for them, it is tempting to extend the syntax of first-order logic to include this mathematical
notation. The important thing to remember is that when this is done, it is only a change to the
syntax of the language; it does not change the semantics. The notation is just an abbreviation
for the normal first-order logic notation. Such notational extensions are often called syntactic

SYNTACTIC SUGAR sugar. We will use standard mathematical notation for arithmetic and set theory from here on,
and will also use the nonstandard notation {a s} as an abbreviation forAdjoin(a, s). There is less
consensus among mathematicians about the notation for lists; we have chosen the notation used
by Prolog:

0 = EmptySet []
{x} = Adjoin(x, EmptySet) [x]

{x,y} = Adjoin(x,Adjoin(y, EmptySet)) [x,y]
{x,y s} = Adjoin(x,Adjoin(y,sJ) [x,y\l]

r(J s — Union(r, s)
r n s = lntersection(r, s)
x£s = Member(x, s)
r C s = Subset(r, s)

We will also use standard arithmetic notation in logical sentences, saying, for example, x > 0
instead of >(.v, Zero) and 1+2 instead of +(1,2). It should be understood that each use of an infix
mathematical operator is just an abbreviation for a standard prefix predicate or function. The
integers are used as constant symbols, with their usual interpretation.

Nil
Cons(x, Nil)
Cons(x, Cons(y, Nil))
Cons(x, Cons(y, /))

Asking questions and getting answers
Although we will delay discussion of the internals of TELL and ASK until chapters 9 and 10, it
is important to understand how they are used in first-order logic. If we want to add the kinship



Section 7.4. Logical Agents for the Wumpus World 201

sentences to a knowledge base KB, we would call
JELL(KB, (V m, c Mother(c) = m •& Female(m) A Parent(m, c)))

and so on. Now if we tell it
TELL(KB, (Female(Maxi) A Parent(Maxi, Spot) A Parent(Spot, Boots)))

then we can
ASK(KB, Gmndparent(Maxi, Boots))

ASSERTIONS and receive an affirmative answer. The sentences added using TELL are often called assertions,
QUERIES and the questions asked using ASK are called queries or goal (not to be confused with goals as
GOAL used to describe an agent's desired states).

Certain people think it is funny to answer questions such as "Can you tell me the time?"
with "Yes." A knowledge base should be more cooperative. When we ask a question that is
existentially quantified, such as

ASK(KB, 3x Child(x,Spot))
we should receive an answer indicating that Boots is a child of Spot. Thus, a query with existential
variables is asking "Is there an x such that ...," and we solve it by providing such an x. The

SUBSTITUTION standard form for an answer of this sort is a substitution or binding list, which is a set of
BINDING LIST variable/term pairs. In this particular case, the answer would be {x/Boots}. (If there is more than

one possible answer, a list of substitutions can be returned. Different implementations of ASK do
different things.)

7.4 LOGICAL AGENTS FOR THE WUMPUS WORLD

MODEL-BASED
AGENTS
GOAL-BASED
AGENTS

In Chapter 6 we showed the outline of a knowledge-based agent, repeated here in slightly modified
form as Figure 7.2. We also hinted at how a knowledge-based agent could be constructed for
the wumpus world, but the limitations of propositional logic kept us from completing the agent.
With first-order logic, we have all the representational power we need, and we can turn to the
more interesting question of how an agent should organize what it knows in order to take the
right actions. We will consider three agent architectures: reflex agents8 that merely classify their
percepts and act accordingly; model-based agents9 that construct an internal representation of
the world and use it to act; and goal-based agents that form goals and try to achieve them.
(Goal-based agents are usually also mo3el-based agents.)

The first step in constructing an agent for the wumpus world (or for any world) is to define
the interface between the environment and the agent. The percept sentence must include both
the percept and the time at which it occurred; otherwise the agent will get confused about when
it saw what. We will use integers for time steps. A typical percept sentence would be

Percept([Stench, Breeze, Glitter, None, None}, 5)
8 Reflex agents are also known as tropistic agents. The biological term tropism means having a tendency to react in a
definite manner to stimuli. A heliotropic plant, for example, is one that turns toward the sun.
9 Note that this usage of "model" is related but not identical to its meaning as a world referred to by a sentence.



202 Chapter 7. First-Order Logic

function KB-AGENT( percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

, MAKE-PERCEPT-SENTENCE(percepf, t))
action — ASK(KB, MAKE-ACTION-QUERY(O)

KB, MAKE-ACTION-SENTENCE(ac-rion, t))

return action

Figure 7.2 A generic knowledge-based agent.

The agent's action must be one of the following:
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

To determine which one is best, the function MAKE-ACTION-QUERY creates a query such as

3 a Action(a,5)
with the intention that ASK returns a binding list such as {a/Grab} and Grab is assigned as the
value of the variable action. The agent program then calls TELL once again to record which
action was taken. Because the agent does not perceive its own actions, this is the only way the
KB could know what the agent has done.

7.5 A SIMPLE REFLEX AGENT

The simplest possible kind of agent has rules directly connecting percepts to actions. These rules
resemble reflexes or instincts. For example, if the agent sees a glitter, it should do a grab in order
to pick up the gold:

Vs,b,u,c,t Percept([s,b, Glitter, u, c],t) =>• Action(Grab,i)
The connection between percept and action can be mediated by rules for perception, which
abstract the immediate perceptual input into more useful forms:

Vb,g,u,c,t Percept([Stench,b,g,u,c],t) •=> Stench(t)
Vs,g,u,c,t Percept([s, Breeze, g , u , c ] , t ) => Breeze(t)
\/s,b,u,c,t Percept([s,b, Glitter, u , c ] , t ) =>• AtGold(t)

Then a connection can be made from these predicates to action choices:
V r AtGold(t) => Action(Grab,t)

This rule is more flexible than the direct connection, because it could be used with other means
for deducing AtGold—for example, if one stubs one's toe on the gold.



Section 7.6. Representing Change in the World 203

In a more complex environment, the percept might be an entire array of gray-scale or color
values (a camera image), and the perceptual rules would have to infer such things as "There's a
large truck right behind me flashing its lights." Chapter 24 covers the topic of perception in more
detail. Of course, computer vision is a very difficult task, whereas these rules are trivial, but the
idea is the same.

Limitations of simple reflex agents
Simple reflex agents will have a hard time in the wumpus world. The easiest way to see this
is to consider the Climb action. The optimal agent should either retrieve the gold or determine
that it is too dangerous to get the gold, and then return to the start square and climb out of the
cave. A pure reflex agent cannot know for sure when to Climb, because neither having the gold
nor being in the start square is part of the percept; they are things the agent knows by forming a
representation of the world.

Reflex agents are also unable to avoid infinite loops. Suppose that such an agent has picked
up the gold and is headed for home. It is likely that the agent will enter one of the squares it was
in before, and receive the same percept. In that case, it must, by definition, do exactly what it did
before. Like the dung beetle of Chapter 2, it does not know whether it is carrying the gold, and
thus cannot make its actions conditional on that. Randomization provides some relief, but only
at the expense of risking many fruitless actions.

7.6 REPRESENTING CHANGE IN THE WORLD

In our agent design, all percepts are added into the knowledge base, and in principle the percept
history is all there is to know about the world. If we allow rules that refer to past percepts as well
as the current percept, then we can, in principle, extend the capabilities of an agent to the point
where the agent is acting optimally.

Writing such rules, however, is remarkably tedious unless we adopt certain patterns of
INTERNAL MODEL reasoning that correspond to maintaining an internal model of the world, or at least of the

relevant aspects thereof. Consider an example from everyday life: finding one's keys. An agent
that has taken the time to build a representation of the fact "my keys are in my pocket" need only
recall that fact to find the keys. In contrast, an agent that just stored the complete percept sequence
would have to do a lot of reasoning to discover where the keys are. It would be theoretically
possible for the agent to in effect rewind the video tape of its life and replay it in fast-forward,
using inference rules to keep track of where the keys are, but it certainly would not be convenient.

ISrtfef1 It can t*e shown that any system that makes decisions on the basis of past percepts can
wr be rewritten to use instead a set of sentences about the current world state, provided that these

sentences are updated as each new percept arrives and as each action is done.
Rules describing the way in which the world changes (or does not change) are called

DIACHRONIC diachronic rules, from the Greek for "across time." Representing change is one of the most
important areas in knowledge representation. The real world, as well as the wumpus world, is



204 Chapter 7. First-Order Logic

characterized by change rather than static truth. Richard has no brother until John is born; Spot
is a kitten for a while and then becomes a full-grown tomcat; the agent moves on.

The easiest way to deal with change is simply to change the knowledge base; to erase
the sentence that says the agent is at [1,11, and replace it with one that says it is at [1,2]. This
approach can mitigate some of the difficulties we saw with the propositional agent. If we only
want the knowledge base to answer questions about the latest situation, this will work fine. But
it means that all knowledge about the past is lost, and it prohibits speculation about different
possible futures.

A second possibility was hinted at in Chapters 3 and 4: an agent can search through a
space of past and possible future states, where each state is represented by a different knowledge
base. The agent can explore hypothetical situations—what would happen if I went two squares
forward? This approach allows an agent to switch its attention between several knowledge bases,
but it does not allow the agent to reason about more than one situation simultaneously.

To answer questions like "was there a stench in both [1,2] and [2,3]?" or "did Richard
go to Palestine before he became king?" requires representing different situations and actions
in the same knowledge base. In principle, representing situations and actions is no different
from representing more concrete objects such as cats and kings, or concrete relations such as
brotherhood. We need to decide on the appropriate objects and relations, and then write axioms
about them. In this chapter, we will use the simplest, and oldest, solution to the problem. In
Chapter 8, we will explore more complex approaches.

SITUATION
CALCULUS

Situation calculus
Situation calculus is the name for a particular way of describing change in first-order logic. It
conceives of the world as consisting of a sequence of situations, each of which is a "snapshot"
of the state of the world. Situations are generated from previous situations by actions, as shown
in Figure 7.3.

Every relation or property that can change over time is handled by giving an extra situation
argument to the corresponding predicate. We use the convention that the situation argument is
always the last, and situation constants are of the form 5,. Thus, instead of At(Agent, location),
we might have

•~-At(Agent,[\, 1],50) A At(Agent, [1,2],S,)
> tcujescribe.the location of the agent in the first two situation^jn_Figijre_l,3; Relations or properties^
that are not subject to change do not need the extra situation argument. For example, we can just
say Even(8) instead of Even(8, So). In the wumpus world, where walls cannot move, we can just
use Wall([0,1]) to say that there is a wall at [0,1].

The next step is to represent how the world changes from one situation to the next.
Situation calculus uses the function Remlt(action, situation) to denote the situation that results
from performing an action in some initial situation. Hence, in the sequence shown in Figure 7.3,
We have the following:

Result(Forward,So) = S\
Result(Turn(Right), SO = S2
Result(Forward, 82) = S^



Section 7.6. Representing Change in the World 205

EFFECT AXIOMS

Forward

Turn (Right)

Forward

Figure 7.3 In situation calculus, the world is a sequence of situations linked by actions.

Actions are described by stating their effects. That is, we specify the properties of the situation
that results from doing the action. Suppose, for example, that the agent wants to keep track of
whether it is holding the gold. The description should state that, in any situation, if gold is present
and the agent does a grab, then it will be holding the gold in the resulting situation. We write this
in such a way as to apply to any portable object:

Portable(Gold)
V.v AtGold(s) => Present(Gold,s)
\/x,s Present(x, s) A Portable(x) => Holding(x,Result(Grab,s))

A similar axiom says that the agent is not holding anything after a Release action:
V x, s -iffolding(x, Result(Release, s))

These axioms are called effect axioms. Unfortunately, they are not sufficient to keep track of
whether the agent is holding the gold. We also need to say that if the agent is holding something



206 Chapter 7. First-Order Logic

FRAME AXIOMS

SUCCESSOR-STATE
AXIOM

and does not release it, it will be holding it in the next state. Similarly, if the agent is not holding
something and does not or cannot grab it, it will not be holding it in the next state:

Va,x,s Holding(x, s) A (a^Release) =>• Holding(x,Result(a,s))
V a,x, s -iHolding(x, s) A (a^Grab V -^(Present(x, s) A Portable(x))

=> -iHolding(x,Result(a,s))

Axioms like these that describe how the world stays the same (as opposed to how it changes) are
called frame axioms.10 Together/effect axioms and frame axiomsprovide a complete description
of how the world evolves in response to the agent's actions.

We can obtain a more elegant representation by combining the-effect axioms and fra
axioms into a single axiom that describes how to compute the Holding predicate for the nexttime
step, given its value for the current time step. The axiom has the following structure:

true afterwards o- [an action made it true
V true already and no action made it false]

Notice the use of " <=> " here. It says that the predicate will be true after the action if it is made
true or if it stays true; and that it will be false afterwards in other cases. In the case of Holding,
the axiom is the following:

V a, x, s Holding(x, Result(a, s))
V

[(a = Grab A Present(x, s) A Portable(x))
(Holding(x, s) A a ̂ Release)}

This axiom is called a successor-state axiom. One such axiom is needed for each predicate that
may change its value over time. A successor-state axiom must list alLthe ways in which the
predicate can become true, and all the ways in which it can become false.

Keeping track of location
In the wumpus world, location is probably the most important thing to worry about; it cannot be
perceived directly, but the agent needs to remember where it has been and what it saw there in
order to deduce where pits and wumpuses are and to make sure it does a complete exploration
for the gold. We have already seen that the initial location can be described by the sentence
At(Agent, [1,1], So). The agent also needs to know the following:

• What direction it is facing (an angle in degrees, where 0 degrees is out along the X-axis,
90 degrees is up along the Y-axis, and so on):

Orientation(Agent, So) = 0

• How locations are arranged (a simple "map")- The map consists of values of the function
LocalionToward, which takes a location and a direction and gives the location that is one

10 The name derives from film animation, where the background image usually remains constant as the characters move
around from frame to frame.



Section 7.6. Representing Change in the World 207

THE FRAME PROBLEM AND ITS RELATIVES

Many AI texts refer to something called the frame problem. The problem was noticed
soon after situation calculus was applied to reasoning about actions. Originally, it
centered on the apparently unavoidable need for a large number of frame axioms that
made for a very inelegant and inefficient description of actions. Many researchers
considered the problem insoluble within first-order logic. There are at least three
entire volumes of collected papers on the problem, and at least one author (Crockett,
1994) cites the problem as one symptom of the inevitable failure of the AI enterprise.

The proliferation of frame axioms is now called the representational frame
problem, and as we have shown, is easily solved using successor-state axioms. The
inferential frame problem concerns the way we make inferences about the world.
When reasoning about the result of a long sequence of actions in situation calculus,
one has to carry each property through all intervening situations one step at a time,
even if the property remains unchanged throughout. This is true whether one uses
frame axioms or successor-state axioms. One would like to be able to make only
the changes required by the action descriptions, and have the rest available without
further effort. This seems like the natural and efficient thing to do because we do
not expect more than a small fraction of the world to change at any given moment.
Of course, we cannot expect a general-purpose representation language such as first-
order logic (and associated general-purpose reasoning systems) to have this bias. It is
possible, however, to build special-purpose reasoning systems that do work efficiently
for reasoning about actions that change only a small fraction of the world. These are
called planning systems, and are the subject of Part IV.

Other problems besides the frame problem have surfaced in the study of reasoning
about actions. The qualification problem arises because it is difficult, in the real
world, to define the circumstances under which a given action is guaranteed to work.
In the real world, grabbing a gold brick may not work if the brick is wet and slippery,
or if it is electrified or screwed to the table, or if your back gives out when you bend
over, or if the guard shoots you, and so on. If some of these conditions are left out of
the successor-state axiom, then the agent is in danger of generating false beliefs.

Finally, the ramification problem concerns the proliferation of implicit conse-
quences of actions. For example, if a gold brick is covered in dust, then when the
agent picks up the brick it also picks up each particle of dust that adheres to the brick.
One prefers to avoid describing the motion of the dust (if any) as part of the description
of picking up things in general. It is better to state separately that the dust is stuck to
the brick, and to infer the new location of the dust as necessary. Doing this efficiently
requires a special-purpose reasoning system, just as with the frame problem.



208 Chapter 7. First-Order Logic

step forward in the given direction.
\/x,\ LocationToward([x,y],Q) = [x+ l ,y]
V.r,y LocationToward([x,y],9Q) = [x,y+ 1]
V x, y LocationToward([x, y], 180) = [x - 1, y]
Vx,y LocationToward([x,y],27Q) = [x,y — 1]

From the map, it is possible to tell which square is directly ahead of the agent, or indeed
of any agent p at any location /:

Vp,l,s At(p,l,s) =>•
LocationAhead(p, s) =LocationToward(l, Orientation(p, s))

It is also useful to define adjacency:

V / i , / ? Adjacent(l\,l-i) o- 3rf l\=LocationToward(l2,d)
• Whatever is known about the contents of the locations (geographical details on the map).

In what follows we assume that the locations surrounding the 4 x 4 cave contain walls, and
other locations do not. Sometimes the agent knows this kind of information to start, 'and
sometimes it does not.

Mx,y Wall([x,y\) O (x = 0 V* = 5 V y = 0 V y = 5)
• What the actions do to location. Only going forward changes location, and then only if

there is no wall ahead. The successor-state axiom for location is
Va,d,p,s At(p,l,Result(a,s)) <^>

[ (a = Fonvard A / = LocationAhead(p, s)f\-* Wall(l))
V (At(p, I,s) A a^Fonvard) ]

• What the actions do to orientation. Turning is the only action that changes orientation. The
successor-state axiom for orientation is

\/a,d,p,s Onentation(p,Result(a,s))=d <=>
[ (a = Turn(Right) A d = Mod(Orientation(p, s) - 90,360))
V (a = Turn(Left) f\d = Mod(Orientation(p, s) + 90,360))
V (Onentation(p, s) = d A -i(a = Tum(Right) f\a = Turn(Left))) ]

In addition to keeping track of location and the gold, the agent should also keep track of whether
the wumpus is alive or dead. We leave the problem of describing Shoot as an exercise.

7.7 DEDUCING HIDDEN PROPERTIES OF THE WORLD _______.

Once the agent knows where it is, it can associate qualities with the places rather than just the
situations, so, for example, one might say that if the agent is at a place and perceives a breeze,
then that place is breezy, and if the agent perceives a stench, then that place is smelly:

V /, s At(Agent, I, s) A Breeze(s) =>• Breezy(l)
V /, s At(Agent, /, s) A Stenches) => Smelly(l)



Section 7.7. Deducing Hidden Properties of the World 209

SYNCHRONIC

CAUSAL RULES

MODEL-BASED
REASONING

DIAGNOSTIC RULES

It is useful to know if a place is breezy or smelly because we know that the wumpus and the pits
cannot move about. Notice that neither Breezy nor Smelly needs a situation argument.

Having discovered which places are breezy or smelly (and, very importantly, not smelly or
not breezy), the agent can deduce where the pits are, and where the wumpus is. Furthermore, it
can deduce which squares are safe to move to (we use the predicate OK to represent this), and
can use this information to hunt for the gold.

The axioms we will write to capture the necessary information for these deductions are
called synchronic ("same time") rules, because they relate properties of a world state to other
properties of the same world state. There are two main kinds of synchronic rules:

<C> Causal rules:
Causal rules reflect the assumed direction of causality in the world: some hidden property
of the world causes certain percepts to be generated. For example, we might have rules
stating that squares adjacent to wumpuses are smelly and squares adjacent to pits are
breezy:

V / i , / 2 , 5 At(Wumpus,l},s)f\Adjacent(li,l2) =>• Smelly(l2)
V / i , / 2 , , s At(Pit,li,s)/\Adjacent(li,l2) => Breezy(l2)

Systems that reason with causal rules are called model-based reasoning systems.
0 Diagnostic rules:

Diagnostic rules infer the presence of hidden properties directly from the percept-derived
information. We have already seen two diagnostic rules:

V /, s At(Agent, I, s) A Breeze(s) => Breezy(l)
V/ ,5 At(Agent,l,s)/\Stench(s) => Smelly(l)

For deducing the presence of wumpuses, a diagnostic rule can only draw a weak conclusion,
namely, that if a location is smelly, then the wumpus must either be in that location or in an
adjacent location:

V / i , 5 Smelly(li) =>
(3 /2 At(Wumpus, h, s) A (12 = l\ V Adjacent(h, /2))

Although diagnostic rules seem to provide the desired information more directly, it is very tricky
to ensure that they derive the strongest possible conclusions from the available information. For
example, the absence of stench or breeze implies that adjacent squares are OK:

V.x,y, g, u, c,s Percept([None,None,g,u,c], ?)A
At(Agent, x, s) A Adjacent(x, y) => OK(y)

But sometimes a square can be OK even when smells and breezes abound. The model-based rule

\/x,t (-^At(Wumpus,x,t)f\^Pit(x)) O OK(x)
is probably the best way to represent safety.

The distinction between model-based and diagnostic reasoning is important in many areas
of AI. Medical diagnosis in particular has been an active area of research, where approaches based
on direct associations between symptoms and diseases (a diagnostic approach) have gradually
been replaced by approaches using an explicit model of the disease process and how it manifests
itself in symptoms. The issues come up again in Chapter 14.



210 Chapter 7. First-Order Logic

The important thing to remember is that if the axioms correctly and completely describe the
way the world works and the way that percepts are produced, then the inference procedure will
correctly infer the strongest possible description of the world state given the available percepts.
A complete specification of the wumpus world axioms is left as an exercise.

7.8 PREFERENCES AMONG ACTIONS

ACTION-VALUE

So far, the only way we have to decide on actions is to write rules recommending them on the
basis of certain conditions in the world. This can get very tedious. For example, generally it is a
good idea to explore by moving to OK squares, but not when there is a glitter afoot. Hence our
rules for exploring would also have to mention glitter. This seems arbitrary and means the rules
are not modular: changes in the agent's beliefs about some aspects of the world would, require
changes in rules dealing with other aspects also. It is more modular to separate facts about
actions from facts about goals, which means our agent can be reprogrammed simply by asking it
to achieve something different. Goals describe the desirability of outcome states, regardless of
how achieved. We discuss goals further in Section 7.9.

A first step is to describe the desirability of actions themselves, and leave the inference
engine to choose whichever is the action that has the highest desirability. We will use a simple
scale: actions can be Great, Good, Medium, Risky, or Deadly. The agent should always do a
great action if it can find one; otherwise, a good one; otherwise, an OK action; and a risky one if
all else fails.

Ma,s Great(a,s) -^ Action(a,s)
\/a,s Good(a, s~) A (-G b Great(b,s)) => Action(a,s)
V a, s Medium(a, s) A (-d b Great(b, s) V Good(b, s)) => Action(a, s)
\/a,s Risky(a, s) A (-.3 b Great(b, s) V Good(b, s) V OK(b, s)) => Action(a,s)

A system containing rules of this type is called an action-value system. Notice that the rules do
not refer to what the actions actually do, just how desirable they are.

Up to the point where it finds the gold, the basic strategy for our agent will be as follows:

• Great actions include picking up the gold when found and climbing out of the cave with
the gold.

• Good actions include moving to a square that's OK and has not yet been visited.
• Medium actions include moving to a square that's OK and has been visited already.
• Risky actions include moving to a square that's not known to be deadly, but is not known

to be OK either.
• Deadly actions are moving into a square that is known to contain a pit or a live wumpus.

Again, we leave the specification of the action values as an exercise.



Section 7.9. Toward a Goal-Based Agent 21

7 Q_ TOWARD A GOAL-BASED AGENT

The preceding set of action value statements is sufficient to prescribe a reasonably intelligent
exploration policy. It can be show,n (Exercise 7.15) that the agent using these axioms will always
succeed in finding the gold safely whenever there is a safe sequence of actions that does so. This
is about as much as we can ask from a logical agent.

Once the gold is found, the policies need to change radically. The aim now is to return to
the start square as quickly as possible. What we would like to do is infer that the agent now has
the goal of being at location [1,1]:

V.5 Holding(Gold,s) => GoalLocation([\,\],s)
The presence of an explicit goal allows the agent to work out a sequence of actions that will
achieve the goal. There are at least three ways to find such a sequence:

0 Inference: It is not hard to write axioms that will allow us to ASK the KB for a sequence
of actions that is guaranteed to achieve the goal safely. For the 4 x 4 wumpus world, this
is feasible, but for larger worlds, the computational demands are too high. In any case, we
have the problem of distinguishing good solutions from wasteful solutions (e.g., ones that
make a long series of wandering moves before getting on the right track).

0 Search: We can use a best-first search procedure (see Chapter 4) to find a path to the goal.
This requires the agent to translate its knowledge into a set of operators, and accompanying
state representation, so that the search algorithm can be applied.

0 Planning: This involves the use of special-purpose reasoning systems designed to reason
about actions. Chapter 11 describes these systems in detail, explaining their advantages
over search algorithms.

HO SUMMARY

This chapter has shown how first-order logic can be used as the representation language for a
knowledge-based agent. The important points are as follows:

• First-order logic is a general-purpose representation language that is based on an onto-
logical commitment to the existence of objects and relations in the world.

• Constant symbols and predicate symbols name objects and relations, respectively. Com-
plex terms name objects using function symbols. The interpretation specifies what the
symbols refer to.

• An atomic sentence consists of a predicate applied to one or more terms; it is true just
when the relation named by the predicate holds between the objects named by the terms.
Complex sentences use connectives just like propositional logic, and quantified sentences
allow the expression of general rules.

• It is possible to define an agent that reasons using first-order logic. Such an agent needs to



212 Chapter 7. First-Order Logic

1. react to what it perceives;
2. extract abstract descriptions of the current state from percepts;
3. maintain an internal model of relevant aspects of the world that are not directly

available from percepts;
4. express and use information about the desirability of actions in various circumstances;
5. use goals in conjunction with knowledge about actions to construct plans.

Knowledge about actions and their effects can be represented using the conventions of
situation calculus. This knowledge enables the agent to keep track of the world and to
deduce the effects of plans of action.
We have a choice of writing diagnostic rules that reason from percepts to propositions
about the world or causal rules that describe how conditions in the world cause percepts to
come about. Causal rules are often more flexible and entail a wider range of consequences,
but can be more expensive to use in inference.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
Although even Aristotle's logic deals with generalizations over objects, true first-order logic dates
from the introduction of quantifiers in Gottlob Frege's (1879) Begriffschrift ("Concept Writing"
or "Conceptual Notation"). Frege's ability to nest quantifiers was a big step forward, but he used
an awkward notation. (An example appears on the front cover of this book.) The present notation
for first-order logic is substantially due to Giuseppe Peano (1889), but the semantics is virtually
identical to Frege's.

A major barrier to the development of first-order logic had been the concentration on one-
place predicates to the exclusion of many-place relational predicates. This fixation on one-place
predicates had been nearly universal in logical systems from Aristotle up to and including Boole.
The first systematic treatment of the logic of relations was given by Augustus De Morgan (1864).
De Morgan cited the following example to show the sorts of inferences that Aristotle's logic
could not handle: "All horses are animals; therefore, the head of a horse is the head of an animal."
This inference is inaccessible to Aristotle because any valid rule that can support this inference
must first analyze the sentence using the two-place predicate "x is the head of y." The logic of
relations was studied in depth by Charles Sanders Peirce (1870), who also developed first-order
logic independently of Frege, although slightly later (Peirce, 1883).

Leopold Lowenheim (1915) gave a systematic treatment of model theory in 1915. This
paper also treated the equality symbol as an integral part of logic. Lowenheim's results were
further extended by Thoralf Skolem (1920). Tarski (1935) gave an explicit definition of truth and
model-theoretic satisfaction in first-order logic, using set theory. (An English translation of this
German article is given in (Tarski, 1956).)

McCarthy (1958) was primarily responsible for the introduction of first-order logic as a tool
for building AI systems, and later (1963) proposed the use of states of the world, or situations,
as objects to be reasoned about using first-order logic. The first AI system to make substantial
use of general-purpose reasoning about actions in first-order logic was QA3 (Green, 1969b).



Section 7.10. Summary 213

Kowalski (1979b) further advanced situation calculus by introducing propositions as objects.
The frame problem was pointed out as a major problem for the use of logic in AI by McCarthy
and Hayes (1969). The axiomatization we use in the chapter to avoid the representational frame
problem was proposed by Charles Elkan (1992) and independently by Ray Reiter (1991). The
qualification problem was also pointed out by McCarthy (1977). The inferential frame problem
is discussed at length by Shoham and McDermott (1988).

There are a number of good modern introductory texts on first-order logic. Quine (1982)
is one of the most readable. Enderton (1972) gives a more mathematically oriented perspective.
A highly formal treatment of first-order logic, along with many more advanced topics in logic, is
provided by Bell and Machover (1977). Manna and Waldinger (1985) give a readable introduction
to logic from a computer science perspective. Gallier (1986) provides an extremely rigorous
mathematical exposition of first-order logic, along with a great deal of material on its use in
automated reasoning. Logical Foundations of Artificial Intelligence (Genesereth and Nilsson,
1987) provides both a solid introduction to logic and the first systematic treatment of logical
agents with percepts and actions. Barwise and Etchemendy (1993) give a modern overview of
logic that includes an interactive graphical logic game called Tarski's World.

EXERCISES

7.1 A logical knowledge base represents the world using a set of sentences with no explicit
structure. An analogical representation, on the other hand, is one in which the representation has
structure that corresponds directly to the structure of the thing represented. Consider a road map
of your country as an analogical representation of facts about the country. The two-dimensional
structure of the map corresponds to the two-dimensional surface of the area.

a. Give five examples of symbols in the map language.
b. An explicit sentence is one that the creator of the representation actually writes down. An

implicit sentence is one that results from explicit sentences because of properties of the
analogical representation. Give three examples each of implicit and explicit sentences in
the map language.

c. Give three examples of facts about the physical structure of your country that cannot be
represented in the map language.

d. Give two examples of facts that are much easier to express in the map language than in
first-order logic,

e. Give two other examples of useful analogical representations. What are the advantages
and disadvantages of each of these languages?

7.2 Represent the following sentences in first-order logic, using a consistent vocabulary (which
you must define):

a. Not all students take both History and Biology.
b. Only one student failed History.



214 Chapter 7. First-Order Logic

c. Only one student failed both History and Biology.
d. The best score in History was better than the best score in Biology.
e. Every person who dislikes all vegetarians is smart.
f. No person likes a smart vegetarian.
g. There is a woman who likes all men who are not vegetarians.
h. There is a barber who shaves all men in town who do not shave themselves.
i. No person likes a professor unless the professor is smart.
j. Politicians can fool some of the people all of the time, and they can fool all of the people

some of the time, but they can't fool all of the people all of the time.

7.3 We noted that there is often confusion because the =>• connective does not correspond
directly to the English "if . . . then" construction. The following English sentences use "and,"
"or," and "if" in ways that are quite different from first-order logic. For each sentence, give
both a translation into first-order logic that preserves the intended meaning in English, and
a straightforward translation (as if the logical connectives had their regular first-order logic
meaning). Show an unintuitive consequence of the latter translation, and say whether each
translation is valid, satisfiable or invalid.

a. One more outburst like that and you'll be in contempt of court.
b. Annie Hall is on TV tonight, if you're interested.
c. Either the Red Sox win or I'm out ten dollars.
d. The special this morning is ham and eggs.
e. Maybe I'll come to the party and maybe I won't.
f. Well, I like Sandy and I don't like Sandy.
g. I don't jump off the Empire State Building implies if I jump off the Empire State Building

then I float safely to the ground.
h. It is not the case that if you attempt this exercise you will get an F. Therefore, you will

attempt this exercise.
i. If you lived here you would be home now. If you were home now, you would not be here.

Therefore, if you lived here you would not be here.

7.4 Give a predicate calculus sentence such that every world in which it is true contains exactly
one object.

7.5 Represent the sentence "All Germans speak the same languages" in predicate calculus. Use
Speaks(x, /), meaning that person x speaks language /.

7.6 Write axioms describing the predicates Grandchild GreatGrandparent, Brother, Sister,
Daughter, Son, Aunt, Uncle, BrotherlnLaw, SisterlnLaw, and FirstCousin. Find out the proper
definition of mth cousin n times removed, and write it in first-order logic.

Write down the basic facts depicted in the family tree in Figure 7.4. Using the logical rea-
soning system in the code repository, TELL it all the sentences you have written down, and ASK it
who are Elizabeth's grandchildren, Diana's brothers-in-law, and Zara's great-grandparents.



Section 7.10. Summary 215

George = Mum

Spencer = Kydd Elizabeth = Philip Margaret

Diana = Charles Anne = Mark Andrew = Sarah Edward

William Harry Peter Zara Beatrice Eugenie

Figure 7.4 A typical family tree.

7.7 Explain what is wrong with the following proposed definition of the set membership
predicate G :

\/x,s x£ {x\s}
\/x,s xes => Vy x<E{y\s}

7.8 Using the set axioms as examples, write axioms for the list domain, including all the
constants, functions, and predicates mentioned in the chapter.

7.9 This exercise can be done without the computer, although you may find it useful to use a
backward chainer to check your proof for the last part. The idea is to formalize the blocks world
domain using the situation calculus. The objects in this domain are blocks, tables, and situations.
The predicates are

On(x,y,s) ClearTop(x,s) Block(x) Table(x)
The only action is PutOn(x,y), where x must be a block whose top is clear of any other blocks,
and y can be either the table or a different block with a clear top. The initial situation So has A
on B on C on the table.

a. Write an axiom or axioms describing PutOn.
b. Describe the initial state, SQ, in which there is a stack of three blocks, A on B on C, where

C is on the table, T.
c. Give the appropriate query that a theorem prover can solve to generate a plan to build a

stack where C is on top of B and B is on top of A. Write down the solution that the theorem
prover should return. (Hint: The solution will be a situation described as the result of
doing some actions to SQ.)

d. Show formally that the solution fact follows from your description of the situation and the
axioms for Put On.

7.10 Write sentences to define the effects of the Shoot action in the wumpus world. As well as
describing its effects on the wumpus, remember that shooting uses the agent's arrow.

7.11 In this exercise, we will consider the problem of planning a route from one city to another.
The basic action taken by the robot is Go(x, y), which takes it from city x to city y provided there



216 Chapter 7. First-Order Logic

is a direct route. DirectRoute(x, >•) is true if and only if there is a direct route from x to y\ you can
assume that all such facts are already in the KB (see the map on page 62). The robot begins in
Arad and must reach Bucharest.

a. Write a suitable logical description of the initial situation of the robot.
b. Write a suitable logical queVy whose solutions will provide possible paths to the goal.
c. Write a sentence describing the Go action.
d. Now suppose that following the direct route between two cities consumes an amount of

fuel equal to the distance between the cities. The robot starts with fuel at full capacity.
Augment your representation to include these considerations. Your action description
should be such that the query you specified earlier will still result in feasible plans.

e. Describe the initial situation, and write a new rule or rules describing the Go action.
f. Now suppose some of the vertices are also gas stations, at which the robot can fill its tank

using the Fillup action. Extend your representation to include gas stations and write all the
rules needed to completely describe the Fillup action.

7.12 In this exercise, you will extend situation calculus to allow for actions that take place
simultaneously. You will use a function called Simultaneously, which takes two actions as
arguments and denotes the combined action. Consider a grid world containing two agents. Write
axioms describing the effects of simultaneous Forward actions:

a. When two agents move at once, unless they are both trying to move to the same location,
the result is the same as if one had moved and then the other had moved.

b. If the agents are trying to move to the same location, they remain in place.

7.13 Using the wumpus world simulator and the logical reasoning system in the code repository,
implement a working agent for the wumpus world. You will need all of the wumpus-related
axioms in the chapter, and perhaps more besides. Evaluate the performance of your agent.

7.14 How hard would it be to build a successful wumpus world agent by writing a program in
your favorite programming language? Compare this to the logical reasoning agent.

7.15 Sketch an argument to the effect that a logical agent using the axioms and action preferences
given in the chapter will always succeed in finding the gold safely whenever there is a safe
sequence of actions that does so.

7.16 A reflex agent is one whose action is always a function of its percepts in the current time
step. That is, the agent's action cannot be based on anything it learned in the past, and it cannot
carry over any internal state information from one time step to the next. In the wumpus world,
there are 32 different possible percepts and 6 different actions.

a. How many different reflex agents can there be in the wumpus world?
b. How many different 4 x 4 wumpus world are there? How many 1 0 x 1 0 worlds?
c. What do you think the chances are that a reflex agent can be successful in a majority of

wumpus worlds? Why?



8 BUILDING A
KNOWLEDGE BASE

In which we develop a methodology for building knowledge bases for particular
domains, sketch a representation for the world in general, and go shopping.

KNOWLEDGE
ENGINEERING

KNOWLEDGE
ACQUISITION

ONTOLOGICAL
ENGINEERING

The previous chapter showed that first-order logic is a powerful tool for knowledge representation
and reasoning. However, a logic by itself consists of only the syntax, semantics, and proof theory.
A logic does not offer any guidance as to what facts should be expressed, nor what vocabulary
should be used to express them.

The process of building a knowledge base is called knowledge engineering. A knowledge
engineer is someone who investigates a particular domain, determines what concepts are important
in that domain, and creates a formal representation of the objects and relations in the domain.
Often, the knowledge engineer is trained in representation but is not an expert in the domain
at hand, be it circuit design, space station mission scheduling, or whatever. The knowledge
engineer will usually interview the real experts to become educated about the domain and to
elicit the required knowledge, in a process called knowledge acquisition. This occurs prior to,
or interleaved with, the process of creating formal representations. In this chapter, we will use
domains that should already be fairly familiar, so that we can concentrate on the representational
issues involved.

One does not become a proficient knowledge engineer just by studying the syntax and
semantics of a representation language. It takes practice and exposure to lots of examples before
one can develop a good style in any language, be it a language for programming, reasoning, or
communicating. Sections 8.1 and 8.2 discuss the principles and pitfalls of knowledge engineering.
We then show how to represent knowledge in the fairly narrow domain of electronic circuits in
Section 8.3. A number of narrow domains can be tackled by similar techniques, but domains
such as shopping in a supermarket seem to require much more general representations. In
Section 8.4, we discuss ways to represent time, change, objects, substances, events, actions,
money, measures, and so on. These are important because they show up in one form or another
in every domain. Representing these very general concepts is sometimes called ontological
engineering. Section 8.5 describes in detail a simplified shopping environment, and uses the
general ontology to develop representations capable of sustaining rational action in the domain.

217



218 Chapter Building a Knowledge Base

8.1 PROPERTIES OF GOOD AND BAD KNOWLEDGE BASES

In Chapter 6, we said that a good knowledge representation language should be expressive,
concise, unambiguous, context-insensitive, and effective. A knowledge base should, in addition,
be clear and correct. The relations that matter should be denned, and the irrelevant details
should be suppressed. Of course, there will be trade-offs between properties: we can make
simplifications that sacrifice some correctness to gain clarity and brevity.

The question of efficiency is a little more difficult to deal with. Ideally, the separation
between the knowledge base and the inference procedure should be maintained. This allows
the creator of the knowledge base to worry only about the content of the knowledge, and not
about how it will be used by the inference procedure. The same answers should be obtainable by
the inference procedure, no matter how the knowledge is encoded. As far as possible, ensuring
efficient inference is the task of the designer of the inference procedure and should not distort the
representation.

In practice, some considerations of efficiency are unavoidable. Automatic methods exist
that can eliminate the most obvious sources of inefficiency in a given encoding, in much the same
way that optimizing compilers can speed up the execution of a program, but at present these
methods are too weak to overcome the determined efforts of a profligate knowledge engineer
who has no concern for efficiency. Even in the best case, then, the knowledge engineer should
have some understanding of how inference is done, so that the representation can be designed for
maximum efficiency. In the worst case, the representation language is used primarily as a way
of "programming" the inference procedure.

As we will see throughout this chapter, you cannot do, or understand, knowledge engi-
neering by just talking about it. To explain the general principles of good design, we need to
have an example. We will start by doing the example incorrectly, and then fix it.

Every knowledge base has two potential consumers: human readers and inference proce-
dures. A common mistake is to choose predicate names that are meaningful to the human reader,
and then be lulled into assuming that the name is somehow meaningful to the inference procedure
as well. The sentence BearOJVerySmallBrain(Pooh) might be appropriate in certain domains,1

but from this sentence alone, the inference procedure will not be able to infer either that Pooh is a
bear or that he has a very small brain; that he has a brain at all; that very small brains are smaller
than small brains; or that this fact implies something about Pooh's behavior. The hard part is for
the human reader to resist the temptation to make the inferences that seem to be implied by long
predicate names. A knowledge engineer will often notice this kind of mistake when the inference
procedure fails to conclude, for example, Silly(Pooh). It is compounding the mistake to write

Mb BearOfVerySmallBrain(b) => Silly(b)

because this expresses the relevant knowledge at too specific a level. Although such VeryLong-
Names can be made to work for simple examples covering a small, sparse portion of a larger
domain, they do not scale up well. Adding AnotherVeryLongName takes just as much work as

1 Winnie the Pooh is a toy bear belonging to Christopher Robin in the well-known series of children's' books (Milne,
1926). The style of our introductory sentence in each chapter is borrowed from these works.



Section. Properties of Good and Bad Knowledge Bases 219

KNOWLEDGE ENGINEERING vs. PROGRAMMING

A useful analogy can be made between knowledge engineering and programming.
Both activities can be seen as consisting of four steps:

Knowledge Engineering Programming
(1) Choosing a logic Choosing a programming language
(2) Building a knowledge base Writing a program
(3) Implementing the proof theory Choosing or writing a compiler
(4) Inferring new facts Running a program

In both activities, one writes down a description of a problem or state of affairs,
and then uses the definition of the language to derive new consequences. In the
case of a program, the output is derived from the input and the program; in the case
of a knowledge base, answers are derived from descriptions of problems and the
knowledge base.

Given these similarities, what is the point of doing "knowledge engineering" at
all? Why not just admit that the final result will be a program, and set about to write
that program from the start, using a traditional programming language?

The main advantage of knowledge engineering is that it requires less commit-
ment, and thus less work. A knowledge engineer only has to decide what objects
and relations are worth representing, and which relations hold among which objects.
A programmer has to do all that, and in addition must decide how to compute the
relations between objects, given some initial input. The knowledge engineer specifies
what is true, and the inference procedure figures out how to turn the facts into a solu-
tion to the problem. Furthermore, because a fact is true regardless of what task one is
trying to solve, knowledge bases can, in principle, be reused for a variety of different
tasks without modification. Finally, debugging a knowledge base is made easier by
the fact that any given sentence is true or false by itself, whereas the correctness of a
program statement depends very strongly on its context.

The advantages of this declarative approach to system building have not been
lost on other subfields of computer science. Database systems derive most of their
usefulness from the fact that they provide a method to store and retrieve information
in a way that is independent of the particular application. Database systems have
also started to add the capability to do logical inference, thereby moving more of
the functionality from the application program into the database system (Stonebraker,
1992). The field of agent-based software engineering (Genesereth and Ketchpel,
1994) attempts to make all sorts of systems and resources interoperable by providing
a declarative interface based on first-order logic.



220 Chapter 8. Building a Knowledge Base

adding the first one. For example, to derive Silly(Piglet) from ShyBabyPigOfSmallBrain(Piglet),
we would have to write

Mb ShyBabyPigOfSmallBrain(b) => Silly(b)

This is a sign that something is wrong. The first fact about silliness is of no help in a similar
situation. In a properly designed knowledge base, facts that were entered for one situation should
end up being used in new situations as well. As you go along, you should need fewer new facts,
and fewer new predicates. This will only happen if one writes rules at the most general level
at which the knowledge is applicable. In a goodJyjpwledge base^BearOfVerySmallBmin^ooh)
would be replaced by something like the following: " / "--.-•

1. Pooh is a bear; bears are animals; animals are physical things.

Bear(Pooh)
Vfe Bear(b) =>
Va Animal(a)

Animal(b)
=> PhysicalThing(a)

These sentences help to tie knowledge about Pooh into a broader context. They also enable
knowledge to be expressed at an appropriate level of generality, depending on whether the
information is applicable to bears, animals, or all physical objects.^

2. Pooh has a very small brain.

RelativeSize(BrainOf(Pooh), BrainOf(TypicalBear)) = Very(Small)

This provides a precise sense of "very small," which would otherwise be highly ambiguous.
Is Pooh's brain very small compared to a molecule or a moon?

3. All animals (and only animals) have a brain, which is a part of the animal.

Va Animal(a) <£> Brain(BrainOf(a))
Va PartOf(BminOf(a),a)

This allows us to connect Pooh's brain to Pooh himself, and introduces some useful, general
vocabulary.

4. If something is part of a physical thing, then it is also a physical thing:

Mx,y PartOf(x,y) A PhysicalThing(y) => PhysicalThing(x)

This is a very general and important fact that is seldom seen in physics textbooks!
5. Animals with brains that are small (or below) relative to the normal brain size for their

species are silly.2

V a RelativeSize(BrainOf(a), BrainOf(TypicalMember(SpeciesOf(a)))) < Small
=> Silly(a)

V b Bear(b) <=/• SpeciexOf(b) = Ursidae
TypicalBear = TypicalMember( Ursidae)

2 It is important to remember that the goal for this knowledge base was to be consistent and useful within a world of
talking stuffed animals, not to be a model of the real world. Although biologists are in agreement that brain size is not a
good predictor for silliness, the rules given here are the right ones for this world.



Section 8.2. Knowledge Engineering 221

6. Every physical thing has a size. Sizes are arranged on a scale from Tiny to Huge. A relative
size is a ratio of two sizes.

MX PhysicalThing(x) =>• 3s Size(x) = s
Tiny < Small < Medium < Large < Huge
V a, b RelativeSize(a, b) = Size(a)/Size(b)

1. The function Very maps a point on a scale to a more extreme value. Medium is the neutral
value for a scale.

Medium = 1
MX x> Medium =>• Very(x) >x
MX x< Medium =? Very(x) <x

This is more work than writing a single rule for BearOfVerySmallBmin, but it achieves far more.
It has articulated some of the basic properties of physical things and animals, properties that will
be used many times, but need be stated only once. It has begun to sketch out a hierarchy of
objects (bears, animals, physical things). It has also made a representational choice for values on
scales, which will come in handy later in the chapter.

Every time one writes down a sentence, one should ask oneself the following:

• Why is this true? Could I write down the facts that make it true instead?
• How generally is it applicable? Can I state it for a more general class of objects?
• Do I need a new predicate to denote this class of objects? How does the class relate to

other classes? Is it part of a larger class? Does that class have other subclasses? What are
other properties of the objects in this class?

We cannot provide a foolproof recipe for successful knowledge engineering, but we hope this
example has provided some pointers.

8.2 KNOWLEDGE ENGINEERING

The knowledge engineer must understand enough about the domain in question to represent
the important objects and relationships. He or she must also understand enough about the
representation language to correctly encode these facts. Moreover, the knowledge engineer
must also understand enough about the implementation of the inference procedure to assure that
queries can be answered in a reasonable amount of time. To help focus the development of a
knowledge base and to integrate the engineer's thinking at the three levels, the following five-step
methodology can be used:

• Decide what to talk about. Understand the domain well enough to know which objects
and facts need to be talked about, and which can be ignored. For the early examples in
this chapter, this step is easy. In some cases, however, it can be the hardest step. Many
knowledge engineering projects have failed because the knowledge engineers started to
formalize the domain before understanding it. Donald Michie (1982) gives the example
of a cheese factory that had a single cheese tester who decided if the Camembert was



222 Chapter 8. Building a Knowledge Base

ONTOLOGY

ripe by sticking his finger into a sample and deciding if it "felt right." When the cheese
tester approached retirement age, the factory invested much time and money developing a
complex system with steel probes that would test for just the right surface tension, but the
system was next to useless. Eventually, it turned out that feel had nothing to do with it;
pushing the finger in just served to break the crust and let the aroma out, and that was what
the cheese tester was subconsciously relying on.
Decide on a vocabulary of predicates, functions, and constants. That is, translate the
important domain-level concepts into logic-level names. This involves many choices,
some arbitrary and some important. Should Size be a function or a predicate? Would
Bigness be a better name than Size! Should Small be a constant or a predicate? Is Small
a measure of relative size or absolute size? Once the choices have been made, the result
is a vocabulary that is known as the ontology of the domain. The word ontology means a
particular theory of the nature of being or existence. Together, this step and the previous
step are known as ontological engineering. They determine what kinds of things exist, but
do not determine their specific properties and interrelationships.
Encode general knowledge about the domain. The ontology is an informal list of the
concepts in a domain. By writing logical sentences or axioms about the terms in the
ontology, we accomplish two goals: first, we make the terms more precise so that humans
will agree on their interpretation. Without the axioms, we would not know, for example,
whether Bear refers to real bears, stuffed bears, or both. Second, we make it possible to
run inference procedures to automatically derive consequences from the knowledge base.
Once the axioms are in place, we can say that a knowledge base has been produced.

Of course, nobody expects a knowledge base to be correct and complete on the first try.
There will be a considerable debugging process. The main difference between debugging
a knowledge base and debugging a program is that it is easier to look at a single logic
sentence and tell if it is correct. For example, a typical error in a knowledge base looks
like this:

MX Animal(x) => 3b BrainOf(x) = b
This says that there is some object that is the value of the BrainOf function applied to an
animal. Of course, a function has a value for any input, although the value may be an
undefined object for inputs that are outside the expected range. So this sentence makes a
vacuous claim. We can "correct" it by adding the conjunct Brain(b). Then again, if we are
potentially dealing with single-celled animals, we could correct it again, replacing Animal
by, say, Vertebrate.

In contrast, a typical error in a program looks like this:
offse t := position + 1

It is impossible to tell if this statement is correct without looking at the rest of the program
to see if, for example, of f set is used elsewhere in the program to refer to the position,
or to one beyond the position; or whether the statement was accidentally included twice in
different places.

Programming language statements therefore tend to depend on a lot of context, whereas
logic sentences tend to be more self-contained. In that respect, a sentence in a knowledge
base is more like an entire procedure in a program, not like an individual statement.



Section 8.3. The Electronic Circuits Domain 223

• Encode a description of the specific problem instance. If the ontology is well thought
out, this step will be easy. It will mostly involve writing simple atomic sentences about
instances of concepts that are already part of the ontology.

• Pose queries to the inference procedure and get answers. This is where the reward is: we
can let the inference procedure operate on the axioms and problem-specific facts to derive
the facts we are interested in knowing.

To understand this five-step process better, we turn to some examples of its use. We first consider
the domain of Boolean electronic circuits.

8.3 THE ELECTRONIC CIRCUITS DOMAIN

Within the domain of discrete digital electronic circuits, we would like to analyze the circuit
shown in Figure 8.1. The circuit purports to be a one-bit full adder, where the first two inputs
are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the
second output is a carry bit for the next adder. The goal is to provide an analysis that determines
if the circuit is in fact an adder, and that can answer questions about the value of current flow at
various points in the circuit.3 We follow the five-step process for knowledge engineering.

3 ^

iixiS 1 1IL~S

C1

=£>
I A y ——— I

—— '~^°*)

^ '
Figure 8.1 A digital circuit C 1 , with three inputs and two outputs, containing two XOR gates,
two AND gates and one OR gate. The inputs are bit values to be added, and the outputs are the
sum bit and the carry bit.

Decide what to talk about
Digital circuits are composed of wires and gates. Signals flow along wires to the input terminals
of gates, and each gate produces a signal on the output terminal that flows along another wire.
3 If you are intimidated by the electronics, try to get a feel for how the knowledge base was constructed without worrying
about the details.



224 Chapter 8. Building a Knowledge Base

There are four types of gates: AND, OR, and XOR gates have exactly two input terminals, and
NOT gates have one. All gates have exactly one output terminal. Circuits, which are composed
of gates, also have input and output terminals.

Our main purpose is to analyze the design of circuits to see if they match their specification.
Thus, we need to talk about circuits, their terminals, and the signals at the terminals. To determine
what these signals will be, we need to know about individual gates, and gate types: AND, OR,
XOR, and NOT.

Not everything that is in the domain needs to show up in the ontology. We do not need
to talk about the wires themselves, or the paths the wires take, or the junctions where two wires
come together. All that matters is the connectivity of terminals—we can say that one output
terminal is connected to another input terminal without having to mention the wire that actually
connects them. There are many other factors of the domain that are irrelevant to our analysis,
such as the size, shape, color, or cost of the various components.

A special-purpose ontology such as this depends not only on the domain, but also on the
task to be solved. If our purpose were something other than verifying designs at the gate level,
the ontology would be different. For example, if we were interested in debugging faulty circuits,
then it would probably be a good idea to include the wires in the ontology, because a faulty wire
can corrupt the signal flowing along it. For resolving timing faults, we would need to include
gate delays. If we were interested in designing a product that would be profitable, then the cost
of the circuit and its speed relative to other products on the market would be important.

Decide on a vocabulary
We now know that we want to talk about circuits, terminals, signals, gates, and gate types. The
next step is to choose functions, predicates, and constants to name them. We will start from
individual gates and move up to circuits.

First, we need to be able to distinguish a gate from other gates. This is handled by naming
gates with constants: X\,X2, and so on. Next, we need to know the type of a gate.4 A function
is appropriate for this: Type(X\ )=XOR. 'This introduces the constant XOR for a particular gate
type; the other constants will be called OR, AND, and NOT. The Type function is not the only
way to encode the ontological distinction. We could have used a type predicate: Type(X\, XORJp i
or several predicates, such as XOR(X\). Either of these choices would work fine, but by choosing
the function Type, we avoid the need for an axiom that says that each individual gate can have
only one type. The semantics of functions already guarantees this.

Next we consider terminals. A gate or circuit can have one or more input terminals and
one or more output terminals. We could simply name each one with a constant, just as we named
gates. Thus, gateXi could have terminals named X\In\,X\Iri2, an&X\Out\. Names as long and
structured as these, however, are as bad as BearOfVerySmallBrain. They should be replaced with
a notation that makes it clear that X\Outi is a terminal for gate Xi, and that it is the first output
terminal. A function is appropriate for this; the function Out(l,X\) denotes the first (and only)
output terminal for gate Xi. A similar function In is used for input terminals.

4 Note that we have used names beginning with appropriate letters—A\, X\, and so on-
easier to read. The knowledge base must still contain type information for the gates.

-purely to make the example



ISection 8.3. The Electronic Circuits Domain 225

The connectivity between gates can be represented by the predicate Connected, which
takes two terminals as arguments, as in Connected(Out(l,X\),In(l,X2)).

Finally, we need to know if a signal is on or off. One possibility is to use a unary predicate,
On, which is true when the signal at a terminal is on. This makes it a little difficult, however, to
pose questions such as "What are all the possible values of the signals at the following terminals
... ?" We will therefore introduce as objects two "signal values" On or Off, and a function Signal
which takes a terminal as argument and denotes a signal value.

Encode general rules
One sign that we have a good ontology is that there are very few general rules that need to be
specified. A sign that we have a good vocabulary is that each rule can be stated clearly and
concisely. With our example, we need only seven simple rules:

1. If two terminals are connected, then they have the same signal:
V f | , r 2 Connected(t\,t2) ==> Signal(t\)= Signal^

2. The signal at every terminal is either on or off (but not both):
V t Signal(t) = On V Signal(t) = Off
On^Off

3. Connected is a commutative predicate:
V ? i , ? 2 Connected(t\,t2) <£> Connected(t2,t\)

4. An OR gate's output is on if and only if any of its inputs are on:
Vg Type(g) = OR =>

Signal(Out(\,g))=On <& 3n Signal(In(n,g))=On
5. An AND gate's output is off if and only if any of its inputs are off:

Vg Type(g)=AND =>
Signal(Out(l,g))=Off «• 3n Signal(In(n,g)) = Off

6. An XOR gate's output is on if and only if its inputs are different:
Vg Type(g)=XOR =>
Signal(Out(\,g)) = On & Signal(In(l,g)}=£Signal(In(2,g))

1. A NOT gate's output is different from its input:
Vg (Type(g)=NOT) => Signal(Out(l,g))^Signal(In(\,g))

Encode the specific instance
The circuit shown in Figure 8.1 is encoded as circuit C\ with the following description. First, we
categorize the gates:

Type(Xi) = XOR Type(X2 ) = XOR
Type(A l) = AND Type(A2 ) = AND
Type(O\) = OR



226 Chapter 8. Building a Knowledge Base

Then, the connections between them:
, Connected(Out(l,Xi),In(l,X2))

' Connected(Out(l,X}),In(2,A2))
Connected(Out( 1, A2), In( 1, O,))
Connected(Out(l,A,),In(2,-Ol))

Connected(In(\, C\
Connected(In(l,C\),In(l,Ai))
Connected(In(2,C\),In(2,X})) '
Connected(In(2, CO, In(2, A,'))/

Connected(Out(l,X2), Out(\, CO) Connected(In(3, C\\In(2,X2))
Connected(Out(\, OO, Owr(2, CO) Connected(In(3, C\

CIRCUIT
VERIFICATION

Pose queries to the inference procedure
What combinations of inputs would cause the first output of Ci (the sum bit) to be off and the
second output of C\ (the carry bit) to be on?

3 i], ('2, (3 Signal(In(\, C\)) = i\ A Signal(In(2,C\)) = i2 A signal(In(3, C0) = *3
A Signal(Out(\, CO) = Of A Signal(Out(2, CO) = On

The answer is
( z i = On A /2 = On A ;3 = O/f) V
(/i = On A ;2 = P/f A z3 = On) V
(z ,=Oj(f A / 2 = O n A / 3 = On)

What are the possible sets of values of all the terminals for the adder circuit?

3 i i , /2, '3, o\,t>2 Signal(In(\,C])) = i\ A Signal(In(2, CO) = z'2
A Signal(In(3,\)) = z3 A Signal(Out(\, CO) =01 A Signal(Out(2, CO) = 02

This final query will return a complete input/output table for the device, which can be used to
check that it does in fact add its inputs correctly. This is a simple example of circuit verification.
We can also use the definition of the circuit to build larger digital systems, for which the same
kind of verification procedure can be carried out (see Exercises 8.1 and 8.3). Many domains are
amenable to the same kind of structured knowledge-base development, in which more complex
concepts are defined on top of simpler concepts.

8.4 GENERAL ONTOLOGY

This section is about a general ontology that incorporates decisions about how to represent a
broad selection of objects and relations. It is encoded within first-order logic, but makes many
ontological commitments that first-order logic does not make. A general ontology is rather more
demanding to construct, but once done has many advantages over special-purpose ontologies.

Consider again the ontology for circuits in the previous section. It makes a large number of
simplifying assumptions. For example, time is omitted completely. Signals are fixed, and there is
no propagation of signals. The structure of the circuit remains constant. Now we could take a step
toward generality by considering signals at particular times, and including the wire lengths and
propagation delays in wires and devices. This would allow us to simulate the timing properties



Section 8.4. General Ontology 227

of the circuit, and indeed such simulations are often carried out by circuit designers. We could
also introduce more interesting classes of gates, for example by describing the technology (TTL,
MOS, CMOS, and so on) as well as the input/output specification. If we wanted to discuss
reliability or diagnosis, we would include the possibility that the structure of the circuit, or the
properties of the gates, might change spontaneously. To account for stray capacitances, we
would need to move from a purely topological representation of connectivity to a more realistic
description of geometric properties.

If we look at the wumpus world, similar considerations apply. Although we do include
time, it has a very simple structure. Nothing happens except when the agent acts, and all changes
can be considered instantaneous. A more general ontology, better suited for the real world, would
allow for simultaneous changes extended over time. We also used the constant symbol Pit to say
that there was a pit in a particular square, because all pits were identical. We could have allowed
for different kinds of pits by having several individuals belonging to the class of pits but having
different properties. Similarly, we might want to allow for several different kinds of animals,
not just wumpuses. It might not be possible to pin down the exact species from the available
percepts, so we would need to build up a wumpus-world biological taxonomy to help the agent
predict behavior from scanty clues.

For any area of a special-purpose ontology, it is possible to make changes like these to move
toward greater generality. An obvious question then arises: do all these ontologies converge on
a general-purpose ontology? The answer is, "Possibly." In this section, we will present one
version, representing a synthesis of ideas from many knowledge representation efforts in AI and
philosophy. There are two major characteristics of general-purpose ontologies that distinguish
them from collections of special-purpose ontologies:

• A general-purpose ontology should be applicable in more or less any special-purpose
domain (with the addition of domain-specific axioms). This means that as far as possible,
no representational issue can be finessed or brushed under the carpet. For example, a
general ontology cannot use situation calculus, which finesses the issues of duration and
simultaneity, because domains such as circuit timing analysis require those issues to be
handled properly.

• In any sufficiently demanding domain, different areas of knowledge must be unified because
reasoning and problem solving may involve several areas simultaneously. A robot circuit-
repair system, for instance, needs to reason about circuits in terms of electrical connectivity
and physical layout, and about time both for circuit timing analysis and estimating labor
costs. The sentences describing time therefore must be capable of being combined with
those describing spatial layout, and must work equally well for nanoseconds and minutes,
and for angstroms and meters.

After we present the general ontology, we will apply it to write sentences describing the domain
of grocery shopping. A brief reverie on the subject of shopping brings to mind a vast array of
topics in need of representation: locations, movement, physical objects, shapes, sizes, grasping,
releasing, colors, categories of objects, anchovies, amounts of stuff, nutrition, cooking, nonstick
frying pans, taste, time, money, direct debit cards, arithmetic, economics, and so on. The domain
is more than adequate to exercise our ontology, and leaves plenty of scope for the reader to do
some creative knowledge representation of his or her own.



228 Chapter 8. Building a Knowledge Base

Our discussion of the general-purpose ontology is organized under the following headings,
each of which is really worth a chapter by itself:

0 Categories: Rather than being an entirely random collection of objects, the world exhibits
a good deal of regularity. For example, there are many cases in which several objects have a
number of properties in common. It is usual to define categories5 that include as members
all objects having certain properties. For example, we might wish to have categories for
tomatoes or ten-dollar bills, for peaches or pound notes, for fruits or monetary instruments.
We describe how categories can be objects in their own right, and how they are linked into
a unified taxonomic hierarchy.

<C> Measures: Many useful properties such as mass, age, and price relate objects to quantities
of particular types, which we call measures. We explain how measures are represented in
logic, and how they relate to units of measure.

0 Composite objects: It is very common for objects to belong to categories by virtue of
their constituent structure. For example, cars have wheels, an engine, and so on, arranged
in particular ways; typical baseball games have nine innings in which each team alternates
pitching and batting. We show how such structures can be represented.

0 Time, Space, and Change: In order to allow for actions and events that have different
durations and can occur simultaneously, we enlarge our ontology of time. The basic picture
is of a universe that is continuous in both temporal and spatial dimensions. Times, places,
and objects will be parts of this universe.

<) Events and Processes: Events such as the purchase of a tomato will also become individ-
uals in our ontology. Like tomatoes, they are usually grouped into categories. Individual
events take place at particular times and places. Processes are events that are continuous
and homogeneous in nature, such as raining or cooking tomatoes.

0 Physical Objects: We are already familiar with the representation of ordinary objects such
as AND-gates and wumpuses. As things that are extended in both time and space, physical
objects have much in common with events.

0 Substances: Whereas objects such as tomatoes are relatively easy to pin down, substances
such as tomato juice are a little slippery. Natural language usage seems to provide con-
flicting intuitions. Is there an object called TomatoJuicel Is it a category, or a real physical
object? What is the connection between it and the liter of tomato juice I bought yesterday?
Between it and constituent substances such as Water! We will see that these questions can
be resolved by careful use of the ontology of space, time, and physical objects.

0 Mental Objects and Beliefs: An agent will often need to reason about its own beliefs,
for example, when trying to decide why it thought that anchovies were on sale. It will
also need to reason about the beliefs of others, for example, in order to decide whom to
ask about the right aisle to find the tomatoes. In our ontology, sentences are explicitly
represented, and are believed by agents.

In this section, we will try to cover the highest levels of the ontology. The top levels of the
hierarchy of categories are shown in Figure 8.2. While the scope of the effort might seem
5 Categories are also called classes, collections, kinds, types, and concepts by other authors. They have little or nothing
to do with the mathematical topic of category theory.



Section 8.4. General Ontology 129

Anything

AbstractObjects Events

Sets Numbers RepresentationalObjects Intervals Places PhysicalObjects Processes

Categories Sentences Measurements Moments Things

Times Weights

Stuff

Animals Agents Solid Liquid Gas

Humans

Figure 8.2 The top-level ontology of the world, showing the topics to be covered later in the
chapter. Arcs indicate subset relations.

daunting at first, representing knowledge of the commonsense world can be highly illuminating.
One is constantly amazed by how much one knows but never took the time to think about. With a
good ontology, writing it down becomes more of a pleasure than a problem. Connections between
seemingly disparate areas become obvious, and one is awed by the scope of human thought.

The following subsections fill in the details of each topic. We should first state one
important caveat. We have chosen to discuss the content and organization of knowledge using
first-order logic. Certain aspects of the real world are hard to capture in this language. The
principal feature we must omit is the fact that almost all generalizations have exceptions, or
have the status of a default in the absence of more exact information, or only hold to a degree.
For example, although "tomatoes are red" is a useful rule, some tomatoes are green, yellow, or
orange. Similar exceptions can be found to almost all the general statements in this section.
The ability to handle exceptions and uncertain rules is extremely important, but is orthogonal to
the task of understanding the general ontology. For this reason, we will delay the discussion of
exceptions and defaults until Chapter 10, and the more general topic of uncertain information
until Chapter 14.

Representing Categories
CATEGORIES The organization of objects into categories is a vital part of knowledge representation. Although
\ff:^ interaction with the world takes place at the level of individual objects, much of reasoning

takes place at the level of categories. For example, a shopper might have the goal of buying a
cantaloupe, rather than a particular cantaloupe such as Cantaloupe?,-]^ Categories also serve to

We often use subscripts as a reminder that a constant refers to an individual rather than a collection.



230 Chapter 8. Building a Knowledge Base

make predictions about objects once they are classified. One infers the presence of certain objects
from perceptual input, infers category membership from the perceived properties of the objects,
and then uses category information to make predictions about the objects. For example, from its
green, mottled skin, large size, and ovoid shape, one can infer that an object is a watermelon;
from this, one infers that it would be useful for fruit salad.

There are two main choices for representing categories in first-order logic. The first we
have already seen: categories are represented by unary predicates. The predicate symbol Tomato,
for example, represents the unary relation that is true only for objects that are tomatoes, and
Tomato(x) means that x is a tomato.

REFLATION The second choice is to reify the category. Reification is the process of turning a predicate
or function into an object in the language.7 We will see several examples of reification in this
chapter. In this case, we use Tomatoes as a constant symbol referring to the object that is the set of \
all tomatoes. We use x G Tomatoes to say that x is a tomato. Reified categories allow us to make
assertions about the category itself, rather than about members of the category. For example, we
can say Population(Humans)=5,000,000,000, even though there is no individual human with a
population of five billion.

Categories perform one more important role: they serve to organize and simplify the;
INHERITANCE knowledge base through inheritance. If we say that all instances of the category Food are edible,:

and if we assert that Fruit is a subclass of Food and Apples is a subclass of Fruit, then we know '.
that every apple is edible. We say that the individual apples inherit the property of edibility, in
this case from their membership in the Food category.

TAXONOMY Subclass relations organize categories into a taxonomy or taxonomic hierarchy. Tax-,
onomies have been used explicitly for centuries in technical fields. For example, systematic;
biology aims to provide a taxonomy of all living and extinct species; library science has de-;
veloped a taxonomy of all fields of knowledge, encoded as the Dewey Decimal system; tax,j
authorities and other government departments have developed extensive taxonomies of occupa-1
tions and commercial products. Taxonomies are also an important aspect of general commonsense |
knowledge, as we will see in our investigations that follow.

First-order logic makes it easy to state facts about categories, either by relating objects toj
categories or by quantifying over their members:

• An object is a member of a category. For example:
Tomatou G Tomatoes

• A category is a subclass of another category. For example:
Tomatoes C Fruit

• All members of a category have some properties. For example:
V x x G Tomatoes =>• Red(x) A Round(x)

• Members of a category can be recognized by some properties. For example:
MX Red(Interior(x)) A Green(Exterior(x)) A x G Melons =$• x& Watermelons

• A category as a whole has some properties. For example:
Tomatoes G DomesticatedSpecies

7 The term "reification" comes from the Latin word res, or thing. John McCarthy proposed the term "thingification,
but it never caught on.



Section General Ontology 231

PARTITION

Notice that because Tomatoes is a category, and is a member of DomesticatedSpecies, then
DomesticatedSpecies must be a category of categories. One can even have categories of categories
of categories, but they are not much use.

Although subclass and instance relations are the most important ones for categories, we
also want to be able to state relations between categories that are not subclasses of each other.
For example, if we just say that Males and Females are subclasses of Animals, then we have not
said that a male cannot be a female. We say that two or more categories are disjoint if they have
no members in common. And even if we know that males and females are disjoint, we will not
know that an animal that is not a male must be a female unless we say that males and females
constitute an exhaustive decomposition of the animals. A disjoint exhaustive decomposition is
known as a partition. The following examples illustrate these three concepts:

Disjoint({Animals, Vegetables})
ExhaustiveDecomposition( {Americans, Canadians, Mexicans}, NorthAmericans)
Pa rtition({ Males, Females], An ima Is)

(Note that the ExhaustiveDecomposition of NorthAmericans is not a Partition because some
people have dual citizenship.) The definitions of these three predicates are as follows:

Intersection(c \ , c2) = EmptySet)
V.v Disjoints) O

(V ci, c2 c\ e s A C2 € s A c\ ̂ c2

V s, c ExhaustiveDecomposition(s, c) <=>
(V« i€c O 3c2 c 2 < E . s A / ( E c 2 )

V s, c Partitions, c) O Disjoint(s) A ExhaustiveDecomposition(s, c)
Categories can also be defined by providing necessary and sufficient conditions for mem-

bership. For example, a bachelor is an unmarried, adult male:

V.v Bachelor(x) O Male(x) A Adult(x) A Unmarried(x)

As we discuss in the sidebar on natural kinds, strict logical definitions for categories are not
always possible, nor always necessary.

Measures
In both scientific and commonsense theories of the world, objects have height, mass, cost, and

MEASURES so on. The values that we assign for these properties are called measures. Ordinary, quantitative
measures are quite easy to represent. We imagine that the universe includes abstract "measure
objects," such as the length that is the length of this line segment: I———————————————I.
We can call this length 1.5 inches, or 3.81 centimeters. Thus, the same length has different names

UNITS FUNCTION in our language. Logically, this can be done by combining a units function with a number. If LI
is the name of the line segment, then we can write

Length(Li) = lnches( 1.5) = Centimeters(3.81)

Conversion between units is done with sentences such as
V / Centimeters(2.54 x l)=Inches(l)
V r Centigrade(t)=Fahrenheit(32+ 1.8 x t)



232 Chapter 8. Building a Knowledge Base

NATURAL KINDS

Some categories have strict definitions: an object is a triangle if and only if it is a
polygon with three sides. On the other hand, most categories in the shopping world
and in the real world are natural kind categories with no clear-cut definition. We
know, for example, that tomatoes tend to be a dull scarlet, roughly spherical, with an
indentation at top where the stem was, about three to four inches in diameter, with a
thin but tough skin and with flesh, seeds, and juice inside. We also know that there is
variation: unripe tomatoes are green, some are smaller or larger than average, cherry
tomatoes are uniformly small. Rather than having a complete definition of tomatoes,
we have a set of features that serves to identify objects that are clearly typical tomatoes,
but may not be able to decide for other objects. (Could there be a square tomato? a
yellow one? a tomato three feet across?)

This poses a problem for a logical agent. The agent cannot be sure that an object
it has perceived is a tomato, and even if it was sure, it could not be certain which of the
properties of typical tomatoes this one has. This problem is an inevitable consequence
of operating in inaccessible environments. The following mechanism provides a way
to deal with natural kinds within a logical system.

The key idea is to separate what is true of all instances of a category from what is
true only of typical instances of a category. So in addition to the category Tomatoes,
we will also have the category Typical(Tomatoes). Here Typical is a function that maps
a category to the subclass of that category that contains only the typical instances:

V c Typical(c) C c
Most of the knowledge about natural kinds will actually be about the typical instances:

Vjc x 6 Typical(Tomatoes) => Red(x) A Spherical(x)
In this way, we can still write down useful facts about categories without providing
exact definitions.

The difficulty of providing exact definitions for most natural categories was
explained in depth by Wittgenstein (1953), in his book Philosophical Investigations.
He used the example of games to show that members of a category shared "family
resemblances" rather than necessary and sufficient characteristics. The Investigations
also revolutionized our understanding of language, as we discuss further in Chapter 22.

The utility of the notion of strict definition was also challenged by Quine (1953).
He pointed out that even the definition of "bachelor" given before is suspect; one might,
for example, question a statement such as "the Pope is a bachelor." The category
"bachelor" still plays a useful role in natural language and in formal knowledge
representation, because it simplifies many sentences and inferences.



Section 8.4. General Ontology 233

Similar axioms can be written for pounds and kilograms; seconds and days; dollars and cents.
(Exercise 8.9 asks you to represent exchange rates between currencies, where those exchange
rates can vary over time.)

Measures can be used to describe objects as follows:
Mass(Tomato\2) = Kilograms(QA6}
Price(Tomato\2) = $(0.32)
Vd d^Days =>- Duration(d)=Hours(24)

It is very important to be able to distinguish between monetary amounts and monetary instruments:
V f o b^DollarBills => CashValue(b) = $(l.OO)

This will be useful when it comes to paying for things later in the chapter.
Simple, quantitative measures are easy to represent. There are other measures that present

more of a problem, because they have no agreed scale of values. Exercises have difficulty,
desserts have deliciousness, and poems have beauty, yet numbers cannot be assigned to these
qualities. One might, in a moment of pure accountancy, dismiss such properties as useless for the
purpose of logical reasoning; or, still worse, attempt to impose a numerical scale on beauty. This
would be a grave mistake, because it is unnecessary. The most important aspect of measures is
not the particular numerical values, but the fact that measures can be ordered.

Although measures are not numbers, we can still compare them using an ordering symbol
such as >. For example, we might well believe that Norvig's exercises are tougher than Russell's,
and that one scores less on tougher exercises:

V e\, 62 e\ £ Exercises A e^ £ Exercises A Wrote(Norvig, e\) A Wrote(Russell, e^) =>
Difficulty(e}) > Difficulty^)

Ve\, €2 ei £ Exercises A e2 £ Exercises A Difficulty(e\) > Difficulty(e2) =>•
ExpectedScore(e\) < ExpectedScorefa)

This is enough to allow one to decide which exercises to do, even though no numerical values for
difficulty were ever used. (One does, however, have to determine who wrote which exercises.)
These sorts of monotonic relationships among measures form the basis for the field of quali-
tative physics, a subfield of AI that investigates how to reason about physical systems without
plunging into detailed equations and numerical simulations. Qualitative physics is discussed in
the historical notes section.

Composite objects
The idea that one object can be part of another is a familiar one. One's nose is part of one's head;
Romania is part of Europe; this chapter is part of this book. We use the general PartOf relation
to say that one thing is part of another. PartOf is transitive and reflexive. Objects can therefore
be grouped into PartOf hierarchies, reminiscent of the Subset hierarchy:

PartOf (Bucharest, Romania)
PartOf (Romania, EasternEurope)
PartOf (EasternEurope, Europe)

From these, given the transitivity of PartOf, we can infer that PartOf (Bucharest, Europe).



234 Chapter 8. Building a Knowledge Base

COMPOSITE OBJECT Any object that has parts is called a composite object. Categories of composite objects
STRUCTURE are often characterized by the structure of those objects, that is, the parts and how the parts are

related. For example, a biped has exactly two legs that are attached to its body:
Va Biped(a) =>

3lt,l2,b Leg(l\ ) A ^Leg(h) A Body(b) A
PartOf(li,a) A PartOf(l2, a) A PartOf(b, a) A
Attached(l\,b) A Attached^, b} A
/ i ^ / 2 AV/ 3 Leg(k)f\PartOf(h,a) => (/.-, = /, V /3 =/2)

This general form of sentence can be used to define the structure of any composite object,
including events: for example, for all baseball games, there exist nine innings such that each
is a part of the game, and so on. A generic event description of this kind is often called a

SCHEMA schema or script, particularly in the area of natural language understanding. Some approaches
SCRIPT to text understanding rely mainly on the ability to recognize instances of schematic events from

descriptions of their parts, so that the text can be organized into coherent events, and questions can
be answered about parts not explicitly mentioned. We discuss these issues further in Chapter 22.

We can define a PartPartition relation analogous to the Partition relation for categories
(see Exercise 8.4). An object is composed of the parts in its PartPartition, and can be viewed as
deriving some properties from those parts. For example, the mass of a composite object is the
sum of the masses of the parts. Notice that this is not the case with categories: categories have
no mass, even though their elements might.

It is also useful to define composite objects with definite parts but no particular structure.
For example, we might want to say, "The apples in this bag weigh three pounds." Rather than
commit the error of assigning the weight to the category of apples-in-the-bag, we can make a

BUNCH bunch out of the apples. For example, if the apples are Apple\ , Apple2, and Apple^, then
BunchOf( {Apple \ , Apple2 ,

denotes the composite object with the three apples as parts. We can then use the bunch as a normal,
albeit unstructured, object. Notice that BunchOf (Apples) is the composite object consisting of
all apples — not to be confused with Apples, the category.

Representing change with events
Section 7.6 showed how situation calculus could be used to represent change. Situation calculus
is perfect for the vacuum world, the wumpus world, or any world in which a single agent takes
discrete actions. Unfortunately, situation calculus has two problems that limit its applicability.
First, situations are instantaneous points in time, which are not very useful for describing the
gradual growth of a kitten into a cat, the flow of electrons along a wire, or any other process
where change occurs continuously over time. Second, situation calculus works best when only
one action happens at a time. When there are multiple agents in the world, or when the world
can change spontaneously, situation calculus begins to break down. It is possible to prop it back
up for a while by defining composite actions, as in Exercise 7.12. If there are actions that have
different durations, or whose effects depend on duration, then situation calculus in its intended
form cannot be used at all.



ISection 8.4. General Ontology 235

Because of these limitations, we now turn to a different approach toward representing
EVENT CALCULUS change, which we call the event calculus, although the name is not standard. Event calculus

is rather like a continuous version of the situation-calculus "movie" shown in Figure 7.3. We
think of a particular universe as having both a "spatial" and a temporal dimension. The "spatial"
dimension ranges over all of the objects in an instantaneous "snapshot" or "cross-section" of the

EVENT universe.8 The temporal dimension ranges over time. An event is, informally, just a "chunk" of
this universe with both temporal and spatial extent. Figure 8.3 gives the general idea.

SUBEVENTS

INTERVAL

"spa ce"

WorldWarll

Figure 8.3 The major entities in event calculus. Intervals such as the TwentiethCentury
contain as subevents all of the events occurring within a given time period. Ordinary events such
as WorldWarll have temporal and "spatial" extent.

Let us look at an example: World War II, referred to by the symbol WorldWarll. World
War II has parts that we refer to as subevents:9

SubEvent(BattleOfBritain, WorldWarll)
Similarly, World War II is a subevent of the twentieth century:

SubEvent( WorldWarll, TwentiethCentury)
The twentieth century is a special kind of event called an interval. An interval is an event

that includes as subevents all events occurring in a given time period. Intervals are therefore
entire temporal sections of the universe, as the figure illustrates. In situation calculus, a given
fact is true in a particular situation. In event calculus, a given event occurs during a particular
interval. The previous SubEvent sentences are examples of this kind of statement.
8 We put "spatial" in quotes because it is possible that the set of objects being considered does not include places at all;
nonetheless, it is a helpful metaphor. From now on, we will leave off the quotes.
9 Note that SubEvent is a special case of the PartOf relation, and is also transitive and reflexive.



236 Chapter 8. Building a Knowledge Base

Like any other sort of object, events can be grouped into categories. For example,
WorldWarll belongs to the category Wars. To say that a war occurred in the Middle East in
1967, we would say

3 w w G Wars A SubEvent(w, AD 1967) A PartOf(Location(w), MiddleEast)
To say that Shankar travelled from New York to New Delhi yesterday, we might use the category
Journeys, as follows:

3y j E Journeys A Origin(NewYork,j) A Destination(NewDelhi,j)
A Traveller(Shankar,j) A SubEvent(j, Yesterday)

This notation can get a little tedious, particularly because we are often interested more in the
event's properties than in the event itself. We can simplify the descriptions by using complex terms
to name event categories. For example, Go(Shankar, NewYork, NewDelhi) names the category of
events in which Shankar travels from New York to New Delhi. The function symbol Go can be
defined by the following sentence:

V e, x, o,d e£ Go(x, o, d) o-
e e Journeys A Traveller(x, e) A Origin(o, e) A Destination(d, e)

Finally, we use the notation E(c, i) to say that an event of category c is a subevent of the event (or
interval) /:

V c, i E(c, i) <=> 3 e e e c A SubEvent(e, i)
Thus, we have

E(Go(Shankar, NewYork, NewDelhi), Yesterday)

which means "there was an event that was a going by Shankar from New York to New Delhi that
took place sometime yesterday."

PLACES

MINIMIZATION

Places

Places, like intervals, are special kinds of space-time chunks. A place can be thought of as a
constant piece of space, extended through time.10 New York and the Middle East are places, at
least as far as recent history is concerned. We use the predicate In to denote the special kind of i
subevent relation that holds between places; for example:

ln(NewYork, USA)
Places come in different varieties; for example, NewYork is an Area, whereas the SolarSystem is ;
a Volume. The Location function, which we used earlier, maps an object to the smallest place
that contains it:

VJT, / Location(x) = I <=>
A t ( x , l ) f \ M l 2 At(x,l2) => In(l,l2)

This last sentence is an example of a standard logical construction called minimization.

10 We will not worry about local inertial coordinate frames and other things that physicists need to pin down exactly;
what this means. Places that change over time are dealt with in a later section.



Section 8.4. General Ontology 237

DI gcRETE EVENTS

PROCESS

LIQUID EVENT

STATES

Processes

The events we have seen so far have been what we call discrete events—they have a definite
structure. Shankar's trip has a beginning, middle, and end. If interrupted halfway, the event
would be different—it would not be a trip from New York to New Delhi, but instead a trip from
New York to somewhere in the Eastern Mediterranean. On the other hand, the category of events
denoted by Flying(Shankar) has a different quality. If we take a small interval of Shankar's flight,
say, the third twenty-minute segment (while he waits anxiously for a second bag of honey-roasted
peanuts), that event is still a member of Flying(Shankar). In fact, this is true for any subinterval.

Categories of events with this property are called process categories or liquid event
categories. Any subinterval of a process is also a member of the same process category. We can
use the same notation used for discrete events to say that, for example, Shankar was flying at
some time yesterday:

E(Flying(Shankar), Yesterday)

We often want to say that some process was going on throughout some interval, rather than just
in some subinterval of it. To do this, we use the predicate T:

T( Working(Stuart), TodayLunchH our)

T(c. i) means that some event of type c occurred over exactly the interval i—that is, the event
begins and ends at the same time as the interval. Exercise 8.6 asks you to define T formally.

As well as describing processes of continuous change, liquid events can describe processes
of continuous non-change. These are often called states. For example, "Mary being in the local
supermarket" is a category of states that we might denote by In(Mary, Supermarket]). To say she
was in the supermarket all this afternoon, we would write

T(In(Mary, Supermarket]), ThisAfternoon)

An interval can also be a discontinuous sequence of times; we can represent the fact that the
supermarket is closed every Sunday with

T(Closed(Superinarket\), BunchOf (Sundays))

Special notation for combining propositions

It is tempting to write something like

T((At(Agent,Loc\) A At(Tomato\,Loc\))Jj,)

but technically this is nonsense, because a sentence appears as the first argument of the predicate T,
and all arguments to predicates must be terms, not sentences. This is easily fixed by introducing
a function called And that takes two event categories as arguments and returns a category of
composite events of the appropriate kind:

T(And(At(Agent, Loc\), At(Tomato \, Loc\)), E)

We can define the function And with the axiom

Vp,q,e T(And(p,q),e) O T(p, e) A T(q, e)



238 Chapter 8. Building a Knowledge Base

Thus, And(p, q) is the category of composite "p-^-events," where ap-g-event is an event in which
both a p and a q occur. If you think of a /7-event as a piece of "videotape" of a p happening, and
a c/-event as a "videotape" of a q happening, then the p-q-evenl is like having the two pieces of j
tape spliced together in parallel (see Figure 8.4(a)).

(a) (b) (c)

Figure 8.4 A depiction of complex events, (a) T(p A q, e) (b) T(p\/_q, e) (c) Tip V q, e)

Once a method for conjoining event categories is defined, it is convenient to extend the
syntax to allow regular infix connective symbols to be used in place of the function name:

T(p/\q,e) & T(And(p,q),e) & T(p, e) A T(q, e)

This is fine as long as you remember that in T(p A q, s), the expression p A q is a term denoting a
category of events, not a sentence.

One might think that we can just go ahead and define similar functions for disjunctive
and negated events. In fact, because the T predicate is essentially a conjunction (over all the
subintervals of the interval in question), it can interact in two different ways with disjunction and
negation. For example, consider the English sentence "One of the two shops was open all day on
Sunday." This could mean, "Either the first shop was open all day on Sunday, or the second shop
was open all day on Sunday" (Figure 8.4(b)), or it could mean, "At any given time on Sunday, at
least one of the two shops was open" (Figure 8.4(c)). Both of these meanings are useful sorts of;
things to say, so we will need a concise representation for each. There are no accepted notations;
in this case, so we will make some up. Let V be used for the first kind of disjunctive event, and
V be used for the second. For the first, we have the following definition:

T(pV.q,e) & T(p,e)VT(q,e)

We leave the second as an exercise, along with the definitions for negated events.

Times, intervals, and actions
In this section, we flesh out the vocabulary of time intervals. Because it is a limited domain, we
can be more complete in deciding on a vocabulary and encoding general rules. Time intervals
are partitioned into moments and extended intervals. The distinction is that only moments have
zero duration:

Partition({Moments, Extendedfntervals}, Intervals)
V (' ;'e Intervals => (/' G Moments -t> Duration(i) =G)

Now we invent a time scale and associate points on that scale with moments, giving us absolute
times. The time scale is arbitrary; we will measure it in seconds and say that the moment at



Section 8.4. General Ontology 239

midnight (GMT) on January 1 , 1900, has time 0. The functions Start and End pick out the earliest
and latest moments in an interval, and the function Time delivers the point on the time scale for
a moment. The function Duration gives the difference between the end time and the start time.

V / Interval(i) => Duration(i)=(Time(End(i)~)-Time(Start(i)))
Time(Start(ADl900)) =Seeonds(0)
Time(Start(AD 1 99 1 )) =Seconds(281 1 694800)
Time(End(AD 1 99 1 )) = Secon<fr(2903230800)
Duration(AD 1 99 1 ) =Seconds(3 1 536000)

To make these numbers easier to read, we also introduce a function Date, which takes six
arguments (hours, minutes, seconds, month, day, and year) and returns a point on the time scale:

Time(Start(ADl99l))=SecondsDate(00,00,00,Jan, 1, 1991)
Date(l2,34,56,Feb, 14, 1993) =2938682096

The simplest relation between intervals is Meet. Two intervals Meet if the end time of the
first equals the start time of the second. It is possible to define predicates such as Before, After,
During, and Overlap solely in terms of Meet, but it is more intuitive to define them in terms of
points on the time scale. (See Figure 8.5 for a graphical representation.)

Vz'j Meet(iJ) <=>
V i,j Before(i,j) <
V z j After(j,i) •£>
V i,j During(iJ) <
V i,j Overlap(iJ)

Time(End(i)) = Time(Start(f))
> Time(End(i)) < Time(Start(j))
Before(iJ)
> Time(Start(j)) < Time(Start(i)) A Time(End(i)) < Time(End(j)}

<^> 3 k During(k, i) A During(kJ)

Meet(iJ)

Before(ij) \-
After(j,i)

During(ij) I———j

Overlap(iJ) \-
Overlap(j,i)

H i
I———

Figure 8.5 Predicates on time intervals.



240 Chapter 8. Building a Knowledge Base

For example, to say that the reign of Elizabeth II followed that of George VI, and the reign of
Elvis overlapped with the 1950s, we can write the following:

After(ReignOf(ElizabethU),ReignOf(GeorgeVl))
Overlap(Fifties,ReignOf (Elvis))
Start(Fifties) =Start(ADl950)
En d( Fifties) = End(AD 1959)

Temporal relations among intervals are used principally in describing actions. This is done
in much the same way in event calculus as it is in situation calculus. The difference is that instead
of defining a resulting situation and describing it, one defines a resulting interval, in which a
certain state occurs. The following examples illustrate the general idea:

1. If two people are engaged, then in some future interval, they will either marry or break the
engagement.

\/x,y,/o T(Engaged(x,y),io) =>
3 /, (Meet(i0, /,) V After(i\, /<,)) A

T(Marry(x,y) V BreakEngagement(x,y), i \ )
2. When two people marry, they are spouses for some interval starting at the end of the

marrying event.
V.x,>',/o T(Marry(x,y),io) =>• 3 / i T(Spouse(x, y), i \ ) A Meet(io, i \ )

3. The result of going from one place to another is to be at that other place.
Vx,a,b,i0 , 3 / i T(Go(x,a,b),i0) => T(ln(x,b),i\) /\Meet(i0,i\)

We shall have more to say on the subject of actions and intervals in Part IV, which covers planning
with these sorts of action descriptions.

Objects revisited
One purpose of situation calculus was to allow objects to have different properties at different
times. Event calculus achieves the same goal. For example, we can say that Poland's area in
1426 was 233,000 square miles, whereas in 1950 it was 117,000 square miles:

T(Area(Poland,SqMiles(233(m)),ADl426)
T(Area(Poland, SqMiles(\ 17000)), AD 1950)

In fact, as well as growing and shrinking, Poland has moved about somewhat on the map. We^
could plot its land area over time, as shown in Figure 8.6. We see that Poland has a temporal
as well as spatial extent. It turns out to be perfectly consistent to view Poland as an event.
We can then use temporal subevents such as 19thCenturyPoland, and spatial subevents such as
CentralPoland.

The USA has also changed various aspects over time. One aspect that changes every four
or eight years, barring mishaps, is its president. In event calculus, President(USA) denotes an
object that consists of different people at different times. President(USA) is the object that is
George Washington from 1789 to 1796, John Adams from 1796 to 1800, and so on (Figure 8.7).
To say that the president of the USA in 1994 is a Democrat, we would use

T(Democrat(President( USA)), AD 1994)



Section 8.4. General Ontology 241

"SPE ce"
l l nl l n
n l l
n l l
n l ln ___ n
1 1 1 1

;W:fi5§¥f S» 1 1
............. . . . : ' • Tlv '- i = :;--;V: I I

' : • : ,.:. • • • : . . . . t l . , ••;;',". . . . • . • ; : ,1 , ————— , II

^^ft^^:.,::4^:..;;:^:::^:;^;.:^;,.f^^:^.:.~:Uilm^&^^&^^m^^^^^^m^i^^^^m^^,J-y:-::51.VV:=!l :iV,.': :V-!:iflr' :"V»»:=,rw'.rt:c:. vl^:/^^^^^^^
iSftB^i&X^
•:.::".-•". Vr-. ~~ V ." " ": .". -"-F*?:V:K. .:~y:i.p's.isW-"v" :'••• V~"! "'..."...•::.": .:': .•"o"~l~~:-!*.~ .:>:."..-~J':i":»r:.- ':..*...:-• .." ".."'™ il**--»"o"v~3.-"i

I I h.-:Vv I II I — — — I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
1 1 n timpI I I I Ilme

I I I I
1426 1950

Figure 8.6 Viewing Poland as an object of varying size and location over time.

FLUENTS Objects such as Poland and President(USA) are called fluents. The dictionary says that a fluent
is something that is capable of flowing, like a liquid. For our purposes, a fluent is something that
flows or changes across situations.

It may seem odd to reify objects that are as transient as President(USA), yet fluents allow us
to say some things that would otherwise be cumbersome to express. For example, "The president
of the USA was male throughout the 19th century" can be expressed by

T(Male(President(USA)), 19thCentury)
even though there were 24 different presidents of the USA in the nineteenth century.

There are some things that can be easily expressed with fluents but not with situation
calculus. For example, Location(x) denotes the place in which x is located, even if that place
varies over time. We can then use sentences about the location of an object to express the fact
that, for example, the location of the Empire State Building is fixed:

Fixed(Location(EmpireStateBuilding))
Without fluents, we could find a way to talk about objects being widespread or immobile, but we
could not talk directly about the object's location over time. We leave it as an exercise to define
the Fixed predicate (Exercise 8.7).

Substances and objects
The real world perhaps can be seen as consisting of primitive objects (particles) and composite
objects built from them. By reasoning at the level of large objects such as apples and cars,
we can overcome the complexity involved in dealing with vast numbers of primitive objects



242 Chapter 8. Building a Knowledge Base

time

Figure 8.7
existence.

A schematic view of the object President(USA) for the first fifteen years of its

INDIVIDUATION

STUFF

TEMPORAL
SUBSTANCES
SPATIAL
SUBSTANCES

COUNT NOUNS

MASS NOUNS

individually. There is, however, a significant portion of reality that seems to defy any obvious
individuation—division into distinct objects. We give this portion the generic name stuff. For
example, suppose I have some butter and an aardvark in front of me. I can say there is one
aardvark, but there is no obvious number of "butter-objects," because any part of a butter-object
is also a butter-object, at least until we get to very small parts indeed. This is the major distinction
between stuff and things. If we cut an aardvark in half, we do not get two aardvarks, unfortunately.
The distinction is exactly analogous to the difference between liquid and nonliquid events. In
fact, some have called liquid event types temporal substances, whereas things like butter are
spatial substances (Lenat and Guha, 1990).

Notice that English enforces the distinction between stuff and things. We say "an aardvark,"
but, except in pretentious California restaurants, one cannot say "a butter." Linguists distinguish
between count nouns, such as aardvarks, holes, and theorems, and mass nouns, such as butter,
water, and energy. Should we also enforce this distinction in our representation by treating butter
and aardvarks differently, or can we treat them using a uniform mechanism?

To represent stuff properly, we begin with the obvious. We will need to have as objects
in our ontology at least the gross "lumps" of stuff that we interact with. For example, we might
recognize the butter as the same butter that was left on the table the night before; we might pick
it up, weigh it, sell it, or whatever. In these senses, it is an object just like the aardvark. Let us
call it Butter^. We will also define the category Butter. Informally, its elements will be all those
things of which one might say "It's butter," including Butter?,.



I
Section 8.4. General Ontology 243

INTRINSIC

EXTRINSIC

The next thing to state was mentioned earlier: with some caveats about very small parts
that we will omit for now, any part of a butter-object is also a butter-object:

V x, y x G Butter A PartOf(y, x) => y £ Butter

Individual aardvarks derive properties such as approximate shape, size, weight, and diet
from membership in the category of aardvarks. What sorts of properties does an object derive
from being a member of the Butter category? Butter melts at around 30 degrees centigrade:

Vx Butter(x) => MeltingPoint(x,Centigrade(30))

Butter is yellow, less dense than water, soft at room temperature, has a high fat content, and
so on. On the other hand, butter has no particular size, shape, or weight. We can define more
specialized categories of butter such as UnsaltedButter, which is also a kind of stuff because any
part of an unsalted-butter-object is also an unsalted-butter-object. On the other hand, if we define
a category PoundOfButter, which includes as members all butter-objects weighing one pound,
we no longer have a substance! If we cut a pound of butter in half, we do not get two pounds of
butter—another of those annoying things about the world we live in.

What is actually going on is this: there are some properties that are intrinsic: they belong to
the very substance of the object, rather than to the object as a whole. When you cut something in
half, the two pieces retain the same set of intrinsic properties—things like density, boiling point,
flavor, color, ownership, and so on. On the other hand, extrinsic properties are the opposite:
properties such as weight, length, shape, function, and so on are not retained under subdivision.

A class of objects that includes in its definition only intrinsic properties is then a substance,
or mass noun; a class that includes any extrinsic properties in its definition is a count noun. The
category Stuff is the most general substance category, specifying no intrinsic properties. The
category Thing is the most general discrete object category, specifying no extrinsic properties.

It follows that an object belongs to both mass and count classes. For example, LakeMichigan
is an element of both Water and Lakes. Lake specifies such extrinsic properties as (approximate)
size, topological shape, and the fact that it is surrounded by land. Note that we can also handle
the fact that the water in Lake Michigan changes over time, simply by viewing the lake as an
event whose constituent objects change over time, in much the same way as President(USA).

This approach to the representation of stuff is not the only possibility. The major competing
approach considers Butter to be what we would call BunchOf (Butter), namely, the object com-
posed of all butter in the world. All individual butter-objects are thus PartOf butter, rather than
instances of butter. Like any consistent knowledge representation scheme, it cannot be proved
incorrect, but it does seem to be awkward for representing specialized kinds of substances such
as UnsaltedButter and its relation to Butter.

Mental events and mental objects
The agents we have constructed so far have beliefs and can deduce new beliefs. Yet none of them
has any knowledge about beliefs or deduction. For single-agent domains, knowledge about one's
own knowledge and reasoning processes is useful for controlling inference. For example, if one
knows that one does not know anything about Romanian geography, then one need not expend
enormous computational effort trying to calculate the shortest path from Arad to Bucharest. In



244 Chapter 8. Building a Knowledge Base

PROPOSITIONAL
ATTITUDES

REFERENTIAL
TRANSPARENCY

OPAQUE

'multiagent domains, it becomes important for an agent to reason about the mental processes of
the other agents. Suppose a shopper in a supermarket has the goal of buying some anchovies.
The agent deduces that a good plan is to go where the anchovies are, pick some up, and bring
them to the checkout stand. A key step is for the shopper to realize that it cannot execute this plan
until it knows where the anchovies are, and that it can come to know where they are by asking
someone. The shopper should also deduce that it is better to ask a store employee than another
customer, because the employee is more likely to know the answer. To do this kind of deduction,
an agent needs to have a model of what other agents know, as well as some knowledge of its own
knowledge, lack of knowledge, and inference procedures.

In effect, we want to have a model of the mental objects that are in someone's head (or
something's knowledge base) and of the mental processes that manipulate those mental objects.
The model should be faithful, but it does not have to be detailed. We do not have to be able to
predict how many milliseconds it will take for a particular agent to make a deduction, nor do we
have to predict what neurons will fire when an animal is faced with a particular visual stimulus.
But we do want an abstract model that says that if a logical agent believes P V Q and it learns
-i/3, then it should come to believe Q.

The first step is to ask how mental objects are represented. That is, if we have a relation
Believes(Agent,x), what kind of thing is xl First of all, its clear that x cannot be a logical sentence.
If FUes(Superman) is a logical sentence, we can't say Believes(Agent, Flies(Superman)) because
only terms (not sentences) can be arguments of relations. But if Flies(Superman) is reified as a
fluent, then it is a candidate for being a mental object, and Believes can be a relation that takes an
agent and a prepositional fluent that the agent believes in. We could define other relations such
as Knows and Wants to express other relationships between agents and propositions. Relations
of this kind are called propositional attitudes.

This appears to give us what we want: the ability for an agent to reason about the beliefs
of agents. Unfortunately, there is a problem with this approach. If Clark and Superman are one
and the same (i.e., Clark = Superman) then Clark flying and Superman flying are one and the
same event. Thus, if the object of propositional attitudes are reified events, we must conclude
that if Lois believes that Superman can fly, she also believes that Clark can fly, even if she doesn't
believe that Clark is Superman. That is,

(Superman = Clark) |=
(Believes(Lc)is, Flies(Superman)) <=> Believes(Lois, Flies(Clark)))

There is a sense in which this is right: Lois does believe of a certain person, who happens to be
called Clark sometimes, that that person can fly. But there is another sense in which this is wrong:
if you asked Lois "Can Clark fly?" she would certainly say no. Reified objects and events work
fine for the first sense of Believes, but for the second sense we need to reify descriptions of those
objects and events, so that Clark and Superman can be different descriptions (even though they
refer to the same object).

Technically, the property of being able to freely substitute a term for an equal term is called
referential transparency. In first-order logic, every relation is referentially transparent. We
would like to define Believes (and the other propositional attitudes) as relations whose second
argument is referentially opaque—that is, one cannot substitute an equal term for the second
argument without changing the meaning.



Section 8.4. General Ontology 245

SYNTACTIC THEORY We will concentrate on what is called a syntactic theory of mental objects." In this
STRiNGS approach, we represent mental objects with strings written in a representation language. (We

will use first-order logic itself as the representation language, but we are not required to.) A string
is just a list of symbols, so the event Flies(Clark) can be represented by the string of characters
[F,l,i,e,s,(,C,l,a,r,k,)\, which we will abbreviate as "Flies(Clark)". In this formulation,
"Clark" ̂ "Superman" because they are two different strings consisting of different symbols. The
idea is that a knowledge-based agent has a knowledge base consisting of strings that were added
either via TLLL or through inference. The syntactic theory models the knowledge base and the
strings that are in it.

Now all we have to do is provide a syntax, semantics, and proof theory for the string
representation language, just as we did in Chapter 6. The difference is that we have to define
them all in first-order logic. We start by defining Den as the function that maps a string to the
object that it denotes, and Name as a function that maps an object to a string that is the name of
a constant that denotes the object. For example, the denotation of both "Clark" and "Superman"
is the object referred to by the constant symbol ManOfSteel, and the name of that object could
be either "Superman", "Clark", or or some other constant, such as "K\ \".

Den("Clark") - ManOfSteel A Den("Supennan") = ManOfSteel
Name(ManOfSteel) -"K\,"

The next step is to define inference rules for logical agents. For example, we might want to say
that a logical agent can do Modus Ponens: if it believes /; and believes p => q then it will also
believe q. The first attempt at writing this axiom is

V a,p, q LogicalAgent(a) A Believes(a,p) A Believesia, "p => q") => Believes(a, q)

But this is not right because the string "p=>c/" contains the letters 'p' and 'q' but has nothing
to do with the strings that are the values of the variables p and q. In fact, "p => q" is not even
a syntactically correct sentence, because only variables can be lower-case letters. The correct
formulation is:

V a,p, q LogicalAgent(a) A Believes(a,p) A Believes(a, Concat(p, =>, q)
=> Believesia, q)

where Concat is a function on strings that concatenates their elements together. We will abbreviate
Concat(p, ["=>"J, q) as "/? =>• q". That is, an occurrence of x_ within a string means to substitute in
the value of the variable x. Lisp programmers will recognize this as the backquote operator.

Once we add in the other inference rules besides Modus Ponens, we will be able to
answer questions of the form "given that a logical agent knows these premises, can it draw that
conclusion?" Besides the normal inference rules, we need some rules that are specific to belief.
For example, the following rule says that if a logical agent believes something, then it believes
that it believes it.

Va,/7 LogicalAgent(a)/\Believes(a,p) => Believes(a,"Believes(Name(a),p)")

Note that it would not do to have just a as part of the string, because a is an agent, not a description
of an agent. We use Name(a) to get a string that names the agent.

An alternative based on modal logic is covered in the historical notes section.



246 Chapter 8. Building a Knowledge Base

LOGICAL
OMNISCIENCE

There are at least three directions we could go from here. One is to recognize that it is
unrealistic to expect that there will be any real logical agents. Such an agent can, according to
our axioms, deduce any valid conclusion instantaneously. This is called logical omniscience. It
would be more realistic to define limited rational agents, which can make a limited number of
deductions in a limited time. But it is very hard to axiomatize such an agent. Pretending that all
agents are logically omniscient is like pretending that all problems with polynomial time bounds
are tractable—it is clearly false, but if we are careful, it does not get us into too much trouble.

A second direction is to define axioms for other propositional attitudes. The relation
between believing and knowing has been studied for centuries by philosophers of the mind. It is
commonly said that knowledge is justified true belief. That is, if you believe something, and if it
is actually true, and if you have a proof that it is true, then you know it. The proof is necessary
to prevent you from saying "I know this coin flip will come up heads" and then taking credit for
being right when the coin does end up heads, when actually you just made a lucky guess. If you
accept this definition of knowledge, then it can be defined in terms of belief and truth:

Va,p Knows(a,p) O Believes(a,p) A T(Den(p)) A T(Den(KB(a)) =>• Den(p))
This version of Knows can be read as "knows that." It is also possible to define other kinds of
knowing. For example, here is a definition of "knowing whether":

M a.p KnowsWhether(a,p) O Knowfi(a,p) V Knows(a,"~^p^)
Continuing our example, Lois knows whether Clark can fly if she either knows that Clark can fly
or knows that he cannot.

The concept of "knowing what" is more complicated. One is tempted to say that an
agent knows what Bob's phone number is if there is some x for which the agent knows
x-PhoneNumber(Bob). But that is not right, because the agent might know that Alice and Bob
have the same number, but not know what it is (i.e., PhoneNumber(Alice)-PhoneNumber(Bob)),
or the agent might know that there is some Skolem constant that is Bob's number without knowing
anything at all about it (i.e., K23 = PhoneNumber(Bob)). A better definition of "knowing what"
says that the agent has to know of some x that is a string of digits and that is Bob's number:

V f l , f c KnowsWhat(a,"PhoneNumber(bJ") o-
3 x Knows(a, "x = PhoneNumber(b)") A DigitString(x)

Of course, for other questions we have different criteria for what is an acceptable answer. For
the question "what is the capital of New York," an acceptable answer is a proper name, "Albany,"
not something like "the city where the state house is." To handle this, we will make KnowsWhat
a three place relation: it takes an agent, a term, and a predicate that must be true of the answer.
For example:

KnowsWhat(Agent, Capital(NewYork), ProperName)
KnowsWhat(Agent, PhoneNumber(Bob), DigitString)

A third direction is to recognize that propositional attitudes change over time. When
we recognized that processes occur over a limited interval of time, we introduced the relation
T(pmcess, interval). Similarly, we can use Believe(agent, string, interval) to mean that an agent
believes in a proposition over a given interval. For example, to say that Lois believed yesterday
that Superman can fly, we write

Believes(Lois, Flies(Superman), Yesterday)



Section 8.5. The Grocery Shopping World 247

Actually, it would be more consistent to have Believes be an event fluent just as Flies is. Then
we could say that it will be true tomorrow that Lois knew that Superman could fly yesterday:

T(Believes(Lois, Flies(Superman), Yesterday), Tomorrow)
We can even say that it is true now that Jimmy knows today that Lois believes that Superman
could fly yesterday:

T (Know s( Jimmy, Believes(Lois, Flies(Superman), Yesterday), Today), Now)

KNOWLEDGE
PRECONDITIONS
KNOWLEDGE
EFFECTS

Knowledge and action
We have been so busy trying to represent knowledge that there is a danger of losing track of what
knowledge is/or. Recall that we are interested in building agents that perform well. That means
that the only way knowledge can help is if it allows the agent to do some action it could not
have done before, or if it allows the agent to choose a better action than it would otherwise have
chosen. For example, if the agent has the goal of speaking to Bob, then knowing Bob's phone
number can be a great help. It enables the agent to perform a dialing action and have a much
better chance of reaching Bob than if the agent did not know the number and dialed randomly.

One way of looking at this is to say that actions have knowledge preconditions and
knowledge effects. For example, the action of dialing a person's number has the precondition of
knowing the number, and the action of calling directory assistance sometimes has the effect of
knowing the number.

Note that each action has its own requirements on the form of the knowledge, just as each
question to KnowsWhat had its own requirements. Suppose I am in China, and the telephone
there has Chinese numerals on the buttons.12 Then knowing what Bob's number is as a digit
string is not enough—1 need to know it as a string of Chinese digits. Similarly, the question
of whether I know where Bob lives has a different answer depending on how I want to use the
information. If I'm planning to go thereby taxi, all I need is an address; if I'm driving myself, I
need directions; if I'm parachuting in, I need exact longitude and latitude.

THE GROCERY SHOPPING WORLD

In this section, all our hard work in defining a general ontology pays off: we will be able to
define the knowledge that an agent needs to shop for a meal in a market. To demonstrate that
the knowledge is sufficient, we will run a knowledge-based agent in our environment simulator.
That means providing a simulated shopping world, which will by necessity be simpler than the
real world. But much of the knowledge shown here is the same for simulated or real worlds. The
big differences are in the complexity of vision, motion, and tactile manipulation. (These topics
will be covered in Chapters 24 and 25.)

12 Actually, Chinese phones have Arabic numerals, but bear with the example.



248 Chapter 8. Building a Knowledge Base

Complete description of the shopping simulation
We start by giving a PAGE (percepts, actions, goals, and environment) description of the shopping
simulation. First the percepts:

1. The agent receives three percepts at each time step: feel, sound, and vision.
2. The feel percept is just a bump or no bump, as in the vacuum world. The agent perceives

a bump only when on the previous time step it executed a Forward action and there is not
enough room in the location it tried to move to.

3. The sound percept is a list of spoken words. The agent perceives words spoken by agents
within two squares of it.

4. If the agent's camera is zoomed in, it perceives detailed visual images of each object in the
square it is zoomed at.

5. If the agent's camera is not zoomed in, it perceives coarse visual images of each object in
the three squares directly and diagonally ahead.

6. A visual percept consists of a relative location, approximate size, color, shape, and possibly
some other features. It will be explained in detail later.

Now for the actions:
1. An agent can speak a string of words.
2. An agent can go one square forward.
3. An agent can turn 90° to the right or left.
4. An agent can zoom its camera in at its current square, or at any of the three squares directly

or diagonally ahead.
5. An agent can also zoom its camera out.
6. An agent can grab an object that is within one square of it. To do so, it needs to specify

the relative coordinates of the object, and it needs to be empty-handed.
7. An agent can release an object that it has grabbed. To do so, it needs to specify the relative

coordinates of the point where it wants to release the object.

The agent's goal initially will be to buy all the items on a shopping list. This goal can be modified
if some items are unavailable or too expensive. The agent should also try to do the shopping
quickly, and avoid bumping into things. A more ambitious problem is to give the agent the goal
of making dinner, and let it compose the shopping list.

The environment is the interior of a store, along with all the objects and people in it. As
in the vacuum and wumpus worlds, the store is represented by a grid of squares, with aisles
separating rows of display cases. At one end of the store are the checkout stands and their
attendant clerks. Other customers and store employees may be anywhere in the store. The agent
begins at the entrance, and must leave the store from the same square. There is an EXIT sign there
in case the agent forgets. There are also signs marking the aisles, and smaller signs (readable
only when the camera zooms in) marking some (but not necessarily all) of the items for sale.

A real agent would have to decipher the video signals from the camera (or some digitization
of them). We assume that this work has already been done. Still, the vision component of a
percept is a complex list of descriptions. The first component of each description is its relative



Section 8.5. The Grocery Shopping World 249

position with respect to the agent's position and orientation. For example, the relative position
[-2,1] is the square two squares to the agent's left and one square ahead. The second component
is the size of the object, given as the average diameter of the object in meters. Next is the color
of the object, given as a symbol (red, green, yellow, orange, ...), followed by the object's shape
(flat, round, square, ...). Finally, we assume that an optical character recognition routine has
run over the video image; if there are any letters in the visual field, they are given as a list of
words. Figure 8.8 shows an overview of a supermarket, with the agent at [4,5] still dressed for the
wumpus world. The agent is facing left. Figure 8.9(a) shows what the agent perceives with the
camera zoomed out, and Figure 8.9(b) shows the agent's visual percept with the camera zoomed
in at the square [3,6].

Organizing knowledge
The grocery shopping domain is too big to handle all at once. Instead, we will break it down
into smaller clusters of knowledge, work on each cluster separately, and then see how they fit
together. One good way of decomposing the domain into clusters is to consider the tasks facing
the agent. This is called a functional decomposition. We divide the domain into five clusters:

<> Menu Planning: The agent will need to know how to modify the shopping list when the
store is out of stock of an item.

0 Navigating: As in the wumpus world, the agent will need to understand the effect of
movement actions and create an internal map of the world.

0 Gathering: The agent must be able to find and gather the items it wants. Part of this
involves inducing objects from percepts: the agent will need recognition rules to infer that
a red roughly spherical object about three inches in diameter could be a tomato.

0 Communicating: The agent should be able to ask questions when there is something it
cannot find out on its own.

0 Paying: Even a shy agent that prefers not to ask questions will need enough interagent
skills to be able to pay the checkout clerk. The agent will need to know that $5.00 is too
much for a single tomato, and that if the total price is $17.35, then it should receive $2.65
in change from a $20 bill.

An advantage of functional decomposition is that we can pose a problem completely within a
cluster and see if the knowledge can solve it. Other kinds of decomposition often require the
whole knowledge base to be fleshed out before the first question can be posed.

Menu-Planning
A good cook can walk into a market, pick out the best bargain from the various fish, fowl, or
other main course ingredients that look fresh that day, select the perfect accompanying dishes,
and simultaneously figure out how to make tomorrow's meal from whatever will be left over. A
competent errand runner can take a shopping list and find all the items on it. Our agent will be
closer to the second of these, but we will give it some ability to make intelligent choices.

Suppose the store is out of tomatoes one day. An agent with the shopping list "tomatoes,
lettuce, cucumber, olive oil, vinegar" should recognize that the ingredients form a salad, and that



250 Chapter 8. Building a Knowledge Base

'%
••«*

00 m
B«>*•

Vege-
tables

Fruit Soup
Sauces

Meat

JQ.

8

Figure 8.8 An overview of a supermarket. Note the agent at [4,5], the other shoppers at [2,2]
and [6,2], the checkout clerks at [4,2] and [8,2], the signs in the fourth row, and the groceries
spread throughout the world.

a red pepper would be a good substitute, as it would add color and flavor to the salad. An agent
with the list "tomatoes, yellow onions, celery, a carrot, ground beef, milk, white wine, tagliatelle"
should infer a Bolognese sauce (Hazan, 1973), and therefore that it is appropriate to substitute
canned tomatoes.

To make these inferences, an agent needs to understand that the items on a shopping list fit
together to form one or more composite objects known as dishes, that the dishes go together to



Section 8.5. The Grocery Shopping World 251

m •
*•*

[1,1], 0.87, [Orange,With(White,Red)], Blob
[0,1],0.92, [Red,With(White)], Blob

[1.9,1.9], .07, [Orange], Round
[1.8,1.3], .09,[White,With(Black)], Rectangle,
Words([0ranges,$,.75,/,lb])

[1.9,1.1], .08, [Orange], Round
[1.7,1.7], .07, [Orange], Round

[1.3,1.2], .07, [Red], Round
[1.1,1.3], .06, [Red], Round

(a) Zoomed Out (b) Zoomed In at [3,6]

Figure 8.9 The percepts for the shopping agent at [4,5]. (a) Camera zoomed out. (b) Camera
zoomed in at [3,6]. Each percept is a series of object descriptions (one per line). Each description
lists a relative position, a size, a color summary, a shape, and a character string (if any).

form composite objects known as meals, and that an object can be recognized by its components.
Our agent will be called upon to make two classes of inference. First, from a list of parts it should
induce the composite object that these parts make up. This is made difficult because the parts
(the items on the shopping list) may make up several composite objects, and because not all the
parts will be listed (some are already at home in the cupboard). Second, the agent should be able
to decide how to replace an unavailable part to complete the intended composite object. This can
be done at two levels: replacing one ingredient with another to complete a dish, and if that is
not possible, replacing the whole dish with another to complete the meal. Some of the necessary
knowledge will involve individual dishes, and some of it will be at a general level that will also
be useful for, say, replacing a faulty muffler in a car.

The first step is to convert a shopping list—a list of words—into a parts list—a list of
categories. A dictionary is used to associate words with their referents:

Referent("tomatoes",Tomatoes)
Referent(" onions", Onions)

The next step is to describe objects in terms of their required and optional parts. If we
wanted to actually prepare a dish, we would have to know more about the relations between the
parts. But to do shopping, all we need is a list of the parts. We define RequiredParts so that
RequiredParts({Lettuce, Dressing}, GreenSalads) means that every object that is an element of
GreenSalads has one RequiredPart that is an element of Lettuce, and another that is an element
of Dressing. For lettuce to be a required part of green salads means that every element of green
salads has an element of lettuce as one of its parts. Similar reasoning holds for OptionalParts,
except that only some elements of a category have to manifest the optional parts.

Vr ,w RequiredParts(r,w) => Mp p£r =>• RequiredPart(p,w)
Vo, w OptionalParts(o,w) =>• V/? p £ o =>• OptionalPart(p,w)
V r, w RequiredPart(r, w) O V c c e w =$• 3i i 6 r A PartOf(i, c)
Vo, w OptionalPart(o,w) O 3c c&w => 3; /' € o A PartOf(o, c)



Chapter 8. Building a Knowledge Base

The next step is to describe meals and dishes in terms of their parts:
RequiredParts({MainCourses\, Meals)
Optional Parts({FirstCourses, SideDishes, Salads,Desserts,...},Meals)
RequiredParts({Lettuce, Dressing}, GreenSalads)
Optional Part s({Tomatoes, Cucumbers, Peppers, Carrots,...}, GreenSalads)
RequiredParts({Pasta, BologneseSauce}, PastaBolognese,)
Optional Parts( { GratedCheese], PastaBolognese)
RequiredParts( {Onions, OliveOil, Butter, Celery, Carrots, GroundBeef, Salt,

WhiteWines,Milk, TomatoStuff}, BologneseSauce)
Then we need taxonomic information for dishes and foods:

GreenSalads C Salads
Salads C Dishes
PastaBolognese C FirstCourses
FirstCourses C Dishes
Tomatoes C TomatoStuff
CannedTomatoes C TomatoStuff
Tagliatelle C Pasta

Now we want to be able to determine what dishes can be made from the shopping list "tomatoes,
yellow onions, celery, a carrot, ground beef, milk, white wine, tagliatelle." As mentioned earlier,
this is complicated by the fact that the salt, butter, and olive oil that are required for the Bolognese
dish are not on the shopping list. We define the predicate CanMake to hold between a shopping
list and a dish if the categories on the list, when combined with typical staples, cover all the
required parts of the dish. >A'

V /, d CanMake(l, d) O d e Dishes A Required Part s(p, d) A p C Union(l, Staples)
{Salt, Butter, OliveOil} C Staples

With what we have so far, this would allow us to infer that Pasta Bolognese is the only dish
that can be made from the shopping list. The next question is what to do if fresh tomatoes are
not available. It turns out that all we have to do is replace the shopping list (or the part of the
shopping list that makes up this dish) with the list of part categories for this dish. In this case, that
means that Tomatoes would be replaced by TomatoStuff, which could be satisfied by gathering
an instance of CannedTomatoes.

Navigating
An agent that wants to find a book in a library could traverse the entire library, looking at each
book until the desired one is found. But it would be more efficient to find the call number for the
book, find a map describing where that number can be found, and go directly there. It is the same
way with a supermarket, although the catalog system is not as good. A shopping agent should
know that supermarkets are arranged into aisles, that aisles have signs describing their contents
(in rough terms), and that objects that are near each other in the taxonomic hierarchy are likely to
be near each other in physical space. For example, British immigrants to the United States learn
that to find a package of tea, they should look for the aisle marked "Coffee."



Section 8.5. The Grocery Shopping World 253

Most of the navigation problem is the same as in the vacuum or wumpus world. The agent
needs to remember where it started, and can compute its current location from the movements it
has made where it is now. The supermarket is not as hostile as the wumpus world so it is safer
to explore, but an agent can find better routes if it knows that supermarkets are generally laid
out in aisles. Supermarkets also provide aisle numbers, unlike the wumpus world, so that the
agent does not need to rely on dead reckoning. On the second trip to a store, it can save a lot of
wandering by remembering where things are. It is not helpful, however, to remember the exact
location of each individual item, because the tomato that is at location [x,y] today will probably
be gone tomorrow. Because much of the logic is the same as for the wumpus world, it will not
be repeated here.

A typical navigation problem is to locate the tomatoes. The following strategy is usually
believed to work:

1. If the agent knows the location of the tomatoes from a previous visit, calculate a path to
that spot from the current location.

2. Otherwise, if the location of the vegetable aisle is known, plan a path there.
3. Otherwise, move along the front of the store until a sign for the vegetable aisle is spotted.
4. If none of these work, wander about and find someone to ask where the tomatoes are. (This

is covered in the "Communicating" section.)
5. Once the vegetable aisle is found, move down the aisle with the camera zoomed out,

looking for something red. When spotted, zoom in to see if they are in fact tomatoes. (This
is covered in the "Gathering" section.)

Gathering
Once in the right aisle, the agent still needs to find the items on its list. This is done by matching
the visual percepts against the expected percepts from each category of objects. In the wumpus
world, this kind of perception is trivial—a breeze signals a pit and a stench signals a wumpus.
But in the grocery shopping world, there are thousands of different kinds of objects and many of
them (such as tomatoes and apples) present similar percepts. The agent never can be sure that it
has classified an object correctly based on its percepts, but it can know when it has made a good
guess. The shopping agent can use the following classification rules:

1. If only one known category matches a percept, assume the object is a member of that
category. (This may lead to an error when an unknown object is sighted.)

2. If a percept matches several categories, but there is a sign nearby that identifies one of
them, assume the object is a member of that category.

3. If there is an aisle sign that identifies one category (or one supercategory), assume the
object is of that category. For example, we could categorize a round, red percept as a
tomato rather than an apple if we were in an aisle marked "Vegetables" and not "Fruit." At
a cricket match, it would be something else altogether.



254 Chapter 8. Building a Knowledge Base

To implement this, we start with a set of causal rules for percepts:

V x x G Tomatoes
\fx x£ Oranges •
V;c x£ Apples =>
\l x xE Tomatoes
V x x G Oranges •

=> SurfaceColor(x, Red)
=>• SurfaceColor(x, Orange)
SurfaceColor(x, Red) V SurfaceColor(x, Green)

=> Shape(x, Round)
3- Shape(x, Round)

DOMAIN CLOSURE

V* SurfaceColor(x, c) A Visible(x) => CausesColorPercept(x, c)
MX Shape(x, s) A Visible(x) =>• CausesShapePercept(x, s)

These rules, and many more like them, give a flavor of a causal theory of how percepts are formed
by objects in the world. Notice how simplistic it is. For example, it does not mention lighting at
all. (Fortunately, the lights are always on in our supermarket.) From these rules, the agent will
be able to deduce a set of possible objects that might explain its percepts. Knowledge about what
sorts of objects appear where will usually eliminate all but one category. Of course, the fact that
the agent only knows about one sort of object that might produce a given percept does not mean
that the percept must be produced by that sort of object. Logically, there might be other sorts of
objects (e.g., plastic tomatoes) that produce the same percept as the known category. This can
be handled either by a domain closure axiom, stating that the known categories are all the ones
there are, or by a default assumption, as described in Chapter 15.

The other part of the gathering problem is manipulation: being able to pick up objects and
carry them. In our simulation, we just assume a primitive action to grasp an object, and that the
agent can carry all the items it will need. In the real world, the actions required to pick up a
bunch of bananas without bruising them and a gallon jug of milk without dropping it pose serious
problems. Chapter 25 considers them in more detail.

Communicating

The successful shopper knows when to ask questions (Where are the anchovies? Are these;
tomatillas?). Unfortunately, being able to carry on a conversation is a difficult task, so we
will delay covering it until Chapter 22. Instead, we will cover a simpler form of one-way
communication: reading signs. If a word appears on an aisle's sign, then members of the>
category that the word refers to will be located in that aisle.

Va (a e Aisles f\3s,w SignOf(s, a) A w G Words(s)) =>
3 x, c Referent(w, c) A A: G c A At(x, a)

If a word appears on a small sign, then items of that category will be located nearby.

V s, w, I (s G Signs A Size(s) < Meters(3) A w G Words(s) A At(s, I)) =>
3 x, c Referent(w, c) A x G c A At(x, AreaAround(l))



Section 8.5. The Grocery Shopping World 255

Paying
The shopping agent also has to know enough so that it will not overpay for an item. First, it needs
to know typical fair prices for items, for example:

Vg gETypical(GmundBeef)f\ Weight(g) = Pounds(l) => $(1) < FairPrice(g) < $(2)

The agent should know that total price is roughly proportional to quantity, but that often discounts
are given for buying larger sizes. The following rule says that this discount can be up to 50%:

V q, c, w, p q G c A Weight(q) — w A Price(q) = p =>
V m, q2 m > 1 A qi £ c A Weight(qi) = m x w =>

(1 + ^p1) x p < FairPrice(q2) < m x p
Most importantly, the agent should know that it is a bad deal to pay more than the fair price for
an item, and that buying anything that is a bad deal is a bad action:

V / Priced) > FairPrice(i) => BadDeal(i)
W BadDeal(i) => Ma Bad(Buy(aJ))

Buying events belong to the category Buy(b,x,s,p)—buyer b buying object x from seller s for
price p. The complete description of buying is quite complex, but follows the general pattern
laid down earlier in the chapter for marriage. The preconditions include the fact that p is the
price of the object x', that b has at least that much money in the form of one or more monetary
instruments; and that s owns x. The event includes a monetary exchange that results in a net gain
of p for s, and finally b owns x. Exercise 8.10 asks you to complete this description.

One final thing an agent needs to know about shopping: it is bad form to exit a shop while
carrying something that the shop owns.

V a, x,.?, / .v £ Shops A T(Carrying(a, x) A At(x, s) A Owns(s, x)) =>
T(Bad(Exit(a)), i)

An agent with the goal of exiting will use this goal to set up the subgoal of owning all the objects
it is carrying. So all we need now is a description of the parts of a buying event, so that the agent
can execute the buying. In a supermarket, a buying event consists of going to a checkout stand,
placing all the items on the stand, waiting for the cashier to ring them up, placing a sum of money
equal to the total price on the stand, and picking up the items again. Note that if the total is $4, it
will not do to place the same dollar bill onto the checkout stand four times.

Vb,m,s ,p ,e eg SupermarketBuy(b,m,s,p) =>
3 e\, 62, €3,64, e=, e\ = Go(b, c) A CheckoutStand(c) A

€2 = Put(b, m, c) A e?, = TotalUpPrice(s, m) A
€4 = Put(b, p, c) A 65 = Grab(b, m) A
Before(e\, e-i) A Before(e2,e^) A Before(e^,e4) A Before(ea,, £5) A
PartOf(e\, e) A PartOf(e2, e) A PartOf(e3, e) A PartOf(e4, e) A PartOf(e5, e)

Now we have touched on all the major areas of knowledge necessary for an agent to cope
with the grocery shopping world. A complete specification would make this chapter too long,
but we have outlined the approach one would take to complete this specification. Although it is
hard work, building actual knowledge bases of this kind is an invaluable experience.



256 Chapter 8. Building a Knowledge Base

8.6 SUMMARY

This has been the most detailed chapter of the book so far. As we said earlier in the chapter, one
cannot understand knowledge representation without doing it, or at least seeing it. The following
are some of the major points of the chapter:

• The process of representing knowledge of a domain goes through several stages. The first,
informal stage involves deciding what kinds of objects and relations need to be represented
(the ontology). Then a vocabulary is selected, and used to encode general knowledge of
the domain. After encoding specific problem instances, automated inference procedures
can be used to solve them.

• Good representations eliminate irrelevant detail, capture relevant distinctions, and express
knowledge at the most general level possible.

• Constructing knowledge-based systems has advantages over programming: the knowledge
engineer has to concentrate only on what's true about the domain, rather than on solving
the problems and encoding the solution process; the same knowledge can often be used in
several ways; debugging knowledge is often simpler than debugging programs.

• Special-purpose ontologies, such as the one constructed for the circuits domain, can be
effective within the domain but often need to be generalized to broaden their coverage.

• A general-purpose ontology needs to cover a wide variety of knowledge, and should be
capable in principle of handling any domain.

• We presented a general ontology based around categories and the event calculus. We
covered structured objects, time and space, change, processes, substances, and beliefs.

• We presented a detailed analysis of the shopping domain, exercising the general ontology
and showing how the domain knowledge can be used by a shopping agent.

Finally, it is worth recalling that the nature of an appropriate representation depends on the world
being represented and the intended range of uses of the representation. The representation choices
in this chapter are specific to the world of human experience, but this is unavoidable.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
There are plausible claims (Briggs, 1985) that formal knowledge representation research began
with classical Indian theorizing about the grammar of Shastric Sanskrit, which dates back to the
first millennium B.C. Shastric Sanskrit grammatical theory proposed not only a formal syntax and
vocabulary for a general-purpose language, but also provided an analysis of its semantics. Shastnc
Sanskrit grammatical theory therefore can be regarded as the earliest instance of systematic
representation of knowledge in a specific area in order to facilitate inference. In the West, the
use of definitions of terms in ancient Greek mathematics can be regarded as the earliest instance.
Indeed, the development of technical terminology or artificial languages in any field can be
regarded as a form of knowledge representation research. The connection between knowledge



Section 8.6. Summary 257

representation in this sense, and knowledge representation in AI, is closer than it may seem;
twentieth century AI research draws widely upon the formalisms of other fields, especially logic
and philosophy. Aristotle (384-322 B.C.) developed a comprehensive system of what we would
now call ontology and knowledge representation in connection with his work in logic, natural
science, and philosophical metaphysics.

Besides the logicist tradition started by McCarthy, which we discussed in Chapter 6, there
have been many other threads in the history of representation in AI. Early discussions in the
field tended to focus on "problem representation" rather than "knowledge representation." The
emphasis was on formulating the problem to be solved, rather than formulating the resources
available to the program. A conscious focus on knowledge representation had to await the dis-
covery that high performance in AI problem solving required the accumulation and use of large
amounts of problem-specific knowledge. The realization that AI systems needed such knowl-
edge was largely driven by two types of research. The first was the attempt to match human
performance in the everyday world, particularly in understanding natural human languages and
in rapid, content-based retrieval from a general-purpose memory. The second was the design of
"expert systems"—also, significantly, called "knowledge-based systems"—that could match (or,
in some cases, exceed) the performance of human experts on narrowly defined tasks. The need
for problem-specific knowledge was stressed forcefully by the designers of DENDRAL, the first
expert system, which interpreted the output of a mass spectrometer, a type of instrument used for
analysis of the structure of organic chemical compounds. An early statement of the DENDRAL
philosophical perspective can be found in Feigenbaum, Buchanan, and Lederberg( 1971); Lindsay
et al. (1980) provide a book-length description of the DENDRAL project, along with a complete
bibliography from 1964 to 1979. Although the success of DENDRAL was instrumental in bringing
the AI research community as a whole to realize the importance of knowledge representation,
the representational formalisms used in DENDRAL are highly specific to the domain of chemistry.
As expert systems continued to succeed and proliferate, expert system researchers became inter-
ested in standardized knowledge representation formalisms and ontologies that could reduce the
difficulty of creating a new expert system in yet another previously unexplored field. In so doing,
they ventured into territory previously explored by philosophers of science and of language. The
discipline imposed in AI by the need for one's theories to "work" has led to more rapid and
deeper progress than was the case when these problems were the exclusive domain of philosophy
(although it has at times also led to the repeated reinvention of the wheel).

Research in memory and natural language processing (NLP) also had to deal with the
need for general-purpose knowledge representation languages from the very start. Indeed, Ross
Quillian's (1961) work on "semantic networks" predates DENDRAL. Because of the need to
get heterogeneous bodies of knowledge to interact fruitfully, memory and NLP research was
the original spark for semantic networks, frames, and other very general formalisms. Such
"knowledge representation languages" are covered in greater detail in Chapter 10. The present
chapter focuses instead on the content of the knowledge itself and on the representational concepts
that are common to a number of distinct formalisms.

The creation of comprehensive taxonomies or classifications dates back to ancient times.
Aristotle strongly emphasized classification and categorization schemes. His Organon, a col-
lection of works on logic assembled by his students after his death, included a treatise called
Categories in which he attempted a comprehensive high-level classification and also introduced



258 Chapter 8. Building a Knowledge Base

TEMPORAL LOGIC

the use of genus and species for lower-level classification, although these terms did not have the
precise and specifically biological sense which is now attached to them. Our present system of
biological classification, including the use of "binomial nomenclature" (classification via genus
and species in the technical sense), was invented by the Swedish biologist Carolus Linnaeus,
or Carl von Linne (1707-1778)., Lakoff (1987) presents a model of classification based on
prototypes rather than strict categorical boundaries.

Within modern AI specifically, comprehensive taxonomies have usually been developed
as part of large projects that also included research in other areas of knowledge representation.
These include the "commonsense summer" project led by Jerry Hobbs (1985) and the knowledge
representation portion of the ensuing TACITUS natural language interpretation project (Hobbs,
1986; Hobbs et al., 1990), as well as the massive CYC project (Lenat and Guha, 1990). The
taxonomy used in this chapter was developed by the authors, based in part on their experience
in the CYC project and in part on work by Hwang and Schubert (1993) and Davis (1990). An .
inspirational discussion of the general project of commonsense knowledge representation appears
in Hayes's (1978; 1985b) "The Naive Physics Manifesto."

The philosophical study of the part-whole relation was initiated by the Polish logician i
Lesniewski (1916), who was a hardcore "nominalist" or skeptic about abstract entities such as i
sets and numbers. He intended his "mereology" (the name is derived from the Greek word for \
"part") as a substitute for mathematical set theory. Although mereology showed promise as a ^
way of analyzing the distinction between mass nouns and count nouns, Lesniewski's publications I
are extremely difficult to follow, because they are written in a very idiosyncratic formal notation :
with (in some cases) almost no natural-language commentary. A more readable exposition and i
axiomatization of mereology was provided in 1940 by the philosophers Nelson Goodman (another'
hardcore nominalist) and Henry Leonard underthe name of "the calculus of individuals" (Leonard;
and Goodman, 1940). Goodman's The Structure of Appearance (1977) applies the calculus of |
individuals to what in AI would be called knowledge representation. Quine (1960) also supports ]
the nominalist view of substances. Harry Bunt (1985) has provided an extensive analysis of its j
use in knowledge representation.

Few if any AI researchers have any problems with abstract entities; the pragmatic "Onto- i
logical Promiscuity" endorsed by Hobbs (1985) in the article of that title is more typical. The]
position adopted in this chapter, in which substances are categories of objects, was championed 1
by Richard Montague (1973). It has also been adopted in the CYC project. Copeland (1993)j
mounts a serious but not invincible attack.

Several different approaches have been taken in the study of time and events. The oldest :|
approach is temporal logic, which is a form of modal logic in which modal operators are used \
specifically to refer to the times at which facts are true. Typically, in temporal logic, "Dp"|
means "p will be true at all times in the future," and "Op" means "p will be true at some time in i
the future." The study of temporal logic was initiated by Aristotle and the Megarian and Stoic j
schools in ancient Greece.

In modern times, Findlay (1941) was the first to conceive the idea of a "formal calculus" for 1
reasoning about time; Findlay also sketched a few proposed laws of temporal logic. The further j
development of modern temporal logic was carried out by a number of researchers, including!
Arthur Prior (1967). The modern development was actually strongly influenced by historical i
studies of Megarian and Stoic temporal logic. Burstall (1974) introduced the idea of using]



Section 8.6. Summary 259

modal logic to reason about computer programs. Soon thereafter, Vaughan Pratt (1976) designed
dynamic logic, in which modal operators indicate the effects of programs or other actions. For
instance, in dynamic logic, if a is the name of a program, then "[a]/?" might mean "p would
be true in all world states resulting from executing program a in the current world state", and
"(a )p" might mean "p would be true in at least one world state resulting from executing program
Q in the current world state." Dynamic logic was applied to the actual analysis of programs by
Fischer and Ladner (1977). Pnueli (1977) introduced the idea of using classical temporal logic
to reason about programs. Shoham (1988) discusses the use of temporal logic in AI.

Despite the long history of temporal logic, the considerable mathematical theory built up
around it, and its extensive use in other branches of computer science, AI research on temporal
reasoning has more often taken a different approach. A temporal logic is usually conceptualized
around an underlying model involving events, world states, or temporal intervals. The tendency
in AI has been to refer to these events, states, and intervals directly, using terms that denote
them, rather than indirectly through the interpretation of the sentence operators of temporal
logic. The language used is typically either first-order logic or, in some cases, a restricted
algebraic formalism geared toward efficient computation (but still capable of being embedded
within first-order logic). This approach may allow for greater clarity and flexibility in some cases.
Also, temporal knowledge expressed in first-order logic can be more easily integrated with other
knowledge that has been accumulated in that notation.

One of the earliest formalisms of this kind was McCarthy's situation calculus, mentioned
in Chapter 7. McCarthy (1963) introduced situational fluents and made extensive use of them
in later papers. Recent work by Raymond Reiter (1991) and others in the "cognitive robotics"
project at the University of Toronto (Scherl and Levesque, 1993) has re-emphasized the use
of situation calculus for knowledge representation. The relationship between temporal logic
and situation calculus was analyzed by McCarthy and Hayes (1969). They also brought to
the attention of AI researchers the work of philosophers such as Donald Davidson on events.
Davidson's research, collected in (Davidson, 1980), had a heavy emphasis on the analysis
of natural language, particularly of the adverb. It has strongly influenced later AI research,
particularly in natural language understanding. Other philosophical and linguistic approaches to
events that are of significance for AI research are those of Zeno Vendler (1967; 1968), Alexander
Mourelatos (1978), and Emmon Bach (1986).

James Alien's introduction of time intervals, and a small, fixed set of relationships between
them, as the primitives for reasoning about time (Alien, 1983; Alien, 1984) marked a major
advance over situation calculus and other systems based on time points or instantaneous events.
Preliminary versions of Alien's work were available as technical reports as early as 1981. Peter
Ladkin (1986a; 1986b) introduced "concave" time intervals (intervals with gaps; essentially,
unions of ordinary "convex" time intervals) and applied the techniques of mathematical abstract
algebra to time representation. Alien (1991) systematically investigates the wide variety of
techniques currently available for time representation. Shoham (1987) describes the reification
of events and sets forth a novel scheme of his own for the purpose. The term "event calculus"
is also used by Kowalski and Sergot (1986), who show how to reason about events in a logic
programming system.

The syntactic theory of mental objects was first studied in depth by Kaplan and Mon-
tague (1960), who showed that it led to paradoxes if not handled carefully. Because it has a



260 Chapter 8. Building a Knowledge Base

natural model in terms of beliefs as physical configurations of a computer or a brain, it has been
popular in AI in recent years. Konolige (1982) and Haas (1986) used it to describe inference
engines of limited power, and Morgenstern (1987) showed how it could be used to describe knowl-
edge preconditions in planning. The methods for planning observation actions in Chapter 13 are
based on the syntactic theory.

MODAL LOGIC Modal logic is the classical method for reasoning about knowledge in philosophy. Modal
logic augments first-order logic with modal operators, such as B (believes) and K (knows),
that take sentences as arguments rather than terms. The proof theory for modal logic restricts
substitution within modal contexts, thereby achieving referential opacity. The modal logic of '
knowledge was invented by Jaakko Hintikka (1962). Saul Kripke (1963) defined the semantics

POSSIBLE WORLDS of the modal logic of knowledge in terms of possible worlds. Roughly speaking, a world is
possible for an agent if it is consistent with everything the agent knows. From this, one can
derive rules of inference involving the K operator. Robert C. Moore relates the modal logic of i
knowledge to a style of reasoning about knowledge which refers directly to possible worlds in
first-order logic (Moore, 1980; Moore, 1985a). Modal logic can bean intimidatingly arcane field,
but has also found significant applications in reasoning about information in distributed computer ;
systems (Halpern, 1987). For an excellent comparison of the syntactic and modal theories of ;
knowledge, see (Davis, 1990).

For obvious reasons, this chapter does not cover every area of knowledge representation in
depth. The three principal topics omitted are the following:

<C> Qualitative physics: A subfield of knowledge representation concerned specifically with
constructing a logical, nonnumeric theory of physical objects and processes. The term
was coined by Johan de Kleer (1975), although the enterprise could be said to have started
in Fahlman's (1974) BUILD. BUILD was a sophisticated planner for constructing complex
towers of blocks. Fahlman discovered in the process of designing it that most of the effort;
(80%, by his estimate) went into modelling the physics of the blocks world to determine •
the stability of various subassemblies of blocks, rather than into planning per se. He \
sketches a hypothetical naive-physics like process to explain why young children can solve
BuiLD-like problems without access to the high-speed floating-point arithmetic used in:
BUILD'S physical modelling. Hayes (1985a) uses "histories," four-dimensional slices of j
space-time similar to Davidson's events, to construct a fairly complex naive physics of ;j
liquids. Hayes was the first to prove that a bath with the plug in will eventually overflow :
if the tap keeps running; and that a person who falls into a lake will get wet all over.
De Kleer and Brown (1985) and Ken Forbus (1985) attempted to construct something;
like a general-purpose theory of the physical world, based on qualitative abstractions of I
physical equations. In recent years, qualitative physics has developed to the point where :
it is possible to analyze an impressive variety of complex physical systems (Sacks and
Joskowicz, 1993; Yip, 1991). Qualitative techniques have been also used to construct;
novel designs for clocks, windscreen wipers, and six-legged walkers (Subramanian, 1993; \
Subramanian and Wang, 1994). The collection Readings in Qualitative Reasoning aboutj
Physical Systems (Weld and de Kleer, 1990) provides a good introduction to the field.

SPATIAL REASONING <> Spatial reasoning: The reasoning necessary to navigate in the wumpus world and super-
market world is trivial in comparison to the rich spatial structure of the real world. The ;

QUALITATIVE
PHYSICS



Section 8.6. Summary 261

PSYCHOLOGICAL
PEASONING

most complete attempt to capture commonsense reasoning about space appears in the work
of Ernest Davis (1986; 1990). As with qualitative physics, it appears that an agent can go
a long way, so to speak, without resorting to a full metric representation. When such a
representation is necessary, techniques developed in robotics (Chapter 25) can be used.

0 Psychological reasoning: ,The development of a working psychology for artificial agents
to use in reasoning about themselves and other agents. This is often based on so-called
"folk psychology," the theory that humans in general are believed to use in reasoning
about themselves and other humans. When AI researchers provide their artificial agents
with psychological theories for reasoning about other agents, the theories are frequently
based on the researchers' description of the logical agents' own design. Also, this type
of psychological theorizing frequently takes place within the context of natural language
understanding, where divining the speaker's intentions is of paramount importance. For
this reason, the historical and bibliographical background for this topic has been relegated
to other chapters, especially Chapter 22.

The proceedings of the international conferences on Principles of Knowledge Represen-
tation and Reasoning provide the most up-to-date sources for work in this area. Readings in
Knowledge Representation (Brachman and Levesque, 1985) and Formal Theories of the Common-
sense World (Hobbs and Moore, 1985) are excellent anthologies on knowledge representation;
the former focuses more on historically important papers in representation languages and for-
malisms, the latter on the accumulation of the knowledge itself. Representations of Commonsense
Knowledge (Davis, 1990) is a good recent textbook devoted specifically to knowledge represen-
tation rather than AI in general. Hughes and Cresswell (1968; 1984) and Chellas (1980) are
introductory texts on modal logic; A Manual of Intensional Logic (van Benthem, 1985) provides
a useful survey of the field. The proceedings of the annual conference Theoretical Aspects of
Reasoning About Knowledge (TARK) contain many interesting papers from AI, distributed sys-
tems, and game theory. Rescher and Urquhart (1971) and van Benthem (1983) cover temporal
logic specifically. David Harel (1984) provides an introduction to dynamic logic.

EXERCISES

8.1 Extend the vocabulary from Section 8.3 to define addition and an adder circuit.

8.2 Represent the following six sentences using the representations developed in the chapter.

a. Water is a liquid between 0 and 100 degrees.
b. Water boils at 100 degrees.
c. The water in John's water bottle is frozen.
d. Perrier is a kind of water.
e. John has Perrier in his water bottle.
f. All liquids have a freezing point. (Don't use HasFreezingPoint!)



262 Chapter 8. Building a Knowledge Base

^'"('\^ ^ isi°^ ' • • . ' 'i'.^ * ~

Now repeat the exercise using a representation based on the mereological approach, in which,
for example, Water is an object containing as parts all the water in the world.

8.3 Encode the description of the 4-bit adder in Figure 8.10 and pose queries to verify that it is
in fact correct.

xo
YO

X1
Y1

X2
Y2

X3
Y3

ZO

Z1

Z2

Z3
- Z4

Figure 8.10 A 4-bit adder.

X3 X2 X1 XO
+ Y3 Y2 Y1 YO

Z4 Z3 Z2 Z1 ZO

8.4 Write definitions for the following:
a. ExhaustivePartDecomposition
b. PartPartition
c. PartwiseDisjoint

These should be analogous to those for ExhaustiveDecomposition, Partition, and Disjoint.

8.5 Write a set of sentences that allows one to calculate the price of an individual tomato (or
other object), given the price per pound. Extend the theory to allow the price of a bag of tomatoes
to be calculated.
8.6 This exercise concerns the relationships between event categories and the time intervals in
which they occur.

a. Define the predicate T(c, i) in terms of SubEvent and G .
b. Explain precisely why we do not need two different notations (A and A) to describe

conjunctive event categories.
c. Give a formal definition for T(p V q, i).
d. Give formal definitions for T(^p, i) and T(^p, i), analogous to those using V and V.

8.7 Define the predicate Fixed, where Fixed(Location(x)) means that the location of object x is ij
fixed over time.

8.8 Define the predicates Before, After, During, and Overlap using the predicate Meet and the j
functions Start and End, but not the function Time or the predicate <.



Section 8.6. Summary 263

8.9 Construct a representation for exchange rates between currencies that allows fluctuations
on a daily basis.

8.10 In this chapter, we sketched some of the properties of buying events. Provide a formal
logical description of buying using event calculus.

8.11 Describe the event of trading something for something else. Describe buying as a kind of
trading where one of the objects is a sum of money.

8.12 The exercises on buying and trading used a fairly primitive notion of ownership. For
example, the buyer starts by owning the dollar bills. This picture begins to break down when, for
example, one's money is in the bank, because there is no longer any specific collection of dollar
bills that one owns. The picture is complicated still further by borrowing, leasing, renting, and
bailment. Investigate the various commonsense and legal concepts of ownership, and propose a
scheme by which they can be represented formally.

8.13 You are to create a system for advising computer science undergraduates on what courses
to take over an extended period in order to satisfy the program requirements. (Use whatever
requirements are appropriate for your institution.) First, decide on a vocabulary for representing
all the information, then represent it; then use an appropriate query to the system, that will return
a legal program of study as a solution. You should allow for some tailoring to individual students,
in that your system should ask the student what courses or equivalents he has already taken, and
not generate programs that repeat those courses.

Suggest ways in which your system could be improved, for example to take into account
knowledge about student preferences, workload, good and bad instructors, and so on. For each
kind of knowledge, explain how it could be expressed logically. Could your system easily
incorporate this information to find the best program of study for a student?

8.14 Figure 8.2 shows the top levels of a hierarchy for everything. Extend it to include as many
real categories as possible. A good way to do this is to cover all the things in your everyday life.
This includes objects and events. Start with waking up, proceed in an orderly fashion noting
everything that you see, touch, do, and think about. For example, a random sampling produces
music, news, milk, walking, driving, gas, Soda Hall, carpet, talking, Professor Fateman, chicken
curry, tongue, $4, sun, the daily newspaper, and so on.

You should produce both a single hierarchy chart (large sheet of paper) and a listing of
objects and categories with one or more relations satisfied by members of each category. Every
object should be in a category, and every category should be incorporated in the hierarchy.

8.15 (Adapted from an example by Doug Lenat.) Your mission is to capture, in logical form,
enough knowledge to answer a series of questions about the following simple sentence:

Yesterday John went to the North Berkeley Safeway and bought two pounds of
tomatoes and a pound of ground beef.

Start by trying to represent its content as a series of assertions. You should write sentences that
have straightforward logical structure (e.g., statements that objects have certain properties; that
objects are related in certain ways; that all objects satisfying one property satisfy another). The
following may help you get started:



264 Chapter 8. Building a Knowledge Base

• Which classes, individuals, relations, and so on, would you need? What are their parents,
siblings and so on? (You will need events and temporal ordering, among other things.)

• Where would they fit in a more general hierarchy?
• What are the constraints and interrelationships among them?
• How detailed must you be about each of the various concepts?

The knowledge base you construct must be capable of answering a list of questions that we will
give shortly. Some of the questions deal with the material stated explicitly in the story, but most
of them require one to know other background knowledge—to read between the lines. You'll
have to deal with what kind of things are at a supermarket, what is involved with purchasing the
things one selects, what will purchases be used for, and so on. Try to make your representation
as general as possible. To give a trivial example: don't say "People buy food from Safeway,"
because that won't help you with those who shop at another supermarket. Don't say "Joe made
spaghetti with the tomatoes and ground beef," because that won't help you with anything else at
all. Also, don't turn the questions into answers; for example, question (c) asks "Did John buy
any meat?"—not "Did John buy a pound of ground beef?"

Sketch the chains of reasoning that would answer the questions. In the process of doing so,
you will no doubt need to create additional concepts, make additional assertions, and so on. If
possible, use a logical reasoning system to demonstrate the sufficiency of your knowledge base.
Many of the things you write may only be approximately correct in reality, but don't worry too
much; the idea is to extract the common sense that lets you answer these questions at all.

a. Is John a child or an adult? [Adult]
b. Does John now have at least 2 tomatoes? [Yes]
c. Did John buy any meat? [Yes]
d. If Mary was buying tomatoes at the same time as John, did he see her? [Yes]
e. Are the tomatoes made in the supermarket? [No]
f. What is John going to do with the tomatoes? [Eat them]
g. Does Safeway sell deodorant? [Yes]
h. Did John bring any money to the supermarket? [Yes]
i. Does John have less money after going to the supermarket? [Yes]

8.16 Make the necessary additions/changes to your knowledge base from the previous exercise
so that the following questions can be answered. Show that they can indeed be answered by
the KB, and include in your report a discussion of the fixes, explaining why they were needed,
whether they were minor or major, and so on.

a. Are there other people in Safeway while John is there? [Yes—staff!]
b. Did Mary see John? [Yes]
c. Is John a vegetarian? [No]
d. Who owns the deodorant in Safeway? [Safeway Corporation]
e. Did John have an ounce of ground beef? [Yes]
f. Does the Shell station next door have any gas? [Yes]
g. Do the tomatoes fit in John's car trunk? [Yes]



9 INFERENCE IN
FIRST-ORDER LOGIC

In which we define inference mechanisms that can efficiently answer questions posed
in first-order logic.

Chapter 6 defined the notion of inference, and showed how sound and complete inference can
be achieved for prepositional logic. In this chapter, we extend these results to first-order logic.
In Section 9.1 we provide some additional basic inference rules to deal with quantifiers. In
Section 9.2, we show how these inference rules, along with those for prepositional logic, can
be chained together to make proofs. By examining these proofs, we can come up with more
powerful inference rules that make proofs much shorter and more intuitive. This makes it
possible to design inference procedures that are sufficiently powerful to be of use to a knowledge-
based agent. These rules and procedures are discussed in Sections 9.3 and 9.4. Section 9.5
describes the problem of completeness for first-order inference, and discusses the remarkable
result, obtained by Kurt Godel, that if we extend first-order logic with additional constructs
to handle mathematical induction, then there is no complete inference procedure; even though
the needle is in the metaphorical haystack, no procedure can guarantee to find it. Section 9.6
describes an inference procedure called resolution that is complete for any set of sentences in
first-order logic, and Section 9.7 proves that it is complete.

INFERENCE RULES INVOLVING QUANTIFIERS

In Section 6.4, we saw the inference rules for propositional logic: Modus Ponens, And-
Elimination, And-Introduction, Or-Introduction, and Resolution. These rules hold for first-order
logic as well. But we will need additional inference rules to handle first-order logic sentences
with quantifiers. The three additional rules we introduce here are more complex than previous
ones, because we have to talk about substituting particular individuals for the variables. We will
use the notation SUBST(#, a) to denote the result of applying the substitution (or binding list) 6
to the sentence a. For example:

SVEST({x/Sam, ylPam], Likes(x,y)) = Likes(Sam,Parri)

265



266 Chapter 9. Inference in First-Order Logic

The three new inference rules are as follows:
UNIVERSAL
ELIMINATION

EXISTENTIAL
ELIMINATION

EXISTENTIAL
INTRODUCTION

0 Universal Elimination: For any sentence a, variable v, and ground term1 g:
V v a

0

SUBST({v/g},a) -
For example, from V* Likes(x,IceCream), we can use the substitution {x/Ben} and infer
Likes(Ben, IceCream).
Existential Elimination: For any sentence a, variable v, and constant symbol k that does
not appear elsewhere in the knowledge base:

3 v a
SUBST({v/fc},a)

For example, from 3x Kill(x, Victim), we can infer Kill(Murderer, Victim), as long as
Murderer does not appear elsewhere in the knowledge base.

<C> Existential Introduction: For any sentence o, variable v that does not occur in a, and
ground term g that does occur in a:

3v SUBST({g/v},a)
For example, from Likes(Jerry, IceCream) we can infer 3 x Likes(x, IceCream).

You can check these rules using the definition of a universal sentence as the conjunction of all its
possible instantiations (so Universal Elimination is like And-Elimination) and the definition of
an existential sentence as the disjunction of all its possible instantiations.

It is very important that the constant used to replace the variable in the Existential Elimi-
nation rule is new. If we disregard this requirement, it is easy to produce consequences that do
not follow logically. For example, suppose we have the sentence 3 x Father(x, John) ("John has
a father"). If we replace the variable x by the constant John, we get Father(John, John), which is
certainly not a logical consequence of the original sentence. Basically, the existential sentence
says there is some object satisfying a condition, and the elimination process is just giving a name
to that object. Naturally, that name must not already belong to another object. Mathematics •
provides a nice example: suppose we discover that there is a number that is a little bigger than
2.71828 and that satisfies the equation d(xy)/dy=xy for x. We can give this number a name, such i
as e, but it would be a mistake to give it the name of an existing object, like TT.

9.2 AN EXAMPLE PROOF

Having defined some inference rules, we now illustrate how to use them to do a proof. From here,
it is only a short step to an actual proof procedure, because the application of inference rules is
simply a question of matching their premise patterns to the sentences in the KB and then adding
1 Recall from Chapter 7 that a ground term is a term that contains no variables—that is, either a constant symbol or a
function symbol applied to some ground terms.



Section 9.2. An Example Proof 267

their (suitably instantiated) conclusion patterns. We will begin with the situation as it might be
described in English:

The law says that it is a crime for an American to sell weapons to hostile nations.
The country Nono, an enemy of America, has some missiles, and all of its missiles
were sold to it by Colonel West, who is American.

What we wish to prove is that West is a criminal. We first represent these facts in first-order
logic, and then show the proof as a sequence of applications of the inference rules.2

"... it is a crime for an American to sell weapons to hostile nations":
V x, y, z American(x) A Weapon(y) A Nation(z) A Hostile(z)

A Sells(x, z, y) => Criminal(x)
"Nono ... has some missiles":

3;c Owns(Nono,x)f\Missile(x) (9.2)
"All of its missiles were sold to it by Colonel West":

V* Owns(Nono,x) A Missile(x) => Sells(West,Nono,x) (9.3)
We will also need to know that missiles are weapons:

MX Missile(x) => Weapon(x) (9.4)
and that an enemy of America counts as "hostile":

MX Enemy(x,America) -=> Hostile(x) (9.5)
"West, who is American ...":

American(West) (9.6)
"The country Nono ...":

Nation(Nono) (9.7)
"Nono, an enemy of America ...":

Enemy (Nono, America) (9.8)
Nation(America) (9.9)

The proof consists of a series of applications of the inference rules:

From (9.2) and Existential Elimination:
Owns(Nono, M1) A Missile(M 1) (9.10)

From (9.10) and And-Elimination:
Owns(Nono,M\) (9.11)
Missile(M\) (9.12)

From (9.4) and Universal Elimination:
Missile(M 1) => Weapon(M 1) (9.13)

2 Our representation of the facts will not be ideal according to the standards of Chapter 8, because this is mainly an
exercise in proof rather than knowledge representation.



268 Chapter 9. Inference in First-Order Logic

Sells(West,Nono,M\)

(9.14)

(9.15)

(9-16)

(9.17)

(9.18)

(9-19)

(9.20)

(9.21)

From (9.12), (9.13), and Modus Ponens:
Weapon(Ml)

From (9.3) and Universal Elimination:
Owns(Nono,M\) A Missile(Ml) =;

From (9.15), (9.10), and Modus Ponens:
Sells(West,Nono,M\)

From (9.1) and Universal Elimination (three times):
American(West) A Weapon(M\) A Nation(Nond) A Hostile(Nono}

A Sells(West,Nono,MY) => Criminal(Wesi)
From (9.5) and Universal Elimination:

Enemy(Nono, America) => Hostile(Nono)
From (9.8), (9.18), and Modus Ponens:

Hostile(Nono)
From (9.6), (9.7), (9.14), (9.16), (9.19), and And-Introduction:

American(West) A Weapon(M\) A Nation(Nono)
A Hostile(Nono) A Sells(West,Nono,Ml)

From (9.17), (9.20), and Modus Ponens:
Criminal(West)

If we formulate the process of finding a proof as a search process, then obviously this proof is the
solution to the search problem, and equally obviously it would have to be a pretty smart program
to find the proof without following any wrong paths. As a search problem, we would have

Initial state = KB (sentences 9.1-9.9)

Operators = applicable inference rules

Goal test = KB containing Criminal(West)
This example illustrates some important characteristics:

• The proof is 14 steps long.
• The branching factor increases as the knowledge base grows; this is because some of the

inference rules combine existing facts.
• Universal Elimination can have an enormous branching factor on its own, because we can

replace the variable by any ground term.
• We spent a lot of time combining atomic sentences into conjunctions, instantiating universal •.

rules to match, and then applying Modus Ponens.
Thus, we have a serious difficulty, in the form of a collection of operators that give long proofs ;
and a large branching factor, and hence a potentially explosive search problem. We also have
an opportunity, in the form of an identifiable pattern of application of the operators (combining j
atomic sentences, instantiating universal rules, and then applying Modus Ponens). If we can,-
define a better search space in which a single operator takes these three steps, then we can find <
proofs more efficiently.



Section 9.3. Generalized Modus Ponens 269

GENERALIZED MODUS PONENS

GENERALIZED
MODUS PONENS

In this section, we introduce a generalization of the Modus Ponens inference rule that does in a
single blow what required an And;Introduction, Universal Elimination, and Modus Ponens in the
earlier proof. The idea is to be able to take a knowledge base containing, for example:

Missile(Ml)
Owns(Nono,Ml)
V ' x Missile(x) A Owns(Nono,x) =>• Sells(West, Nono,x)

and infer in one step the new sentence

Sells(West,Nono,M])
Intuitively, this inference seems quite obvious. The key is to find some x in the knowledge base
such that x is a missile and Nono owns x, and then infer that West sells this missile to Nono.
More generally, if there is some substitution involvings that makes the premise of the implication
identical to sentences already in the knowledge base, then we can assert the conclusion of the
implication, after applying the substitution. In the preceding case, the substitution {x/M\}
achieves this.

We can actually make Modus Ponens do even more work. Suppose that instead of knowing
Owns(Nono,M\), we knew that everyone owns Ml (a communal missile, as it were):

Vy Owns(y,M\)
Then we would still like to be able to conclude that Sells(West, Nono,M\}. This inference could
be carried out if we first applied Universal Elimination with the substitution {ylNono} to get
Owns(Nono,Ml). The generalized version of Modus Ponens can do it in one step by finding a
substitution for both the variables in the implication sentence and the variables in the sentences to
be matched. In this case, applying the substitution {xlM\ , y/Nono} to the premise Owns(Nono,x)
and the sentence Owns(y,M\) will make them identical. If this can be done for all the premises
of the implication, then we can infer the conclusion of the implication. The rule is as follows:

0 Generalized Modus Ponens: For atomic sentences p/, p/, and q, where there is a substi-
tution 0 such that SuBST(6>,p/) = SUBST(0,p/), for all i:

pi', p2', ..., p,,', (pi Ap2 A . . . Apn =><?)

There are n + 1 premises to this rule: the n atomic sentences p' and the one implication. There
is one conclusion: the result of applying the substitution to the consequent q. For the example
with West and the missile:

p\ is Missile(Ml) pi is Missile(x)
P2 is Owns(y,M\) p2 is Owns(Nono,x)
0 is {x/Ml,y/Nono} q is Sells(West,Nono,x)
SUBST(6», q) is Sells(West, Nono, Ml)

Generalized Modus Ponens is an efficient inference rule for three reasons:
1 . It takes bigger steps, combining several small inferences into one.



270 Chapter 9. Inference in First-Order Logic

2. It takes sensible steps—it uses substitutions that are guaranteed to help rather than randomly
UNIFICATION trying Universal Eliminations. The unification algorithm takes two sentences and returns

a substitution that makes them look the same if such a substitution exists.
3. It makes use of a precompilation step that converts all the sentences in the knowledge base

CANONICAL FORM into a canonical form. Doing this once and for all at the start means we need not waste
time trying conversions during the course of the proof.

We will deal with canonical form and unification in turn.

Canonical Form
We are attempting to build an inferencing mechanism with one inference rule—the generalized
version of Modus Ponens. That means that all sentences in the knowledge base should be in a
form that matches one of the premises of the Modus Ponens rule—otherwise, they could never
be used. In other words, the canonical form for Modus Ponens mandates that each sentence in
the knowledge base be either an atomic sentence or an implication with a conjunction of atomic
sentences on the left hand side and a single atom on the right. As we saw on page 174, sentences

HORN SENTENCES of this form are called Horn sentences, and a knowledge base consisting of only Horn sentences
is said to be in Horn Normal Form.

We convert sentences into Horn sentences when they are first entered into the knowledge
base, using Existential Elimination and And-Elimination.3 For example, 3 x Owns(Nono,x) A
Missile(x) is converted into the two atomic Horn sentences Owns(Nono,M\) and Missle(Ml).
Once the existential quantifiers are all eliminated, it is traditional to drop the universal quantifiers,
so that Vy Owns(y,Ml) would be written as Owns(y,Ml). This is just an abbreviation—the
meaning of y is still a universally quantified variable, but it is simpler to write and read sentences
without the quantifiers. We return to the issue of canonical form on page 278.

UNIFIER

Unification
The job of the unification routine, UNIFY, is to take two atomic sentences p and q and return a
substitution that would make p and q look the same. (If there is no such substitution, then UNIFY
should return fail.) Formally,

UNIFY (p, q) = 6 where SuBST(0,p) = SuBST(0,#)
0 is called the unifier of the two sentences. We will illustrate unification in the context of an
example, delaying discussion of detailed algorithms until Chapter 10. Suppose we have a rule

Knows(John,x) =>• Hates(John,x)

("John hates everyone he knows") and we want to use this with the Modus Ponens inference rule
to find out whom he hates. In other words, we need to find those sentences in the knowledge base

3 We will see in Section 9.5 that not all sentences can be converted into Horn form. Fortunately, the sentences in our
example (and in many other problems) can be.



Section 9.3. Generalized Modus Ponens 271

STANDARDIZE APART

that unify with Knows(John, x), and then apply the unifier to Hates(John, x). Let our knowledge
base contain the following sentences:

Knows(John, Jane)
Knows(y, Leonid)
Knows(y, Mother(y))
Knows(x, Elizabeth)

(Remember that x and y are implicitly universally quantified.) Unifying the antecedent of the
rule against each of the sentences in the knowledge base in turn gives us:

\jNlFY(Knows(John,x), Knows( John, Jane)) - {x/Jane}
UNlFY(Knows(John, x), Knows(y, Leonid)) = {x/Leonid, ylJohn}
UNiFY(Knows(John,x), Know s(y,Mother (y))) = {ylJohn,xlMother(John)}
UNlF\(Knows(John,x), Know s(x, Elizabeth)) =fail

The last unification fails because x cannot take on the value John and the value Elizabeth at the
same time. But intuitively, from the facts that John hates everyone he knows and that everyone
knows Elizabeth, we should be able to infer that John hates Elizabeth. It should not matter if the
sentence in the knowledge base is Knows(x, Elizabeth) or Knows(y, Elizabeth).

One way to handle this problem is to standardize apart the two sentences being unified,
which means renaming the variables of one (or both) to avoid name clashes. After standardizing
apart, we would have

\jNlFY(Knows(John,x\), Know s(x2, Elizabeth)) = {x\ I Elizabeth, x2l John}

The renaming is valid because Vx Knows(x, Elizabeth) and Vx2 Knows(x2, Elizabeth) have the
same meaning. (See also Exercise 9.2.)

There is one more complication: we said that UNIFY should return a substitution that makes
the two arguments look the same. But if there is one such substitution, then there are an infinite
number:

UNlFY(Knows(John,x), Knows(y, z)) = {y/John,x/z}
or {ylJohn,xlz,wlFreda}
or {y/John,xlJohn, zlJohn]
or • • •

Thus, we insist that UNIFY returns the most general unifier (or MGU), which is the substitution
that makes the least commitment about the bindings of the variables. In this case it is {ylJohn, x/z}.

Sample proof revisited
Let us solve our crime problem using Generalized Modus Ponens. To do this, we first need to
put the original knowledge base into Horn form. Sentences (9.1) through (9.9) become

American(x) A Weapon(y) A Nation(z) A Hostile(z)
A Sells(x, z, y) => CriminaKx)

Owns(Nono,M\)
(9.22)
(9.23)



272 Chapter 9. Inference in First-Order Logic

Missile(Ml) (9.24)
Owns(Nono, x) A Missile(x) => Sells(West, Nono, x) (9.25)
Missile(x) => Weapon(x) (9.26)
Enemy(x, America) => Hostile(x) (9.27)
American(West) (9.28)
Nation(Nono) (9.29)
Enemy(Nono, America) (9.30)
Nation(America) (9.31)

The proof involves just four steps. From (9.24) and (9.26) using Modus Ponens:

Weapon(M\) (9.32)

From (9.30) and (9.27) using Modus Ponens:

Hosnle(Nono) (9.33)

From (9.23), (9.24), and (9.25) using Modus Ponens:
Sells(West,Nono,Ml) (9.34)

From (9.28), (9.32), (9.29), (9.33), (9.34) and (9.22), using Modus Ponens:
Criminal(West) (9.35)

This proof shows how natural reasoning with Generalized Modus Ponens can be. (In fact, one
might venture to say that it is not unlike the way in which a human might reason about the
problem.) In the next section, we describe systematic reasoning algorithms using Modus Ponens.
These algorithms form the basis for many large-scale applications of AI, which we describe in
Chapter 10.

9.4 FORWARD AND BACKWARD CHAINING

FORWARD CHAINING

BACKWARD
CHAINING

Now that we have a reasonable language for representing knowledge, and a reasonable inference
rule (Generalized Modus Ponens) for using that knowledge, we will study how a reasoning
program is constructed.

The Generalized Modus Ponens rule can be used in two ways. We can start with the
sentences in the knowledge base and generate new conclusions that in turn can allow more
inferences to be made. This is called forward chaining. Forward chaining is usually used when
a new fact is added to the database and we want to generate its consequences. Alternatively,
we can start with something we want to prove, find implication sentences that would allow us
to conclude it, and then attempt to establish their premises in turn. This is called backward
chaining, because it uses Modus Ponens backwards. Backward chaining is normally used when
there is a goal to be proved.



Section 9.4. Forward and Backward Chaining 273

Forward-chaining algorithm
Forward chaining is normally triggered by the addition of a new fact p to the knowledge base. It
can be incorporated as part of the TELL process, for example. The idea is to find all implications
that have p as a premise; then if the other premises are already known to hold, we can add the
consequent of the implication to the knowledge base, triggering further inference (see Figure 9.1).

R E N A M I N G The FORWARD-CHAIN procedure makes use of the idea of a renaming. One sentence is
a renaming of another if they are identical except for the names of the variables. For example,
Likes(x, IceCream) and Likes(y, IceCream) are renamings of each other because they only differ
in the choice of x or y, but Likes(x, x) and Likes(x, y) are not renamings of each other.

COMPOSITION We also need the idea of a composition of substitutions. COMPOSE^ , 02) is the substitution
whose effect is identical to the effect of applying each substitution in turn. That is,

SUBST(COMPOSE(0|,02),p) = SUBST(02,SUBST(#i,p))

We will use our crime problem again to illustrate how FORWARD-CHAIN works. We will
begin with the knowledge base containing only the implications in Horn form:

American(x) A Weaponry) A Nation(z) A Hostile(z)
A Sells(x, z, y) => Criminal(x) (9.36)

Owns(Nono, x) A Missile(x) => Sells(West, Nono, x) (9.37)
Missile(x) => Weapon(x) (9.38)
Enemy(x, America) => Hostile(x) (9.39)

procedure FORWARD-CHAIN'S, p)

if there is a sentence in KB that is a renaming of p then return
Add p to KB
for each (p\ A . . . A p,, => q) in KB such that for some i, UNIFY(P,,/?) = 0 succeeds do

FlND-AND-lNFER(A"B, [p\, ... ,p-,-\,pM,. .. ,p,,],q,9)
end

procedure FIND-AND-lNFER'fi, premises, conclusion, 0)

if premises = [ \ then
FORWARD-CHAIN'S, SuBST(0, conclusion))

else for each/;' in KB such that UNlFY(p', SUBST(0, FlRST( premises))) = #2 do
FlND-AND-lNFER(/fS, REST(premises), conclusion, COMPOSE^, #2))

end

Figure 9.1 The forward-chaining inference algorithm. It adds to KB all the sentences that can
be inferred from the sentence/;. I f / j is already in KB, it does nothing. If/; is new, consider each
implication that has a premise that matches p. For each such implication, if all the remaining
premises are in KB, then infer the conclusion. If the premises can be matched several ways, then
infer each corresponding conclusion. The substitution 6> keeps track of the way things match.



274 Chapter 9. Inference in First-Order Logic

DATA-DRIVEN

Now we add the atomic sentences to the knowledge base one by one, forward chaining each time
and showing any additional facts that are added:

FORWAKD-CHAJN(KB,American(West))
Add to the KB. It unifies with a premise of (9.36), but the other premises of (9.36) are not known,
so FORWARD-CHAIN returns without making any new inferences.

FOKWARD-CUMN(KB,Nation(Nono))
Add to the KB. It unifies with a premise of (9.36), but there are still missing premises, so
FORWARD-CHAIN returns.

FORWARD-CHAIN (KB, Enemy(Nono, America))
Add to the KB. It unifies with the premise of (9.39), with unifier {x/Nono}. Call

FORWARD-CHAIN (KB, Hostile(Nono))
Add to the KB. It unifies with a premise of (9.36). Only two other premises are known, so
processing terminates.

FORWARD-CHAIN (KB, Owns(Nono,Ml))
Add to the KB. It unifies with a premise of (9.37), with unifier {x/Ml}. The other premise, now
Missile(Ml), is not known, so processing terminates.

FORWARD-CHAIN(A'B, Missile(M\))
Add to the KB. It unifies with a premise of (9.37) and (9.38). We will handle them in that order.

• Missile(Ml) unifies with a premise of (9.37) with unifier {xlM\}. The other premise, now
Owns(Nono,M\), is known, so call

FORWARD-CHAIN(/fB, Sells(West, Nono,M\))
Add to the KB. It unifies with a premise of (9.36), with unifier {x/West,y/Ml,z/Nono}.
The premise Weapon(Ml) is unknown, so processing terminates.

• Missile(Ml) unifies with a premise of (9.38) with unifier {x/Ml}. Call
FORWARD-CHAIN(£B, Weapon(Ml))

Add to the KB. It unifies with a premise of (9.36), with unifier {y/Ml}. The other premises
are all known, with accumulated unifier {xlWest,y/M\,zlNono}. Call

FORWARD-CHAlN(A:fi, Criminal( West))
Add to the KB. Processing terminates.

As can be seen from this example, forward chaining builds up a picture of the situation gradually
as new data comes in. Its inference processes are not directed toward solving any particular
problem; for this reason it is called a data-driven or data-directed procedure. In this example,
there were no rules capable of drawing irrelevant conclusions, so the lack of directedness was not
a problem. In other cases (for example, if we have several rules describing the eating habits of
Americans and the price of missiles), FORWARD-CHAIN will generate many irrelevant conclusions.
In such cases, it is often better to use backward chaining, which directs all its effort toward the
question at hand.



Section 9.4. Forward and Backward Chaining 275

Backward-chaining algorithm
Backward chaining is designed to find all answers to a question posed to the knowledge base.
Backward chaining therefore exhibits the functionality required for the ASK procedure. The
backward-chaining algorithm BACK-CHAIN works by first checking to see if answers can be
provided directly from sentences'in the knowledge base. It then finds all implications whose
conclusion unifies with the query, and tries to establish the premises of those implications, also by
backward chaining. If the premise is a conjunction, then BACK-CHAIN processes the conjunction
conjunct by conjunct, building up the unifier for the whole premise as it goes. The algorithm is
shown in Figure 9.2.

Figure 9.3 is the proof tree for deriving Criminal(West) from sentences (9.22) through
(9.30). As a diagram of the backward chaining algorithm, the tree should be read depth-first,
left to right. To prove Criminal(x) we have to prove the five conjuncts below it. Some of these
are in the knowledge base, and others require further backward chaining. Each leaf node has
the substitution used to obtain it written below. Note that once one branch of a conjunction
succeeds, its substitution is applied to subsequent branches. Thus, by the time BACK-CHAIN gets
to Sells(x, z, v), all the variables are instantiated. Figure 9.3 can also be seen as a diagram of
forward chaining. In this interpretation, the premises are added at the bottom, and conclusions
are added once all their premises are in the KB. Figure 9.4 shows what can happen if an incorrect
choice is made in the search—in this case, choosing America as the nation in question. There is
no way to prove that America is a hostile nation, so the proof fails to go through, and we have to
back up and consider another branch in the search space.

function BACK-CHAIN(/CB, q) returns a set of substitutions

BACK-CHAIN-LlST(/f5, [<?],{})

function BACK-CHAlN-LiST(Ar5, qlist, 9) returns a set of substitutions
inputs: KB, a knowledge base

qlist, a list of conjuncts forming a query (0 already applied)
6, the current substitution

static: answers, a set of substitutions, initially empty

if qlist is empty then return {6}
q <— FlRST(<?/«?)

for each q\ in KB such that #, <— UNiFY(g, <?,') succeeds do
Add COMPOSE^, #,) to answers

end
for each sentence (pi A ... A pn => q't) in KB such that 8t <— UNiFY(g, <?,') succeeds do

answers^- BACK-CHAiN-LlST(£B,SUBST(0j, [p\ .. ./?„]),COMPOSE(0,0;)) U answers
end

return the union of BACK-CHAIN-LlST(/fB, REST(^Wif). #) f°r each 6 € answers

Figure 9.2 The backward-chaining algorithm.



276 Chapter 9. Inference in First-Order Logic

American(x) \HighTech(y) | | Weapon(Ml) | | Nation(z) \ \Hostile(Nono) \ \ SellsfWest,Nono,Ml)

Yes, {x/Westf Yes, {y/Mlf Yes, Iz/Nono}

\ Missile(Ml) \

Yes, {/

Enemy( Nona,America)

Yes, I}

Owns(Nono,Ml) \Missile(Ml)

Yes, {I Yes, {}

Figure 9.3 Proof tree to infer that West is a criminal.

fx/West/
Atnerican(x) Weaponry) Nation(z) Hostile(America) Sells(West,America,Ml)

/z/America/ Fail

Missile(y)

Figure 9.4 A failed proof tree: nothing can be inferred.

9.5 COMPLETENESS

Suppose we have the following knowledge base:
V* P(x) => Q(x)
V* -./>(*) => R(x)
Vx Q(x) => S(x)
MX R(x) => S(x)

Then we certainly want to be able to conclude S(A); S(A) is true if Q(A) or R(A) is true, and one
of those must be true because either P(A) is true or -*P(A) is true.

(9-40)1



ction 9.6.Section Resolution: A Complete Inference Procedure 277

COMPLETENESS
THEOREM

Unfortunately, chaining with Modus Ponens cannot derive S(A) for us. The problem is that
MX ->P(x) =>• R(x) cannot be converted to Horn form, and thus cannot be used by Modus Ponens.

INCOMPLETE That means that a proof procedure using Modus Ponens is incomplete: there are sentences
entailed by the knowledge base that the procedure cannot infer.

The question of the existence of complete proof procedures is of direct concern to mathe-
maticians. If a complete proof procedure can be found for mathematical statements, two things
follow: first, all conjectures can be established mechanically; second, all of mathematics can
be established as the logical consequence of a set of fundamental axioms. A complete proof
procedure for first-order logic would also be of great value in AI: barring practical issues of
computational complexity, it would enable a machine to solve any problem that can be stated in
the language.

The question of completeness has therefore generated some of the most important mathe-
matical work of the twentieth century. This work culminated in the results proved by the German
mathematician Kurt Godel in 1930 and 1931. Godel has some good news for us; his complete-
ness theorem showed that, for first-order logic, any sentence that is entailed by another set of
sentences can be proved from that set. That is, we can find inference rules that allow a complete
proof procedure R:

if KB |= Q then KB \-R a

The completeness theorem is like saying that a procedure for finding a needle in a haystack does
exist. This is not a trivial claim, because universally quantified sentences and arbitrarily nested
function symbols add up to haystacks of infinite size. Godel showed that a proof procedure exists,
but he did not demonstrate one; it was not until 1965 that Robinson published his resolution
algorithm, which we discuss in the next section.

There is one problem with the completeness theorem that is a real nuisance. Note that
we said tha t i f a sentence follows, then it can be proved. Normally, we do not know until the
proof is done that the sentence does follow; what happens when the sentence doesn't follow?
Can we tell? Well, for first-order logic, it turns out that we cannot; our proof procedure can go
on and on, but we will not know if it is stuck in a hopeless loop or if the proof is just about to
pop out. (This is like the halting problem for Turing machines.) Entailment in first-order logic

SEMIDECIDABLE is thus semidecidablc, that is, we can show that sentences follow from premises, if they do, but
we cannot always show it if they do not. As a corollary, consistency of sets of sentences (the
question of whether there is a way to make all the sentences true) is also semidecidable.

RESOLUTION
ALGORITHM

RESOLUTION: A COMPLETE INFERENCE PROCEDURE

Recall from Chapter 6 that the simple version of the resolution inference rule for propositional
logic has the following form:

aV/3, -i/g V 7
a V 7

or equivalently
-ia => /?, /3 => 7



278 Chapter 9. Inference in First-Order Logic

The rule can be understood in two ways. First, we can see it as reasoning by cases. If 3 is false,
then from the first disjunction, a must be true; but if l3 is true, then from the second disjunction
~ must be true. Hence, either a or - must be true. The second way to understand it is as
transitivity of implication: from two implications, we derive a third that links the premise of the
first to the conclusion of the second. Notice that Modus Ponens does not allow us to derive new
implications; it only derives atomic conclusions. Thus, the resolution rule is more powerful than
Modus Ponens. In this section, we will see that a generalization of the simple resolution rule can
serve as the sole inference rule in a complete inference procedure for first-order logic.

GENERALIZED
RESOLUTION
(DISJUNCTIONS)

GENERALIZED
RESOLUTION
(IMPLICATIONS)

The resolution inference rule

In the simple form of the resolution rule, the premises have exactly two disjuncts. We can extend
that to get a more general rule that says that for two disjunctions of any length, if one of the
disjuncts in one clause (/?,) unifies with the negation of a disjunct in the other (qk), then infer the
disjunction of all the disjuncts except for those two:

0 Generalized Resolution (disjunctions): For literals/?, and q,,
where UNlFY(/7;, ^qk) = 0:

p\ V . . . pj ...Vpm,
q\ V • • • q

SUBST(#, (/?, V . . . pj. , V Pj+i . . . pn, V <?, . . . qk- 1 V qM . . . V q,,))

Equivalently, we can rewrite this in terms of implications:

<C> Generalized Resolution (implications): For atoms /?,•,<?,•, r,,s/
where UNIFY (ph qk) = 0:

q\ V . . . qk . . . V q,,4

CONJUNCTIVE
NORMAL FORM

IMPLICATIVE
NORMAL FORM

Canonical forms for resolution
In the first version of the resolution rule, every sentence is a disjunction of literals. All the
disjunctions in the KB are assumed to be joined in one big, implicit conjunction (as in a normal
KB), so this form is called conjunctive normal form (or CNF), even though each individual
sentence is a disjunction (confusing, isn't it?).

In the second version of the resolution rule, each sentence is an implication with a conjunc-
tion of atoms on the left and a disjunction of atoms on the right. We call this implicativenormal
form (or INF), although the name is not standard. We can transform the sentences in (9.40) into
either of the two forms, as we now show. (Notice that we have standardized apart the variable
names in these sentences.)



Section 9.6. Resolution: A Complete Inference Procedure 279

Conjunctive Normal Form

-.P(w) V Q(w)
P(x) V R(x)
-GO-) V S(y)
->R(z) V S(z)

Implicative Normal Form

P(w) =1
True => P(x)V
Q(y) => 500 (9.41)

The two forms are notational variants of each other, and as we will see on page 281, any set
of sentences can be translated to either form. Historically, conjunctive normal form is more
common, but we will use implicative normal form, because we find it more natural.

It is important to recognize that resolution is a generalization of modus ponens. Clearly,
the implicative normal form is more general than Horn form, because the right-hand side can be a
disjunction, not just a single atom. But at first glance it seems that Modus Ponens has the ability
to combine atoms with an implication to infer a conclusion in a way that resolution cannot do.
This is just an illusion—once we realize that an atomic sentence o in implicative normal form is
written as True => a, we can see that modus ponens is just a special case of resolution:

Q-, a =>• i3 True =>• a, a => J—————— is equivalent to ————————-——
ft True => 3

Even though True => a is the "correct" way to write an atomic sentence in implicative normal
form, we will sometimes write a as an abbreviation.

Resolution proofs
One could use resolution in a forward- or backward-chaining algorithm, just as Modus Ponens is
used. Figure 9.5 shows a three-step resolution proof of S(A) from the KB in (9.41).

P(w) => S(w) True => P(x) vR(x)

True -> S(x) vR(x)

True => S(A)

Figure 9.5 A proof that 5(A) follows from the KB in (9.41), using resolution. Each "vee" in
the proof tree represents a resolution step: the two sentences at the top are the premises, and the
one at the bottom is the conclusion or resolvent. The substitution is shown for each resolution.



280 Chapter 9. Inference in First-Order Logic

Technically, the final resolvent should be True => S(A) V S(A), but we have taken the
liberty of removing the redundant disjunct. In some systems, there is a separate inference rule

FACTORING called factoring to do this, but it is simpler to just make it be part of the resolution rule.
Chaining with resolution is more powerful than chaining with Modus Ponens, but it is still

not complete. To see that, consider trying to prove P V ~^P from the empty KB. The sentence is
valid, but with nothing in the KB, there is nothing for resolution to apply to, and we are unable
to prove anything.

REFUTATION One complete inference procedure using resolution is refutation, also known as proof by
contradiction and reductio ad absurdum. The idea is that to prove P, we assume P is false
(i.e., add ->P to the knowledge base) and prove a contradiction. If we can do this, then it must be
that the knowledge base implies P. In other words:

(KB A -./> => False) O (KB => P)

Proof by contradiction is a powerful tool throughout mathematics, and resolution gives us a
simple, sound, complete way to apply it. Figure 9.6 gives an example of the method. We start
with the knowledge base of (9.41) and are attempting to prove S(A). We negate this to get
-<S(A), which in implicative normal form is S(A) => False, and add it to the knowledge base.
Then we apply resolution until we arrive at a contradiction, which in implicative normal form is
True =>• False. It takes one more step than in Figure 9.5, but that is a small price to pay for the
security of a complete proof method.

True --> S(x) S(A) => False

True => False

Figure 9.6 A proof that S(A) follows from the KB in (9.41) using resolution with refutation.



Section 9.6. Resolution: A Complete Inference Procedure 281

Conversion to Normal Form
So far, we have claimed that resolution is complete, but we have not shown it. In this section we
show that any first-order logic sentence can be put into implicative (or conjunctive) normal form,
and in the following section we will show that from a set of sentences in normal form we can
prove that a given sentence follows from the set.

We present the procedure for converting to normal form, step by step, showing that each
step does not change the meaning; it should be fairly clear that all possible sentences are dealt
with properly. You should understand why each of the steps in this procedure is valid, but few
people actually manage to remember them all.

<> Eliminate implications: Recall that p => q is the same as ~^p V q. So replace all
implications by the corresponding disjunctions.

<) Move -i inwards: Negations are allowed only on atoms in conjunctive normal form, and
not at all in implicative normal form. We eliminate negations with wide scope using de
Morgan's laws (see Exercise 6.2), the quantifier equivalences and double negation:

i(p V q)
i(/> A q)
iV x,p
<3x,p

becomes
becomes
becomes
becomes
becomes

->p A ~^
->p V -*
3x ->p

0 Standardize variables: For sentences like (Vx P(x)) V (3* Q(x)) that use the same
variable name twice, change the name of one of the variables. This avoids confusion later
when we drop the quantifiers.

0 Move quantifiers left: The sentence is now in a form in which all the quantifiers can be
moved to the left, in the order in which they appear, without changing the meaning of the
sentence. It is tedious to prove this properly; it involves equivalences such as

p V V x q becomes V x p V q
which is true because p here is guaranteed not to contain an x.

SKOLEMIZATION 0 Skolemize: Skolemization is the process of removing existential quantifiers by elimina-
tion. In the simple case, it is just like the Existential Elimination rule of Section 9.1 —
translate 3x P(x) into P(A), where A is a constant that does not appear elsewhere in
the KB. But there is the added complication that some of the existential quantifiers, even
though moved left, may still be nested inside a universal quantifier. Consider "Everyone
has a heart":

Vx Person(x) =>• 3y Heart(y) A Has(x,y)
If we just replaced y with a constant, H, we would get

V;c Person(x) => Heart(H) A Has(x,H)
which says that everyone has the same heart H. We need to say that the heart they have is
not necessarily shared, that is, it can be found by applying to each person a function that
maps from person to heart:

V* Person(x) =? Heart(F(x)) A Has(x,F(x))



282 Chapter 9. Inference in First-Order Logic

where F is a function name that does not appear elsewhere in the KB. F is called a
SKOLEM FUNCTION Skolem function. In general, the existentially quantified variable is replaced by a term

that consists of a Skolem function applied to all the variables universally quantified outside
the existential quantifier in question. Skolemization eliminates all existentially quantified
variables, so we are now free to drop the universal quantifiers, because any variable must
be universally quantified.

<> Distribute A over V: (a A b) V c becomes (a V c) A (b V c).
<C> Flatten nested conjunctions and disjunctions: (a V b} V c becomes (a V b V c), and

(a A b) A c becomes (a A b A c).
At this point, the sentence is in conjunctive normal form (CNF): it is a conjunction where
every conjunct is a disjunction of literals. This form is sufficient for resolution, but it may
be difficult for us humans to understand.

0 Convert disjunctions to implications: Optionally, you can take one more step to convert
to implicative normal form. For each conjunct, gather up the negative literals into one list,
the positive literals into another, and build an implication from them:
(->a V -1/7 V c V d) becomes (a A b =>• c V d)

Example proof
We will now show how to apply the conversion procedure and the resolution refutation procedure
on a more complicated example, which is stated in English as:

Jack owns a dog.
Every dog owner is an animal lover.
No animal lover kills an animal.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

First, we express the original sentences (and some background knowledge) in first-order logic:
A. 3 x Dog(x) A Owns(Jack,x)
B. VJK (3 y Dog(y) A Owns(x,y)~) => AnimalLover(x)
C.Vx AnimalLover(x) => My Animal(y) =>• ->Kills(x,y)
D. Kills(Jack, Tuna) V Kills(Curiosity, Tuna)
E. Cat(Tuna)
F. \/x Cat(x) => Animal(x)

Now we have to apply the conversion procedure to convert each sentence to implicative normal
form. We will use the shortcut of writing P instead of True => P:

Al. Dog(D)
A2. Owns(Jack,D)
B. Dog(y) A Owns(x,y) => AnimalLover(x)
C. AnimalLover(x) A Animal(y) A Kills(x, y) => False
D. Kills(Jack, Tuna) V Kills(Curiosity, Tuna}
E. Cat(Tuna)
F. Cat(x) => Animal(x)



Section 9.6. Resolution: A Complete Inference Procedure 283

The problem is now to show that Kills(Curiosity, Tuna) is true. We do that by assuming the
negation, Kills(Curiosity, Tuna) => False, and applying the resolution inference rule seven
times, as shown in Figure 9.7. We eventually derive a contradiction, False, which means that the
assumption must be false, and Kills(Curiosity, Tuna) is true after all. In English, the proof could
be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did,
thus Jack must have. But Jack owns D, and D is a dog, so Jack is an animal lover.
Furthermore, Tuna is a cat, and cats are animals, so Tuna is an animal. Animal lovers
don't kill animals, so Jack couldn't have killed Tuna. But this is a contradiction,
because we already concluded that Jack must have killed Tuna. Hence, the original
supposition (that Curiosity did not kill Tuna) must be wrong, and we have proved
that Curiosity did kill Tuna.

The proof answers the question "Did Curiosity kill the cat?" but often we want to pose more
general questions, like "Who killed the cat?" Resolution can do this, but it takes a little more
work to obtain the answer. The query can be expressed as 3 w Kills(w, Tuna). If you repeat the
proof tree in Figure 9.7, substituting the negation of this query, Kills(w, Tuna) =>• False for the
old query, you end up with a similar proof tree, but with the substitution {w/Curiosity} in one of
the steps. So finding an answer to "Who killed the cat" is just a matter of lookingin the proof tree
to find the binding of w. It is straightforward to maintain a composed unifier so that a solution is
available as soon as a contradiction is found.

Dog(D) Dog(y) A Owns(x.y) =* Animal Lover(x) AnimalLover(x) A Animal(y) A Kills(x.y) => False

AnimalLoveiix) A Killsix, Tuna) =s> FalseKillsfJack, Tuna} v Kilk(Citriosit\, Tuna)

Figure 9.7 A proof that Curiosity killed the cat, using resolution with refutation.



284 Chapter 9. Inference in First-Order Logic

Dealing with equality
There is one problem that we have not dealt with so far, namely, finding appropriate inference
rules for sentences containing the equality symbol. Unification does a good job of matching
variables with other terms: P(x) unifies with P(A). But P(A) and P(B) fail to unify, even if the
sentence A = B is in the knowledge base. The problem is that unification only does a syntactic test
based on the appearance of the argument terms, not a true semantic test based on the objects they
represent. Of course, no semantic test is available because the inference system has no access
to the objects themselves, but it should still be able to take advantage of what knowledge it has
concerning the identities and differences among objects.

One way to deal with this is to axiomatize equality, by writing down its properties. We
need to say that equality is reflexive, symmetric, and transitive, and we also have to say that we
can substitute equals for equals in any predicate or function. So we need three basic axioms, and
then one for each predicate and function:

MX x=x
Vx,y x = y => y = x
V 'x,y,z x=y/\y = z =?• x = z
\/x,y x = y => (/>,(*) & Pi(y))
Vx,y x=y => (P2(x) & P2(y})

Vw,x,y,z w=y/\x = z =>
Vw,x,y,z w = y/\x=z =>•

The other way to deal with equality is with a special inference rule. The demodulation
rule takes an equality statement x=y and any sentence with a nested term that unifies with x and
derives the same sentence with y substituted for the nested term. More formally, we can define
the inference rule as follows:

DEMODULATION 0 Demodulation: For any terms x,y, and z, where UNIFY(JC,Z) = 6:
x=y, ( . . . z . . . )

(...SUBST(0, >')...)

If we write all our equalities so that the simpler term is on the right (e.g., (x + 0) = 0), then
demodulation will do simplification, because it always replaces an expression on the left with

PARAMODULATION one on the right. A more powerful rule called paramodulation deals with the case where we do
not know x-y, but we do know, say, x = y V P(x).

Resolution strategies
We know that repeated applications of the resolution inference rule will find a proof if one exists,
but we have no guarantee of the efficiency of this process. In this section we look at four of the
strategies that have been used to guide the search toward a proof.



Section 9.6. Resolution: A Complete Inference Procedure 285

Unit preference

This strategy prefers to do resolutions where one of the sentences is a single literal (also known
UNIT CLAUSE as a unit clause). The idea behind the strategy is that we are trying to produce a very short

sentence, True =>• False, and therefore it might be a good idea to prefer inferences that produce
shorter sentences. Resolving a "unit sentence (such as P) with any other sentence (such as
P A Q =>• R) always yields a sentence (in this case, Q =>• R) that is shorter than the other
sentence. When the unit preference strategy was first tried for prepositional inference in 1964,
it led to a dramatic speedup, making it feasible to prove theorems that could not be handled
without the preference. Unit preference by itself does not, however, reduce the branching factor
in medium-sized problems enough to make them solvable by resolution. It is, nonetheless, a
useful heuristic that can be combined with other strategies.

Set of support

Preferences that try certain resolutions first are helpful, but in general it is more effective to try to
eliminate some potential resolutions altogether. The set of support strategy does just that. It starts

SET OF SUPPORT by identifying a subset of the sentences called the set of support. Every resolution combines
a sentence from the set of support with another sentence, and adds the resolvent into the set of
support. If the set of support is small relative to the whole knowledge base, this will cut the
search space dramatically.

We have to be careful with this approach, because a bad choice for the set of support will
make the algorithm incomplete. However, if we choose the set of support S so that the remainder
of the sentences are jointly satisfiable, then set-of-support resolution will be complete. A common
approach is to use the negated query as the set of support, on the assumption that the original
knowledge base is consistent. (After all, if it is not consistent, then the fact that the query follows
from it is vacuous.) The set-of-support strategy has the additional advantage of generating proof
trees that are often easy for humans to understand, because they are goal-directed.

Input resolution

WPUT RESOLUTION In the input resolution strategy, every resolution combines one of the input sentences (from the
KB or the query) with some other sentence. The proofs in Figure 9.5 and Figure 9.6 use only
input resolutions; they have the characteristic shape of a diagonal "spine" with single sentences
combining onto the spine. Clearly, the space of proof trees of this shape is smaller than the
space of all proof graphs. In Horn knowledge bases, Modus Ponens is a kind of input resolution
strategy, because it combines an implication from the original KB with some other sentences.
Thus, it should not be surprising that input resolution is complete for knowledge bases that are
in Horn form, but incomplete in the general case.

L|NEAR RESOLUTION The linear resolution strategy is a slight generalization that allows P and Q to be resolved
together if either P is in the original KB or if P is an ancestor of Q in the proof tree. Linear
resolution is complete.



286 Chapter 9. Inference in First-Order Logic

Subsumption
SUBSUMPTION The subsumption method eliminates all sentences that are subsumed by (i.e., more specific than)

an existing sentence in the KB. For example, if P(x) is in the KB, then there is no sense in adding
P(A), and even less sense in adding P(A) V Q(B). Subsumption helps keep the KB small, which
helps keep the search space small:

9.7 COMPLETENESS OF RESOLUTION

REFUTATION-
COMPLETE

HERBRAND
UNIVERSE

This section proves that resolution is complete. It can be safely skipped by those who are willing
to take it on faith.

Before we show that resolution is complete, we need to be more precise about the particular
flavor of completeness that we will establish. Resolution is refutation-complete, which means
that if a set of sentences is unsatisfiable, then resolution will derive a contradiction. Resolution
cannot be used to generate all logical consequences of a set of sentences, but it can be used to
establish that a given sentence is entailed by the set. Hence, it can be used to find all answers to
a given question, using the negated-goal method described before.

We will take it as given that any sentence in first-order logic (without equality) can be
rewritten in normal form. This can be proved by induction on the form of the sentence, using
atomic sentences as the base case (Davis and Putnam, 1960). Our goal therefore is to prove the
following: ifS is an unsatisfiable set of sentences in clausal form, then the application of a finite
number of resolution steps to S will yield a contradiction.

Our proof sketch follows the original proof due to Robinson, with some simplifications
from Genesereth andNilsson (1987). The basic structure of the proof is shown in Figure 9.8, and
is as follows:

1. We begin by observing that if S is unsatisfiable, then there exists a particular set of ground
instances of the sentences of 5", such that this set is also unsatisfiable (Herbrand's theorem).

2. We then show that resolution is complete for ground sentences (i.e., propositional logic).
This is easy because the set of consequences of a propositional theory is always finite.

3. We then use a lifting lemma to show that, for any resolution proof using the set of ground
sentences, there is a corresponding proof using the first-order sentences from which the
ground sentences were obtained.

To carry out the first step, we will need three new concepts:
0 Herbrand universe: If S is a set of clauses, then Hs, the Herbrand universe of S, is the set

of all ground terms constructible from the following:
a. The function symbols in S, if any.
b. The constant symbols in S, if any; if none, then the constant symbol A.

For example, if S contains just the clause P(x, F(x, A)) A Q(x, A) => R(x, B), then Hs is the
following infinite set of ground sentences:

{A, B, F(A, A), F(A, B), F(B, A), F(B, B), F(A, F(A, A)), F(A, F(A, B)),...}



Section 9.7. Completeness of resolution 287

Any set of sentences S is representable in clausal form

I
Assume S is unsatisfiable, and in clausal form

J —————————— Herbrand's theorem

Some set S' of ground instances is unsatisfiable

There

Figure 9.8

1 —————————
Resolution can find a contradiction in S'

J —————————
is a resolution proof for the contradiction in S

Structure of a completeness proof for resolution.

— Ground resolution
theorem

— Lifting lemma

SATURATION <0> Saturation: If S is a set of clauses, and P is a set of ground terms, then P(S), the saturation
of S with respect to P, is the set of all ground clauses obtained by applying all possible
consistent substitutions for variables in S with ground terms in P.

HERBRAND BASE <) Herbrand base: The saturation of a set of clauses S with respect to its Herbrand universe
is called the Herbrand base of S, written as Hs(S). For example, if 5 contains just the clause
given above, then

HS(S) = {P(A,F(A,A))/\Q(A,A) => R(A,B),
P(B,F(B,A))/\Q(B,A) => R(B,B),
P(F(A,A),F(F(A,A),A))f\Q(F(A,A),A) => R(F(A,A),B),
P(F(A,B),F(F(A,B),A)) /\Q(F(A,B),A) => R(F(A,B),B),

Notice that both the Herbrand universe and the Herbrand base can be infinite even if the
original set of sentences S is finite.

These definitions allow us to state a form of Herbrand's theorem (Herbrand, 1930):

If a set of clauses S is unsatisfiable, then there exists a finite subset of H$(S) that is also
unsatisfiable.

Let S' be this finite subset. Now it will be useful to introduce the resolution closure of S',
which i s the set of all clauses derivable by repeated application of the resolution inference step to
clauses in S' or their derivatives. (To construct this closure, we could run a breadth-first search to
completion using the resolution inference rule as the successor generator.) Let T be the resolution
closure of S', and let Ay = {A],A-2,...,At}be the set of atomic sentences occurring in S'. Notice
that because 5' is finite, A$' must also be finite. And because the clauses in T are constructed



288 Chapter 9. Inference in First-Order Logic

GODEL's INCOMPLETENESS THEOREM

By slightly extending the language of first-order logic to allow for the mathematical
induction schema in arithmetic, Godel was able to show, in his incompleteness
theorem, that there are true aYithmetic sentences that cannot be proved.

The proof of the incompleteness theorem is somewhat beyond the scope of this
book, occupying, as it does, at least 30 pages, but we can give a hint here. We
begin with the logical theory of numbers. In this theory, there is a single constant,
0, and a single function, S (the successor function). In the intended model, 5(0)
denotes 1, S(S(0)) denotes 2, and so on; the language therefore has names for all
the natural numbers. The vocabulary also includes the function symbols +, x, and
Expt (exponentiation), and the usual set of logical connectives and quantifiers. The
first step is to notice that the set of sentences that we can write in this language can
be enumerated. (Imagine defining an alphabetical order on the symbols and then
arranging in alphabetical order each of the sets of sentences of length 1, 2, and so
on.) We can then number each sentence a with a unique natural number #a (the
Godel number). This is crucial: number theory contains a name for each of its own
sentences. Similarly, we can number each possible proof P with a Godel number
G(P), because a proof is simply a finite sequence of sentences.

Now suppose we have a set A of sentences that are true statements about the
natural numbers. Recalling that A can be named by a given set of integers, we can
imagine writing in our language a sentence a(j,A) of the following sort:

V i i is not the Godel number of a proof of the sentence whose Godel
number is j, where the proof uses only premises in A.

Then let <r be the sentence a(#a, A), that is, a sentence that states its own unprovability
from A. (That this sentence always exists is true but not entirely obvious.)

Now we make the following ingenious argument. Suppose that a is provable
from A; then a is false (because a says it cannot be proved). But then we have a
false sentence that is provable from A, so A cannot consist of only true sentences—a
violation of our premise. Therefore a is no? provable from A. But this is exactly what
u itself claims; hence u is a true sentence.

So, we have shown (barring 29 and a half pages) that for any set of true sentences
of number theory, and in particular any set of basic axioms, there are other true
sentences that cannot be proved from those axioms. This establishes, among other
things, that we can never prove all the theorems of mathematics within any given
system of axioms. Clearly, this was an important discovery for mathematics. Its
significance for AI has been widely debated, beginning with speculations by Godel
himself. We take up the debate in Chapter 26.



Section 9.7. Completeness of resolution 289

GROUND
RESOLUTION
THEOREM

LIFTING LEMMA

entirely from members of As> , T must be finite because only a finite number of distinct clauses
can be constructed from a finite vocabulary of atomic sentences. To illustrate these definitions,
we will use a slimmed-down example:

S' = { P(A), P(A) => Q(A), Q(A) => False }
AS- = {P(A), Q(A), False}

T = {P(A), P(A) => Q(A), Q(A) => False, Q(A), P(A) => False, False}
Now we can state a completeness theorem for resolution on ground clauses. This is called the
ground resolution theorem:

If a set of ground clauses is unsatisfiable, then the resolution closure of those clauses
contains the clause False.

We prove this theorem by showing its contrapositive: if the closure T does not contain False,
then S' is satisfiable; in fact, we can construct a satisfying assignment for the atomic sentences in
S' ' . The construction procedure is as follows:

Pick an assignment (True or False) for each atomic sentence in Ay in some fixed order

- If there is a clause in T containing the literal -iA/, such that all its other literals are
false under the assignment chosen for AI , . . . ,A ,_ i , then assign A, to be False.

- Otherwise, assign A, to be True.
It is easy to show that the assignment so constructed will satisfy S' , provided T is closed under
resolution and does not contain the clause False (Exercise 9.10).

Now we have established that there is always a resolution proof involving some finite
subset of the Herbrand base of S. The next step is to show that there is a resolution proof using
the clauses of S itself, which are not necessarily ground clauses. We start by considering a single
application of the resolution rule. Robinson's basic lemma implies the following fact:

Let Cj and €2 be two clauses with no shared variables, and let C\ and C'2 be ground
instances of C\ and C2. If C' is a resolvent of C\ and C'2, then there exists a clause
C such that (1) C is a resolvent of C\ and €2, and (2) C' is a ground instance of C.

This is called a lifting lemma, because it lifts a proof step from ground clauses up to general
first-order clauses. In order to prove his basic lifting lemma, Robinson had to invent unification
and derive all of the properties of most general unifiers. Rather than repeat the proof here, we
simply illustrate the lemma:

Ci = P(x,F(x,A)) t\Q(x,A) => R(x,B)
C2 = N(G(y),z) => P(H(y),z)
C\ = P(H(B),F(H(B},A))f\Q(H(B),A) => R(H(B),B}
C'2 = N(G(B),F(H(B),Ay) => P(H(B},F(H(B),A))
C' = N(G(B),F(H(B),A))f\Q(H(B},A) => R(H(B),B)
C = N(G(y),F(H(y),A))/\Q(H(y),A) => R(H(y),B)

We see that indeed C' is a ground instance of C. In general, for C{ and C'2 to have any resolvents,
they must be constructed by first applying to C\ and C2 the most general unifier of a pair of



290 Chapter 9. Inference in First-Order Logic

complementary literals in C\ and €2- From the lifting lemma, it is easy to derive a similar
statement about any sequence of applications of the resolution rule:

For any clause C' in the resolution closure of S', there is a clause C in the resolution
closure of S, such that C' is a ground instance of C and the derivation of C is the
same length as the derivation of C'.

From this fact, it follows that if the clause False appears in the resolution closure of S', it must
also appear in the resolution closure of S. This is because False cannot be a ground instance
of any other clause. To recap: we have shown that if 5 is unsatisfiable, then there is a finite
derivation of the clause False using the resolution rule.

The lifting of theorem proving from ground clauses to first-order clauses provided a vast
increase in power. This derives from the fact that the first-order proof need instantiate variables
only as far as necessary for the proof, whereas the ground-clause methods were required to
examine a huge number of arbitrary instantiations.

9.8 SUMMARY

We have presented an analysis of logical inference in first-order logic, and a number of algorithms
for doing it.

• A simple extension of the prepositional inference rules allows the construction of proofs
for first-order logic. Unfortunately, the branching factor for the quantifier is huge.

• The use of unification to identify appropriate substitutions for variables eliminates the 5
instantiation step in first-order proofs, making the process much more efficient.

• A generalized version of Modus Ponens uses unification to provide a natural and powerful I
inference rule, which can be used in a backward-chaining or forward-chaining algorithm.

• The canonical form for Modus Ponens is Horn form:

p\ A ... A pn => q, where pt and q are atoms.

This form cannot represent all sentences, and Modus Ponens is not a complete proof system.
• The generalized resolution inference rule provides a complete system for proof by refuta-1

tion. It requires a normal form, but any sentence can be put into the form.
• Resolution can work with either conjunctive normal form—each sentence is a disjunction |

of literals—or implicative normal form—each sentence is of the form

p\ A . . . A pn =>• q\ V . . . V qm, where /?/ and q-, are atoms.

• Several strategies exist for reducing the search space of a resolution system without com- |
promising completeness.



Section 9.8. Summary 291

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Logical inference was studied extensively in Greek mathematics. The type of inference most
SYLLOGISM carefully studied by Aristotle was the syllogism. The syllogism is divided into "figures" and

"moods," depending on the order of the terms (which we would call predicates) in the sentences,
the degree of generality (which we would today interpret through quantifiers) applied to each
term, and whether each term is negated. The most fundamental syllogism is that of the first mood
of the first figure:

All S are M.
All M are P.
Therefore, all S are P.

Aristotle tried to prove the validity of other syllogisms by "reducing" them to those of the first
figure. He was much less precise in describing what this "reduction" should involve than he was
in characterizing the syllogistic figures and moods themselves.

Rigorous and explicit analysis of inference rules was one of the strong points of Megarian
and Stoic propositional logic. The Stoics took five basic inference rules as valid without proof
and then rigorously derived all others from these five. The first and most important of the five
rules was the one known today as Modus Ponens. The Stoics were much more precise about
what was meant by derivation than Aristotle had been about what was meant by reduction of one
syllogism to another. They also used the "Principle of Conditionalization," which states that if
q can be inferred validly from p, then the conditional "p => q" is logically true. Both these
principles figure prominently in contemporary logic.

Inference rules, other than logically valid schemas, were not a major focus either for Boole
or for Frege. Boole's logic was closely modeled on the algebra of numbers. It relied mainly
on the equality substitution inference rule, which allows one to conclude P(t) given P(s) and
s = t. Logically valid schemas were used to obtain equations to which equality substitution could
be applied. Whereas Frege's logic was much more general than Boole's, it too relied on an
abundance of logically valid schemas plus a single inference rule that had premises—in Frege's
case, this rule was Modus Ponens. Frege took advantage of the fact that the effect of an inference
rule of the form "From p infer q" can be simulated by applying Modus Ponens to p along with a
logically valid schema p => q. This "axiomatic" style of exposition, using Modus Ponens plus
a number of logically valid schemas, was employed by a number of logicians after Frege; most
notably, it was used in Principia Mathematica (Whitehead and Russell, 1910).

One of the earliest types of systems (after Frege) to focus prominently on inference rules was
natural deduction, introduced by Gerhard Gentzen (1934) and by Stanislaw Jaskowski (1934).
Natural deduction is called "natural" because it does not require sentences to be subjected to
extensive preprocessing before it can be applied to them (as many other proof procedures do) and
because its inference rules are thought to be more intuitive than, say, the resolution rule. Natural
deduction makes frequent use of the Principle of Conditionalization. The objects manipulated
by Gentzen's inference rules are called sequents. A sequent can be regarded either as a logical
argument (a pair of a set of premises and a set of alternative conclusions, intended to be an instance
of some valid rule of inference) or as a sentence in implicative normal form. Prawitz (1965)



292 Chapter 9. Inference in First-Order Logic

offers a book-length treatment of natural deduction. Gallier (1986) uses Gentzen sequents to
expound the theoretical underpinnings of automated deduction.

Conjunctive normal form and disjunctive normal form for propositional formulas were
known to Schroder (1877), although the principles underlying the construction of these forms
go back at least to Boole. The use of clausal form (conjunctive normal form for first-order
logic) depends upon certain techniques for manipulating quantifiers, in particular skolemization.
Whitehead and Russell (1910) expounded the so-called rules of passage (the actual term is from
Herbrand (1930)) that are used to move quantifiers to the front of formulas. (Moving all the
quantifiers to the front of a formula is called prenexing the formula, and a formula with all
the quantifiers in front is said to be in prenex form.) Horn form was introduced by Alfred
Horn (1951). What we have called "implicative normal form" was used (with a right-to-left
implication symbol) in Robert Kowalski's (1979b) Logic for Problem Solving, and this way of
writing clauses is sometimes called "Kowalski form."

Skolem constants and Skolem functions were introduced, appropriately enough, by Thoralf
Skolem (1920). The general procedure for skolemization is given in (Skolem, 1928), along with
the important notion of the Herbrand universe.

Herbrand's theorem, named after the French logician Jacques Herbrand (1930), has played
a vital role in the development of automated reasoning methods, both before and after Robinson's
introduction of resolution. This is reflected in our reference to the "Herbrand universe" rather than
the "Skolem universe," even though Skolem really invented this concept (and indeed Herbrand
does not explicitly use Skolem functions and constants, but a less elegant although roughly
equivalent device). Herbrand can also be regarded as the inventor of unification, because a
variant of the unification algorithm occurs in (Herbrand, 1930).

First-order logic was shown to have complete proof procedures by Godel (1930), using
methods similar to those of Skolem and Herbrand. Alan Turing (1936) and Alonzo Church (1936)
simultaneously showed, using very different proofs, that validity in first-order logic was not
decidable. The excellent text by Enderton (1972) explains all of these results in a rigorous yet
moderately understandable fashion.

The first mechanical device to carry out logical inferences was constructed by the third
Earl of Stanhope (1753-1816). The Stanhope Demonstrator could handle syllogisms and certain
inferences in the theory of probability. The first mechanical device to carry out inferences in
mathematical logic was William Stanley Jevons's "logical piano," constructed in 1869. Jevons
was one of the nineteenth-century logicians who expanded and improved Boole's work; the
logical piano carried out reasoning in Boolean logic. An entertaining and instructive history of
these and other early mechanical devices for reasoning is given by Martin Gardner (1968).

The first published results from research on automated deduction using electronic com-
puters were those of Newell, Shaw, and Simon (1957) on the Logic Theorist. This program
was based on an attempt to model human thought processes. Martin Davis (1957) had actually
designed a program that came up with a proof in 1954, but the Logic Theorist's results were
published slightly earlier. Both Davis's 1954 program and the Logic Theorist were based on
somewhat ad hoc methods that did not strongly influence later automated deduction.

It was Abraham Robinson who suggested attempting to use Herbrand's Theorem to gener-
ate proofs mechanically. Gilmore (1960) wrote a program that uses Robinson's suggestion in a
way influenced by the "Beth tableaux" method of proof (Beth, 1955). Davis and Putnam (1960) |



Section 9.8. Summary 293

introduced clausal form, and produced a program that attempted to find refutations by substituting
members of the Herbrand universe for variables to produce ground clauses and then looking for
prepositional inconsistencies among the ground clauses. Prawitz (1960) developed the key idea
of letting the quest for prepositional inconsistency drive the search process, and generating terms
from the Herbrand universe only when it was necessary to do so in order to establish prepositional
inconsistency. After further development by other researchers, this idea led J. A. Robinson (no
relation) to develop the resolution method (Robinson, 1965), which used unification in its mod-
ern form to allow the demonstration of propositional inconsistency without necessarily making
explicit use of terms from the Herbrand universe. The so-called "inverse method" developed at
about the same time by the Soviet researcher S. Maslov (1964; 1967) is based on principles some-
what different from Robinson's resolution method but offers similar computational advantages
in avoiding the unnecessary generation of terms in the Herbrand universe. The relations between
resolution and the inverse method are explored by Maslov (1971) and by Kuehner (1971).

The demodulation rule described in the chapter was intended to eliminate equality axioms
by combining equality substitution with resolution, and was introduced by Wos (1967). Term
rewriting systems such as the Knuth-Bendix algorithm (Knuth and Bendix, 1970) are based on
demodulation, and have found wide application in programming languages. The paramodulation
inference rule (Wos and Robinson, 1968) is a more general version of demodulation that provides
a complete proof procedure for first-order logic with equality.

In addition to demodulation and paramodulation for equality reasoning, other special-
purpose inference rules have been introduced to aid reasoning of other kinds. Boyer and
Moore (1979) provide powerful methods for the use of mathematical induction in automated
reasoning, although their logic unfortunately lacks quantifiers and does not quite have the full
power of first-order logic. Stickel's (1985) "theory resolution" and Manna and Waldinger's (1986)
method of "special relations" provide general ways of incorporating special-purpose inference
rules into a resolution-style framework.

A number of control strategies have been proposed for resolution, beginning with the unit
preference strategy (Wos et al., 1964). The set of support strategy was proposed by Wos et
al. (1965), to provide a degree of goal-directedness in resolution. Linear resolution first appeared
in (Loveland, 1968). Wolfgang Bibel (1981) developed the connection method which allows
complex deductions to be recognized efficiently. Developments in resolution control strategies,
and the accompanying growth in the understanding of the relationship between completeness and
syntactic restrictions on clauses, contributed significantly to the development of logic program-
ming (see Chapter 10). Genesereth and Nilsson (1987, Chapter 5) provide a short but thorough
analysis of a wide variety of control strategies.

There are a number of good general-purpose introductions to automated deduction and to
the theory of proof and inference; some were mentioned in Chapter 7. Additional textbooks on
matters related to completeness and undecidability include Computability and Logic (Boolos and
Jeffrey, 1989), Metalogic (Hunter, 1971), and (for an entertaining and unconventional, yet highly
rigorous approach) A Course in Mathematical Logic (Manin, 1977). Many of the most important
papers from the turn-of-the-century development of mathematical logic are to be found in From
Frege to Godel: A Source Book in Mathematical Logic (van Heijenoort, 1967). The journal
of record for the field of pure mathematical logic (as opposed to automated deduction) is The
Journal of Symbolic Logic.



294 Chapter 9. Inference in First-Order Logic

Textbooks geared toward automated deduction include (in addition to those mentioned in
Chapter 7) the classic Symbolic Logic and Mechanical Theorem Proving (Chang and Lee, 1973)
and, more recently, Automated Reasoning: Introduction and Applications (Wos et al., 1992).
The two-volume anthology Automation of Reasoning (Siekmann and Wrightson, 1983) includes
many important papers on automated deduction from 1957 to 1970. The historical summaries
prefacing each volume provide a concise yet thorough overview of the history of the field. Further
important historical information is available from Loveland's "Automated Theorem Proving: A
Quarter-Century Review" (1984) and from the bibliography of (Wos et al., 1992).

The principal journal for the field of theorem proving is the Journal of Automated Reason-
ing; important results are also frequently reported in the proceedings of the annual Conferences
on Automated Deduction (CADE). Research in theorem proving is also strongly related to the use
of logic in analyzing programs and programming languages, for which the principal conference
is Logic in Computer Science.

EXERCISES

9.1 For each of the following pairs of atomic sentences, give the most general unifier, if it exists.

a. P(A,B,B),P(x,y,z).
b. QKy,G(A,B)),Q(G(x,x),y).
c. Older(Father(y),y), Older(Father(x),John).
d. Knows(Father(y),y), Knows(x,x).

9.2 One might suppose that we can avoid the problem of variable conflict in unification by
standardizing apart all of the sentences in the knowledge base once and for all. Show that for j
some sentences, this approach cannot work. (Hint: Consider a sentence, one part of which unifies
with another.)

9.3 Show that the final state of the knowledge base after a series of calls to FORWARD-CHAIN is i
independent of the order of the calls. Does the number of inference steps required depend on the)
order in which sentences are added? Suggest a useful heuristic for choosing an order.

9.4 Write down logical representations for the following sentences, suitable for use with Gen-
eralized Modus Ponens:

a. Horses, cows, and pigs are mammals.
b. An offspring of a horse is a horse.
c. Bluebeard is a horse.
d. Bluebeard is Charlie's parent.
e. Offspring and parent are inverse relations.
f. Every mammal has a parent.



Section 9.8. Summary 295

9.5 In this question we will use the sentences you wrote in Exercise 9.4 to answer a question
using a backward-chaining algorithm.

a. Draw the proof tree generated by an exhaustive backward-chaining algorithm for the query
3h Horse(h).

b. What do you notice about this domain?
c. How many solutions for h actually follow from your sentences?
d. Can you think of a way to find all of them? (Hint: You might want to consult (Smith et al.,

1986).)

9.6 A popular children's riddle is "Brothers and sisters have I none, but that man's father is my
father's son." Use the rules of the family domain (Chapter 7) to show who that man is. You may
use any of the inference methods described in this chapter.

9.7 How can resolution be used to show that a sentence is
a. Valid?
b. Unsatisfiable?

9.8 From "Horses are animals," it follows that "The head of a horse is the head of an animal."
Demonstrate that this inference is valid by carrying out the following steps:

a. Translate the premise and the conclusion into the language of first-order logic. Use three
predicates: HeadOf(h,x), Horse(x), andAnimal(x).

b. Negate the conclusion, and convert the premise and the negated conclusion into conjunctive
normal form.

c. Use resolution to show that the conclusion follows from the premise.

9.9 Here are two sentences in the language of first-order logic:
(A):V* 3y (x>y)
(B):3>- MX (x>y)

a. Assume that the variables range over all the natural numbers 0 ,1 ,2 , . . . , oo, and that the
">" predicate means "greater than or equal to." Under this interpretation, translate these
sentences into English.

b. Is (A) true under this interpretation?
c. Is (B) true under this interpretation?
d. Does (A) logically entail (B)?
e. Does (B) logically entail (A)?
f. Try to prove that (A) follows from (B) using resolution. Do this even if you think that (B)

does not logically entail (A); continue until the proof breaks down and you cannot proceed
(if it does break down). Show the unifying substitution for each resolution step. If the
proof fails, explain exactly where, how, and why it breaks down.

g. Now try to prove that (B) follows from (A).



296 Chapter 9. Inference in First-Order Logic

9.10 In this exercise, you will complete the proof of the ground resolution theorem given in the
chapter. The proof rests on the claim that if T is the resolution closure of a set of ground clauses
S', and T does not contain the clause False, then a satisfying assignment can be constructed for
S' using the construction given in the chapter. Show that the assignment does indeed satisfy S',
as claimed.



10 LOGICAL REASONING
SYSTEMS

In which we show how to build efficient programs that reason with logic.

10.1 INTRODUCTION

THEOREM PROVERSLUG ic
PROGRAMMING
LANGUAGES

We have explained that it is a good idea to build agents as reasoning systems—systems that
explicitly represent and reason with knowledge. The main advantage of such systems is a high
degree of modularity. The control structure can be isolated from the knowledge, and each piece
of knowledge can be largely independent of the others. This makes it easier to experiment with
the system and modify it, makes it easier for the system to explain its workings to another agent,
and, as we will see in Part VI, makes it easier for the system to learn on its own.

In this chapter the rubber hits the road, so to speak, and we discuss ways in which these
advantages can be realized in an actual, efficient system. Automated reasoning systems come in
several flavors, each designed to address different kinds of problems. We group them into four
main categories:

<) Theorem provers and logic programming languages: Theorem provers use resolution
(or some other complete inference procedure) to prove sentences in full first-order logic,
often for mathematical and scientific reasoning tasks. They can also be used to answer
questions: the proof of a sentence containing variables serves as an answer to a question
because it instantiates the variables. Logic programming languages typically restrict the
logic, disallowing full treatment of negation, disjunction, and/or equality. They usually use
backward chaining, and may include some nonlogical features of programming languages
(such as input and output). Examples of theorem provers: SAM, AURA, OTTER. Examples
of logic programming languages: Prolog, MRS, LIFE.

<> Production systems: Like logic programming languages, these use implications as their
primary representation. The consequent of each implication is interpreted as an action
recommendation, rather than simply a logical conclusion. Actions include insertions and

297



298 Chapter 10. Logical Reasoning Systems

FRAME SYSTEMS
SEMANTIC
NETWORKS

DESCRIPTION LOGIC
SYSTEMS

TERMINOLOGICAL
LOGICS

deletions from the knowledge base as well as input and output. Production systems operate
with a forward-chaining control structure. Some have a conflict resolution mechanism
to decide which action to take when more than one is recommended. Examples: OPS-5,
CLIPS, SOAR.

<} Frame systems and semantic networks: These systems use the metaphor that objects are
nodes in a graph, that these nodes are organized in a taxonomic structure, and that links
between nodes represent binary relations. In frame systems the binary relations are thought
of as slots in one frame that are filled by another, whereas in semantic networks, they are
thought of as arrows between nodes. The choice between the frame metaphor and the
semantic network metaphor determines whether you draw the resulting networks as nested
boxes or as graphs, but the meaning and implementation of the two types of systems can
be identical. In this chapter we will say "semantic network" to mean "semantic network or
frame system." Examples of frame systems: OWL, FRAIL, KODIAK. Examples of semantic
networks: SNEPS, NETL, Conceptual Graphs.

0 Description logic systems: These systems evolved from semantic networks due to pressure
to formalize what the networks mean while retaining the emphasis on taxonomic structure '•
as an organizing principle. The idea is to express and reason with complex definitions}
of, and relations among, objects and classes. Description logics are sometimes called
terminological logics, because they concentrate on defining terms. Recent work has \
concentrated on the trade-off between expressivity in the language and the computational |
complexity of certain operations. Examples: KL-ONE, CLASSIC, LOOM.

In this chapter, we will see how each of the four types of systems can be implemented, and how;
each of the following five tasks is addressed:

1. Add a new fact to the knowledge base. This could be a percept, or a fact derived via]
inference. We call this function TELL.

2. Given a knowledge base and a new fact, derive some of the facts implied by the conjunction j
of the knowledge base and the new fact. In a forward-chaining system, this is part of TELL. \

3. Decide if a query is entailed by the knowledge base. We call this function ASK. Different 1
versions of ASK do different things, ranging from just confirming that the query is entailed!
to returning a set of all the possible substitutions that make the query true.

4. Decide if a query is explicitly stored in the knowledge base—a restricted version of ASK.
5. Remove a sentence from the knowledge base. It is important to distinguish between!

correcting a sentence that proves to be false, forgetting a sentence that is no longer useful j
(perhaps because it was only relevant in the past), and updating the knowledge base to I
reflect a change in the world, while still remembering how the world was in the past, j
(Some systems can make this distinction; others rely on the knowledge engineer to keepj
things straight.)

All knowledge-based systems rely on the fundamental operation of retrieving sentences satisfying 1
certain conditions—for example, finding an atomic sentence that unifies with a query, or finding j
an implication that has a given atomic sentence as one of its premises. We will therefore begin j
with techniques for maintaining a knowledge base in a form that supports efficient retrieval.



Section 10.2. Indexing, Retrieval, and Unification 299

INDEXING, RETRIEVAL, AND UNIFICATION

The functions TELL and ASK can in general do complicated reasoning using forward and backward
chaining or resolution. In this section, we consider two simpler functions that implement the part
of TELL and ASK that deals directly with the physical implementation of the knowledge base.
We call these functions STORE and FETCH. We also describe the implementation of a unification
algorithm, another basic component of knowledge-based systems.

Implementing sentences and terms
The first step in building a reasoning system is to define the data types for sentences and terms.
This involves defining both the syntax of sentences—the format for interacting with the user at
the logic level—and the internal representation in which the system will store and manipulate
sentences at the implementation level. There may be several internal representations for different
aspects of sentences. For example, there may be one form that allows the system to print sentences
and another to represent sentences that have been converted to clausal form.

Our basic data type will represent the application of an operator (which could be a predicate,
a function symbol or a logical connective) to a list of arguments (which could be terms or
sentences). We will call this general data type a COMPOUND. It has fields for the operator (OP)
and arguments (ARCS). For example, let c be the compound P(x) A Q(x); then OP[C] = A and
ARGS[C] = [/>(*), Q(x)].

Store and fetch
Now that we have a data type for sentences and terms, we need to be able to maintain a set
of sentences in a knowledge base, which means storing them in such a way that they can be
fetched efficiently. Typically, FETCH is responsible for finding sentences in the knowledge base
that unify with the query, or at least have the same syntactic structure. ASK is responsible for
the inference strategy, which results in a series of calls to FETCH. The computational cost of
inference is dominated by two aspects: the search strategy used by ASK and the data structures
used to implement FETCH.

The call STORE(KB,S) adds each conjunct of the sentence S to the knowledge base KB. The
simplest approach is to implement the knowledge base as an array or linked list of conjuncts. For
example, after

TELL(KB, A A -.£)
TELL(KB, -.C A D)

the KB will contain a list with the elements

The call FETCH(KB,Q) must then go through the elements of the knowledge base one at a time
until it either finds a conjunct that matches Q or reaches the end. With this approach FETCH takes



300 Chapter 10. Logical Reasoning Systems

O(ri) time on an n-element KB. STORE takes O( 1) time to add a conjunct to the KB, but if we want
to ensure that no duplicates are added, then STORE is also O(n). This is impractical if one wants
to do serious inference.

Table-based indexing
A better approach is to implement the knowledge base as a hash table.1 If we only had to deal
with ground literal sentences2 we could implement STORE so that when given P it stores the value
true in the hash table under the key P, and when given ->P, it stores/a/se under the key P. Then
FETCH could do a simple lookup in the hash table, and both FETCH and STORE would be 0(1).

There are two problems with this approach: it does not deal with complex sentences
other than negated sentences, and it does not deal with variables within sentences. So FETCH
would not be able to find "an implication with P as consequent," such as might be required by
a backward-chaining algorithm; nor could it find Brother(Richard, John) when given a query
3x Brother(Richard,x).

The solution is to make STORE maintain a more complex table. We assume the sentences
are all converted to a normal form. (We use implicative normal form.) The keys to the table will
be predicate symbols, and the value stored under each key will have four components:

• A list of positive literals for that predicate symbol.
• A list of negative literals.
• A list of sentences in which the predicate is in the conclusion.
• A list of sentences in which the predicate is in the premise.

So, given the knowledge base:
Brother(Richard, John)
Brother(Ted,Jack) A Brother(Jack, Bobbie)
-^Brother(Ann, Sam)
Brother(x,y) => Male(x)
Brother(x, y) A Male(y) =>• Brother(y, x)
Male(Jack) A Male(Ted) A . . . A ->Male(Ann) A . . .

the table for the knowledge base would be as shown in Figure 10.1.
Now suppose that we ask the query
ASK(KB,Brother(Jack, Ted))

and that ASK uses backward chaining (see Section 9.4). It would first call FETCH to find a positive
literal matching the query. Because that fails, FETCH is called to find an implication with Brother
as the consequent. The query matches the consequent, the antecedent becomes the new goal after
the appropriate substitution is applied, and the procedure begins again.

' A hash table is a data structure for storing and retrieving information indexed by fixed keys. For practical purposes,
a hash table can be considered to have constant storage and retrieval times, even when the table contains a vary large
number of items.
2 Remember that a ground literal contains no variables. It is either an atomic sentence such as Brother(Richard, John)
or a negated atomic sentence such as ^Brother(Ann, Victoria).

L



Section 10.2. Indexing, Retrieval, and Unification 301

Key
Brother

Male

Positive

Brother(Richard,John)
Bwther(Ted, Jack)
Brother(Jack, Bobbie)

Male(Jack)
Male(Ted)

Negative
-iBrother(Ann, Sam)

-iMale(Ann)

Conclusion
Brother(x,y) A Male(y)

=f- Brother(y,x)

Brother(x,y) => Male(x)

Premise
Brother(x,y) A Male(y)

=> Brother(y,x)
Brother(x,y) => Male(x)

Brother(x,y) A Mak(y)
=> Brother(y,x)

Figure 10.1 Table-based indexing for a collection of logical sentences.

Because in first-order logic the predicate is always fixed in a query, the simple device of
dividing up the knowledge base by predicate reduces the cost of fetching considerably. But why
stop with just the predicate?

TREE-BASED
INDEXING
COMBINED INDEXING

Tree-based indexing
Table-based indexing is ideal when there are many predicate symbols and a few clauses for each
symbol. But in some applications, there are many clauses for a given predicate symbol. For
example, in a knowledge base for the U.S. Census Bureau that uses social security numbers to
represent people, the query Brother(0\2-34-5678,x) would require a search through millions of
Brother literals.

To make this search efficient, we need to index on the arguments as well as on the predicate
symbols themselves. One way to do this is to change the table entry for Brother so that each
entry is itself a table, indexed by the first argument, rather than just a list. So to answer the
query Brother(Q 12-34-5678, x), we first look in the predicate table under Brother, and then look
in that entry under 012-34-5678. Both table lookups take a small constant amount of time, so
the complete FETCH is efficient. We can view the process of searching for a matching literal as
a walk down a tree, where the branch at each point is dictated by the symbol at the appropriate
point in the query sentence (Figure 10.2).

Tree-based indexing is one form of combined indexing, in that it essentially makes a
combined key out of the sequence of predicate and argument symbols in the query. Unfortunately,
it provides little help when one of the symbols in the sequence is a variable, because every branch
has to be followed in that case. Suppose our census knowledge base has a predicate Taxpayer
with four arguments: a person, a zip code, a net income to the nearest thousand, and the number
of dependents, for example:

roxpa);er(012-34-5678,02138,32000,10)

Suppose we were interested in finding all the people in zip code 02138 with exactly 10 dependents:
FETCH(7a*7wyer(/7,02138, i, 10))

There are tens of thousands of people with that zip code, and hundreds of thousands of people in
the country with 10 dependents, but there are probably only a few people that match both criteria.
To find those people without undue effort, we need a combined index based on both the second
and fourth argument. If we are to deal with every possible set of variable positions, we will need



302 Chapter 10. Logical Reasoning Systems

Predicate ?

Figure 10.2 Tree-based indexing organizes a knowledge base into a nested series of hash
tables. Each node in the tree is a hash table indexed by the value at a particular sentence position.

2" combined indices, where n is the number of symbol positions in the sentences being stored.
When sentences include complex terms, n can easily grow quite large. At some point, the extra
storage needed for the indices and the extra work that STORE must do to maintain them outweigh
the benefits. We can respond by adopting a fixed policy, such as maintaining indices only on keys
composed of predicate plus each argument; or by using an adaptive policy that creates indices to
meet the demands of the kinds of queries being asked.

CROSS-INDEXING The cross-indexing strategy indexes entries in several places, and when faced with a query
chooses the most promising place for retrieval. Suppose we have the query

FETCH(Taxpayer(p, 02138,20000,3))

and the four available indices key on Taxpayer plus each of the four argument positions
separately. A sentence matching the query will be indexed under Taxpayer(-,Q2l3&,-,-),
Taxpayer(-, _, 20000, _), and Taxpayer^., _, _, 3). The best strategy is usually to search through
whichever of these collections of sentences is smallest.

The unification algorithm
In Section 9.3 we showed how two statements such as

Knows(John,x) =>• Hates(John,x)
Knows(John, Jane)

can be combined to infer Hates(John,Jane). The key to this Modus Ponens inference is to
unify Knows(John,x) and Knows(John,Jane). This unification yields as a result the substitution
{x/Jane}, which can then be applied to Hates(John, x) to give the solution Hates(John, Jane).

We have seen that by clever indexing, we can reduce the number of calls to the unification
algorithm, but this number still can be quite large. Thus, the unification algorithm should be
efficient. The algorithm shown in Figure 10.3 is reasonably simple. It recursively explores the



Section 10.2. Indexing, Retrieval, and Unification 303

two expressions simultaneously, building up a unifier as it goes along but failing if it ever finds
two corresponding points in the structures that do not match. Unfortunately, it has one expensive
step. The occur-check takes time linear in the size of the expression being checked, and is
done for each variable found. It makes the time complexity of the algorithm O(n2) in the size
of the expressions being unified. Later we will see how to make this algorithm more efficient
by eliminating the need for explicit representations of substitutions. On page 308, we see how
unification can be extended to handle more information besides equality.

function UNIFY(>, y) returns a substitution to make x and y identical, if possible

UNIFY-lNTERNALCr,}', {})

function UNIFY-!NTERNAL(J:,}', 9) returns a substitution to make x and y identical (given 9)
inputs: x, a variable, constant, list, or compound

y, a variable, constant, list, or compound
9, the substitution built up so far

if 9 = failure then return failure
else if x = y then return f)
else if VARIABLE?(X) then return UNIFY-VAK(x,y, 9)
else if VARIABLE?O>) then return UNIFY-VAR(y,Jc,0)
else if COMPOUNDKX) and COMPOUND?(y) then

return UNIFY-!NTERNAL(ARGS[^], ARGSty], UNIFY-INTERNAL(OP[JC], Op\y], 9)
else if LIST?(JC) and LIST?(V) then

return UNIFY-lNTERNAL(RESTW, REST[y], UNIFY-lNTERNAL(FlRST[;t], FlRST[y], 9))
else return failure

function UNIFY-VAR(var, x, 9) returns a substitution
inputs: var, a variable

x, any expression
9, the substitution built up so far

if [varlval] € 9
then return UNiFY-lNTERNAL(va/,jf, 6)

else if {x/val} e 9
then return UNIFY-lNTERNAL(var, val, 9)

else if var occurs anywhere in x I * occur-check * I
then return failure

else return add {x/var} to ff

Figure 10.3 The unification algorithm. The algorithm works by comparing the structures of
the inputs, element by element. The substitution 9 that is the argument to UNIFY-!NTERNAL is
built up along the way, and used to make sure that later comparisons are consistent with bindings
that were established earlier.



304 Chapter 10. Logical Reasoning Systems

10.3 LOGIC PROGRAMMING SYSTEMS

PROLOG

We now turn from the details of implementing a knowledge base to a comparison of ways in
which a knowledge base can be constructed and used. We start with logic programming.

We have seen that the declarative approach has many advantages for building intelligent
systems. Logic programming tries to extend these advantages to all programming tasks. Any
computation can be viewed as a process of making explicit the consequences of choosing a
particular program for a particular machine and providing particular inputs. Logic programming
views the program and inputs as logical statements about the world, and the process of making
consequences explicit as a process of inference. The relation between logic and algorithms is
summed up in Robert Kowalski's equation

Algorithm = Logic + Control
A logic programming language makes it possible to write algorithms by augmenting logical
sentences with information to control the inference process. Prolog is by far the most widely
used logic programming language. Its users number in the hundreds of thousands. It is used
primarily as a rapid-prototyping language and for symbol-manipulation tasks such as writing
compilers (Van Roy, 1990) and parsing natural language (Pereira and Warren, 1980). It has also
been used to develop expert system applications in legal, medical, financial, and other domains.

NEGATION AS
FAILURE

The Prolog language
We have already explained the notational conventions of Prolog in Chapter 7. Viewed as a logical
knowledge base, a Prolog program has the following characteristics:

• A program consists of a sequence of sentences, implicitly conjoined. All variables have
implicit universal quantification, and variables in different sentences are considered distinct.

• Only Horn clause sentences are acceptable. This means that each sentence is either an
atomic sentence or an implication with no negated antecedents and an atomic consequent.

• Terms can be constant symbols, variables, or functional terms.
• Queries can include conjunctions, disjunctions, variables, and functional terms.
• Instead of negated antecedents in implications, Prolog uses a negation as failure operator:

a goal not P is considered proved if the system fails to prove P.
• All syntactically distinct terms are assumed to refer to distinct objects. That is, you cannot

assert A = B or A = F(x), where A is a constant. You can assert x = B or x - F(y), where x is
a variable.

• There is a large set of built-in predicates for arithmetic, input/output, and various system
and knowledge base functions. Literals using these predicates are "proved" by executing
code rather than doing further inference. In Prolog notation (where capitalized names are
variables), the goal X is 4 + 3 succeeds with X bound to 7. However, the goal 5 is X+Y
cannot be proved, because the built-in functions do not do arbitrary equation solving.3

3 Note that if proper axioms are provided for addition, such goals can be solved by inference within a Prolog program.



Section 10.3. Logic Programming Systems 305

HEAD

BODY

As an example, here is a Prolog program for the Member relation, given both in normal first-order
logic notation and in the format actually used by Prolog:

Vx, I Member(x, [x\l])

Vx,y,l Member(x, I) =>
Member(x,[y\l])

member(X,[x|L]).

member(X,[Y|L])
member(X,L).

As we mentioned in Chapter 7, the Prolog representation has the consequent, or head, on the left-
hand side, and the antecedents, or body, on the right. A Prolog clause is often read as "To prove
(the head), prove (the body}." To preserve this intuitive reading along with our logical notation,
we will compromise and write Prolog clauses using a leftward implication. For example, the
second clause of the Member definition becomes

Member(x, [y\l]) •$= Member(x, I)
The definition of Member can be used to answer several kinds of queries. It can be used to
confirm that Member(2, [1,2,3]) is true. It can also enumerate the three values of x that make
Member(x, [1,2,3]) true. It can be used to find the value of x such that Member(2,[ 1,*, 3]) is
true. It even can be used to enumerate the lists for which Member(\, list) is true.

Implementation
The designers of Prolog made a number of implementation decisions designed to provide a
simple, fast execution model:

• All inferences are done by backward chaining, with depth-first search. That means that
whenever there is a dead end in the attempt to prove a sentence, Prolog backs up to the
most recent step that has alternatives.

• The order of search through the conjuncts of an antecedent is strictly left to right, and
clauses in the knowledge base are applied in first-to-last order.

• The occur-check is omitted from the unification routine.
The omission of the occur-check makes Prolog inference unsound, but actual errors happen very
seldom in practice. The use of depth-first search makes Prolog incomplete, because of infinite
paths created by circular sentences (but see page 311 for another approach). Programmers must
therefore keep termination in mind when writing recursive sentences. Despite these caveats, one
good point of Prolog is that the execution model is simple enough that a trained programmer can
add control information to yield an efficient program.

Like our BACK-CHAIN algorithm (page 275), Prolog enumerates all the solutions to a query,
but it does not gather them into a set. Instead, it is up to the user's program to do what it will
with each solution as it is enumerated. The most common thing to do is to print the answers. In
fact, Prolog's top level does this automatically. A query such as

m e m b e r ( l o c ( X , X ) , [ l o c ( l , l ) , l o c ( 2 , l ) , l o c ( 2 , 2 ) ] ) ?
results in the user seeing two pieces of output, "X = 1" and "X = 2" .

The execution of a Prolog program can happen in two modes: interpreted and compiled.
Compilation is discussed in the next subsection. Interpretation essentially amounts to running



306 Chapter 10. Logical Reasoning Systems

CHOICE POINT

TRAIL

the BACK-CHAIN algorithm from Section 9.4, with the program as the knowledge base. We
say "essentially," because Prolog interpreters contain a variety of improvements designed to
maximize speed. Here we consider only two.

First, instead of constructing the list of all possible answers for each subgoal before
continuing to the next, Prolog interpreters generate one answer and a "promise" to generate the
rest when the current answer has been fully explored. This promise is called a choice point.
When the depth-first search completes its exploration of the possible solutions arising from the
current answer and backs up to the choice point, the choice point is expanded to yield a new
answer for the subgoal and a new choice point. This approach saves both time and space. It also
provides a very simple interface for debugging because at all times there is only a single solution
path under consideration.

Second, our simple implementation of BACK-CHAIN spends a good deal of time generating
substitutions and applying them to query lists. Prolog eliminates the need for a substitution data
type by implementing logic variables that can remember their current binding. At any point in
time every variable in the program is either unbound or is bound to some value. Together, these
variables and values implicitly define a substitution. Of course, there is only one such substitution
at a time, but that is all we need. The substitution is the right one for the current path in the
search tree. Extending the path can only add new variable bindings, because an attempt to add a
different binding for an already-bound variable results in a failure of unification. When a path in
the search fails, Prolog will back up to a previous choice point, and then it may have to unbind
some variables. This is done by keeping track of all the variables that have been bound in a stack
called the trail. As each new variable is bound by UNIFY-VAR, the variable is pushed onto the
trail stack. When a goal fails and it is time to back up to a previous choice point, each of the
variables is unbound as it is removed from the trail.

OPEN-CODE

Compilation of logic programs

It is possible to make a reasonably efficient Prolog interpreter by following the guidelines in the
previous subsection. But interpreting programs in any language, including Prolog, is necessarily
slower than running compiled code. This is because the interpreter always behaves as if it has
never seen the program before. A Prolog interpreter must do database retrieval to find sentences
that match the goal, and analysis of sentence structure to decide what subgoals to generate. All
serious heavy-duty Prolog programming is done with compiled code. The great advantage of
compilation is that when it is time to execute the inference process, we can use inference routines
specifically designed for the sentences in the knowledge base. Prolog basically generates a
miniature theorem prover for each different predicate, thereby eliminating much of the overhead
of interpretation. It is also possible to open-code the unification routine for each different call,
thereby avoiding explicit analysis of term structure. (For details of open-coded unification, see
Warren et al. (1977).)

The instruction sets of today's computers give a poor match with Prolog's semantics, so
most Prolog compilers compile into an intermediate language rather than directly into machine
language. The most popular intermediate language is the Warren Abstract Machine, or WAM,
named after David H. D. Warren, one of the implementors of the first Prolog compiler. The WAM



Section 10.3. Logic Programming Systems 307

is an abstract instruction set that is suitable for Prolog and can be either interpreted or translated
into machine language. Other compilers translate Prolog into a high-level language such as Lisp
or C, and then use that language's compiler to translate to machine language. For example, the
definition of the Member predicate can be compiled into the code shown in Figure 10.4.

procedure MEMBER(item, list, continuation)

trail <— GLOBAL-TRAIL-POINTER()
if UNTFY([i'rem I NEW-VARIABLE()], list) then CALL(continuation)
RESET-TRAIL(frai7)
res*-— NEW-VARIABLE()
if UNiFY(/wf, [NEW-VARIABLEQ I rest]) then MEMBER((tem, rest, continuation)

Figure 10.4 Pseudocode representing the result of compiling the Member predicate. The
function NEW-VARIABLE returns a new variable, distinct from all other variables so far used. The
procedure CALL(continuation) continues execution with the specified continuation.

There are several points worth mentioning:
• Rather than having to search the knowledge base for Member clauses, the clauses are built

into the procedure and the inferences are carried out simply by calling the procedure.
• As described earlier, the current variable bindings are kept on a trail. The first step of the

procedure saves the current state of the trail, so that it can be restored by RESET-TRAIL if
the first clause fails. This will undo any bindings generated by the first call to UNIFY.

CONTINUATIONS • The trickiest part is the use of continuations to implement choice points. You can think
of a continuation as packaging up a procedure and a list of arguments that together define
what should be done next whenever the current goal succeeds. It would not do j ust to return
from a procedure like MEMBER when the goal succeeds, because it may succeed in several
ways, and each of them has to be explored. The continuation argument solves this problem
because it can be called each time the goal succeeds. In the MEMBER code, if item unifies
with the first element of the list, then the MEMBER predicate has succeeded. We then CALL
the continuation, with the appropriate bindings on the trail, to do whatever should be done
next. For example, if the call to MEMBER were at the top level, the continuation would
print the bindings of the variables.
Before Warren's work on compilation of inference in Prolog, logic programming was too

slow for general use. Compilers by Warren and others allowed Prolog to achieve speeds of up
to 50,000 LIPS (logical inferences per second) on standard 1990-model workstations. More
recently, application of modern compiler technology, including type inference, open-coding, and
interprocedural data-flow analysis has allowed Prolog to reach speeds of several million LIPS,
making it competitive with C on a variety of standard benchmarks (Van Roy, 1990). Of course,
the fact that one can write a planner or natural language parser in a few dozen lines of Prolog
makes it somewhat more desirable than C for prototyping most small-scale AI research projects.



308 Chapter 10. Logical Reasoning Systems

OR-PARALLELISM

AND-PARALLELISM

CONSTRAINT LOGIC
PROGRAMMING

TYPE PREDICATES

Other logic programming languages
Although Prolog is the only accepted standard for logic programming, there are many other useful
systems, each extending the basic Prolog model in different ways.

The parallelization of Prolog is an obvious direction to explore. If we examine the work
done by a Prolog program, there are two principal sources of parallelism. The first, called
OR-parallelism, comes from the possibility of a goal unifying with many different literals and
implications in the knowledge base. Each gives rise to an independent branch in the search space
that can lead to a potential solution, and all such branches can be solved in parallel. The second,
called AND-parallelism, comes from the possibility of solving each conjunct in the body of an
implication in parallel. And-parallelism is more difficult to achieve, because solutions for the
whole conjunction require consistent bindings for all the variables. Each conjunctive branch must
communicate with the other branches to ensure a global solution. A number of projects have
been successful in achieving a degree of parallel inference, but the most advanced is probably
the PIM (Parallel Inference Machine) project, part of the Fifth Generation Computing Systems
project in Japan. PIM has achieved speeds of 64 million LIPS.

Prolog can be enriched, rather than just accelerated, by generalizing the notion of the
binding of a variable. Prolog's logic variables are very useful because they allow a programmer
to generate a partial solution to a problem, leaving some of the variables unbound, and then
later fill in the values for those variables. Unfortunately, there is no way in Prolog to specify
constraints on values: for example, to say that X < 3, and then later in the computation determine
the exact value of X. The constraint logic programming (CLP) formalism extends the notions
of variables and unification to allow such constraints. Consider this definition of a triangle based
on the lengths of the three sides:

Triangle(x, y, z) (y > 0) A (z > 0) A (x + y > z) A (y + z > x) A (x + z > y)
In either Prolog or CLP, this definition can be used to confirm Triangle(3, 4, 5). But only in CLP
would the query Triangle(x, 4, 5) give the binding specified by the constraint {x > 1 A x < 9}; in
standard Prolog, this query would fail.

As well as using arithmetical constraints on variables, it is possible to use logical constraints.
For example, we can insist that a particular variable refer to a Person. In standard Prolog, this
can only be done by inserting the conjunct Person(p) into the body of a clause. Then, when the
clause is used, the system will attempt to solve the remainder of the clause with p bound to each
different person in the knowledge base. In languages such as Login and Life, literals containing
type predicates such as Person are implemented as constraints. Inference is delayed until the
constraints need to be resolved. Thus, Person(p) just means that the variable p is constrained
to be a person; it does not generate alternative bindings for p. The use of types can simplify
programs, and the use of constraints can speed up their execution.

Advanced control facilities
Going back to our census knowledge base, consider the query "What is the income of the spouse
of the president?" This might be stated in Prolog as

Income(s, i) A Married(s,p) A Occupation(p, President)



ISection 10.3. Logic Programming Systems 309

METAREASONING

CHRONOLOGICAL
BACKTRACKING

BACKJUMPING

DEPENDENCY-
DIRECTED
BACKTRACKING

This query will be expensive to compute, because it must enumerate all person/income pairs, then
fetch the spouse for each person (failing on those that are not married, and looping on anyone who
is married multiple times), and finally check for the one person whose occupation is president.
Conjunctive queries like this often can be answered more efficiently if we first spend some time
to reorder the conjuncts to reduce the expected amount of computation. For this query, a better
ordering is

Occupation(p, President) A Married(s, p) A Income(s, i)
This yields the same answer, but with no backtracking at all, assuming that the Occupation and
Married predicates are indexed by their second arguments.

This reordering process is an example of metareasoning, or reasoning about reasoning. As
with constraint satisfaction search (Section 3.7), the heuristic we are using for conjunct ordering
is to put the most constraining conjuncts first. In this case it is clear that only one p satisfies
Occupation(p, President), but it is not always easy to predict in advance how many solutions
there will be to a predicate. Even if it were, it would not be a good idea to try all n\ permutations
of an n-place conjunction for large n. Languages such as MRS (Genesereth and Smith, 1981;
Russell, 1985) allow the programmer to write metarules to decide which conjuncts are tried first.
For example, the user could write a rule saying that the goal with the fewest variables should be
tried first.

Some systems change the way backtracking is done rather than attempting to reorder
conjuncts. Consider the problem of finding all people x who come from the same town as the
president. One inefficient ordering of this query is:

Resident(p, town) A Resident(x, town) A Occupation(p, President)
Prolog would try to solve this by enumerating all residents p of any town, then enumerating all
residents x of that town, and then checking if pis the president. When the Occupation(p, President)
goal fails, Prolog backtracks to the most recent choice point, which is the Resident(x, town) goal.
This is called chronological backtracking; although simple, it is sometimes inefficient. Clearly,
generating a new x cannot possibly help p become president!

The technique of backjumping avoids such pointless repetition. In this particular problem,
a backjumping search would backtrack two steps to Resident(p, town) and generate a new binding
for p. Discovering where to backjump to at compilation time is easy for a compiler that keeps
global dataflow information. Sometimes, in addition to backjumping to a reasonable spot, the
system will cache the combination of variables that lead to the dead end, so that they will
not be repeated again in another branch of the search. This is called dependency-directed
backtracking. In practice, the overhead of storing all the dead ends is usually too great—as with
heuristic search, memory is often a stronger constraint than time. In practice, there are many
more backjumping systems than full dependency-directed backtracking systems.

The final kind of metareasoning is the most complicated: being able to remember a
previously computed inference rather than having to derive it all over again. This is important
because most logical reasoning systems are given a series of related queries. For example, a
logic-based agent repeatedly ASKS its knowledge base the question "what should I do now?"
Answering this question will involve subgoals that are similar or identical to ones answered the
previous time around. The agent could just store every conclusion that it is able to prove, but
this would soon exhaust memory. There must be some guidance to decide which conclusions are



310 Chapter 10. Logical Reasoning Systems

worth storing and which should be ignored, either because they are easy to recompute or because
they are unlikely to be asked again. Chapter 21 discusses these issues in the general context of
an agent trying to take advantage of its previous reasoning experiences.

10.4 THEOREM PROVERS_________________________

Theorem provers (also known as automated reasoners) differ from logic programming languages
in two ways. First, most logic programming languages only handle Horn clauses, whereas
theorem provers accept full first-order logic. Second, Prolog programs intertwine logic and
control. The programmer's choice in writing A <= B A C instead of A •£= C A B affects the
execution of the program. In theorem provers, the user can write either of these, or another form
such as -*B •<= C A ->A, and the results will be exactly the same. Theorem provers still need control
information to operate efficiently, but this information is kept distinct from the knowledge base,
rather than being part of the knowledge representation itself. Most of the research in theorem
provers is in finding control strategies that are generally useful. In Section 9.6 we covered three
generic strategies: unit preference, linear input resolution, and set of support.

Design of a theorem prover
In this section, we describe the theorem prover OTTER (Organized Techniques for Theorem-
proving and Effective Research) (McCune, 1992), with particular attention to its control strategy.
In preparing a problem for OTTER, the user must divide the knowledge into four parts:

• A set of clauses known as the set of support (or sos), which defines the important facts
about the problem. Every resolution step resolves a member of the set of support against
another axiom, so the search is focused on the set of support.

• A set of usable axioms that are outside the set of support. These provide background
knowledge about the problem area. The boundary between what is part of the problem
(and thus in sos) and what is background (and thus in the usable axioms) is up to the user's
judgment.

• A set of equations known as rewrites or demodulators. Although demodulators are
equations, they are always applied in the left to right direction. Thus, they define a
canonical form into which all terms will be simplified. For example, the demodulator
x + 0 = x say s that every term of the form x + 0 should be replaced by the term x.

• A set of parameters and clauses that defines the control strategy. In particular, the user
specifies a heuristic function to control the search and a filtering function that eliminates
some subgoals as uninteresting.

OTTER works by continually resolving an element of the set of support against one of the usable
axioms. Unlike Prolog, it uses a form of best-first search. Its heuristic function measures the
"weight" of each clause, where lighter clauses are preferred. The exact choice of heuristic is up
to the user, but generally, the weight of a clause should be correlated with its size and/or difficulty.



Section 10.4. Theorem Provers 31:

Unit clauses are usually treated as very light, so that the search can be seen as a generalization
of the unit preference strategy. At each step, OTTER moves the "lightest" clause in the set of
support to the usable list, and adds to the usable list some immediate consequences of resolving
the lightest clause with elements of the usable list. OTTER halts when it has found a refutation or
when there are no more clauses in the set of support. The algorithm is shown in more detail in
Figure 10.5.

procedure OTTER(,«O.S, usable)
inputs: sos, a set of support—clauses defining the problem (a global variable)

usable, background knowledge potentially relevant to the problem

repeat
clause <— the lightest member of sos
move clause from sos to usable

PROCESS(lNFER(cfai«e, usable), sos)
until sos - [ ] or a refutation has been found

function lNFER(c/<mve, usable) returns clauses

resolve clause with each member of usable
return the resulting clauses after applying FILTER

procedure PROCESS(clauses, sos)

for each clause in clauses do
clause r- SlMPLIFY(c/<2M5<?)
merge identical literals
discard clause if it is a tautology
sos'— [clause I sos]
if clause has no literals then a refutation has been found
if clause has one literal then look for unit refutation

end

Figure 10.5 Sketch of the OTTER theorem prover. Heuristic control is applied in the selection
of the "lightest" clause, and in the FILTER function that eliminates uninteresting clauses from
consideration.

Extending Prolog
An alternative way to build a theorem prover is to start with a Prolog compiler and extend it to
get a sound and complete reasoner for full first-order logic. This was the approach taken in the
Prolog Technology Theorem Prover, or PTTP (Stickel, 1988). PTTP includes five significant
changes to Prolog to restore completeness and expressiveness:

• The occurs check is put back into the unification routine to make it sound.



312 Chapter 10. Logical Reasoning Systems

LOCKING

• The depth-first search is replaced by an iterative deepening search. This makes the search
strategy complete and takes only a constant factor more time.

• Negated literals (such as ~^P(x)) are allowed. In the implementation, there are two separate
routines, one trying to prove P and one trying to prove -iP.

• A clause with n atoms is stored as n different rules. For example, A -4= B A C would also be
stored as -<B <= C A ->A and as ->C <= B A ->A. This technique, known as locking, means
that the current goal need only be unified with the head of each clause but still allows for
proper handling of negation.

• Inference is made complete (even for non-Horn clauses) by the addition of the linear input
resolution rule: If the current goal unifies with the negation of one of the goals on the
stack, then the goal can be considered solved. This is a way of reasoning by contradiction.
Suppose we are trying to prove P and that the current goal is ->P. This is equivalent to
saying that ->P => P, which entails P.

Despite these changes, PTTP retains the features that make Prolog fast. Unifications are still done
by modifying variables directly, with unbinding done by unwinding the trail during backtracking.
The search strategy is still based on input resolution, meaning that every resolution is against one
of the clauses given in the original statement of the problem (rather than a derived clause). This
makes it feasible to compile all the clauses in the original statement of the problem.

The main drawback of PTTP is that the user has to relinquish all control over the search
for solutions. Each inference rule is used by the system both in its original form and in the
contrapositive form. This can lead to unintuitive searches. For example, suppose we had the rule

<f(x, y) =f(a, b)) ^.(X = d)/\(y = b)
As a Prolog rule, this is a reasonable way to prove that two/ terms are equal. But PTTP would
also generate the contrapositive:

(xfr) <= (f(x,y)#(a,b)) A (y = b)
It seems that this is a wasteful way to prove that any two terms x and a are different.

PROOF-CHECKER

SOCRATIC
REASONER

Theorem provers as assistants
So far, we have thought of a reasoning system as an independent agent that has to make decisions
and act on its own. Another use of theorem provers is as an assistant, providing advice to, say, a
mathematician. In this mode the mathematician acts as a supervisor, mapping out the strategy for
determining what to do next and asking the theorem prover to fill in the details. This alleviates
the problem of semi-decidability to some extent, because the supervisor can cancel a query and
try another approach if the query is taking too much time. A theorem prover can also act as a
proof-checker, where the proof is given by a human as a series of fairly large steps; the individual
inferences required to show that each step is sound are filled in by the system.

A Socratic reasoner is a theorem prover whose ASK function is incomplete, but which can
always arrive at a solution if asked the right series of questions. Thus, Socratic reasoners make
good assistants, provided there is a supervisor to make the right series of calls to ASK. ONTIC
(McAllester, 1989) is an example of a Socratic reasoning system for mathematics.



314 Chapter 10. Logical Reasoning Systems

of an agent—on each cycle, we add the percepts to the knowledge base and run the forward
chainer, which chooses an action to perform according to a set of condition-action rules.

Theoretically, we could implement a production system with a theorem prover, using
resolution to do forward chaining over a full first-order knowledge base. A more restricted
language, on the other hand, can provide greater efficiency because the branching factor is
reduced. The typical production system has these features:

• The system maintains a knowledge base called the working memory. This contains a set
of positive literals with no variables.

• The system also maintains a separate rule memory. This contains a set of inference rules,
each of the form p\ A pi • • • =>• act\ A act^ • • •, where the /?, are literals, and the act, are
actions to take when the pi are all satisfied. Allowable actions are adding and deleting
elements from the working memory, and possibly other actions (such as printing a value).

• In each cycle, the system computes the subset of rules whose left-hand side is satisfied by
the current contents of the working memory. This is called the match phase.

• The system then decides which of the rules should be executed. This is called the conflict
resolution phase.

• The final step in each cycle is to execute the action(s) in the chosen rule(s). This is called
the act phase.

RETE

Match phase
Unification addresses the problem of matching a pair of literals, where either literal can contain
variables. We can use unification in a straightforward way to implement a forward-chaining
production system, but this is very inefficient. If there are w elements in working memory and
r rules each with n elements in the left-hand side, and solving a problem requires c cycles, then
the naive match algorithm must perform wrnc unifications. A simple expert system might have
w= 100, r = 200, n = 5, c = 1000, so this is a hundred million unifications. The rete algorithm4

used in the OPS-5 production system was the first to seriously address this problem. The rete
algorithm is best explained by example. Suppose we have the following rule memory:

A(x) A B(x) A C(y) =>• add D(x)
A(x) A BOO A D(x) => add E(x)
A(x) A B(x) A E(x) => delete A(x)

and the following working memory:

{A(1),A(2),B(2),B(3),B(4),C(5)>
The rete algorithm first compiles the rule memory into the network shown in Figure 10.6. In
this diagram, the circular nodes represent fetches (not unifications) to working memory. Under
node A, the working memory elements A(l) and A(2) are fetched and stored. The square nodes
indicate unifications. Of the six possible A x B combinations at the A = B node, only A(2) and
B(2) satisfy the unification. Finally, rectangular boxes indicate actions. With the initial working
4 Rete is Latin for net. It rhymes with treaty.



Section 10.5. Forward-Chaining Production Systems 315

( n j ——— ^ A D —.».
X\^_^x

/c A j "^ /^ •• A B "1° ) *
A(1),A(2) B(2),B(3),B(4) A(2)\ M&)

B < 2 , \ _ ^XL) ———

addE

addD

delete A

D(2)

Figure 10.6 A rete network. Circles represent predicate tests. A square containing, for
example, A=B represents a constraint that the solutions to the A and B tests must be equal.
Rectangles are actions.

memory the "add D" rule is the only one that fires, resulting in the addition of the sentence D(2)
to working memory.

One obvious advantage of the rete network is that it eliminates duplication between rules.
All three of the rules start with a conjunction of A and B, and the network allows that part to be
shared. The second advantage of rete networks is in eliminating duplication over time. Most
production systems make only a few changes to the knowledge base on each cycle. This means
that most of the tests at cycle t+\ will give the same result as at cycle t. The rete network modifies
itself after each addition or deletion, but if there are few changes, then the cost of each update
will be small relative to the whole job of maintaining the indexing information. The network
thus represents the saved intermediate state in the process of testing for satisfaction of a set of
conjuncts. In this case, adding D(2) will result in the activation of the "add E" rule, but will not
have any effect on the rest of the network. Adding or deleting an A, however, will have a bigger
effect that needs to be propagated through much of the network.

Conflict resolution phase

Some production systems execute the actions of all rules that pass the match phase. Other
production systems treat these rules only as suggestions, and use the conflict resolution phase to
decide which of the suggestions to accept. This phase can be thought of as the control strategy.
Some of the strategies that have been used are as follows:

• No duplication. Do not execute the same rule on the same arguments twice.

• Recency. Prefer rules that refer to recently created working memory elements.



316 Chapter 10. Logical Reasoning Systems

• Specificity. Prefer rules that are more specific.5 For example, the second of these two rules
would be preferred:

Mammal(x) => add Legs(x, 4)
Mammal(x) A Human(x) =>• add Legs(x, 2)

• Operation priority. Prefer actions with higher priority, as specified by some ranking. For
example, the second of the following two rules should probably have a higher priority:

ControlPanel(p) A Dusty(p) => Action(Dust(p))
ControlPanel(p) A MeltdownLightOn(p) => Action(Evacuate)

Practical uses of production systems
Forward-chaining production systems formed the foundation of much early work in AI. In par-
ticular, the XCON system (originally called Rl (McDermott, 1982)) was built using a production
system (rule-based) architecture. XCON contains several thousand rules for designing configura-
tions of computer components for customers of the Digital Equipment Corporation. It was one of
the first clear commercial successes in the emerging field of expert systems. Many other similar
systems have been built using the same underlying technology, which has been implemented
in the general-purpose language Ops-5. A good deal of work has gone into designing match-
ing algorithms for production system languages, as we have seen; implementations on parallel
hardware have also been attempted (Acharya et al., 1992).

ARCHITECTURES Production systems are also popular in cognitive architectures—that is, models of human
reasoning—such as ACT (Anderson, 1983) and SOAR (Laird et al., 1987). In such systems, the
"working memory" of the system models human short-term memory, and the productions are
part of long-term memory. Both ACT and SOAR have sophisticated mechanisms for conflict
resolution, and for saving the results of expensive reasoning in the form of new productions.
These can be used to avoid reasoning in future situations (see also Section 21.2).

10.6 FRAME SYSTEMS AND SEMANTIC NETWORKS

In 1896, seven years after Peano developed what is now the standard notation for first-order logic,
GRAPHSTIAL Charles Peirce proposed a graphical notation called existential graphs that he called "the logic

of the future." Thus began a long-running debate between advocates of "logic" and advocates
of "semantic networks." What is unfortunate about this debate is that it obscured the underlying
unity of the field. It is now accepted that every semantic network or frame system could just
as well have been defined as sentences in a logic, and most accept that it could be first-order
logic.6 (We will show how to execute this translation in detail.) The important thing with any
representation language is to understand the semantics, and the proof theory; the details of the
syntax are less important. Whether the language uses strings or nodes and links, and whether it
5 For more on the use of specificity to implement default reasoning, see Chapter 14.
6 There are a few problems having to do with handling exceptions, but they too can be handled with a little care.

Ill



Section 10.6. Frame Systems and Semantic Networks 317

is called a semantic network or a logic, has no effect on its meaning or on its implementation.
Having said this, we should also say that the format of a language can have a significant

effect on its clarity for a human reader. Some things are easier to understand in a graphical
notation; some are better shown as strings of characters. Fortunately, there is no need to choose
one or the other; the skilled AI practitioner can translate back and forth between notations,
choosing the one that is best for the task at hand, but drawing intuitions from other notations.
Some systems, such as the CYC system mentioned in Chapter 8, provide both kinds of interfaces.

Besides the appeal of pretty node-and-link diagrams, semantic networks have been success-
ful for the same reason that Prolog is more successful than full first-order logic theorem provers:
because most semantic network formalisms have a very simple execution model. Programmers
can build a large network and still have a good idea about what queries will be efficient, because
(a) it is easy to visualize the steps that the inference procedure will go through, and (b) the query
language is so simple that difficult queries cannot be posed. This may be the reason why many
of the pioneering researchers in commonsense ontology felt more comfortable developing their
theories with the semantic network approach.

Syntax and semantics of semantic networks
Semantic networks concentrate on categories of objects and the relations between them. It is
very natural to draw the link

Cats Subset Mammals

to say that cats are mammals. Of course, it is just as easy to write the logical sentence Cats C
Mammals, but when semantic networks were first used in AI (around 1961), this was not widely
appreciated; people thought that in order to use logic they would have to write

\/x Cat(x) => Mammal(x)

which seemed a lot more intimidating. It was also felt that V* did not allow exceptions, but that
Subset was somehow more forgiving.7

We now recognize that semantics is more important than notation. Figure 10.7 gives an
example of a typical frame-based network, and a translation of the network into first-order logic.
This network can be used to answer the query "How many legs does Opus have?" by following
the chain of Member and Suhset links from Opus to Penguins to Birds, and seeing that birds have
two legs. This is an example of inheritance, as described in Section 8.4. That is clear enough,
but what happens, when, say, there are two different chains to two different numbers of legs?
Ironically, semantic networks sometimes lack a clear semantics. Often the user is left to induce
the semantics of the language from the behavior of the program that implements it. Consequently,
users often think of semantic networks at the implementation level rather than the logical level
or the knowledge level.

7 In many systems, the name IsA was given to both subset and set-membership links, in correspondence with English
usage: "a cat is a mammal" and "Fifi is a cat." This can lead directly to inconsistencies, as pointed out by Drew
McDermott (1976) in his article "Artificial Intelligence Meets Natural Stupidity." Some systems also failed to distinguish
between properties of members of a category and properties of the category as a whole.



318 Chapter 10. Logical Reasoning Systems

.Q
E
0)

L

Pat
Name: Pat

(a) A frame-based knowledge base

Rel(Alive,Animals,T)
Rel(Flies,Animals,F)

Birds C Animals
Mammals C Animals

Rel(Flies, Birds,!)
Rel(Legs,Birds,2)
Rel(Legs,Mammals,4)

Penguins C Birds
Cats C Mammals
Bats C Mammals
Rel(Flies,Penguins,F)
Rel(Legs,Bats,2)
Rel(Flies,Bats,T)

Opus G Penguins
Bill SCats
Pat 6 Bats
Name(Opus,"Opus")
Name(Bill,"Bill")
Friend(Opus,Bill)
Friend(Bill,Opus)
Name(Pat,"Pat")

(b) Translation into first-order logic

Figure 10.7 A frame-based network and a translation of the network into first-order logic.
Boxed relation names in the network correspond to relations holding for all members of the set
of objects.

The semantics of a simple semantic network language can be stated by providing first-order
logical equivalents for assertions in the network language. We first define a version in which
exceptions are not allowed. In addition to Suhset and Member links, we find that there is a need for
at least three other kinds of links: one that says a relation R holds between two objects, A and 5;
one that says R holds between every element of the class A and the object B; and one that says
that R holds between every element of A and some element of B. The five standard link types
are summarized in Figure 10.8.8 Notice that a theorem prover or logic programming language
could take the logical translations of the links and do inheritance by ordinary logical inference. A
semantic network system uses uses special-purpose algorithms for following links, and therefore
can be faster than general logical inference.

8 Because assertions of the form A L^J B are so common, we use the abbreviation Rel(R. A. B) as syntactic sugar in the
logical translation (Figure 10.7).



Section 10.6. Frame Systems and Semantic Networks 319

Link Type
^ Subset fi

A Member D

A _ £ _ B
A^B

AMB

Semantics
ACB
A e f i
R(A,B)
\/x x£A => R(x,B)

MX 3y x<EA => y£Bf\R(x,y)

Example
Cats C Mammals
Bill G Cats
Bill Ase, 12
n . / 1 Lees \ /-*Birds ' — M 2
n • 7 1 Parent \\ j-»- »/nras ' , ' Birds

Figure 10.8 Link types in semantic networks, and their meanings.

Inheritance with exceptions
As we saw in Chapter 8, natural kinds are full of exceptions. The diagram in Figure 10.7 says that
mammals have 4 legs, but it also says that bats, which are mammals, have 2 legs. According to
the straightforward logical semantics, this is a contradiction. To fix the problem, we will change
the semantic translation of a boxed-/? link from A to B to mean that every member of A must have
an R relation to B unless there is some intervening A' for which Rel(R, A',B'). Then Figure 10.7
will unambiguously mean that bats have 2 legs, not 4. Notice that Rel(R,A,B) no longer means

DEFAULT VALUE that every A is related by R to B; instead it means that B is a default value for the R relation for
members of A, but the default can be overridden by other information.

It may be intuitive to think of inheritance with exceptions by following links in a diagram,
but it is also possible—and instructive—to define the semantics in first-order logic. The first step
in the logical translation is to reify relations: a relation R becomes an object, not a predicate. That
means that Rel(R,A,B) is just an ordinary atomic sentence, not an abbreviation for a complex
sentence. It also means that we can no longer write R(x, B), because R is an object, not a predicate.
We will use Val(R,x,B) to mean that the equivalent of an R(x,B) relation is explicitly asserted
in the semantic network, and Holds(R,x,B) to mean that R(x,B) can be inferred. We then can
define Holds by saying that a relation R holds between x and b if either there is an explicit Val
predication or there is a Rel on some parent class p of which x is an element, and there is no Rel
on any intervening class i. (A class i is intervening if x is an element of i and i is a subset off.)
In other words:

Vr,x,b Holds(r,x,b) O
Val(r,x, b} V (3p x £p A Rel(r,p, b) A -iInterveningRel(x,p, r))

Vx,p,r InterveningRel(x,p,r) -o-
3 i Intervening(x, i,p) A 3 b' Rel(r, i, b')

Va,i,p Intervening(x,i,p) o- (x£i)/\(iCp)
Note that the C symbol means proper subset (e.g., / C p means that ; is a subset of p and is
not equal to p). The next step is to recognize that it is important not only to know what Rel
and Val relations hold, but also what ones do not hold. Suppose we are trying to find the n
that satisfies Holds(Legs, Opus, n). We know Rel(Legs, Birds, 2) and we know Opus is a bird,
but the definition of Holds does not allow us to infer anything unless we can prove there is no
Rel(Legs, i, b) for i = Penguins or any other intervening category. If the knowledge base only



320 Chapter 10. Logical Reasoning Systems \

contains positive Rel atoms (i.e., Rel(Legs,Birds,2) A Rel(Flies,Birds,T)), then we are stuck.
Therefore, the translation of a semantic network like Figure 10.7 should include sentences that •
say that the Rel and Val relations that are shown are the only ones that are true:

\/r,a,b Rel(r,a,b) & [r,a,b] e {[Alive, Animal,T],[Flies, Animal, F], •••}
\/r,a,b Val(r,a,b) O [r,a,b] £ {[Friend, Opus,Bill], [Friend,Bill, Opus],...}

MULTIPLE
INHERITANCE

Multiple inheritance
Some semantic network systems allow multiple inheritance—that is, an object can belong to
more than one category and can therefore inherit properties along several different paths. In
some cases, this will work fine. For example, some people might belong to both the categories
Billionaire and PoloPlayer, in which case we can infer that they are rich and can ride a horse.

It is possible, however, for two inheritance paths to produce conflicting answers. An
example of this difficulty is shown in Figure 10.9. Opus is a penguin, and therefore speaks only
in squawks. Opus is a cartoon character, and therefore speaks English.9 In the simple logical
translation given earlier, we would be able to infer both conclusions, which, with appropriate
background knowledge, would lead to a contradiction. Without additional information indicating
some preference for one path, there is no way to resolve the conflict.

Speech
1 Vocalization I Cartoon

Character Penguin
| Vocalization 1

Squawks

Opus

Figure 10.9 An example of conflicting inferences from multiple inheritance paths.

Inheritance and change
A knowledge base is not of much use to an agent unless it can be expanded. In systems based
on first-order logic, we use TELL to add a new sentence to the knowledge base, and we enjoy the
9 The classical example of multiple inheritance conflict is called the "Nixon diamond." It arises from the observation
that Richard Nixon was both a Quaker (and hence a pacifist) and a Republican (and hence not a pacifist). Because of
its potential for controversy, we will avoid this particular example. The other canonical example involves a bird called
Tweety, about whom the less said the better.



Section 10.6. Frame Systems and Semantic Networks 321

property of monotonicity: iff follows from KB, then it still follows when KB is augmented by
TELL(KB,S). In other words,

if KB h P then (KB A S) h P

NONMONOTONIC Inheritance with exceptions is nonmonotonic: from the semantic network in Figure 10.7 it
follows that Bill has 4 legs, but if we were to add the new statement Rel(Legs, Cats, 3), then it no
longer follows that Bill has 4 legs. There are two ways to deal with this.

First, we could switch from first-order logic to a nonmonotonic logic that explicitly deals
with default values. Nonmonotonic logics allow you to say that a proposition P should be treated
as true until additional evidence allows you to prove that P is false. There has been quite a lot
of interesting theoretical work in this area, but so far its impact on practical systems has been
smaller than other approaches, so we will not address it in this chapter.

Second, we could treat the addition of the new statement as a RETRACT followed by a TELL.
Given the way we have defined Rel, this makes perfect sense. We do not make statements of the
form TELL(£B, Rel(R,A,B)). Instead, we make one big equivalence statement of the form

TELL(KB, Mr,a,b Rel(r,a,b) < £ > . . . )

where the . . . indicate all the possible Rel's. So to add Rel(Legs, Cats, 3), we would have to
remove the old equivalence statement and replace it by a new one. Once we have altered the
knowledge base by removing a sentence from it (and not just adding a new one) we should not
be surprised at the nonmonotonicity. Section 10.8 discusses implementations of RETRACT.

Implementation of semantic networks
Once we have decided on a meaning for our networks, we can start to implement the network. Of
course, we could choose to implement the network with a theorem prover or logic programming
language, and in some cases this would be the best choice. But for networks with simple
semantics, a more straightforward implementation is possible. A node in a network is represented
by a data structure with fields for the basic taxonomic connections: which categories it is a
member of; what elements it has; what immediate subsets and supersets. It also has fields
for other relations in which it participates. The RELS-IN and RELS-OuT fields handle ordinary
(unboxed) links, and the ALL-RELS-lN and ALL-RELS-OUT fields handle boxed links. Here is the
data type definition for nodes:

datatype SEM-NET-NODE
components: NAME, MEMBERSHIPS, ELEMENTS, SUPERS, SUBS,

RELS-IN, RELS-OUT, ALL-RELS-IN, ALL-RELS-OUT

Each of the four REL-fields is organized as a table indexed by the relation. We use the function
LooKVP(key, table) to find the value associated with a key in a table. So, if we have the two
links Opus F^ Bill and Opus Frie"f Steve, then LoOKUP(Friend,RELS-Ow(Opus)) gives us the
set {Bill,Steve}.



322 Chapter 10. Logical Reasoning Systems

The code in Figure 10.10 implements everything you need in order to ASK the network
whether subset, membership, or other relations hold between two objects. Each of the functions
simply follows the appropriate links until it finds what it is looking for, or runs out of links. The
code does not handle double-boxed links, nor does it handle exceptions. Also, the code that
TELLS the network about new relations is not shown, because it is straightforward.

The code can be extended with other functions to answer other questions. One problem
with this approach is that it is easy to become carried away with the data structures and forget their
underlying semantics. For example, we could easily define a NUMBER-OF-SUB KINDS function that
returns the length of the list in the SUBS slot. For Figure 10.7, NUMBER-OF-SUBKlNDS(Am'ma/)
= 2. This may well be the answer the user wanted, but its logical status is dubious. First of all, it

function MEMRERl(e/ement, category) returns True or False

for each c in MEMBERSHiPS[e/<?menf] do
if SUBSET?(c, category) then return True

return False

function SUBSET?(SW£>, super) returns True or False

if sub = super then return True
for each c in SUPERS [sub] do

if SUBSET?(c, super) then return True
return False

function RELATED-Jol(source, relation, destination) returns True or False

if relation appears in RELS-OUT(.vowrce) then
return MEMftER([relation, destination],RELS-O\jT(node))

else for each c in MEMBERSHiPS^osirce) do
if AEE-RELATED-To?(c, relation, destination) then return True

end
return False

function AEE-RELATED-TO?(.vowrce, relation, destination) returns True or False

if relation appears in ALE-RELS-OUT(.yowrce) then
return MEMBER([relation, destination], ALL-RELS-OUT(node))

else for each c in SupERS(category) do
if ALL-RELATED-TO?(c, relation, destination) then return True

end
return False

Figure 10.10 Basic routines for inheritance and relation testing in a simple exception-free
semantic network. Note that the function MEMBER? is defined here to operate on semantic
network nodes, while the function MEMBER is a utility that operates on sets.



Section 10.7. Description Logics 323

is likely that there are species of animals that are not represented in the knowledge base. Second,
it may be that some nodes denote the same object. Perhaps Dog and Chien are two nodes with
an equality link between them. Do these count as one or two? Finally, is Dog-With-Black-Ears
a kind of animal? How about Dog-On-My-Block-Last-Thursdayl It is easy to answer these
questions based on what is stored in the knowledge base, but it is better to have a clear semantics
so that the questions can be answered about the world, rather than about the current state of the
internal representation.

PARTITIONED
SEMANTIC
NETWORKS

PROCEDURAL
ATTACHMENT

Expressiveness of semantic networks
The networks we have discussed so far are extremely limited in their expressiveness. For example,
it is not possible to represent negation (Opus does not ride a bicycle), disjunction (Opus appears
in either the Times or the Dispatch), or quantification (all of Opus' friends are cartoon characters).
These constructs are essential in many domains.

Some semantic networks extend the notation to allow all of first-order logic. Peirce's orig-
inal existential graphs, partitioned semantic networks (Hendrix, 1975), and SNEPS (Shapiro,
1979) all take this approach. A more common approach retains the limitations on expressiveness
and uses procedural attachment to fill in the gaps. Procedural attachment is a technique where
a function written in a programming language can be stored as the value of some relation, and
used to answer ASK calls about that relation (and sometimes TELL calls as well).

What do semantic networks provide in return for giving up expressiveness? We have
already seen two advantages: they are able to capture inheritance information in a modular
way, and their simplicity makes them easy to understand. Efficiency is often claimed as a third
advantage: because inference is done by following links, rather than retrieving sentences from a
knowledge base and performing unifications, it can operate with only a few machine cycles per
inference step. But if we look at the kinds of computations done by compiled Prolog programs,
we see there is not much difference. A compiled Prolog program for a set of subset and set-
membership sentences, combined with general properties of categories, does almost the same
computations as a semantic network.

1QJ DESCRIPTION LOGICS

|2>JjJ«" The syntax of first-order logic is designed to make it easy to say things about objects. Description
'"^' logics are designed to focus on categories and their definitions. They provide a reasonably

sophisticated facility for defining categories in terms of existing relations, with much greater
expressiveness than typical semantic network languages. The principal inference tasks are

SUBSUMPTION subsumption—checking if one category is a subset of another based on their definitions—and
CLASSIFICATION classification—checking if an object belongs to a category. In some description logics, objects

are also viewed as categories defined by the object's description and (presumably) containing
only one member. This way of looking at representation is a significant departure from the
object-centered view that is most compatible with first-order logical syntax.



324 Chapter 10. Logical Reasoning Systems I

The CLASSIC language (Borgida et al., 1989) is a typical description logic. The syntax
of CLASSIC descriptions is shown in Figure 10.II.10 For example, to say that bachelors are
unmarried, adult males we would write

Bachelor = And(Untnarried, Adult, Male)
The equivalent in first-order logic would be

\/x Bachelor(x) O Unmarried(x) A Adult(x) A Male(x)
Notice that the description logic effectively allows direct logical operations on predicates, rather
than having to first create sentences to be joined by connectives. Any description in CLASSIC can
be written in first-order logic, but some descriptions are more straightforward in CLASSIC. For 1
example, to describe the set of men with at least three sons who are all unemployed and married
to doctors, and at most two daughters who are all professors in physics or chemistry departments,
we would use

And(Man,AtLeast(3, Son),AtMost(2, Daughter),
All(Son,And(Unemployed, Married, All(Spouse, Doctor))),
All(Daughter,And(Professor, Fills(Department, Physics, Chemistry))))

We leave it as an exercise to translate this into first-order logic.

Concept — Thing | ConceptName
And(Concept,...)
AlKRoleName, Concept)
AtLeast(lnteger, RoleName)
AtMost(lnteger, RoleName)
Fills (Role Name, IndividualName,...)
SameAs(Path, Path)

| OneOf (IndividualName,...)
Path ->• [RoleName,...]

Figure 10.11 The syntax of descriptions in a subset of the CLASSIC language.

Perhaps the most important aspect of description logics is the emphasis on tractability of ;
inference. A problem instance is solved by describing it and asking if it is subsumed by one of
several possible solution categories. In standard first-order logic systems, predicting the solution
time is often impossible. It is often left to the user to engineer the representation to detour around
sets of sentences that seem to be causing the system to take several weeks to solve a problem.
The thrust in description logics, on the other hand, is to ensure that subsumption-testing can be
solved in time polynomial in the size of the problem description. The CLASSIC language satisfies
this condition, and is currently the most comprehensive language to do so.
10 Notice that the language does not allow one to simply state that one concept, or category, is a subset of another. This
is a deliberate policy: subsumption between categories must be derivable from some aspects of the descriptions of the
categories. If not, then something is missing from the descriptions.



Section 10.8. Managing Retractions, Assumptions, and Explanations 325

This sounds wonderful in principle, until one realizes that it can only have one of two conse-
quences: hard problems either cannot be stated at all, or require exponentially large descriptions!
However, the tractability results do shed light on what sorts of constructs cause problems, and
thus help the user to understand how different representations behave. For example, description
logics usually lack negation and disjunction. These both force first-order logical systems to
essentially go through an exponential case analysis in order to ensure completeness. For the
same reason, they are excluded from Prolog. CLASSIC only allows a limited form of disjunction
in the Fills and OneOf constructs, which allow disjunction over explicitly enumerated individuals
but not over descriptions. With disjunctive descriptions, nested definitions can lead easily to an
exponential number of alternative routes by which one category can subsume another.

Practical uses of description logics
Because they combine clear semantics and simple logical operations, description logics have
become popular with both the theoretical and practical AI communities. Applications have
included financial management (Mays et al, 1987), database interfaces (Beck et al, 1989), and
software information systems (Devanbu etal., 1991). Because of the gradual extension of the class
of tractable languages, and a better understanding of what kinds of constructs cause intractability,
the efficiency of description logic systems has improved by several orders of magnitude over the
last decade.

10.8 MANAGING RETRACTIONS, ASSUMPTIONS, AND EXPLANATIONS

We have said a great deal about TELL and ASK, but so far very little about RETRACT. Most logical
reasoning systems, regardless of their implementation, have to deal with RETRACT. As we have
seen, there are three reasons for retracting a sentence. It may be that a fact is no longer important,
and we want to forget about it to free up space for other purposes. It may be that the system
is tracking the current state of the world (without worrying about past situations) and that the
world changes. Or it may be that the system assumed (or determined) that a fact was true, but
now wants to assume (or comes to determine) that it is actually false. In any case, we want to be
able to retract a sentence from the knowledge base without introducing any inconsistencies, and
we would like the interaction with the knowledge base as a whole (the cycle of TELL, ASK and
RETRACT requests) to be efficient.

It takes a little experience to appreciate the problem. First, it is important to understand
the distinction between RETRACJ(KB, P) and TELL(A^5, -i/>). Assuming that the knowledge base
already contains P, adding -i/> with TELL will allow us to conclude both P and ->P, whereas
removing P with RETRACT will allow us to conclude neither P nor ->P. Second, if the system
does any forward chaining, then RETRACT has some extra work to do. Suppose the knowledge
base was told P and P => Q, and used that to infer Q and add it to the knowledge base. Then
RETRACT(/3?, P) must remove both P and Q to keep the knowledge base consistent. However, if
there is some other independent reason for believing Q (perhaps both R and R =>• Q have been



326 Chapter 10. Logical Reasoning Systems

TRUTH
MAINTENANCE

TRUTH
MAINTENANCE
SYSTEM

EXPLANATIONS

ASSUMPTIONS

JTMS

asserted), then Q does not have to be removed after all. The process of keeping track of which
additional propositions need to be retracted when we retract P is called truth maintenance.

The simplest approach to truth maintenance is to use chronological backtracking (see page
309). In this approach, we keep track of the order in which sentences are added to the knowledge
base by numbering them from PI to P,,. When the call RETRACT(P,) is made, the system reverts
to the state just before P, was added. If desired, the sentences P,+\ through Pn can then be added
again. This is simple, and it guarantees that the knowledge base will be consistent, but it means
that retraction is O(ri), where n is the size of the knowledge base. We would prefer a more
efficient approach that does not require us to duplicate all the work for P/+1 to Pn.

A truth maintenance system or TMS is a program that keeps track of dependencies
between sentences so that retraction (and some other operations) will be more efficient. A TMS
actually performs four important jobs. First, a TMS enables dependency-directed backtracking,
to avoid the inefficiency of chronological backtracking.

A second and equally important job is to provide explanations of propositions. A proof
is one kind of explanation—if we ask, "Explain why you believe P is true?" then a proof of P
is a good explanation. If a proof is not possible, then a good explanation is one that involves
assumptions. For example, if we ask, "Explain why the car won't start," there may not be enough
evidence to prove anything, but a good explanation is, "If we assume that there is gas in the car
and that it is reaching the cylinders, then the observed absence of activity proves that the electrical
system must be at fault." Technically, an explanation £ of a sentence P is defined as a set of
sentences such that E entails P. The sentences in E must either be known to be true (i.e., they
are in the knowledge base), or they must be known to be assumptions that the problem-solver
has made. To avoid having the whole knowledge base as an explanation, we will insist that E is
minimal, that is, that there is no proper subset of E that is also an explanation.

The ability to deal with assumptions and explanations is critical for the third job of a TMS:
doing default reasoning. In a taxonomic system that allows exceptions, stating that Opus is a
penguin does not sanction an irrefutable inference that Opus has two legs, because additional
information about Opus might override the derived belief. A TMS can deliver the explanation
that Opus, being a penguin, has two legs provided he is not an abnormal penguin. Here, the
lack of abnormality is made into an explicit assumption. Finally, TMSs help in dealing with
inconsistencies. If adding P to the knowledge base results in a logical contradiction, a TMS can
help pinpoint an explanation of what the contradiction is.

There are several types of TMSs. The simplest is the justification-based truth maintenance
system or JTMS. In a JTMS, each sentence in the knowledge base is annotated with a justification
that identifies the sentences from which it was inferred, if any. For example, if Q is inferred by
Modus Ponens from P, then the set of sentences {P, P => Q} could serve as a justification of
the sentence Q. Some sentences will have more than one justification. Justifications are used
to do selective retractions. If after adding P\ through Pn we get a call to RETRACT(P,), then the
JTMS will remove from the knowledge base exactly those sentences for which Pt is a required
part of every justification. So, if a sentence Q had {P/, P, =>• Q] as its only justification, it
would be removed; if it had the additional justification {Pf, P,-V R => Q}, then it would still be
removed; but if it also had the justification!/?, P, V/? => Q}, then it would be spared.

In most JTMS implementations, it is assumed that sentences that are considered once will
probably be considered again, so rather than removing a sentence from the knowledge base when



Section 10.9. Summary 327

ATMS

it loses all justification, we merely mark the sentence as being out of the knowledge base. If a
subsequent assertion restores one of the justifications, then we mark the sentence as being back
in. In this way, the JTMS retains all of the inference chains that it uses, and need not rederive
sentences when a justification becomes valid again.

To solve the car diagnosis problem with a JTMS, we would first assume (that is, assert)
that there is gas in the car and that it is reaching the cylinders. These sentences would be labelled
as in. Given the right background knowledge, the sentence representing the fact that the car will
not start would also become labelled in. We could then ask the JTMS for an explanation. On the
other hand, if it turned out that the assumptions were not sufficient (i.e., they did not lead to "car
won't start" being in), then we would retract the original assumptions and make some new ones.
We still have a search problem—the TMS does only part of the job.

The JTMS was the first type of TMS, but the most popular type is the ATMS or assumption-
based truth maintenance system. The difference is that a JTMS represents one consistent state
of the world at a time. The maintenance of justifications allows you to quickly move from one
state to another by making a few retractions and assertions, but at any time only one state is
represented. An ATMS represents all the states that have ever been considered at the same time.
Whereas a JTMS simply labels each sentence as being in or out, an ATMS keeps track, for
each sentence, of which assumptions would cause the sentence to be true. In other words, each
sentence has a label that consists of a set of assumption sets. The sentence holds just in those
cases where all the assumptions in one of the assumption sets hold.

To solve problems with an ATMS, we can make assumptions (such as P, or "gas in car")
in any order we like. Instead of retracting assumptions when one line of reasoning fails, we just
assert all the assumptions we are interested in, even if they contradict each other. We then can
check a particular sentence to determine the conditions under which it holds. For example, the
label on the sentence Q would be {{P;}, {R}}, meaning that Q is true under the assumption that
PI is true or under the assumption that R is true. A sentence that has the empty set as one of its
assumption sets is necessarily true—it is true with no assumptions at all. On the other hand, a
sentence with no assumption sets is just false.

The algorithms used to implement truth maintenance systems are a little complicated, and
we do not cover them here. The computational complexity of the truth maintenance problem is
at least as great as that of propositional inference—that is, NP-hard. Therefore, you should not
expect truth maintenance to be a panacea (except for trivially small problems). But when used
carefully (for example, with an informed choice about what is an assumption and what is a fact
that can not be retracted), a TMS can be an important part of a logical system.

11L9SUMMARY

This chapter has provided a connection between the conceptual foundations of knowledge rep-
resentation and reasoning, explained in Chapters 6 through 9, and the practical world of actual
reasoning systems. We emphasize that real understanding of these systems can only be obtained
by trying them out.



328 Chapter 10. Logical Reasoning Systems

We have described implementation techniques and characteristics of four major classes of
logical reasoning systems:

• Logic programming systems and theorem provers.
• Production systems.
• Semantic networks.
• Description logics.

We have seen that there is a trade-off between the expressiveness of the system and its efficiency.
Compilation can provide significant improvements in efficiency by taking advantage of the fact
that the set of sentences is fixed in advance. Usability is enhanced by providing a clear semantics
for the representation language, and by simplifying the execution model so that the user has a
good idea of the computations required for inference.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
Work on indexing and retrieval in knowledge bases appears in the literatures of both AI and
databases. The two major texts on AI programming (Charniak et ai, 1987; Norvig, 1992)
discuss the topic in depth. The text by Forbus and de Kleer (1993) also covers much of this
ground. The standard reference on management of databases and knowledge bases is (Ullman,
1989). Jack Minker was a major pioneer in the development of the theory of deductive databases
(GallaireandMinker, 1978; Minker, 1988). Colomb( 1991) presents some interesting ideas about
using hardware to aid indexing of Prolog programs.

As mentioned in Chapter 9, unification was foreshadowed by Herbrand (1930), and formally
introduced by Robinson (1965) in the same article that unveiled the resolution inference rule.
Extending work by Boyer and Moore (1972), Martelli and Montanari (1976) and Paterson and
Wegman (1978) developed unification algorithms that run in linear time and space via sharing
of structure among representations of terms. Unification is surveyed by Knight (1989) and by
Lassez et al. (1988). Shieber (1986) covers the use of unification in natural language processing.

Prolog was developed, and the first interpreter written, by the French researcher Alain
Colmerauer in 1972 (Roussel, 1975; Colmerauer et al., 1973); Colmerauer (1985) also gives
an English-language survey of Prolog. Much of the theoretical background was developed by
Robert Kowalski (1974; 1979b; 1979a) in collaboration with Colmerauer. Kowalski (1988) and
Cohen (1988) provide good historical overviews of the origins of Prolog. Foundations of Logic
Programming (Lloyd, 1987) is a theoretical analysis of the underpinnings of Prolog and other
logic programming languages. Ait-Kaci (1991) gives a clear exposition of the Warren Abstract
Machine (WAM) model of computation (Warren, 1983).

Recently, much of the effort in logic programming has been aimed toward increasing
efficiency by building information about specific domains or specific inference patterns into
the logic programming language. The language LOGIN (Ait-Kaci and Nasr, 1986) incorporates
efficient handling of inheritance reasoning. Constraint logic programming (CLP) is based on
the use of constraint satisfaction, together with a background theory, to solve constraints on



Section 10.9. Summary 329

FUNCTIONAL
PROGRAMMING

variables (Roach et al., 1990), rather than the simple equality propagation used in normal
unification. (Herbrand's original formulation had also used constraining equations rather than
syntactic matching.) CLP is analyzed theoretically in (Jaffar and Lassez, 1987). Jaffar et
al. (1992a) work specifically in the domain of the real numbers, using a logic programming
language called CLP(R). Concurrent CLP is addressed by Saraswat (1993). Jaffar et al. (1992b)
present the Constraint Logic Abstract Machine (CLAM), a WAM-like abstraction designed to
aid in the analysis of CLP(R). Ait-Kaci and Podelski (1993) describe a sophisticated constraint
logic programming language called LIFE, which combines constraint logic programming with
functional programming and with inheritance reasoning (as in LOGIN). Prolog III (Colmerauer,
1990) builds in several assorted types of reasoning into a Prolog-like language. Volume 58 (1992)
of the journal Artificial Intelligence is devoted primarily to constraint-based systems. Kohn(1991)
describes an ambitious project to use constraint logic programming as the foundation for a real-
time control architecture, with applications to fully automatic pilots.

Aside from the development of constraint logic and other advanced logic programming
languages, there has been considerable effort to speed up the execution of Prolog by highly opti-
mized compilation and the use of parallel hardware, especially in the Japanese Fifth Generation
computing project. Van Roy (1990) examines some of the issues involved in fast execution on
serial hardware. Feigenbaum and Shrobe (1993) provide a general account and evaluation of
the Fifth Generation project. The Fifth Generation's parallel hardware prototype was the PIM,
or Parallel Inference Machine (Taki, 1992). Logic programming of the PIM was based on the
formalism of guarded Horn clauses (Ueda, 1985) and the GHC and KL1 languages that grew out
of it (Furukawa, 1992). A number of applications of parallel logic programming are covered by
Nitta et al. (1992). Other languages for parallel logic programming include Concurrent Prolog
(Shapiro, 1983) and PARLOG (Clark and Gregory, 1986).

Logic programming is not the only paradigm of programming that has been prominent
in Al. Functional programming models programs not as collections of logical clauses but
as descriptions of mathematical functions. Functional programming is based on the lambda
calculus (Church, 1941) and combinatory logic (Schonfinkel, 1924; Curry and Feys, 1958), two
sophisticated mathematical notations for describing and reasoning about functions. The earliest
functional programming language, dating from 1958, was Lisp, which is due to John McCarthy.
Its history and prehistory is described in detail in (McCarthy, 1978). Incidentally, McCarthy
denies (p. 190) that Lisp was intended as an actual implementation of the lambda-calculus (as has
often been asserted), although it does borrow certain features. Lisp stands for LISt Processing,
the use of linked lists whose elements are connected by pointers (rather than by proximity in
the machine's address space, as arrays are) to create data structures of great flexibility. The
list processing technique predated Lisp and functional programming (Newell and Shaw, 1957;
Gelernter et al, 1960). After its invention, Lisp proliferated into a wide variety of dialects, partly
because the language had been designed to be easy to modify and extend. In the past two decades,
there has been an effort to reunify the language as Common Lisp, described in great detail by
Steele (1990). Both of the two major Al programming texts mentioned above assume the use
of Lisp. A number of other functional programming languages have been developed around a
small, clean core of definitions. These include SCHEME, DYLAN, and ML.

The so-called problem-solving languages were precursors of logic programming in that
they attempted to incorporate inference-like mechanisms, although they were not logic program-



330 Chapter 10. Logical Reasoning Systems

ming languages as such and had control structures other than backtracking. PLANNER (Hewitt,
1969), although never actually implemented, was a very complex language that used auto-
matic backtracking mechanisms analogous to the Prolog control structure. A subset known as
MICRO-PLANNER (Sussman and Winograd, 1970) was implemented and used in the SHRDLU nat-
ural language understanding system (Winograd, 1972). The CONNIVER language (Sussman and
McDermott, 1972) allowed finer programmer control over backtracking than MICRO-PLANNER.
CONNIVER was used in the HACKER (Sussman, 1975) and BUILD (Fahlman, 1974) planning sys-
tems. QLiSP (Sacerdoti et al, 1976) used pattern matching to initiate function calls, as Prolog
does; it was used in the NOAH planning sy stem (Sacerdoti, 1975; Sacerdoti, 1977). More recently,
POPLOG (Sloman, 1985) has attempted to incorporate several programming languages, including
Lisp, Prolog, and POP-11 (Barrett et al, 1985), into an integrated system.

Reasoning systems with metalevel capabilities were first proposed by Hayes (1973), but
his GOLUX system was never built (a fate that also befell Doyle's (1980) ambitious SEAN system).
AMORD(deKleere?a/., 1977) put some of these ideas into practice, as did TEIRESIAS (Davis, 1980)
in the field of rule-based expert systems. In the area of logic programming systems, MRS (Gene-
sereth and Smith, 1981; Russell, 1985) provided extensive metalevel facilities. Dincbas and Le
Pape (1984) describe a similar system called METALOG. The work of David E. Smith (1989) on
controlling logical inference builds on MRS. Alan Bundy 's (1983) PRESS system used logical rea-
soning at the metalevel to guide the use of equality reasoning in solving algebra and trigonometry
problems. It was able to attain humanlike performance on the British A-level exams for advanced
precollege students, although equality reasoning had previously been thought to be a very difficult
problem for automated reasoning systems. Guard et al. (1969) describe the early SAM theorem
prover, which helped to solve an open problem in lattice theory. Wos and Winker (1983) give an
overview of the contributions of AURA theorem prover toward solving open problems in various
areas of mathematics and logic. McCune (1992) follows up on this, recounting the accomplish-
ments of AURA'S successor OTTER in solving open problems. McAllester (1989) describes the
ONTIC expert assistant system for mathematics research.

A Computational Logic (Boyer and Moore, 1979) is the basic reference on the Boyer-Moore
theorem prover. Stickel (1988) covers the Prolog Technology Theorem Prover (PTTP), which
incorporates the technique of locking introduced by Boyer (1971).

Early work in automated program synthesis was done by Simon (1963), Green (1969a), and
Manna and Waldinger (1971). The transformational system of Burstall and Darlington (1977)
used equational reasoning with recursion equations for program synthesis. Barstow (1979)
provides an early book-length treatment. RAPTS (Paige and Henglein, 1987) takes an approach
that views automated synthesis as an extension of the process of compilation. KIDS (Smith,
1990) is one of the strongest modern systems; it operates as an expert assistant. Manna and
Waldinger (1992) give a tutorial introduction to the current state of the art, with emphasis on
their own deductive approach. Automating Software Design (Lowry and McCartney, 1991) is an
anthology; the articles describe a number of current approaches.

There are a number of textbooks on logic programming and Prolog. Logic for Problem
Solving (Kowalski, 1979b) is an early text on logic programming in general, with a number of
exercises. Several textbooks on Prolog are available (Clocksin and Mellish, 1987; Sterling and
Shapiro, 1986; O'Keefe, 1990;Bratko, 1990). Despite focusing on Common Lisp, Norvig( 1992)
gives a good deal of basic information about Prolog, as well as suggestions for implementing



Section 10.9. Summary 331

Prolog interpreters and compilers in Common Lisp. Several textbooks on automated reasoning
were mentioned in Chapter 9. Aside from these, a unique text by Bundy (1983) provides
reasonably broad coverage of the basics while also providing treatments of more advanced topics
such as meta-level inference (using PRESS as one case study) and the use of higher-order logic.
The Journal of Logic Programming and the Journal of Automated Reasoning are the principal
journals for logic programming and theorem proving respectively. The major conferences in these
fields are the annual International Conference on Automated Deduction (CADE) and International
Conference on Logic Programming.

Aside from classical examples like the semantic networks used in Shastric Sanskrit grammar
described in Chapter 8, or Peirce's existential graphs as described by Roberts (1973), modern
work on semantic networks in AI began in the 1960s with the work of Quillian (1961; 1968).
Charniak's (1972) thesis served to underscore the full extent to which heterogeneous knowledge
on a wide variety of topics is essential for the interpretation of natural language discourse.

Minsky's (1975) so-called "frames paper" served to place knowledge representation on the
map as a central problem for AI. The specific formalism suggested by Minsky, however, that
of so-called "frames," was widely criticized as, at best, a trivial extension of the techniques of
object-oriented programming, such as inheritance and the use of default values (Dahl etal, 1970;
Birtwistle et al, 1973), which predated Minsky's frames paper. It is not clear to what extent
the latter papers on object-oriented programming were influenced in turn by early AI work on
semantic networks.

The question of semantics arose quite acutely with respect to Quillian's semantic networks
(and those of others who followed his approach), with their ubiquitous and very vague "ISA links,"
as well as other early knowledge representation formalisms such as that of MERLIN (Moore and
Newell, 1973) with its mysterious "flat" and "cover" operations. Woods' (1975) famous article
"What's In a Link?" drew the attention of AI researchers to the need for precise semantics in
knowledge representation formalisms. Brachman (1979) elaborated on this point and proposed
solutions. Patrick Hayes's (1979) "The Logic of Frames" cut even deeper by claiming that most
of whatever content such knowledge representations did have was merely sugar-coated logic:
"Most of 'frames' is just a new syntax for parts of first-order logic." Drew McDermott's (1978b)
"Tarskian Semantics, or, No Notation Without Denotation!" argued that the kind of semantical
analysis used in the formal study of first-order logic, based on Tarski's definition of truth, should
be the standard for all knowledge representation formalisms. Measuring all formalisms by
the "logic standard" has many advocates but remains a controversial idea; notably, McDermott
himself has reversed his position in "A Critique of Pure Reason" (McDermott, 1987). NETL
(Fahlman, 1979) was a sophisticated semantic network system whose ISA links (called "virtual
copy" or VC links) were based more on the notion of "inheritance" characteristic of frame
systems or of object-oriented programming languages than on the subset relation, and were
much more precisely defined than Quillian's links from the pre-Woods era. NETL is particularly
intriguing because it was intended to be implemented in parallel hardware to overcome the
difficulty of retrieving information from large semantic networks. David Touretzky (1986)
subjects inheritance to rigorous mathematical analysis. Selman and Levesque (1993) discuss the
complexity of inheritance with exceptions, showing that in most formulations it is NP-complete.

The development of description logics is merely the most recent stage in a long line of
research aimed at finding useful subsets of first-order logic for which inference is computationally



332 Chapter 10. Logical Reasoning Systems

tractable. Hector Levesque and Ron Brachman (1987) showed that certain logical constructs,
notably certain uses of disjunction and negation, were primarily responsible for the intractability
of logical inference. Building on the KL-ONE system (Schmolze and Lipkis, 1983), a number
of systems have been developed whose designs incorporate the results of theoretical complexity
analysis, most notably KRYPTON (Brachman etai, 1983) and Classic (Borgida etal, 1989). The
result has been a marked increase in the speed of inference, and a much better understanding
of the interaction between complexity and expressiveness in reasoning systems. On the other
hand, as Doyle and Patil (1991) argue, restricting the expressiveness of a language either makes
it impossible to solve certain problems, or encourages the user to circumvent the language
restrictions using nonlogical means.

The study of truth maintenance systems began with the TMS (Doyle, 1979) and RUP
(McAllester, 1980) systems, both of which were essentially JTMSs. The ATMS approach was
described in a series of papers by Johan de Kleer (1986c; 1986a; 1986b). Building Problem
Solvers (Forbus and de Kleer, 1993) explains in depth how TMSs can be used in AI applications.

EXERCISES

10.1 Recall that inheritance information in semantic networks can be captured logically by
suitable implication sentences. In this exercise, we will consider the efficiency of using such
sentences for inheritance.

a. Consider the information content in a used-car catalogue such as Kelly's "Blue Book":
that, for example, 1973 Dodge Vans are worth $575. Suppose all this information (for
11,000 models) is encoded as logical rules, as suggested in the chapter. Write down three
such rules, including that for 1973 Dodge Vans. How would you use the rules to find the
value of & particular car (e.g., JB, which is a 1973 Dodge Van) given a backward-chaining
theorem prover such as Prolog?

b. Compare the time efficiency of the backward-chaining method for solving this problem
with the inheritance method used in semantic nets.

c. Explain how forward chaining allows a logic-based system to solve the same problem
efficiently, assuming that the KB contains only the 11,000 rules about price.

d. Describe a situation in which neither forward nor backward chaining on the rules will allow
the price query for an individual car to be handled efficiently.

e. Can you suggest a solution enabling this type of query to be solved efficiently in all cases in
logic systems? (Hint: Remember that two cars of the same category have the same price.)

10.2 The following Prolog code defines a relation R.
R ( [ ] , X , X ) .
R ( [ A | X ] , Y , [ A | Z ] ) :- R ( X , Y , Z )

a. Show the proof tree and solution obtained for the queries
R ( [1 ,2] , L , [ 1 , 2 , 3 , 4 ] ) and R ( L , M , [ 1 , 2 , 3 , 4 ] )



Section 10.9. Summary 333

b. What standard list operation does R represent?
c. Define the Prolog predicate last ( L , X) (X is the last element of list L) using R and no

other predicates.

10.3 In this exercise, we will look at sorting in Prolog.
a. Write Prolog clauses that define the predicate sorted ( L ) , which is true if and only if list

L is sorted in ascending order.
b. Write a Prolog definition for the predicate perm ( L , M ) , which is true if and only if L is a

permutation of M.
c. Define sort ( L , M ) (M is a sorted version of L) using perm and sorted.
d. Run sort on longer and longer lists until you lose patience. What is the time complexity

of your program?
e. Write a faster sorting algorithm, such as insertion sort or quicksort, in Prolog.

10.4 In this exercise, we will look at the recursive application of rewrite rules using logic
programming. A rewrite rule (or demodulator in OTTER terminology) is an equation with a
specified direction. For example, the rewrite rule x + 0 —> x suggests replacing any expression
that matches x + 0 with the expression x. The application of rewrite rules is a central part
of mathematical reasoning systems, for example, in expression simplification and symbolic
differentiation. We will use the predicate Rewrite(x,y) to represent rewrite rules. For example,
the earlier rewrite rule is written as Rewrite(x + 0,x). We will also need some way to define
primitive terms that cannot be further simplified. For example, we can use Primitive(O) to say
that 0 is a primitive term.

a. Write a definition of a predicate Simplify(x, y), that is true when y is a simplified version of
jc; that is, no further rewrite rules are applicable to any subexpression of y.

b. Write a collection of rules for simplification of expressions involving arithmetic operators,
and apply your simplification algorithm to some sample expressions.

c. Write a collection of rewrite rules for symbolic differentiation, and use them along with
your simplification rules to differentiate and simplify expressions involving arithmetic
expressions, including exponentiation.

10.5 In this exercise, we will consider the implementation of search algorithms in Prolog.
Suppose that successor ( X , Y) is true when state Y is a successor of state X; and that goal (X)
is true when X is a goal state. Write a definition for solve (X, P ) , which means that P is a path
(list of states) beginning with X, ending in a goal state, and consisting of a sequence of legal steps
as defined by successor. You will find that depth-first search is the easiest way to do this.
How easy would it be to add heuristic search control?

10.6 Why do you think that Prolog includes no heuristics for guiding the search for a solution
to the query?

10.7 Assume we put into a logical database a segment of the U.S. census data listing the age, city
of residence, date of birth, and mother of every person, and where the constant symbol for each
person is just their social security number. Thus, Ron's age is given by Age(443-65-1282,76).



334 Chapter 10. Logical Reasoning Systems

Which of the indexing schemes S1-S5 following enable an efficient solution for which of the
queries Q1-Q4 (assuming normal backward chaining).

<} SI: an index for each atom in each position.
0 S2: an index for each first argument.
<> S3: an index for each predicate atom.
<> S4: an index for each combination of predicate and first argument.
<) S5: an index for each combination of predicate and second argument, and an index for

each first argument (nonstandard).

0 Ql: Age(443-44-432\,x)
0 Q2: Residesln(x, Houston)
0 Q3: Mother(x,y)
0 Q4: Age(x, 34) A Residesln(x, TinyTownUSA)

10.8 We wouldn't want a semantic network to contain both Age(Bill, 12) and Age(Bill, 10), but
its fine if it contains both Friend(Bill, Opus) and Friend(Bill, Steve). Modify the functions in I
Figure 10.10 so that they make the distinction between logical functions and logical relations, |
and treat each properly.

10.9 The code repository contains a logical reasoning system whose components can be replaced
by other versions. Re-implement some or all of the following components, and make sure that
the resulting system works using the circuit example from Chapter 8.

a. Basic data types and access functions for sentences and their components.
b. STORE and FETCH for atomic sentences (disregarding efficiency).
c. Efficient indexing mechanisms for STORE and FETCH.
d. A unification algorithm.
e. A forward-chaining algorithm.
f. A backward-chaining algorithm using iterative deepening.

L



Part IV
ACTING LOGICALLY

In Part II, we saw that an agent cannot always select actions based solely on
the percepts that are available at the moment, or even the internal model of the
current state. We saw that problem-solving agents are able to plan ahead—to
consider the consequences of sequences of actions—before acting. In Part III, we
saw that a knowledge-based agent can select actions based on explicit, logical
representations of the current state and the effects of actions. This allows the
agent to succeed in complex, inaccessible environments that are too difficult for
a problem-solving agent.

In Part IV, we put these two ideas together to build planning agents. At the
most abstract level, the task of planning is the same as problem solving. Planning
can be viewed as a type of problem solving in which the agent uses beliefs about
actions and their consequences to search for a solution over the more abstract
space of plans, rather than over the space of situations. Planning algorithms can
also be viewed as special-purpose theorem provers that reason efficiently with
axioms describing actions.

Chapter 11 introduces the basic ideas of planning, including the need to
divide complex problems into subgoals whose solutions can be combined to
provide a solution for the complete problem. Chapter 12 extends these ideas to
more expressive representations of states and actions, and discusses real-world
planning systems. Chapter 13 considers the execution of plans, particularly for
cases in which unknown contingencies must be handled.



11 PLANNING

In which we see how an agent can take advantage of problem structure to construct
complex plans of action.

In this chapter, we introduce the basic ideas involved in planning systems. We begin by specifying
PLANNING AGENT a simple planning agent that is very similar to a problem-solving agent (Chapter 3) in that it

constructs plans that achieve its goals, and then executes them. Section 11.2 explains the
limitations of the problem-solving approach, and motivates the design of planning systems. The
planning agent differs from a problem-solving agent in its representations of goals, states, and
actions, as described in Section 11.4. The use of explicit, logical representations enables the
planner to direct its deliberations much more sensibly. The planning agent also differs in the
way it represents and searches for solutions. The remainder of the chapter describes in detail the
basic partial-order planning algorithm, which searches through the space of plans to find one
that is guaranteed to succeed. The additional flexibility gained from the partially ordered plan
representation allows a planning agent to handle quite complicated domains.

I L l A S i M P L E PLANNING AGENT

When the world state is accessible, an agent can use the percepts provided by the environment
to build a complete and correct model of the current world state. Then, given a goal, it can call
a suitable planning algorithm (which we will call IDEAL-PLANNER) to generate a plan of action.
The agent can then execute the steps of the plan, one action at a time.

The algorithm for the simple planning agent is shown in Figure 11.1. This should
be compared with the problem-solving agent shown in Figure 3.1. The planning algorithm
IDEAL-PLANNER can be any of the planners described in this chapter or Chapter 12. We assume
the existence of a function STATE-DESCRIPTION, which takes a percept as input and returns an
initial state description in the format required by the planner, and a function MAKE-GOAL-QUERY,
which is used to ask the knowledge base what the next goal should be. Note that the agent must
deal with the case where the goal is infeasible (it just ignores it and tries another), and the case

337



338 Chapter 11. Planning!

function SIMPLE-PL ANNiNG-AGENT(/?ercepO returns an action
static: KB, a knowledge base (inplud.es action descriptions)

p, a plan, initially NoPlftn
t, a counter, initially 0, indicating time

local variables: G, a goal
current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE(percep«, ?))
current^- STATE-DESCRIPT1ON(£B, t)
if p = NoPlan then

G <— ASK(£B, MAKE-GOAL-QUERY(O)
p <— lDEAL-PLANNER(cwrrenf, G, KB)

ifp = NoPlan or p is empty then action ̂  NoOp
else

action <— FlRST(p)

, MAKE-ACTION-SENTENCE(acf/0«, f

return action

Figure 11.1 A simple planning agent. The agent first generates a goal to achieve, and then
constructs a plan to achieve it from the current state. Once it has a plan, it keeps executing it until
the plan is finished, then begins again with a new goal.

where the complete plan is in fact empty, because the goal is already true in the initial state. The
agent interacts with the environment in a minimal way—it uses its percepts to define the initial
state and thus the initial goal, but thereafter it simply follows the steps in the plan it has con-
structed. In Chapter 13, we discuss more sophisticated agent designs that allow more interaction
between the world and the planner during plan execution.

11.2 FROM PROBLEM SOLVING TO PLANNING

Planning and problem solving are considered different subjects because of the differences in
the representations of goals, states, and actions, and the differences in the representation and
construction of action sequences. In this section, we first describe some of the difficulties
encountered by a search-based problem-solving approach, and then introduce the methods used
by planning systems to overcome these difficulties.

Recall the basic elements of a search-based problem-solver:
• Representation of actions. Actions are described by programs that generate successor

state descriptions.
• Representation of states. In problem solving, a complete description of the initial state is



Section 11.2. From Problem Solving to Planning 339

given, and actions are represented by a program that generates complete state descriptions,
Therefore,/all state representations are complete. In most problems, a state is a simple data
structure:/a permutation of the pieces in the eight puzzle, the position of the agent in a
route-finding problem, or the position of the six people and the boat in the missionaries and
cannibals problem. State representations are used only for successor generation, heuristic
function evaluation, and goal testing.

• Representation of goals. The only information that a problem-solving agent has about
its goal is in the form of the goal test and the heuristic function. Both of these can be
applied to states to decide on their desirability, but they are used as "black boxes." That
is, the problem-solving agent cannot "look inside" to select actions that might be useful in
achieving the goal.

• Representation of plans. In problem solving, a solution is a sequence of actions, such as
"Go from Arad to Sibiu to Fagaras to Bucharest." During the construction of solutions,
search algorithms consider only unbroken sequences of actions beginning from the initial
state (or, in the case of bidirectional search, ending at a goal state).

Let us see how these design decisions affect an agent's ability to solve the following simple
problem: "Get a quart of milk and a bunch of bananas and a variable-speed cordless drill."
Treating this as a problem-solving exercise, we need to specify the initial state: the agent is at
home but without any of the desired objects, and the operator set: all the things that the agent
can do. We can optionally supply a heuristic function: perhaps the number of things that have
not yet been acquired.

Figure 11.2 shows a very small part of the first two levels of the search space for this
problem, and an indication of the path toward the goal. The actual branching factor would be in
the thousands or millions, depending on how actions are specified, and the length of the solution
could be dozens of steps. Obviously, there are too many actions and too many states to consider.
The real difficulty is that the heuristic evaluation function can only choose among states to decide
which is closer to the goal; it cannot eliminate actions from consideration. Even if the evaluation
function could get the agent into the supermarket, the agent would then resort to a guessing game.
The agent makes guesses by considering actions—buying an orange, buying tuna fish, buying
corn flakes, buying milk—and the evaluation function ranks these guesses—bad, bad, bad, good.
The agent then knows that buying milk is a good thing, but has no idea what to try next and must
start the guessing process all over again.

The fact that the problem-solving agent considers sequences of actions starting from the
initial state also contributes to its difficulties. It forces the agent to decide first what to do in the
initial state, where the relevant choices are essentially to go to any of a number of other places.
Until the agent has figured out how to obtain the various items—by buying, borrowing, leasing,
growing, manufacturing, stealing—it cannot really decide where to go. The agent therefore needs
a more flexible way of structuring its deliberations, so that it can work on whichever part of the
problem is most likely to be solvable given the current information.

The first key idea behind planning is to "open up " the representation of states, goals, and
actions. Planning algorithms use descriptions in some formal language, usually first-order logic
or a subset thereof. States and goals and goals are represented by sets of sentences, and actions
are represented by logical descriptions of preconditions and effects. This enables the planner to



340 Chapter 11. Planning

Go To Pet Store

/ - "
// Go To School

r-rStart Go To SuPermarket

\\ Go To Sleep

\\ \ Read A Book

\ \ Sit in Chair

\ ——————\ Etc. Etc. ...

Talk to Parrot

/ Buy a Dog

Go To Class

Buy Tuna Fish

\\ Buy Arugula

\ Buy Milk

Sit Some More

\ Read A Book

—— »- • • • —— •- Finish

Figure 11.2 Solving a shopping problem with forward search through the space of situations
in the world.

make direct connections between states and actions. For example, if the agent knows that the
goal is a conjunction that includes the conjunct Have(Milk), and that Buy(x) achieves Have(x),
then the agent knows that it is worthwhile to consider a plan that includes Buy(Milk). It need not
consider irrelevant actions such as Buy(WhippingCream) or GoToSleep.

The second key idea behind planning is that the planner is free to add actions to the plan
wherever they are needed, rather than in an incremental sequence starting at the initial state. For
example, the agent may decide that it is going to have to Buy(Milk), even before it has decided
where to buy it, how to get there, or what to do afterwards. There is no necessary connection
between the order of planning and the order of execution. By making "obvious" or "important"
decisions first, the planner can reduce the branching factor for future choices and reduce the need
to backtrack over arbitrary decisions. Notice that the representation of states as sets of logical
sentences plays a crucial role in making this freedom possible. For example, when adding the
action Buy(Milk) to the plan, the agent can represent the state in which the action is executed as,
say, At(Supermarket). This actually represents an entire class of states—states with and without
bananas, with and without a drill, and so on. Search algorithms that require complete state
descriptions do not have this option.

The third and final key idea behind planning is that most parts of the world are independent
of most other parts. This makes it feasible to take a conjunctive goal like "get a quart of milk and
a bunch of bananas and a variable-speed cordless drill" and solve it with a divide-and-conquer
strategy. A subplan involving going to the supermarket can be used to achieve the first two



Section 11.3. Planning in Situation Calculus 341

conjuncts, and another subplan (e.g., either going to the-hardware store or borrowing from a
neighbor) can be used to achieve the third. The supermarket subplan can be further divided into
a milk subplan and a bananas subplan. We can then put all the subplans together to solve the
whole problem. This works because there is little interaction between the two subplans: going
to the supermarket does not interfere with borrowing from a neighbor, and buying milk does not
interfere with buying bananas (unless the agent runs out of some resource, like time or money).

Divide-and-conquer algorithms are efficient because it is almost always easier to solve
several small sub-problems rather than one big problem. However, divide-and-conquer fails in
cases where the cost of combining the solutions to the sub-problems is too high. Many puzzles
have this property. For example, the goal state in the eight puzzle is a conjunctive goal: to get
tile 1 in position A and tile 2 in position B and . . . up to tile 8. We could treat this as a planning
problem and plan for each subgoal independently, but the reason that puzzles are "tricky" is that
it is difficult to put the subplans together. It is easy to get tile 1 in position A, but getting tile 2
in position B is likely to move tile 1 out of position. For tricky puzzles, the planning techniques
in this chapter will not do any better than problem-solving techniques of Chapter 4. Fortunately,
the real world is a largely benign place where subgoals tend to be nearly independent. If this
were not the case, then the sheer size of the real world would make successful problem solving
impossible.

L . 3 PLANNING IN SITUATION CALCULUS

Before getting into planning techniques in detail, we present a formulation of planning as a logical
inference problem, using situation calculus (see Chapter 7). A planning problem is represented
in situation calculus by logical sentences that describe the three main parts of a problem:

• Initial state: An arbitrary logical sentence about a situation 50. For the shopping problem,
this might be1

At(Home, 50) A ~^Have(Milk, 50) A -^Have(Bananas, S0) A -iHave(Drill, S0)
• Goal state: A logical query asking for suitable situations. For the shopping problem, the

query would be
3 s At(Home, s) A Have(Milk, s) A Have(Bananas, s) A Have(Drill, s)

• Operators: A set of descriptions of actions, using the action representation described in
Chapter 7. For example, here is a successor-state axiom involving the Buy(Milk) action:

V a, s Have(Milk, Result(a,.?)) O [(a = Buy(Milk) A At(Supermarket, s)
V (Have(Milk, s)Aa ^Dmp(Milk))]

Recall that situation calculus is based on the idea that actions transform states: Result(a, s) names
the situation resulting from executing action a in situation s. For the purposes of planning, it
1 A better representation might be along the lines of -i3 m Milk(m) A Have(m, So), but we have chosen the simpler
notation to facilitate the explanation of planning methods. Notice that partial state information is handled automatically
by a logical representation, whereas problem-solving algorithms required a special multiple-state representation.



342 Chapter 11. Planning

PLANNER

will be useful to handle action sequences as well as single actions. We will use Result'(I, s) to
mean the situation resulting from executing the sequence of actions / starting in s. Result1 is
defined by saying that an empty sequence of actions has no effect on a situation, and the result
of a nonempty sequence of actions is the same as applying the first action, and then applying the
rest of the actions from the resulting situation:

VA- Result'([},s) = s
V a , p , s Result'([a\p],s) = Result'(p,Result(a,s))

A solution to the shopping problem is a plan p that when applied to the start state SQ yields a
situation satisfying the goal query. In other words, ap such that

At(Home, Result'(p, So)) A Have(Milk, Result'(p,S0)) A Have(Bananas, Result'(p,S0))
A Have(Drill, Result'(p, S0))

If we hand this query to ASK, we end up with a solution such as

p = [Go(SuperMarket), Buy(Milk), Buy(Banana),
Go(HardwareStore), Buy(Drill), Go(Home)]

From the theoretical point of view, there is little more to say. We have a formalism for expressing
goals and plans, and we can use the well-defined inference procedure of first-order logic to find
plans. It is true that there are some limitations in the expressiveness of situation calculus, as
discussed in Section 8.4, but situation calculus is sufficient for most planning domains.

Unfortunately, a good theoretical solution does not guarantee a good practical solution.
We saw in Chapter 3 that problem solving takes time that is exponential in the length of the
solution in the worst case, and in Chapter 9, we saw that logical inference is only semidecidable.
If you suspect that planning by unguided logical inference would be inefficient, you're right.
Furthermore, the inference procedure gives us no guarantees about the resulting plan/? other than
that it achieves the goal. In particular, note that ifp achieves the goal, then so do [Nothing\p] and
[A, A~' \p], where Nothing is an action that makes no changes (or at least no relevant changes) to
the situation, and A ~ ' is the inverse of A (in the sense that s = Result(A~t,Result(A,s))). So we
may end up with a plan that contains irrelevant steps if we use unguided logical inference.

To make planning practical we need to do two things: (1) Restrict the language with which
we define problems. With a restrictive language, there are fewer possible solutions to search
through. (2) Use a special-purpose algorithm called a planner rather than a general-purpose
theorem prover to search for a solution. The two go hand in hand: every time we define a new
problem-description language, we need a new planning algorithm to process the language. The
remainder of this chapter and Chapter 12 describe a series of planning languages of increasing
complexity, along with planning algorithms for these languages. Although we emphasize the
algorithms, it is important to remember that we are always dealing with a logic: a formal
language with a well-defined syntax, semantics, and proof theory. The proof theory says what
can be inferred about the results of action sequences, and therefore what the legal plans are. The
algorithm enables us to find those plans. The idea is that the algorithm can be designed to process
the restricted language more efficiently than a resolution theorem prover.



Section 11.4. Basic Representations for Planning 343

jJL4 BASIC REPRESENTATIONS FOR PLANNING______________

The "classical" approach that most planners use today describes states and operators in a restricted
language known as the STRIPS language,2 or in extensions thereof. The STRIPS language lends
itself to efficient planning algorithms, while retaining much of the expressiveness of situation
calculus representations.

Representations for states and goals
In the STRIPS language, states are represented by conjunctions of function-free ground literals,
that is, predicates applied to constant symbols, possibly negated. For example, the initial state
for the milk-and-bananas problem might be described as

At(Home) A -^Have(Milk) A ^Have(Bananas) A ^Have(Drill) A • • •

As we mentioned earlier, a state description does not need to be complete. An incomplete state
description, such as might be obtained by an agent in an inaccessible environment, corresponds
to a set of possible complete states for which the agent would like to obtain a successful plan.
Many planning systems instead adopt the convention—analogous to the "negation as failure"
convention used in logic programming—that if the state description does not mention a given
positive literal then the literal can be assumed to be false.

Goals are also described by conjunctions of literals. For example, the shopping goal might
be represented as

At(Home) A Have(Milk) A Have(Bananas} A Have(Drill)

Goals can also contain variables. For example, the goal of being at a store that sells milk would
be represented as

At(x)f\Sells(x,Milk)

As with goals given to theorem provers, the variables are assumed to be existentially quantified.
However, one must distinguish clearly between a goal given to a planner and a query given to a
theorem prover. The former asks for a sequence of actions that makes the goal true if executed,
and the latter asks whether the query sentence is true given the truth of the sentences in the
knowledge base.

Although representations of initial states and goals are used as inputs to planning systems,
it is quite common for the planning process itself to maintain only implicit representations of
states. Because most actions change only a small part of the state representation, it is more
efficient to keep track of the changes. We will see how this is done shortly.

2 Named after a.pioneeringplanning program known as the STanford Research Institute Problem Solver. There are two
unfortunate things about the name STRIPS. First, the organization no longer uses the name "Stanford" and is now known
as SRI International. Second, the program is what we now call a planner, not a problem solver, but when it was developed
in 1970, the distinction had not been articulated. Although the STRIPS planner has long since been superseded, the STRIPS
language for describing actions has been invaluable, and many "STRIPS-like" variants have been developed.



344 Chapter 11. Planning

ACTION
DESCRIPTION

PRECONDITION

EFFECT

OPERATOR SCHEMA

APPLICABLE

Representations for actions
Our STRIPS operators consist of three components:

• The action description is what an agent actually returns to the environment in order to do
something. Within the plariner it serves only as a name for a possible action.

• The precondition is a conjunction of atoms (positive literals) that says what must be true
before the operator can be applied.

• The effect of an operator is a conjunction of literals (positive or negative) that describes
how the situation changes when the operator is applied.3

Here is an example of the syntax we will use for forming a STRIPS operator for going from one
place to another:

Op(A.cnON:Go(there),PKECOND:At(here) A Path(here,there),
EFFECT.At(there) A -*At(here))

(We will also use a graphical notation to describe operators, as shown in Figure 11.3.) Notice
that there are no explicit situation variables. Everything in the precondition implicitly refers to
the situation immediately before the action, and everything in the effect implicitly refers to the
situation that is the result of the action.

At(here), Path(here, there)

Go(there)

At(there), -iAt(here)

Figure 11.3 Diagrammatic notation for the operator Go(there). The preconditions appear
above the action, and the effects below.

An operator with variables is known as an operator schema, because it does not correspond
to a single executable action but rather to a family of actions, one for each different instantiation of
the variables. Usually, only fully instantiated operators can be executed; our planning algorithms
will ensure that each variable has a value by the time the planner is done. As with state
descriptions, the language of preconditions and effects is quite restricted. The precondition must
be a conjunction of positive literals, and the effect must be a conjunction of positive and/or
negative literals. All variables are assumed universally quantified, and there can be no additional
quantifiers. In Chapter 12, we will relax these restrictions.

We say that an operator o is applicable in a state s if there is some way to instantiate the
variables in o so that every one of the preconditions of o is true in s, that is, if Precond(o) C s.
In the resulting state, all the positive literals in Effect(o) hold, as do all the literals that held in s,

The original version of STRIPS divided the effects into an add list and a delete list.



Section 11.4. Basic Representations for Planning 345

except for those that are negative literals in Effect(o). For example, if the initial situation includes
the literals

At(Home), Path(Home, Supermarket),...

then the action Go(Supemarket) is applicable, and the resulting situation contains the literals
^At(Home), At(Supermarket), Path(Home, Supermarket),...

SITUATION SPACE

PROGRESSION

REGRESSION

PARTIAL PLAN

SNEMENTOPERATORS

Situation Space and Plan Space
In Figure 11.2, we showed a search space of situations in the world (in this case the shopping
world). A path through this space from the initial state to the goal state constitutes a plan for
the shopping problem. If we wanted, we could take a problem described in the STRIPS language
and solve it by starting at the initial state and applying operators one at a time until we reached
a state that includes all the literals in the goal. We could use any of the search methods of Part
II. An algorithm that did this would clearly be considered a problem solver, but we could also
consider it a planner. We would call it a situation space planner because it searches through
the space of possible situations, and a progression planner because it searches forward from the
initial situation to the goal situation. The main problem with this approach is the high branching
factor and thus the huge size of the search space.

One way to try to cut the branching factor is to search backwards, from the goal state to the
initial state; such a search is called regression planning. This approach is possible because the
operators contain enough information to regress from a partial description of a result state to a
partial description of the state before an operator is applied. We cannot get complete descriptions
of states this way, but we don't need to. The approach is desirable because in typical problems the
goal state has only a few conjuncts, each of which has only a few appropriate operators, whereas
the initial state usually has many applicable operators. (An operator is appropriate to a goal if the
goal is an effect of the operator.) Unfortunately, searching backwards is complicated somewhat
by the fact that we often have to achieve a conjunction of goals, not just one. The original STRIPS
algorithm was a situation-space regression planner that was incomplete (it could not always find
a plan when one existed) because it had an inadequate way of handling the complication of
conjunctive goals. Fixing this incompleteness makes the planner very inefficient.

In summary, the nodes in the search tree of a situation-space planner correspond to sit-
uations, and the path through the search tree is the plan that will be ultimately returned by
the planner. Each branch point adds another step to either the beginning (regression) or end
(progression) of the plan.

An alternative is to search through the space of plans rather than the space of situations.
That is, we start with a simple, incomplete plan, which we call a partial plan. Then we consider
ways of expanding the partial plan until we come up with a complete plan that solves the problem.
The operators in this search are operators on plans: adding a step, imposing an ordering that puts
one step before another, instantiating a previously unbound variable, and so on. The solution is
the final plan, and the path taken to reach it is irrelevant.

Operations on plans come in two categories. Refinement operators take a partial plan
and add constraints to it. One way of looking at a partial plan is as a representation for a set



346 Chapter 11. Planning

MODIFICATION
OPERATOR

of complete, fully constrained plans. Refinement operators eliminate some plans from this set,
but they never add new plans to it. Anything that is not a refinement operator is a modification
operator. Some planners work by constructing potentially incorrect plans, and then "debugging"
them using modification operators. In this chapter, we use only refinement operators.

LEAST COMMITMENT

PARTIAL ORDER

TOTAL ORDER

LINEARIZATION

FULLY INSTANTIATED
PLANS

Representations for plans
If we are going to search through a space of plans, we need to be able to represent them. We
can settle on a good representation for plans by considering partial plans for a simple problem:
putting on a pair of shoes. The goal is the conjunction of RightShoeOn A LeftShoeOn, the initial
state has no literals at all, and the four operators are

Op(AiCTlON:RightShoe, PRECOND'.RightSockOn, EFFECT: RightShoeOn)
Op(ACTlON:RightSock,EFFECT.RightSockOn)
Op(AcnON:LeftShoe, PRECONV.LeftSocWn, EFFECT. LeftShoeOn)
Op(AcnON:LeftSock, EFFECT: LeftSockOn)

A partial plan for this problem consists of the two steps RightShoe and LeftShoe. But which step
should come first? Many planners use the principle of least commitment, which says that one
should only make choices about things that you currently care about, leaving the other choices
to be worked out later. This is a good idea for programs that search, because if you make a
choice about something you don't care about now, you are likely to make the wrong choice and
have to backtrack later. A least commitment planner could leave the ordering of the two steps
unspecified. When a third step, RightSock, is added to the plan, we want to make sure that putting
on the right sock comes before putting on the right shoe, but we do not care where they come
with respect to the left shoe. A planner that can represent plans in which some steps are ordered
(before or after) with respect to each other and other steps are unordered is called a partial order
planner. The alternative is a total order planner, in which plans consist of a simple list of steps.
A totally ordered plan that is derived from a plan P by adding ordering constraints is called a
linearization of P.

The socks-and-shoes example does not show it, but planners also have to commit to bindings
for variables in operators. For example, suppose one of your goals is Have(Milk), and you have
the action Buy(item, store). A sensible commitment is to choose this action with the variable item
bound to Milk. However, there is no good reason to pick a binding for store, so the principle of
least commitment says to leave it unbound and make the choice later. Perhaps another goal will
be to buy an item that is only available in one specialty store. If that store also carries milk, then
we can bind the variable store to the specialty store at that time. By delaying the commitment to
a particular store, we allow the planner to make a good choice later. This strategy can also help
prune out bad plans. Suppose that for some reason the branch of the search space that includes
the partially instantiated action Buy(Milk, store) leads to a failure for some reason unrelated to
the choice of store (perhaps the agent has no money). If we had committed to a particular store,
then the search algorithm would force us to backtrack and consider another store. But if we have
not committed, then there is no choice to backtrack over and we can discard this whole branch
of the search tree without having to enumerate any of the stores. Plans in which every variable is
bound to a constant are called fully instantiated plans.



Section 11.4. Basic Representations for Planning 347

PLAN

CAUSAL LINKS

In this chapter, we will use a representation for plans that allows for deferred commitments
about ordering and variable binding. A plan is formally defined as a data structure consisting of
the following four components:

• A set of plan steps. Each step is one of the operators for the problem.
• A set of step ordering constraints. Each ordering constraint is of the form 51, -< Sj, which is

read as "S, before Sf and means that step S/ must occur sometime before step Sj (but not
necessarily immediately before).4

• A set of variable binding constraints. Each variable constraint is of the form v = x, where v
is a variable in some step, and x is either a constant or another variable.

• A set of causal links.5 A causal link is written as S/ _1+ S/ and read as "S, achieves c for
Sj" Causal links serve to record the purpose(s) of steps in the plan: here a purpose of S,- is
to achieve the precondition c of Sj.

The initial plan, before any refinements have taken place, simply describes the unsolved problem.
It consists of two steps, called Start and Finish, with the ordering constraint Start X Finish. Both
Start and Finish have null actions associated with them, so when it is time to execute the plan,
they are ignored. The Start step has no preconditions, and its effect is to add all the propositions
that are true in the initial state. The Finish step has the goal state as its precondition, and no
effects. By defining a problem this way, our planners can start with the initial plan and manipulate
it until they come up with a plan that is a solution. The shoes-and-socks problem is defined by
the four operators given earlier and an initial plan that we write as follows:

/>/an(STEPS:{ Si: 0/7(AcTiON:Starf),
S2: Op(ACTlON:Finish,

PRECONV.RightShoeOn A LeftShoeOn)},
ORDERINGS: {Si -< S2],
BINDINGS: {},
LINKS: {})

As with individual operators, we will use a graphical notation to describe plans (Figure 11.4(a)).
The initial plan for the shoes-and-socks problem is shown in Figure 11.4(b). Later in the chapter
we will see how this notation is extended to deal with more complex plans.

Figure 11.5 shows a partial-order plan that is a solution to the shoes-and-socks problem,
and six linearizations of the plan. This example shows that the partial-order plan representation
is powerful because it allows a planner to ignore ordering choices that have no effect on the
correctness of the plan. As the number of steps grows, the number of possible ordering choices
grows exponentially. For example, if we added a hat and a coat to the problem, which interact
neither with each other nor with the shoes and socks, then there would still be one partial
plan that represents all the solutions, but there would be 180 linearizations of that partial plan.
(Exercise 11.1 asks you to derive this number).

4 We use the notation A -< B -< C to mean (A X B) A (B -< C).
5 Some authors call causal links protection intervals.



348 Chapter 11. Planning

LeftShoeOn, , , RightShoeOn

(a) (b)

Figure 11.4 (a) Problems are defined by partial plans containing only Start and Finish steps.
The initial state is entered as the effects of the Start step, and the goal state is the precondition of
the Finish step. Ordering constraints are shown as arrows between boxes, (b) The initial plan for
the shoes-and-socks problem.

L

Parti

/
Left
Sock

al Order Plan:

Start

/ \

\
Right
Sock

1 1
eftSockOn RightSockOn

Left
Shoe

\
LefiSh

k ;
oeOn, R

Finish

Right
Shoe

/

Total Order Plans:

Start

{
Right
Sock

{
Left
Sock

|
Right
Shoe

I
Left
Shoe

Start

*
Right
Sock

1
Left
Sock

{
Left
Shoe

{
Right
Shoe

Start

I
Left
Sock

'
Right
Sock

I
Right
Shoe

'
Left
Shoe

Start

{
Left
Sock

i

Right
Sock

{
Left
Shoe

'
Right
Shoe

ghtShoeOn 1 1 1 1

Finish Finish Finish Finish

Start

|
Right
Sock

'
Right
Shoe

1

Left
Sock

1
Left
Shoe

'

Finish

Start

'

Left
Sock

i
Left
Shoe

{
Right
Sock

'
Right
Shoe

{

Finish

Figure 11.5 A partial-order plan for putting on shoes and socks (including preconditions on
steps), and the six possible linearizations of the plan.



Section 11.5. A Partial-Order Planning Example 349

Solutions
A solution is a plan that an agent can execute, and that guarantees achievement of the goal. If
we wanted to make it really easy to check that a plan is a solution, we could insist that only fully
instantiated, totally ordered plans can be solutions. But this is unsatisfactory for three reasons.
First, for problems like the one in Figure 11.5, it is more natural for the planner to return a
partial-order plan than to arbitrarily choose one of the many linearizations of it. Second, some
agents are capable of performing actions in parallel, so it makes sense to allow solutions with
parallel actions. Lastly, when creating plans that may later be combined with other plans to
solve larger problems, it pays to retain the flexibility afforded by the partial ordering of actions.

SOLUTION Therefore, we allow partially ordered plans as solutions using a simple definition: a solution is
a complete, consistent plan. We need to define these terms.

COMPLETE PLAN A complete plan is one in which every precondition of every step is achieved by some
ACHIEVED other step. A step achieves a condition if the condition is one of the effects of the step, and

if no other step can possibly cancel out the condition. More formally, a step 5, achieves a
precondition c of the step Sj if (1) S/ -< Sj and c G EFFECTS(S/); and (2) there is no step S* such
that (-ic) G EFFECTS(St), where 5, -X Sfc X Sj in some linearization of the plan.

CONSISTENT PLAN A consistent plan is one in which there are no contradictions in the ordering or binding
constraints. A contradiction occurs when both 5,- -< Sj and 5} x 5,- hold or both v = A and v = B
hold (for two different constants A and B). Both -< and = are transitive, so, for example, a plan
with Si -< 82, £2 X £3, and £3 -< Si is inconsistent.

The partial plan in Figure 11.5 is a solution because all the preconditions are achieved.
From the preceding definitions, it is easy to see that any linearization of a solution is also a
solution. Hence the agent can execute the steps in any order consistent with the constraints, and
still be assured of achieving the goal.

1L5 A PARTIAL-ORDER PLANNING EXAMPLE

In this section, we sketch the outline of a partial-order regression planner that searches through
plan space. The planner starts with an initial plan representing the start and finish steps, and
on each iteration adds one more step. If this leads to an inconsistent plan, it backtracks and
tries another branch of the search space. To keep the search focused, the planner only considers
adding steps that serve to achieve a precondition that has not yet been achieved. The causal links
are used to keep track of this.

We illustrate the planner by returning to the problem of getting some milk, a banana, and a
drill, and bringing them back home. We will make some simplifying assumptions. First, the Go
action can be used to travel between any two locations. Second, the description of the Buy action
ignores the question of money (see Exercise 11.2). The initial state is defined by the following
operator, where HWS means hardware store and SM means supermarket:

Op(AenON:Start,EFFECT.At(Home) A Sells(HWS, Drill)
A Sells(SM, Milk), Sells(SM, Banana))



350 Chapter 11. Planning

The goal state is defined by a Finish step describing the objects to be acquired and the final
destination to be reached:

Op(ACT[ON:Finish,
PRECOND:Have(Drill) A Have(Milk) A Have(Banana) A At(Home))

The actions themselves are defined as follows:
Op(AcrnON:Go(there),PRECOND:At(here),

EFFECT.At(there) A -^At(here))
Op(ACTlON:Buy(x),PRECOND:At(store) A Sells(store,x),

EFFECT: Have(x))
Figure 11.6 shows a diagram of the initial plan for this problem. We will develop a solution to
the problem step by step, showing at each point a figure illustrating the partial plan at that point
in the development. As we go along, we will note some of the properties we require for the
planning algorithm. After we finish the example, we will present the algorithm in detail.

At(Home) Sells(SM,Banana) Sells(SM, Milk) Sells(HWS, Drill)

Have Drill) Have Milk) Have(Banana) At(Home)

Figure 11.6 The initial plan for the shopping problem.

The first thing to notice about Figure 11.6 is that there are many possible ways in which
the initial plan can be elaborated. Some choices will work, and some will not. As we work out
the solution to the problem, we will show some correct choices and some incorrect choices. For
simplicity, we will start with some correct choices. In Figure 11.7 (top), we have selected three
Buy actions to achieve three of the preconditions of the Finish action. In each case there is only
one possible choice because the operator library offers no other way to achieve these conditions.

The bold arrows in the figure are causal links. For example, the leftmost causal link in the
figure means that the step Buy(Drill) was added in order to achieve the Finish step's Have(DriU)
precondition. The planner will make sure that this condition is maintained by protecting it: if a
step might delete the Have(DriU) condition, then it will not be inserted between the Buy(Drill)
step and the Finish step. Light arrows in the figure show ordering constraints. By definition, all
actions are constrained to come after the Start action. Also, all causes are constrained to come
before their effects, so you can think of each bold arrow as having a light arrow underneath it.

The second stage in Figure 11.7 shows the situation after the planner has chosen to achieve
the Sells preconditions by linking them to the initial state. Again, the planner has no choice here
because there is no other operator that achieves Sells.



Section 11.5. A Partial-Order Planning Example 351

At(s), Sellsfs, Drill) At(s), Sells(s,Milk) At(s), Sells(s,Bananas)

Buy(Bananas)

Have(Drill), Have/Milk), Have(Bananas), At(Home)

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Buy(Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Figure 11.7 Top: A partial plan that achieves three of the four preconditions of Finish. The
heavy arrows show causal links. Bottom: Refining the partial plan by adding causal links to
achieve the Sells preconditions of the Buy steps.

Although it may not seem like we have done much yet, this is actually quite an improvement
over what we could have done with the problem-solving approach. First, out of all the things that
one can buy, and all the places that one can go, we were able to choose just the right Buy actions
and just the right places, without having to waste time considering the others. Then, once we
have chosen the actions, we need not decide how to order them; a partial-order planner can make
that decision later.

In Figure 11.8, we extend the plan by choosing two Go actions to get us to the hardware
store and supermarket, thus achieving the At preconditions of the Buy actions.

So far, everything has been easy. A planner could get this far without having to do any
search. Now it gets harder. The two Go actions have unachieved preconditions that interact with
each other, because the agent cannot be At two places at the same time. Each Go action has a
precondition At(x), where x is the location that the agent was at before the Go action. Suppose



352 Chapter 11. Planning

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Se/fefSM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Figure 11.8 A partial plan that achieves A? preconditions of the three Buy actions.

the planner tries to achieve the preconditions of Go(HWS) and Go(SM) by linking them to the :
At(Home) condition in the initial state. This results in the plan shown in Figure 11.9.

Unfortunately, this will lead to a problem. The step Go(HWS) adds the condition At(HWS),
but it also deletes the condition At(Home). So if the agent goes to the hardware store, it can no
longer go from home to the supermarket. (That is, unless it introduces another step to go back
home from the hardware store—but the causal link means that the start step, not some other step,

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have/Drill), Have(Milk), Have(Bananas), At(Home)

Figure 11.9 A flawed plan that gets the agent to the hardware store and the supermarket.



Section 11.5. A Partial-Order Planning Example 353

achieves the At(Home) precondition.) On the other hand, if the agent goes to the supermarket
first, then it cannot go from home to the hardware store.

At this point, we have reached a dead end in the search for a solution, and must back up
and try another choice. The interesting part is seeing how a planner could notice that this partial

I r plan is a dead end without wasting a lot of time on it. The key is that the the causal links in
PROTECTED LINKS a partial plan are protected links. A causal link is protected by ensuring that threats—that is,
THREATS steps that might delete (or clobber) the protected condition—are ordered to come before or after

the protected link. Figure 11.10(a) shows a threat: The causal link S\ c 82 is threatened by
the new step S3 because one effect of 53 is to delete c. The way to resolve the threat is to add
ordering constraints to make sure that S3 does not intervene between Si and S2. If S3 is placed

DEMOTION before Si this is called demotion (see Figure 11.10(b)), and if it is placed after S2, it is called
PROMOTION promotion (see Figure 11.10(c)).

/\
s, \

T s<
C ~~ I C

-4- /X/
(a)

/ S3

S -1C

81

: Tc

S2

(b)

81

c
S2

\.

^

(c)

S3

-ic

Figure 11.10 Protecting causal links. In (a), the step Si threatens a condition c that is established
by Si and protected by the causal link from Si to 52. In (b), Sy has been demoted to come before
Si , and in (c) it has been promoted to come after 82 .

In Figure 11.9, there is no way to resolve the threat that each Go step poses to the other.
Whichever Go step comes first will delete the At (Home) condition on the other step. Whenever
the planner is unable to resolve a threat by promotion or demotion, it gives up on the partial plan
and backs up to a try a different choice at some earlier point in the planning process.

Suppose the next choice is to try a different way to achieve the At(x) precondition of the
Go(SM) step, this time by adding a causal link from Go(HWS) to Go(SM). In other words, the
plan is to go from home to the hardware store and then to the supermarket. This introduces
another threat. Unless the plan is further refined, it will allow the agent to go from the hardware
store to the supermarket without first buying the drill (which was why it went to the hardware
store in the first place). However much this might resemble human behavior, we would prefer our
planning agent to avoid such forgetfulness. Technically, the Go(SM) step threatens the At(HWS)
precondition of the Buy (Drill) step, which is protected by a causal link. The threat is resolved by
constraining Go(SM) to come after Buy(Drill). Figure 11.11 shows this.



354 Chapter 11. Planning

Go(HWS)s
At(HW>

""̂

_ Start

/-^

v X S;;, se//s(Hws,Dri//j/ x»fs/w), se/fefs/w./w//*;
Buy(Dri l l )

\
Have(Drill) , H

Buy(Milk)y -
ave(Milk) , Have(8ana

Finish

/\ffSM;, Se/fefS/W

Go(SM)

Bananas)

Buy(Bananas)
^—^___^^^ ~^~—^.

iasj , At(Home) "*r-^

M(SM)

Go(Home)

$x

Figure 11.11 Causal link protection in the shopping plan. The Go(HWS) A'^^ Buy(Drill)
causal link is protected ordering the Go(SM) step after Buy(Drill), and the Go(SM) A^-S
Buy(MilklBananas) link is protected by ordering Go(Home) after Buy(Milk) and Buy(Bananas).

Only the At(Home) precondition of the Finish step remains unachieved. Adding a
Go(Home) step achieves it, but introduces an At(x) precondition that needs to be achieved.6
Again, the protection of causal links will help the planner decide how to do this:

• If it tries to achieve At(x) by linking to At(Home) in the initial state, there will be no way
to resolve the threats caused by go(HWS) and Go(SM).

• If it tries to link At(x) to the Go(HWS) step, there will be no way to resolve the threat posed
by the Go(SM) step, which is already constrained to come after Go(HWS).

• A link from Go(SM) to At(x) means that x is bound to SM, so that now the Go(Home)
step deletes the At(SM) condition. This results in threats to the At(SM) preconditions of
Buy(Milk) and Buy(Bananas), but these can be resolved by ordering Go(Home) to come
after these steps (Figure 11.11).

Figure 11.12 shows the complete solution plan, with the steps redrawn to reflect the ordering
constraints on them. The result is an almost totally ordered plan; the only ambiguity is that
Buy(Milk) and Buy(Bananas) can come in either order.

Let us take stock of what our partial-order planner has accomplished. It can take a problem
that would require many thousands of search states for a problem-solving approach, and solve it
with only a few search states. Moreover, the least commitment nature of the planner means it
only needs to search at all in places where subplans interact with each other. Finally, the causal
links allow the planner to recognize when to abandon a doomed plan without wasting a lot of
time expanding irrelevant parts of the plan.
6 Notice that the Go(Home) step also has the effect -iAt(x), meaning that the step will delete an At condition for some
location yet to be decided. This is a possible threat to protected conditions in the plan such as At(SM), but we will not
worry about it for now. Possible threats are dealt with in Section 11.7.



Section 11.6. A Partial-Order Planning Algorithm 355

Have/Milk) At/Home) Have(Banj Have/Drill)

At(SM) Sel/sfSM.Milk)

Figure 11.12 A solution to the shopping problem.

11.6 A PARTIAL-ORDER PLANNING ALGORITHM

In this section, we develop a more formal algorithm for the planner sketched in the previous
section. We call the algorithm POP, for Partial-Order Planner. The algorithm appears in
Figure 11.13. (Notice that POP is written as a nondeterministic algorithm, using choose and fail
rather than explicit loops. Nondeterministic algorithms are explained in Appendix B.)

POP starts with a minimal partial plan, and on each step extends the plan by achieving a
precondition c of a step Sneed- It does this by choosing some operator—either from the existing
steps of the plan or from the pool of operators—that achieves the precondition. It records the
causal link for the newly achieved precondition, and then resolves any threats to causal links.
The new step may threaten an existing causal link or an existing step may threaten the new causal
link. If at any point the algorithm fails to find a relevant operator or resolve a threat, it backtracks
to a previous choice point. An important subtlety is that the selection of a step and precondition
in SELECT-SUBGOAL is not a candidate for backtracking. The reason is that every precondition
needs to be considered eventually, and the handling of preconditions is commutative: handling
c\ and then 02 leads to exactly the same set of possible plans as handling c-i and then c\. So we



356 Chapter 11. Planning !

function POP(initial, goal, operators) returns plan

plan <— MAKE-MlNIMAL-PLAN(/«i'fw/, goal)
loop do

if SoLUTiON?(p/aw) then return plan
Sneed, C — SELECT-SUBGOAL(/7/an)
CHOOSE-OPERATOR(/?/an, operators, Sneed, c)
RESOLVE-THREATS(p/an)

end

function SELECT-SuBGOAL(/7/arc) returns Sneed, c

pick a plan step Sneed from STEPS(plan)
with a precondition c that has not been achieved

return Sneed, c

procedure CHOOSE-OPERATOR(/?/an, operators, S,,eed, c)

choose a step Sadd from operators or STEPS(p/a«) that has c as an effect
if there is no such step then fail
add the causal link Sadd —^ S,,eed to LtNKS(p/an)
add the ordering constraint Sadd ~< £„«.</to ORDERiNGS(p/an)
if Sadd is a newly added step from operators then

add Sadd to STEPS(plan)
add Start -< Sadd X Finish to ORDERINGS( p/an)

procedure RESOLVE-THREATS(p/an)

. S, in LlNKS(p/an)dofor each StnKat that threatens a link S,
choose either

Promotion: Add 51,/,,™, -< S; to ORDERlNGS(/?/an)
Demotion: Add S, ^ 5,;,rear to ORDERINGS(p/o«)

if not CoNSiSTENT(pfa«) then fail
end

Figure 11.13 The partial-order planning algorithm, POP.

can just pick a precondition and move ahead without worrying about backtracking. The pick we
make affects only the speed, and not the possibility, of finding a solution.

Notice that POP is a regression planner, because it starts with goals that need to be
achieved and works backwards to find operators that will achieve them. Once it has achieved all
the preconditions of all the steps, it is done; it has a solution. POP is sound and complete. Every
plan it returns is in fact a solution, and if there is a solution, then it will be found (assuming
a breadth-first or iterative deepening search strategy). At this point, we suggest that the reader
return to the example of the previous section, and trace through the operation of POP in detail.



Section 11.7. Planning with Partially Instantiated Operators 357

11/7 PLANNING WITH PARTIALLY INSTANTIATED OPERATORS

The version of POP in Figure 11.13 outlines the algorithm, but leaves some details unspecified.
In particular, it does not deal with variable binding constraints. For the most part, all this entails
is being diligent about keeping track of binding lists and unifying the right expressions at the
right time. The implementation techniques of Chapter 10 are applicable here.

There is one substantive decision to make: in RESOLVE-THREATS, should an operator that
has the effect, say, -*At(x) be considered a threat to the condition At(Home)l Currently we can

POSSIBLE THREAT distinguish between threats and non-threats, but this is a possible threat. There are three main
approaches to dealing with possible threats:

• Resolve now with an equality constraint: Modify RESOLVE-THREATS so that it resolves
all possible threats as soon as they are recognized. For example, when the planner chooses
the operator that has the effect -<At(x), it would add a binding such as x = HWS to make
sure it does not threaten At(Home).

• Resolve now with an inequality constraint: Extend the language of variable binding
constraints to allow the constraint x^Home. This has the advantage of being a lower
commitment—it does not require an arbitrary choice for the value of x—but it is a little
more complicated to implement, because the unification routines we have used so far all
deal with equalities, not inequalities.

• Resolve later: The third possibility is to ignore possible threats, and only deal with them
when they become necessary threats. That is, RESOLVE-THREATS would not consider
-)At(x), to be a threat toAt(Home). But if the constraint x = Home were ever added to the
plan, then the threat would be resolved (by promotion or demotion). This approach has
the advantage of being low commitment, but has the disadvantage of making it harder to
decide if a plan is a solution.

Figure 11.14 shows an implementation of the changes to CHOOSE-OPERATOR, along with the
changes to RESOLVE-THREATS that are necessary for the third approach. It is certainly possible
(and advisable) to do some bookkeeping so that RESOLVE-THREATS will not need to go through
a triply nested loop on each call.

When partially instantiated operators appear in plans, the criterion for solutions needs to
be refined somewhat. In our earlier definition (page 349), we were concerned mainly with the
question of partial ordering; a solution was defined as a partial plan such that all linearizations
are guaranteed to achieve the goal. With partially instantiated operators, we also need to ensure
that all instantiations will achieve the goal. We therefore extend the definition of achievement
for a step in a plan as follows:

A step Si achieves a precondition c of the step S/ if (1) 5,- ̂  S/ and 5,- has an effect
that necessarily unifies with c; and (2) there is no step 5* such that S/ -< Sk -< Sj in
some linearization of the plan, and S* has an effect that possibly unifies with -ic.

The POP algorithm can be seen as constructing a proof that the each precondition of the goal step
is achieved. CHOOSE-OPERATOR comes up with the 5,- that achieves (1), and RESOLVE-THREATS
makes sure that (2) is satisfied by promoting or demoting possible threats. The tricky part is that



358 Chapter 11. Planning

procedure CHOOSE-OPERATOR(p/cm, operators, S,,m/, c)

choose a step Salia from operators or STEPS(ptaw) that has cacu as an effect
such that M = UNIFY(C, cacU, BiNDiNGS(pfan))

if there is no such step
then fail

add u to BlNDINGS(pfan)
add Sack! C : S,,eed tO LINKS( £>/««)

add Sadj -< Snttd to ORDERINGS(ptaw)
if Sadd is a newly added step from operators then

add Sadd to STEPS(pta«)
add Start -< S0(w -< Finish to ORDERiNGS(/)tei)

procedure RESOLVE-THREATS(p/an)

for each S, _^ 5,- in LiNKS(ptan) do
for each S,i,reat in STEPS(pton) do

for each c' in EFFECT(S,/,m,,) do
if SUBST(BlNDINGS(p/fl«),<:) = SUBST(BlNDINGS(p/an),-ic')then

choose either
Promotion: Add S,i,rea, -< 5, to ORDERINGS(p/on)
Demotion: Add S/ -< S,/,ra« to ORDERINGS(p/fl«)

if not CONSISTENT(/7/fltt)
then fail

end
end

end

Figure 11.14 Support for partially instantiated operators in POP.

if we adopt the "resolve-later" approach, then there will be possible threats that are not resolved j
away. We therefore need some way of checking that these threats are all gone before we return!
the plan. It turns out that if the initial state contains no variables and if every operator mentions |
all its variables in its precondition, then any complete plan generated by POP is guaranteed to be :
fully instantiated. Otherwise we will need to change the function SOLUTION? to check that there |
are no uninstantiated variables and choose bindings for them if there are. If this is done, then|
POP is guaranteed to be a sound planner in all cases.

It is harder to see that POP is complete—that is, finds a solution whenever one exists—but |
again it comes down to understanding how the algorithm mirrors the definition of achievement.
The algorithm generates every possible plan that satisfies part (1), and then filters out those plans |
that do not satisfy part (2) or that are inconsistent. Thus, if there is a plan that is a solution, POP j
will find it. So if you accept the definition of solution (page 349), you should accept that POP is J
a sound and complete planner.



Section 11.8. Knowledge Engineering for Planning 359

11.8_ KNOWLEDGE ENGINEERING FOR PLANNING_____________

The methodology for solving problems with the planning approach is very much like the general
knowledge engineering guidelines,of Section 8.2:

• Decide what to talk about.
• Decide on a vocabulary of conditions (literals), operators, and objects.
• Encode operators for the domain.
• Encode a description of the specific problem instance.
• Pose problems to the planner and get back plans.

We will cover each of these five steps, demonstrating them in two domains.

The blocks world
What to talk about: The main consideration is that operators are so restricted in what they can
express (although Chapter 12 relaxes some of the restrictions). In this section we show how to
define knowledge for a classic planning domain: the blocks world. This domain consists of a set
of cubic blocks sitting on a table. The blocks can be stacked, but only one block can fit directly
on top of another. A robot arm can pick up a block and move it to another position, either on
the table or on top of another block. The arm can only pick up one block at a time, so it cannot
pick up a block that has another one on it. The goal will always be to build one or more stacks
of blocks, specified in terms of what blocks are on top of what other blocks. For example, a goal
might be to make two stacks, one with block A on B, and the other with C on D.

Vocabulary: The objects in this domain are the blocks and the table. They are represented
by constants. We will use On(b, x) to indicate that block b is on x, where x is either another block
or the table. The operator for moving block b from a position on top of x to a position on top y
will be Move(b,x,y). Now one of the preconditions on moving b is that no other block is on it.
In first-order logic this would be -i3 x On(x, b) or alternatively M x ->On(x,b). But our language
does not allow either of these forms, so we have to think of something else. The trick is to invent
a predicate to represent the fact that no block is on b, and then make sure the operators properly
maintain this predicate. We will use Clear(x) to mean that nothing is on x.

Operators: The operator Move moves a block b from x to y if both b and y are clear, and
once the move is made, x becomes clear but y is clear no longer. The formal description of Move
is as follows:

Op(ACTlON:Move(b, x, y),
PRECOND:On(b,x) A Clear(b) A Clear(y),
EFFECT: On(b,y) A Clear(x) A ->On(b,x) A ^Clear(y))

Unfortunately, this operator does not maintain Clear properly when x or y is the table. When
x = Table, this operator has the effect Clear(Table), but the table should not become clear, and
when y = Table, it has the precondition Clear(Table), but the table does not have to be clear to



360 Chapter 11. Planning

move a block onto it. To fix this, we do two things. First, we introduce another operator to move
a block b from x to the table:

Op(Acnow.MoveToTable(b, x),
PRECOND:On(b,x) A Clear(b),
EFFECT: #«(/?, Table) A Clear(x) A ~^On(b,x))

Second, we take the interpretation of Clear(x) to be "there is a clear space on x to hold a block."
Under this interpretation, Clear(Table) will always be part of the initial situation, and it is proper
that Move(b, Table, y) has the effect Clear(Table). The only problem is that nothing prevents
the planner from using Move(b,x, Table) instead of MoveToTable(b,x). We could either live
with this problem—it will lead to a larger-than-necessary search space, but will not lead to
incorrect answers—or we could introduce the predicate Block and add Block(b) A Block(y) to the
precondition of Move.

Finally, there is the problem of spurious operations like Move(B, C, C), which should be a
no-op, but which instead has contradictory effects. It is common to ignore problems like this,
because they tend not to have any effect on the plans that are produced. To really fix the problem,
we need to be able to put inequalities in the precondition: b^x^y.

Shakey's world
The original STRIPS program was designed to control Shakey,7 a robot that roamed the halls of
SRI in the early 1970s. It turns out that most of the work on STRIPS involved simulations where
the actions performed were just printing to a terminal, but occasionally Shakey would actually
move around, grab, and push things, based on the plans created by STRIPS. Figure 11.15 shows a
version of Shakey's world consisting of four rooms lined up along a corridor, where each room
has a door and a light switch.

Shakey can move from place to place, push movable objects (such as boxes), climb on
and off of rigid objects (such as boxes), and turn light switches on and off. We will develop the j
vocabulary of literals along with the operators:

1. Go from current location to location y: Go(y)
This is similar to the Go operator used in the shopping problem, but somewhat restricted.;
The precondition At(Shakey,x) establishes the current location, and we will insist that
and >• be In the same room: In(x, r) A ln(y, r). To allow Shakey to plan a route from room|
to room, we will say that the door between two rooms is In both of them.

2. Push an object b from location x to location y: Push(b, x, y)
Again we will insist that the locations be in the same room. We introduce the predicate j
Pushable(b), but otherwise this is similar to Go.

3. Climb up onto a box: Climb(b).
We introduce the predicate On and the constant Floor, and make sure that a precondition|
of Go is On(Shakey, Floor}. For Climb(b), the preconditions are that Shakey is A? the same j
place as b, and b must be Climbable.

Shakey's name comes from the fact that its motors made it a little unstable when it moved.



Section 11.8. Knowledge Engineering for Planning 361

Ls4\

Room 4 DOC

n i.s3 ,

•"• Room 3 DOC
Shakey

Ls2/

Room 2 DOC

Box3 D „ Ls1 \Box2

j r4

)r3

Corridor

>r2

ROOm 1 Doorl

Box4 Box1

Figure 11. 15 Shakey's world.

4. Climb down from a box: Down(b).
This just undoes the effects of a Climb.

5. Turn a light switch on: TurnOn(ls).
Because Shakey is short, this can only be done when Shakey is on top of a box that is at
the light switch's location.8

6. Turn a light switch off: TurnOff(ls).
This is similar to TurnOn. Note that it would not be possible to represent toggling a light
switch as a STRIPS action, because there are no conditionals in the language to say that the
light becomes on if it was off and off if it was on. (Section 12.4 will add conditionals to
the language.)

In situation calculus, we could write an axiom to say that every box is pushable and climbable.
But in STRIPS, we have to include individual literals for each box in the initial state. We also have
to include the complete map of the world in the initial state, in terms of what objects are In which
8 Shakey was never dextrous enough to climb on a box or toggle a switch, but STRIPS was capable of finding plans using
these actions.



362 Chapter 11. Planning

rooms, and which locations they are At. We leave this, and the specification of the operators, as
an exercise.

In conclusion, it is possible to represent simple domains with STRIPS operators, but it
requires ingenuity in coming up with the right set of operators and predicates in order to stay
within the syntactic restrictions that the language imposes.

11.9 SUMMARY

In this chapter, we have defined the planning problem and shown that situation calculus is •
expressive enough to deal with it. Unfortunately, situation calculus planning using a general-
purpose theorem prover is very inefficient. Using a restricted language and special-purpose;
algorithms, planning systems can solve quite complex problems. Thus, planning comes down ]
to an exercise in finding a language that is just expressive enough for the problems you want to j
solve, but still admits a reasonably efficient algorithm. The points to remember are as follows:

• Planning agents use lookahead to come up with actions that will contribute to goal achieve-
ment. They differ from problem-solving agents in their use of more flexible representations j
of states, actions, goals, and plans.

• The STRIPS language describes actions in terms of their preconditions and effects. It|
captures much of the expressive power of situation calculus, but not all domains andj
problems that can be described in the STRIPS language.

• It is not feasible to search through the space of situations in complex domains. Instead we {
search through the space of plans, starting with a minimal plan and extending it until we ^
find a solution. For problems in which most subplans do not interfere with each other, this j
will be efficient.

• The principle of least commitment says that a planner (or any search algorithm) should I
avoid making decisions until there is a good reason to make a choice. Partial-ordering!
constraints and uninstantiated variables allow us to follow a least-commitment approach.

• The causal link is a useful data structure for recording the purposes for steps. Each causal •<
link establishes a protection interval over which a condition should not be deleted byj
another step. Causal links allow early detection of unresolvable conflicts in a partial plan,
thereby eliminating fruitless search.

• The POP algorithm is a sound and complete algorithm for planning using the STRIPS ;
representation.

• The ability to handle partially instantiated operators in POP reduces the need to commit to j
concrete actions with fixed arguments, thereby improving efficiency.



Section 11.9. Summary 363

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The roots of AI planning lie partly in problem solving through state-space search and associated
techniques such as problem reduction and means-ends analysis, especially as embodied in
Newell and Simon's GPS, and partly in theorem proving and situation calculus, especially as
embodied in the QA3 theorem proving system (Green, 1969b). Planning has also been historically
motivated by the needs of robotics. STRIPS (Fikes and Nilsson, 1971), the first major planning
system, illustrates the interaction of these three influences. STRIPS was designed as the planning
component of the software for the Shakey robot project at SRI International. Its overall control
structure was modeled on that of GPS, and it used a version of QA3 as a subroutine for establishing
preconditions for actions. Lifschitz (1986) offers careful criticism and formal analysis of the
STRIPS system. Bylander (1992) shows simple planning in the fashion of STRIPS to be PSPACE-
complete. Fikes and Nilsson (1993) give a historical retrospective on the STRIPS project and a
survey of its relationship to more recent planning efforts.

For several years, terminological confusion has reigned in the field of planning. Some
LINEAR authors (Genesereth and Nilsson, 1987) use the term linear to mean what we call totally ordered,
NONLINEAR and nonlinear for partially ordered. Sacerdoti (1975), who originated the term, used "linear" to
NONINTERLEAVED refer to a property that we will call noninterleaved. Given a set of subgoals, a noninterleaved

planner can find plans to solve each subgoal, but then it can only combine them by placing all
the steps for one subplan before or after all the steps of the others. Many early planners of the
1970s were noninterleaved, and thus were incomplete—they could not always find a solution
when one exists. This was forcefully driven home by the Sussman Anomaly (see Exercise 11.4),
found during experimentation with the HACKER system (Sussman, 1975). (The anomaly was
actually found by Alien Brown, not by Sussman himself, who thought at the time that assuming
linearity to begin with was often a workable approach.) HACKER introduced the idea of protecting
subgoals, and was also an early example of plan learning.

Goal regression planning, in which steps in a totally ordered plan are reordered so as to avoid
conflict between subgoals, was introduced by Waldinger (1975) and also used by Warren's (1974)
WARPLAN. WARPLAN is also notable in that it was the first planner to be written using a logic
programming language (Prolog), and is one of the best examples of the remarkable economy
that can sometimes be gained by using logic programming: WARPLAN is only 100 lines of
code, a small fraction of the size of comparable planners of the time. INTERPLAN (Tate, 1975b;
Tate, 1975a) also allowed arbitrary interleaving of plan steps to overcome the Sussman anomaly
and related problems.

The construction of partially ordered plans (then called task networks) was pioneered by
the NOAH planner (Sacerdoti, 1975; Sacerdoti, 1977), and thoroughly investigated in Tate's (1977)
NONLIN system, which also retained the clear conceptual structure of its predecessor INTERPLAN.
INTERPLAN and NONLIN provide much of the grounding for the work described in this chapter and
the next, particularly in the use of causal links to detect potential protection violations. NONLIN
was also the first planner to use an explicit algorithm for determining the truth or falsity of
conditions at various points in a partially specified plan.

TWEAK (Chapman, 1987) formalizes a generic, partial-order planning system. Chapman
provides detailed analysis, including proofs of completeness and intractability (NP-hardness and



364 Chapter 11. Planning

undecidability) of various formulations of the planning problem and its subcomponents. The
POP algorithm described in the chapter is based on the SNLP algorithm (Soderland and Weld,
1991), which is an implementation of the planner described by McAllester and Rosenblitt (1991).
Weld contributed several useful suggestions to the presentation in this chapter.

A number of important papers on planning were presented at the Timberline workshop in
1986, and its proceedings (Georgeff and Lansky, 1986) are an important source. Readings in
Planning (Alien el al., 1990) is a comprehensive anthology of many of the best articles in the ;

field, including several good survey articles. Planning and Control (Dean and Wellman, 1991) >
is a good general introductory textbook on planning, and is particularly remarkable because it• '
makes a particular effort to integrate classical AI planning techniques with classical and modern:
control theory, metareasoning, and reactive planning and execution monitoring. Weld (1994),
provides an excellent survey of modern planning algorithms.

Planning research has been central to AI since its inception, and papers on planning are :
a staple of mainstream AI journals and conferences, but there are also specialized conferences \
devoted exclusively to planning, like the Timberline workshop, the 1990 DARPA Workshop on
Innovative Approaches to Planning, Scheduling, and Control, or the International Conferences ;

on AI Planning Systems.

EXERCISES

11.1 Define the operator schemata for the problem of putting on shoes and socks and a hat and |
coat, assuming that there are no preconditions for putting on the hat and coat. Give a partial-order j
plan that is a solution, and show that there are 180 different linearizations of this solution.

11.2 Let us consider a version of the milk/banana/drill shopping problem in which money is j
included, at least in a simple way.

a. Let CC denote a credit card that the agent can use to buy any object. Modify the description!
of Buy so that the agent has to have its credit card in order to buy anything.

b. Write a PickUp operator that enables the agent to Have an object if it is portable and at thej
same location as the agent.

c. Assume that the credit card is at home, but Have(CC) is initially false. Construct a partially j
ordered plan that achieves the goal, showing both ordering constraints and causal links.

d. Explain in detail what happens during the planning process when the agent explores a|
partial plan in which it leaves home without the card.

11.3 There are many ways to characterize planners. For each of the following dichotomies, j
explain what they mean, and how the choice between them affects the efficiency and completeness j
of a planner.

a. Situation space vs. plan space.
b. Progressive vs. regressive.



Section 11.9. Summary 365

c. Refinement vs. debugging.
d. Least commitment vs. more commitment.
e. Bound variables vs. unbound variables.
f. Total order vs. partial order.
g. Interleaved vs. noninterleaved.
h. Unambiguous preconditions vs. ambiguous preconditions.
i. Systematic vs. unsystematic.

SUSSMAN ANOMALY 11.4 Figure 11.16 shows a blocks-world planning problem known as the Sussman anomaly.
The problem was considered anomalous because the noninterleaved planners of the early 1970s
could not solve it. Encode the problem using STRIPS operators, and use POP to solve it.

B

Start State Goal Stale

Figure 11.16 The "Sussman anomaly" blocks-world planning problem.

11.5 Suppose that you are the proud owner of a brand new time machine. That means that you
can perform actions that affect situations in the past. What changes would you have to make to
the planners in this chapter to accommodate such actions?

11.6 The POP algorithm shown in the text is a regression planner, because it adds steps
whose effects satisfy unsatisfied conditions in the plan. Progression planners add steps whose
preconditions are satisfied by conditions known to be true in the plan. Modify POP so that it
works as a progression planner, and compare its performance to the original on several problems
of your choosing.

11.7 In this exercise, we will look at planning in Shakey's world.
a. Describe Shakey's six actions in situation calculus notation.
b. Translate them into the STRIPS language.
c. Either manually or using a partial-order planner, construct a plan for Shakey to get Box2

into Room! from the starting configuration in Figure 11.15.
d. Suppose Shakey has n boxes in a room and needs to move them all into another room.

What is the complexity of the planning process in terms of n?



366 Chapter 11. Planning

11.8 POP is a nondeterministic algorithm, and has a choice about which operator to add to
the plan at each step and how to resolve each threat. Can you think of any domain-independent
heuristics for ordering these choices that are likely to improve POP's efficiency? Will they help
in Shakey's world? Are there any additional, domain-dependent heuristics that will improve the
efficiency still further?

11.9 In this exercise we will consider the monkey-and-bananas problem, in which there is a
monkey in a room with some bananas hanging out of reach from the ceiling, but a box is available
that will enable the monkey to reach the bananas if he climbs on it. Initially, the monkey is at
A, the bananas at B, and the box at C. The monkey and box have height Low, but if the monkey
climbs onto the box he will have height High, the same as the bananas. The actions available
to the monkey include Go from one place to another, Push an object from one place to another,
Climb onto an object, and Grasp an object. Grasping results in holding the object if the monkey
and object are in the same place at the same height.

a. Write down the initial state description in predicate calculus.
b. Write down STRIPS-style definitions of the four actions, providing at least the obvious

preconditions. :
c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the bananas

but leaving the box in its original place. Write this as a general goal (i.e., not assuming the '
box is necessarily at C) in the language of situation calculus. Can this goal be solved by a
STRIPS-style system?

d. Your axiom for pushing is probably incorrect, because if the object is too heavy, its position \
will remain the same when the Push operator is applied. Is this an example of the frame
problem or the qualification problem?



12 PRACTICAL PLANNING

In which planning algorithms meet the real world and survive, albeit with some
significant modifications.

12.1 PRACTICAL PLANNERS

Chapter 11 showed how a partial-order planner's search through the space of plans can be more
efficient than a problem-solver's search through the space of situations. On the other hand, the
POP planner can only handle problems that are stated in the STRIPS language, and its search
process is so unguided that it can still only be used for small problems. In this chapter we
begin by surveying existing planners that operate in complex, realistic domains. This will help
to pinpoint the weaknesses of POP and suggest the necessary extensions. We then show how
the planning language and algorithms of Chapter 11 can be extended and the search focused to
handle domains like these.

Spacecraft assembly, integration, and verification
OPTIMUM-AIV is a planner that is used by the European Space Agency to help in the assembly,
integration, and verification (AIV) of spacecraft. The system is used both to generate plans
and to monitor their execution. During monitoring, the system reminds the user of upcoming
activities, and can suggest repairs to the plan when an activity is performed late, cancelled, or
reveals something unexpected. In fact, the ability to quickly replan is the principal objective of
OPTIMUM-AIV. The system does not execute the plans; that is done by humans with standard
construction and test equipment.

In complex projects like this, it is common to use scheduling tools from operations research
(OR) such as PERT charts or the critical path method. These tools essentially take a hand-
constructed complete partial-order plan and generate an optimal schedule for it. Actions are

367



368 Chapter 12. Practical Planning

treated as objects that take up time and have ordering constraints; their effects are ignored.
This avoids the need for knowledge engineering, and for one-shot problems it may be the
most appropriate solution. For most practical applications, however, there will be many related
problems to solve, so it is worth the effort to describe the domain and then have the plans
automatically generated. This is especially important during the execution of plans. If a step of
a plan fails, it is often necessary to replan quickly to get the project back on track. PERT charts
do not contain the causal links and other information needed to see how to fix a plan, and human
replanning is often too slow.

The success of real-world AI systems requires integration into the environment in which
they operate. It is vital that a planner be able to access existing databases of project information
in whatever format they might have, and that the planner's input and output representations be in
a form that is both expressive and easily understood by users. The STRIPS language is insufficient
for the AIV domain because it cannot express four key concepts:

1. Hierarchical plans: Obviously, launching a spacecraft is more complicated than shopping
for groceries. One way to handle the increased complexity is to specify plans at varying
levels of detail. The top-level plan might be: prepare booster rocket, prepare capsule,
load cargo, and launch. There might be a dozen intermediate levels before we finally get
down to the level of executable actions: insert nut A into hole B and fasten with bolt C.
Adding the ability to represent hierarchical plans can make the difference between feasible
and infeasible computation, and it can make the resulting plan easier to understand. It
also allows the user to provide guidance to the planner in the form of a partially specified,
abstract plan for which the planner can fill in the details.

2. Complex conditions: STRIPS operators are essentially prepositional. True, they do allow
variables, but the variables are used in a very limited way. For example, there is no universal
quantification, and without it we cannot describe the fact that the Launch operator causes
all the objects that are in the spacecraft to go into orbit. Similarly, STRIPS operators are
unconditional: we cannot express the fact that if all systems are go, then the Launch will
put the spacecraft into orbit, otherwise it will put it into the ocean.

3. Time: Because the STRIPS language is based on situation calculus it assumes that all actions
occur instantaneously, and that one action follows another with no break in between. Real-
world projects need a better model of time. They must represent the fact that projects have
deadlines (the spacecraft must be launched on June 17), actions have durations (it takes 6
hours to test the XYZ assembly), and steps of plans may have time windows (the machine
that tests the XYZ assembly is available from May 1 to June 1 (except weekends), but it
must be reserved one week ahead of time). Indeed, the major contribution of traditional
OR techniques is to satisfy time constraints for a complete partial-order plan.

4. Resources: A project normally has a budget that cannot be exceeded, so the plan must
be constrained to spend no more money than is available. Similarly, there are limits on
the number of workers that are available, and on the number of assembly and test stations.
Resource limitations may be placed on the number of things that may be used at at one time
(e.g., people) or on the total amount that may be used (e.g., money). Action descriptions
must incorporate resource consumption and generation, and planning algorithms must be
able to handle constraints on resources efficiently.



Section 12.1. Practical Planners 369

OPTIMUM-AIV is based on the open planning architecture O-PLAN (Currie and Tate, 1991).
O-PLAN is similar to the POP planner of Chapter 11, except that it is augmented to accept a more
expressive language that can represent time, resources, and hierarchical plans. It also accepts
heuristics for guiding the search and records its reasons for each choice, which makes it easier
to replan when necessary. O-PLAN has been applied to a variety of problems, including software
procurement planning at Price Waterhouse, back axle assembly process planning at Jaguar Cars,
and complete factory production planning at Hitachi.

Job shop scheduling
The problem that a factory solves is to take in raw materials and components, and assemble them
into finished products. The problem can be divided into a planning task (deciding what assembly
steps are going to be performed) and a scheduling task (deciding when and where each step will
be performed). In many modern factories, the planning is done by hand and the scheduling is
done with an automated tool.

O-PLAN is being used by Hitachi for job shop planning and scheduling in a system called
TOSCA. A typical problem involves a product line of 350 different products, 35 assembly
machines, and over 2000 different operations. The planner comes up with a 30-day schedule for
three 8-hour shifts a day. In general, TOSCA follows the partial-order, least-commitment planning
approach. It also allows for "low-commitment" decisions: choices that impose constraints on
the plan or on a particular step. For example, the system might choose to schedule an action to
be carried out on a class of machine without specifying any particular one.

Factories with less diversity of products often follow a fixed plan, but still have a need for
automated scheduling. The Isis system (Fox and Smith, 1984) was developed specifically for
scheduling. It was first tested at the Westinghouse turbine component plant in Winston-Salem,
NC. The plant makes thousands of different turbine blades, and for each one, there are one or
more plans, called process routings. When an order comes in, one of the plans is chosen and a
time for it is scheduled. The time depends on the criticality of the order: whether it is an urgent
replacement for a failed blade in service, a scheduled maintenance part that has plenty of lead
time but must arrive on time, or just a stock order to build up the reserves.

Traditional scheduling methods such as PERT are capable of finding a feasible ordering of
steps subject to time constraints, but it turns out that human schedulers using PERT spend 80% to
90% of their time communicating with other workers to discover what the real constraints are.
A successful automated scheduler needs to be able to represent and reason with these additional
constraints. Factors that are important include the cost of raw materials on hand, the value
of finished but unshipped goods, accurate forecasts of future needs, and minimal disruption of
existing procedures. ISIS uses a hierarchical, least-commitment search to find high-quality plans
that satisfy all of these requirements.

Scheduling for space missions
Planning and scheduling systems have been used extensively in planning space missions as well
as in constructing spacecraft. There are two main reasons for this. First, spacecraft are very



370 Chapter 12. Practical Planning

expensive and sometimes contain humans, and any mistake can be costly and irrevocable. Second,
space missions take place in space, which does not contain many other agents to mess up the
expected effects of actions. Planners have been used by the ground teams for the Bubble space
telescope and at least three spacecraft: Voyager, UOSAT-II, and ERS-1. In each case, the goal is
to orchestrate the observational equipment, signal transmitters, and attitude- and velocity-control
mechanisms, in order to maximize the value of the information gained from observations while
obeying resource constraints on time and energy.

Mission scheduling often involves very complex temporal constraints, particularly those
involving periodic events. For example, ERS-1, the European Earth Resource Observation
satellite, completes an orbit every 100 minutes, and returns to the same point every 72 hours. An
observation of a particular point on the earth's surface thus can be made at any one of a number of
times, each separated by 72 hours, but at no other time. Satellites also have resource constraints
on their power output: they cannot exceed a fixed maximum output, and they must be sure not
to discharge too much power over a period of time. Other than that, a satellite can be considered
as a job-shop scheduling problem, where the telescopes and other instruments are the machines,
and the observations are the products. PlanERS-1 is a planner based on O-PLAN that produces
observation plans for the ERS-1.

The Hubble space telescope (HST) is a good example of the need for automated planning
tools. After it was launched in April 1990, the primary mirror was found to be out of focus.
Using Bayesian techniques for image reconstruction (see Chapter 24), the ground team was
able to compensate for the defect to a degree, enabling the HST to deliver novel and important
data on Pluto, a gravitational lens, a supernova, and other objects. In 1993, shuttle astronauts
repaired most of the problems with the primary mirror, opening up the possibility of a new set of
observations. The ground team is constantly learning more about what the HST can and cannot
do, and it would be impossible to update the observation plans to reflect this ever-increasing
knowledge without automated planning and scheduling tools.

Any astronomer can submit a proposal to the HST observing committee. Proposals are
classified as high priority (which are almost always executed and take up about 70% of the avail-
able observing time), low priority (which are scheduled as time allows), or rejected. Proposals
are received at the rate of about one per day, which means there are more proposals than can be
executed. Each proposal includes a machine-readable specification of which instrument should
be pointed at which celestial object, and what kind of exposure should be made. Some observa-
tions can be done at any time, whereas others are dependent on factors such as the alignment of
planets and whether the HST is in the earth's shadow. There are some constraints that are unique
to this domain. For example, an astronomer may request periodic observations of a quasar over a
period of months or years subject to the constraint that each observation be taken under the same
shadow conditions.

The HST planning system is split into two parts. A long-term scheduler, called SPIKE,
first schedules observations into one-week segments. The heuristic is to assign high-priority
proposals so that they can all be executed within the scheduled segment, and then to pack each
segment with extra low-priority proposals until they are about 20% above capacity. This is done
a year or more ahead of time. A multiyear schedule with 5000 observations or so can be created
in less than an hour, so replanning is easy. After each segment is scheduled, a short-term planner,
SPSS, does the detailed planning of each segment, filling in the time between high-priority tasks



Section 12.2. Hierarchical Decomposition 371

with as many low-priority ones as possible. The system also calculates the commands for the
platform attitude controls so that the observation plan can be executed. It can check the feasibility
of proposals and detailed schedules much faster than human experts.

Buildings, aircraft carriers, and beer factories
SIPE (System for Interactive Planning and Execution monitoring) was the first planner to deal
with the problem of replanning, and the first to take some important steps toward expressive
operators. It is similar to O-PLAN in the range of its features and in its applicability. It is not
in everyday practical use, but it has been used in demonstration projects in several domains,
including planning operations on the flight deck of an aircraft carrier and job-shop scheduling
for an Australian beer factory. Another study used SlPE to plan the construction of multistory
buildings, one of the most complex domains ever tackled by a planner.

SIPE allows deductive rules to operate over states, so that the user does not have to specify
all relevant literals as effects of each operator. It allows for an inheritance hierarchy among object
classes and for an expressive set of constraints. This means it is applicable to a wide variety of
domains, but its generality comes at a cost. For example, in the building construction domain, it
was found that SIPE needed time 0(«2 5) for an n-story building. This suggests a high degree of
interaction between stories, when in fact the degree of interaction should be much lower: if you
remember to build from the ground up and make sure that the elevator shafts line up, it should be
possible to get performance much closer to O(n).

The examples in this and the preceding sections give an idea of the state of the art of
planning systems. They are good enough to model complex domains, but have not yet gained
practical acceptance beyond a few pilot projects. Clearly, to achieve the degree of flexibility and
efficiency needed to exceed the capabilities of human planners armed with traditional scheduling
tools, we need to go far beyond the limited STRIPS language.

12.2 HIERARCHICAL DECOMPOSITION

The grocery shopping example of Chapter 11 produced solutions at a rather high level of abstrac-
tion. A plan such as

[Go(Supemarket), Buy(Milk), Buy(Bananas), Go(Home)]

is a good high-level description of what to do, but it is a long way from the type of instructions
that can be fed directly to the agent's effectors. Thus, it is insufficient for an agent that wants to
actually do anything. On the other hand, a low-level plan such as

[Forward(lcm), Tum(\ deg), Forward(lcm),...]

would have to be many thousands of steps long to solve the shopping problem. The space of plans
of that length is so huge that the techniques of Chapter 11 would probably not find a solution in
a reasonable amount of time.



372 Chapter 12. Practical Planning

HIERARCHICAL
DECOMPOSITION
ABSTRACT
OPERATOR

PRIMITIVE
OPERATOR

To resolve this dilemma, all the practical planners we surveyed have adopted the idea of
hierarchical decomposition:' that an abstract operator can be decomposed into a group of
steps that forms a plan that implements the operator. These decompositions can be stored in a
library of plans and retrieved as needed.

Consider the problem of building a frame house. The abstract operator Build(Hou.se) can be
decomposed into a plan that consists of the four steps Obtain Permit, Hire Builder, Construction,
and Pay Builder, as depicted in Figure 12.1. The steps of this plan may in turn be further
decomposed into even more specific plans. We show a decomposition of the Construction step.
We could continue decomposing until we finally get down to the level of Hammer(Nail). The
plan is complete when every step is a primitive operator—one that can be directly executed by
the agent. Hierarchical decomposition is most useful when operators can be decomposed in more
than one way. For example, the Build Walls operator can be decomposed into a plan involving
wood, bricks, concrete, or vinyl.

To make the idea of hierarchical planning work, we have to do two things. (1) Provide an
extension to the STRIPS language to allow for nonprimitive operators. (2) Modify the planning
algorithm to allow the replacement of a nonprimitive operator with its decomposition.

Extending the language
To incorporate hierarchical decomposition, we have to make two additions to the description of
each problem domain.

First, we partition the set of operators into primitive and nonprimitive operators. In our
domain, we might define Hammer(Nail) to be primitive and Build(House) to be nonprimitive.
In general, the distinction between primitive and nonprimitive is relative to the agent that will
execute the plan. For the general contractor, an operator such as Install(FloorBoards) would be
primitive, because all the contractor has to do is order a worker to do the installation. For the
worker, Install(FloorBoards) would be nonprimitive, and Hammer(Nail) would be primitive.

Second, we add a set of decomposition methods. Each method is an expression of the
form Decompose(o, p), which means that a nonprimitive operator that unifies with o can be
decomposed into a plan p. Here is decomposition of Construction from Figure 12.1:

Decompose^ Construction,
Plan(STEPS:{Si : Build(foundation), S2 : Build(Frame),

S3 : Build(Roof\S4 : Build(Walls\
S5 : Build(Interior)}

ORDERiNGS:{5| -< S2 -< 53 -< S5, 52 ̂  54 ̂  S5},
BINDINGS:!},
LINKS:{5, Fou^lim S2,S2

 F^Le £3,5-2 ^™f S^ ̂  S^ ̂  55}))

A decomposition method is like a subroutine or macro definition for an operator. As such, it is
important to make sure that the decomposition is a correct implementation of the operator. We
1 For hierarchical decomposition, some authors use the term operator reduction (reducing a high-level operator to
a set of lower-level ones), and some use operator expansion (expanding a macro-like operator into the structure that
implements it). This kind of planning is also called hierarchical task network planning.



Section 12.2. Hierarchical Decomposition 373

decomposes to

Construction Pay
Builder

decomposes to

Build
Foundation

Build
Frame

Figure 12.1 Hierarchical decomposition of the operator Build House into a partial-order plan.

say that a plan/? correctly implements an operator o if it is a complete and consistent plan for the
problem of achieving the effects of o given the preconditions of o:

1. p must be consistent. (There is no contradiction in the ordering or variable binding
constraints of p.)

2. Every effect of o must be asserted by at least one step of p (and is not denied by some
other, later step of p).

3. Every precondition of the steps in p must be achieved by a step in p or be one of the
preconditions of o.

This guarantees that it is possible to replace a nonprimitive operator with its decomposition and
have everything hook up properly. Although one will need to check for possible threats arising
from interactions between the newly introduced steps and conditions and the existing steps and
conditions, there is no need to worry about interactions among the steps of the decomposition
itself. Provided there is not too much interaction between the different parts of the plan, hierar-
chical planning allows very complex plans to be built up cumulatively from simpler subplans. It
also allows plans to be generated, saved away, and then re-used in later planning problems.



374 Chapter 12. Practical Planning

Modifying the planner
We can derive a hierarchical decomposition planner, which we call HD-POP, from the POP
planner of Figure 11.13. The new algorithm in shown in Figure 12.2. There are two principal
changes. First, as well as finding ways to achieve unachieved conditions in the plan, the algorithm
must find a way to decompose noriprimitive operators. Because both kinds of refinements must
be carried out to generate a complete, primitive plan, there is no need to introduce a backtracking
choice of one or the other. HD-POP simply does one of each on each iteration; more sophisticated
strategies can be used to reduce the branching factor. Second, the algorithm takes a plan as input,
rather than just a goal. We have already seen that a goal can be represented as a Start-Finish
plan, so this is compatible with the POP approach. However, it will often be the case that the
user has some idea of what general kinds of activities are needed, and allowing more extensive
plans as inputs means that this kind of guidance can be provided.

function HD-POP(p/a«, operators, methods) returns plan
inputs: plan, an abstract plan with start and goal steps (and possibly other steps)

loop do
if SOLUTiON?(p/a;i) then return plan
Snmi, C «- SELECT-SUB-GOAL(p/an)
CHOOSE-OPERATOR(p/a«, operators, *$„„,;, c)
Snanpri,,, <— SELECT-NONPRIMITIVE(p/fln)
CHOOSE-DECOMPOSITION(P/OT, methods, S,m,prim)
RESOLVE-THREATS( plan)

end

Figure 12.2 A hierarchical decomposition partial-order planning algorithm, HD-POP. On
each iteration of the loop we first achieve an unachieved condition (CHOOSE-OPERATOR), then
decompose a nonprimitive operator (CHOOSE-DECOMPOS1TION), then resolve threats.

To make HD-POP work, we have to change SOLUTION? to check that every step of the
plan is primitive. The other functions from Figure 11. J 3 remain unchanged. There are two new
procedures: SELECT-NONPRIMITIVE arbitrarily selects a nonprimitive step from the plan. The
function CHOOSE-DECOMPOSITION picks a decomposition method for the plan and applies it. If \
method is chosen as the decomposition for the step 5nonpr/m, then the fields of the plan are altered
as follows:

• STEPS: Add all the steps of method to the plan, but remove Snonpnm.
• BINDINGS: Add all the variable binding constraints of method to the plan. Fail if this

introduces a contradiction.
• ORDERINGS: Following the principle of least commitment, we replace each ordering

constraint of the form Sa -< Snonpri,n with constraint(s) that order Sa before the latest step(s)
of method. That is, if Sm is a step of method, and there is no other 5} in method such that
Sm -< Sj, then add the constraint Sa -< Sm. Similarly, replace each constraint of the form {



Section 12.3. Analysis of Hierarchical Decomposition 375

Snonprim -< Sz with constraint(s) that order Sz after the earliest step(s) of method. We then
call RESOLVE-THREATS to add any additional ordering constraints that may be needed.

• LINKS: It is easier to match up causal links with the right substeps of method than it is to
match up ordering constraints. If S, '' , Snonprim was a causal link in plan, replace it by a
set of links S/ c

 : Sm, where each Sm is a step of method that has c as a precondition, and
there is no earlier step of method that has c as a precondition. (If there are several such
steps with c as a precondition, then put in a causal link for each one. If there are none,
then the causal link from 5, can be dropped, because c was an unnecessary precondition
of Snonprim.) Similarly, for each link Snonprim

 c 5} in plan, replace it with a set of links
Sm

 c , Sj, where Sm is a step of method that has c as an effect and there is no later step of
method with c as an effect.

In Figure 12.3, we show a more detailed diagram of the decomposition of a plan step, in the
context of a larger plan. Notice that one of the causal links that leads into the nonprimitive step
Build House ends up being attached to the first step of the decomposition, but the other causal
link is attached to a later step.

Buy Land

Get Loan
Have Money

Build
House

Have(House) Move
In

decomposes to

h Land
——— ̂ - Obtain

Permit

Hire
Builder

Ni
^

Ha

Construction

ve Money /
/

Pay
Builder

Have(House) Move
In

Figure 12.3 Detailed decomposition of a plan step.

ANALYSIS OF HIERARCHICAL DECOMPOSITION

Hierarchical decomposition seems like a good idea, on the same grounds that subroutines or
macros are a good idea in programming: they allow the programmer (or knowledge engineer) to
specify the problem in pieces of a reasonable size. The pieces can be combined hierarchically to
create large plans, without incurring the enormous combinatorial cost of constructing large plans
from primitive operators. In this section, we will make this intuitive idea more precise.



376 Chapter 12. Practical Planning

ABSTRACT
SOLUTION

DOWNWARD
SOLUTION

UPWARD SOLUTION

Suppose that there is a way to string four abstract operators together to build a house—for
example, the four operators shown in Figure 12.1. We will call this an abstract solution—a plan
that contains abstract operators, but is consistent and complete. Finding a small abstract solution,
if one exists, should not be too expensive. Continuing this process, we should be able to obtain
a primitive plan without too much backtracking.

This assumes, however, that in finding an abstract solution, and in rejecting other abstract
plans as inconsistent, one is doing useful work. One would like the following properties to hold:

• If p is an abstract solution, then there is a primitive solution of which p is an abstraction.
If this property holds, then once an abstract solution is found we can prune away all other
abstract plans from the search tree. This property is the downward solution property.

• If an abstract plan is inconsistent, then there is no primitive solution of which it is an
abstraction. If this property holds, then we can prune away all the descendants of any
inconsistent abstract plan. This is called the upward solution property because it also
means that all complete abstractions of primitive solutions are abstract solutions.

Figure 12.4 illustrates these two notions graphically. Each box represents an entire plan (not just
a step), and each arc represents a decomposition step in which an abstract operator is expanded.
At the top is a very abstract plan, and at the bottom are plans with only primitive steps. The
boxes with bold outlines are (possibly abstract) solutions, and the ones with dotted outlines are
inconsistent. Plans marked with an "X" need not be examined by the planning algorithm. (The
figure shows only complete or inconsistent plans, leaving out consistent but incomplete plans and
the achievement steps that are applied to them.)

To get a more quantitative feel for how these properties affect the search, we need a
simplified model of the search space. Assume that there is at least one solution with n primitive
steps, and that the time to resolve threats and handle constraints is negligible: all we will be
concerned with is the time it takes to choose the right set of steps. Figure 12.5 defines the search
space in terms of the parameters b, s, and d.

12U I.
(a) Downward Solution Property

i'x : i'x ! f x : fx'i f "j \ \ fx] LX.:

(b) Upward Solution Property

Figure 12.4 The upward and downward solution properties in plan space (abstract plans on top,
primitive plans on the bottom). Bold outlined boxes are solutions, dotted outlines are inconsistent,
and boxes marked with an "X" can be pruned away in a left-to-right search.



Section 12.3. Analysis of Hierarchical Decomposition 377

b=3 branching factor: number of decomposition methods per step
s=4 steps in a decomposition method
d=3 depth of the hierarchical plan

Depth
d=0

d=3

Figure 12.5 A portion of the search space for hierarchical decomposition with depth d - 3;
branching factor b = 3 decompositions per step;.? = 4 steps per decomposition method. A solution
will have n = sd steps (n - 64 in this case). We also assume that l/b decompositions will lead to
a solution.

A nonhierarchical planner would have to generate an «-step plan, choosing among b possi-
bilities for each one. (We are also assuming that the number of decompositions per nonprimitive
step, b, is the same as the number of applicable new operators for an open precondition of a
primitive step.) Thus, it takes time O(b") in the worst case. With a hierarchical planner, we
can adopt the strategy of only searching decompositions that lead to abstract solutions. (In our
simplified model, exactly 1 of every b decompositions is a solution. In more realistic models,
we need to consider what to do when there are zero or more than one solution.) The planner has
to look at sb steps at depth d = \. At depth d = 2, it looks at another sb steps for each step it
decomposes, but it only has to decompose lib of them, for a total of bs1. Thus, the total number
of plans considered is

d

^ bs1 = O(bsd)

To give you an idea of the difference, for the parameter values in Figure 12.5, a nonhierarchical
planner has to inspect 3 x 1030 plans, whereas a hierarchical planner looks at only 576.

The upward and downward solution properties seem to be enormously powerful. At first
glance, it may seem that they are necessary consequences of the correctness conditions for decom-
positions (page 373). In fact, neither property is guaranteed to hold. Without these properties, or
some reasonable substitute, a hierarchical planner does no better than a nonhierarchical planner
in the worst case (although it may do better in the average case).



378 Chapter 12. Practical Planning

UNIQUE MAIN
SUBACTION

Figure 12.6 shows an example where the upward solution property does not hold. That is,
the abstract solution is inconsistent, but there is a decomposition that solves the problem. The
problem is taken from the O. Henry story The Gift of the Magi. A poor couple has only two prized
possessions; he a gold watch and she her beautiful long hair. They each plan to buy presents to
make the other happy. He decides to trade his watch to buy a fancy comb for her hair, and she
decides to sell her hair to get a gold chain for his watch. As Figure 12.6(b) shows, the resulting
abstract plan is inconsistent. However, it is still possible to decompose this inconsistent plan
into a consistent solution, if the right decomposition methods are available. In Figure 12.6(c)
we decompose the "Give Comb" step with an "installment plan" method. In the first step of the
decomposition, the husband takes possession of the comb, and gives it to his wife, while agreeing
to deliver the watch in payment at a later date. In the second step, the watch is handed over and
the obligation is fulfilled. A similar method decomposes the "Give Chain" step. As long as both
giving steps are ordered before the delivery steps, this decomposition solves the problem.

One way to guarantee the upward solution property is to make sure that each decomposition
method satisfies the unique main subaction condition: that there is one step of the decomposed
plan to which all preconditions and effects of the abstract operator are attached. In the Magi
example, the unique main subaction condition does not hold. It does not hold in Figure 12.3
either, although it would be if Own Land were a precondition of the Pay Builder step. Sometimes

Watch Gjve
Hairjr Comb

WatchStart ————
Hair

(a) Initia

Watch
Hay

Start /

Ha/r*
Watch

Happy(He)

Happy(She)

\ Problem

Give Comb
(On Credit)

Give Chain
(On Credit)

inish

Comb
Owe(
Happj

~^~^_

_r--— "
Chain
Owe(
Happj

Sti

Natch)
'(She)

><

Hair) —— ——
/(He)

art

~^^——
Watch- GiW

Hair Chain

(b)

Watch

^^^
^-^

Hair

-Watch
Comb
Happy(She)

^"^ Fii
^*^

Happy(He)
Chain
-Hair

iish

Abstract Inconsistent Plan

Deliver
Watch _

Deliver '
Hair -

-Watch
-Owe(Watch)

^^^£ Fini

-THair
-Owe(Hair)

sh

(c) Decomposition of (b) into a Consistent Solution

Figure 12.6 (a) The Gift of the Magi problem, (b) The partial plan is inconsistent, because
there is no way to order the two abstract steps without a conflict, (c) A decomposition that solves
the problem. This violates the upward solution property, because the inconsistent plan in (b) now
has a solution.



Section 12.3. Analysis of Hierarchical Decomposition 379

it is worthwhile to do some preprocessing of the decomposition methods to put them in a form
that satisfies the unique main subaction condition so that we can freely cut off search when we
hit an inconsistent abstract plan without fear of missing any solutions.

It is important to remember that even when the upward solution property fails to hold, it is
still a reasonable heuristic to prefer applications of decomposition to consistent plans rather than
inconsistent ones. Similarly, even when the downward solution property is violated, it makes
more sense to pursue the refinement of abstract solutions than that of inconsistent plans, even
though the abstract solution may not lead to a real solution. (Exercise 12.4 asks you to find an
example of the violation of the downward solution property.)

CRITICS

Decomposition and sharing

In CHOOSE-DECOMPOSITION, we just merge each step of the decomposition into the existing plan.
This is appropriate for a divide-and-conquer approach—we solve each subproblem separately,
and then combine it into the rest of the solution. But often the only solution to a problem involves
combining the two solutions by sharing steps rather than by joining distinct sets of steps. For
example, consider the problem "enjoy a honeymoon and raise a baby." A planner might choose
the decomposition "get married and go on honeymoon" for the first subproblem and "get married
and have a baby" for the second, but the planner could get into a lot of trouble if the two "get
married" steps are different. Indeed, if a precondition to "get married" is "not married," and
divorce is not an option, then there is no way that a planner can merge the two subplans without
sharing steps. Hence a sharing mechanism is required for a hierarchical planner to be complete.

Sharing can be implemented by adding a choice point in CHOOSE-DECOMPOSITION for
every operator in a decomposition: either a new step is created to instantiate the operator or an
existing step is used. This is exactly analogous to the existing choice point in CHOOSE-OPERATOR.
Although this introduces a lot of additional choice points, many of them will have only a single
alternative if no operators are available for sharing. Furthermore, it is a reasonable heuristic to
prefer sharing to non-sharing.

Many hierarchical planners use a different mechanism to handle this problem: they merge
decompositions without sharing but allow critics to modify the resulting plan. A critic is a
function that takes a plan as input and returns a modified plan with some conflict or other
anomaly corrected. Theoretically, using critics is no more or less powerful than putting in all the
choice points, but it can be easier to manage the search space with a well-chosen set of critics.

Note that the choice of sharing versus merging steps has an effect on the efficiency of
planning, as well as on completeness. An interesting example of the costs and benefits of sharing
occurs in optimizing compilers. Consider the problem of compiling sin(;t)+cos(X) for a sequential
computer. Most compilers accomplish this by merging two separate subroutine calls in a trivial
way: all the steps of sin come before any of the steps of cos (or vice versa). If we allowed sharing
instead of merging, we could actually get a more efficient solution, because the two computations
have many steps in common. Most compilers do not do this because it would take too much
time to consider all the possible shared plans. Instead, most compilers take the critic approach:
a peephole optimizer is just a kind of critic.



380 Chapter 12. Practical Planning

APPROXIMATION
HIERARCHY

CRITICALITY LEVEL

Decomposition versus approximation
The literature on planning is confusing because authors have not agreed on their terminology.
There are two completely separate ideas that have gone under the name hierarchical planning.
Hierarchical decomposition, as we have seen, is the idea that an abstract, nonprimitive operator
can be decomposed into a more complex network of steps. The abstraction here is on the
granularity with which operators interact with the world. Second, abstraction hierarchies
capture the idea that a single operator can be planned with at different levels of abstraction. At
the primitive level, the operator has a full set of preconditions and effects; at higher levels, the
planner ignores some of these details.

To avoid confusion, we will use the term approximation hierarchy for this kind of
abstraction, because the "abstract" version of an operator is slightly incorrect, rather than merely
abstract. An approximation hierarchy planner takes an operator and partitions its preconditions
according to their criticality level, for example:

Op(AcnON:Buy(x),
EFFECT:Have(x) A ->Have(Money),
PRECOND: 1: Sells(store, x) A

2:At(store) A
3: Have(Money))

Conditions labelled with lower numbers are considered more critical. In the case of buying
something, there is not much one can do if the store does not sell it, so it is vital to choose
the right store. An approximation hierarchy planner first solves the problem using only the
preconditions of criticality 1. The solution would be a plan that buys the right things at the right
stores, but does not worry about how to travel between stores or how to pay for the goods. The
idea is that it will be easy to find an abstract solution like this, because most of the pesky details
are ignored. Once a solution is found, it can be expanded by considering the preconditions at
criticality level 2. Then we get a plan that takes travel into consideration, but still does not worry
about paying. We keep expanding the solution in this way until all the preconditions are satisfied.

In the framework we have presented, we do not really need to change the language or
the planner to support approximation hierarchy planning. All we have to do is provide the
right decomposition methods and abstract operators. First, we define Buy\, which has just the
precondition at criticality level 1, and has a single decomposition method to Buy'2, which has
preconditions at criticality 1 and 2, and so on. Clearly, any domain generated this way has
the unique main subaction property—the decomposition has only one step, and it has all the
preconditions and effects of the abstract operator. Therefore, the upward solution property holds.

If we add a heuristic that causes the planning algorithm to backtrack to choice points involv-
ing low-number preconditions first, then we get an approximation hierarchy planner using our
standard hierarchical decomposition planner. Thus, the criticality levels used in approximation
hierarchy planning can be seen as providing control information to guide the planning search.
In this sense, criticality levels are a rather crude tool because they do not allow the criticality
to depend on context. (For example, money might be a critical precondition if one is buying a •
house.) One promising approach is to replace criticality levels with descriptions of how likely
the operator is to succeed in various combinations of circumstances.



Section 12.4. More Expressive Operator Descriptions 381

12A MORE EXPRESSIVE OPERATOR DESCRIPTIONS

Hierarchical planning addresses the problem of efficiency, but we still need to make our repre-
sentation language more expressive in order to broaden its applicability. The extensions include
allowing for the effects of an action to depend on the circumstances in which it is executed; allow-
ing disjunctive and negated preconditions; and allowing universally quantified preconditions and
effects. We conclude the section with a planning algorithm, POP-DUNC (Partial-Order Planner
with Disjunction, Universal quantification, Negation and Conditional effects).

CONDITIONAL
EFFECTS

Conditional effects
Operators with conditional effects have different effects depending on what the world is like
when they are executed. We will return to the blocks world of Section 11.8 for some of our
examples. Conceptually, the simple blocks world has only one real action—moving a block from
one place to another—but we were forced to introduce two operators in order to maintain the
Clear predicate properly:

<9p(ACTlON:A/0ve(&, x, v),
PRECOND:<9«(6,,v) A Clear(b) A Clear(y),
EFFECT: On(b,y) A Clear(x) A -~On(b,x) A ->Clear(y))

Op(ACTlON:MoveToTable(b, x),
PRECOND:On(b,x) A Clear(b),
EFFECT: On(b, Table) A Clear(x) A ->On(b,x))

Suppose that the initial situation includes On(A,B) and we have the goal Clear(B). We can
achieve the goal by moving A off B, but unfortunately we are forced to choose whether we want
to move A to the table or to somewhere else. This introduces a premature commitment and can
lead to inefficiency.

We can eliminate the premature commitment by extending the operator language to include
conditional effects. In this case, we can define a single operator Move(b, x, y) with a conditional
effect that says, "if y is not the table then an effect is ->Clear(y)r We will use the syntax "effect
when condition" to denote this, where effect and condition are both literals or conjunctions of
literals. We place this syntax in the EFFECT slot of an operator, but it is really a combination of a
precondition and an effect: the effect part refers to the situation that is the result of the operator,
and the condition part refers to the situation before the operator is applied. Thus, "Q when P"
is not the same as the logical statement P => Q', rather it is equivalent to the situation calculus
statement P(s) =£• Q(Result(act, s)). The conditional Move operator is written as follows:

Op(AcriON:Move(b, x, y),
PRECOND:On(b,x) A Clear(b) A Clear(y),
EFFECT:On(b,y) A Clear(x) A -<On(b,x)

A —>Clear(y) wheny^7fl£>/e)



382 Chapter 12. Practical Planning

CONFRONTATION

Now we have to incorporate this new syntax into the planner. Two changes are required. First,
in SELECT-SUB-GOAL, we have to decide if a precondition c in a conditional effect of the form
e when c should be considered as a candidate for selection. The answer is that if the effect e
supplies a condition that is protected by a causal link, then we should consider selecting c, but
not until the causal link is there. This is because the causal link means that the plan will not
work unless c is also true. Considering the operator just shown, the planner would usually have
no need to establish y^Table because -*Clear(y) is not usually needed as a precondition of some
other step in the plan. Thus, the planner can usually use the table if it needs somewhere to put a
block that does not need to be anywhere special.

Second, we have another possibility for RESOLVE-THREAT. Any step that has the effect
(-ic/ when p) is a possible threat to the causal link S, -fL, 5, whenever c and c' unify. We can
resolve the threat by making sure that p does not hold. We call this technique confrontation. In
the blocks world, if we need a given block to be clear in order to carry out some step, then it is
possible for the Move(b, x, y) operator to threaten this condition if y is uninstantiated. However,
the threat only occurs ify^Table; confrontation removes the threat by setting y = Table. A version
of RESOLVE-THREATS that incorporates confrontation appears in Figure 12.7.

procedure RESOLVE-THREATS(pfon)

for each S, _^ S, in LiNKS(p/a«) do
for each S,hmlt in SJEfS(plan) do

for each c' in EFFECT(S,;,,ra,) do
if SUBST(BlNDINGS(/J/an),c) = SUBST(BlNDINGS(/7/an),-i c') then

choose either
Promotion: Add S,i,reat ~< 5, to ORDERINGS(/;/an)
Demotion: Add 5, -< S,i,ml, to ORDERINGS(p/an)
Confrontation: if c' is really of the form (c' when p) then

CHOOSE-OPERATOR(p/a/i, operators, S,hm,t, ~*p)
RESOLVE-THREATS( plan)

if not CONSiSTENT(p/a«) then fail
end

end
end

Figure 12.7 A version of RESOLVE-THREATS with the confrontation technique for resolving
conditional effects.

Negated and disjunctive goals
The confrontation technique calls CHOOSE-OPERATOR with the goal ->p. This is something new:
so far we have insisted that all goals (preconditions) be positive literals. Dealing with negated
literals as goals does not add much complexity: we still just have to check for effects that match .,



Section 12.4. More Expressive Operator Descriptions 383

DISJUNCTIVE
EFFECTS

the goal. We do have to make sure that our unification function allows/? to match -^-<p. We also
have to treat the initial state specially: we do not want to specify all the conditions that are false
in the initial state, so we say that a goal of the form -ip can be matched either by an explicit effect
that unifies with ->p or by the initial state, if it does not contain p.

While we are at it, it is easy to add disjunctive preconditions. In SELECT-SUB-GOAL, if
we choose a step with a precondition of the form/? V q, then we nondeterministically choose to
return either p or q and reserve the other one as a backtrack point. Of course, any operator with
the precondition p V q could be replaced with two operators, one with p as a precondition and one
with q, but then the planner would have to commit to one or the other. Keeping the conditions in
a single operator allows us to delay making the commitment.

Whereas disjunctive preconditions are easy to handle, disjunctive effects are very diffi-
cult to incorporate. They change the environment from deterministic to nondeterministic. A
disjunctive effect is used to model random effects, or effects that are not determined by the
preconditions of the operator. For example, the operator Flip(coin) would have the disjunctive
effect Heads(coin) V Tails(coin). In some cases, a single plan can guarantee goal achievement
even in the face of disjunctive effects. For example, an operator such as TurnHeadsSideUp(coin)
will coerce the world into a known state even after a flip. In most cases, however, the agent needs
to develop a different plan to handle each possible outcome. We develop algorithms for this kind
of planning in Chapter 13.

UNIVERSALLY
QUANTIFIED
PRECONDITIONS

UNIVERSALLY
QUANTIFIED
EFFECTS

Universal quantification
In defining the blocks world, we had to introduce the condition Clear(b). In this section, we
extend the language to allow universally quantified preconditions. Instead of writing Clear(b)
as a precondition, we can use \/x Block(x) => ->On(x,b) instead. Not only does this relieve
us of the burden of making each operator maintain the Clear predicate, but it also allows us to
handle more complex domains, such as a blocks world with different size blocks.

We also allow for universally quantified effects. For example, in the shopping domain
we could define the operator Carry(bag,x,y) so that it has the effect that all objects that are in
the bag are at y and are no longer at x. There is no way to define this operator without universal
quantification. Here is the syntax we will use:

Op( AcnON:Carry(bag, x, y),
PRECOND:Bag(bag) A At(bag,x),
EFFECT.At(bag, y), -iAt(bag, x) A

V i Item(i) => (Aid, y) A -*At(i, x)) when /«(/, bag))
Although this looks like full first-order logic with quantifiers and implications, it is not. The
syntax—and the corresponding semantics—is strictly limited. We will only allow worlds with a
finite, static, typed universe of objects, so that the universally quantified condition can be satisfied
by enumeration. The description of the initial state must mention all the objects and give each
one a type, specified as a unary predicate. For example, Bag(B) A Item(I\) A Item(Ii) A Item(B).
Notice that is possible for an object to have more than one type: B is both a bag and an item. The
static universe requirement means that the objects mentioned in the initial state cannot change
type or be destroyed, and no new objects can be created. That is, no operator except Start can



384 Chapter 12. Practical Planning

have Bag(x) or -^Bag(x) as an effect. With this semantics of objects in mind, we can extend the
syntax of preconditions and effects by allowing the form

VJE T(x) => C(X>

where T is a unary type predicate on x, and C is a condition involving x. The finite, static, typed
universe means that we can always expand this form into an equivalent conjunctive expression
with no quantifiers:

MX T(x) =>• C(jc) = C( jc , )A. . .AC(x n )
where x\,... ,xn are the objects in the initial state that satisfy T(x). Here is an example:

Initial State: Bag(B) A Milk(Ml) A Milk(M2) A Milk(M3)
Expression: Vx Milk(x) => In(x,B)
Expansion: /«(M,, B) A In(M2, B) A /n(M3, B)

In our planner, we will expand universally quantified goals to eliminate the quantifier. This can
be inefficient because it can lead to large conjunctions that need to be satisfied, but there is no
general solution that does any better.

For universally quantified effects, we are better off. We do not need to expand out the effect
because we may not care about many of the resulting conjuncts. Instead we leave the universally
quantified effect as it is, but make sure that RESOLVE-THREATS can notice that a universally
quantified effect is a threat and that CHOOSE-OPERATOR can notice when a universally quantified
effect can be used as a causal link.

Some domains are dynamic in that objects are created or destroyed, or change their type
over time. Plans in which objects are first made, then used, seem quite natural. Our insistence
on a static set of objects might seem to make it impossible to handle such domains. In fact,
we can often finesse the problem by specifying broad static types in the universally quantified
expressions and using additional dynamic unary predicates to make finer discriminations. In
particular, we can use the dynamic predicate to distinguish between potential and actual objects.
We begin with a supply of non-Actual objects, and object creation is handled by operators that
make objects Actual. Suppose that in the house-building domain there are two possible sites for
the house. In the initial state we could include Home(H\) A House(H2), where we take House to
mean that its argument is a possible house: something that might exist in some points of some
plans, but not in others. In the initial state neither Actual(H\) nor Actual(H2) holds, but that
can change: the Build(x) operator has Actual(x) as an effect, and the Demolish(x) operator has
-iActual(x) as an effect.

If there were an infinite number of possible houses (or just a million), then this approach
would not work. But objects that can potentially exist in large, undifferentiated quantities can
often be treated as resources, which are covered in the next section.

A planner for expressive operator descriptions
We now combine all the extensions to create our POP-DUNC algorithm. Because the top level
of POP-DUNC is identical to that of POP (Figure 11.13), we will not repeat it here. Figure 12.8
shows the parts of POP-DUNC that differ from the original. SELECT-SUB-GOAL is modified to
expand out universally quantified preconditions and to choose one of two possible ways to satisfy



Section 12.4. More Expressive Operator Descriptions 385

function SELECT-SUB-GOAL(/?fa;i) returns plan, precondition conjunct

pick a plan step Sneed from STEPS(plan) with a precondition conjunct c that has not been
achieved

if c is a universally quantified expression then
return Sneed, EXPANSION(C)

else if c is a disjunction c\ V C2 then
return Sneed, choose(ci, ci)

else return Smea, c

procedure CHOOSE-OPERATOR(p/a«, operators, Sneed, c)

choose a step Salid from operators or STEPS(p/a«) that has cadd as an effect
such that u = UNIFY(c, cadd, BlNDlNGS(plan))

if there is no such step then fail
u' <— u without the universally quantified variables of culid
add u' to BiNDiNGS(pfaw)
add Sadd ' : S,,eed tO LlNKS(p/fl«)

add Sadd -< 5,1Prf to ORDERiNGS(p/on)
if £<,</</ is a newly added step from operators then

add Sa,w to STEPS(plan)
add Start -< Salid -< Finish to ORDERINGS( plan)

procedure RESOLVE-THREATS(p/an)

for each S, _!_> 5y in LiNKS(p/a«) do
for each S,i,rea in STEPS(pfa«) do

for each c' in EFFECT(5,Arra() do
if SUBST(BlNDINGS(p/arc), c) = SUBST(BlNDINGS(pfa/!),-if') then

choose either
Promotion: Add S,t,m,t ~< St to ORDERlNGS(pton)
Demotion: Add 5/ -< S,i,rea/ to ORDERINGS(pfa«)
Confrontation: if c' is really of the form (c' whenp) then

CHOOSE-OPERATOR(/7/c/«, operators, S,i,rfat, -i p)
RESOLVE-THREATS( p/an)

if not CONSISTENT(/?/a«) then fail
end

end
end

Figure 12.8 The relevant components of POP-DUNC.

a disjunctive precondition. CHOOSE-OPERATOR is modified only slightly, to handle universally
quantified variables properly. RESOLVE-THREATS is modified to include confrontation as one
method of resolving a threat from a conditional effect.



386 Chapter 12. Practical Planning

12.5 RESOURCE CONSTRAINTS

In Chapter 11, we tackled the problem of shopping, but ignored money. In this section, we consider
how to handle money and other resources properly. To do this, we need a language in which we
can express a precondition such as Have($ 1.89), and we need a planning algorithm that will handle
this efficiently. The former is theoretically possible with what we already have. We can represent
each coin and bill in the world in the initial state: Dollar(d\) A Dollar(d-i) A Quarter(q\) A ....
We can then add decomposition methods to enumerate the ways it is possible to have a dollar. We
have to be careful about inequality constraints, because we would not want the goal Have($2.00)
to be satisfied by Have(d\) A Have(d\). The final representation would be a little unintuitive and
extremely verbose, but we could do it.

The problem is that the representation is totally unsuited for planning. Let us say we pose
the problem Have($ 1,000,000), and the best the planner can come up with is a plan that generates
$1000. The planner would then backtrack looking for another plan. For every step that achieved,
say, Have(d\), the planner would have to consider Have(d2) instead. The planner would end up
generating all combinations of all the coins and bills in the world that total $1000. Clearly, this
is a waste of search time, and it fails to capture the idea that it is the quantity of money you have f
that is important, not the identity of the coins and bills.

Using measures in planning
The solution is to introduce numeric-valued measures (see Chapter 8). Recall that a measure
is an amount of something, such as money or volume. Measures can be referred to by logical
terms such as $( 1.50) or Gallons(6) or GasLevel. Measure functions such as Volume apply to
objects such as GasInCar to yield measures: GasLevel = Volume(GasInCar) = Gallons(6). In
planning problems, we are usually interested in amounts that change over time. A situation :.
calculus representation would therefore include a situation argument (e.g., GasLevel(s)), but as
usual in planning we will leave the situation implicit. We will call expressions such as GasLevel;

MEASURE FLUENTS measure fluents.
Planners that use measures typically require them to be "declared" up front with associated

range information. For example, in a shopping problem, we might want to state that the amount
of money the agent has, Cash, must be nonnegative; that the amount of gas in the tank, GasLevel,
can range up to 15 gallons; that the price of gas ranges from $1.00 to $1.50 per gallon; and that
the price of milk ranges from $ 1.00 to $1.50 per quart:

$(0) < Cash
Gallons®) < GasLevel < Gallons(\5)
$(1.00) < UnitPrice(Gas) x Gallons(l) < $(1.50)
$(1.00) < UnitPrice(Milk) x Quarts(\) < $(1.50)

Measures such as the price of gas are realities with which the planner must deal, but over which it j
RESOURCES has little control. Other measures, such as Cash and GasLevel, are treated as resources that can»

be produced and consumed. That is, there are operators such as Drive that require and consume 1



Section 12.5. Resource Constraints 387

the GasLevel resource, and there are operators such as FillUp that produce more of the GasLevel
resource (while consuming some of the Cash resource).

To represent this, we allow inequality tests involving measures in the precondition of
an operator. In the effect of an operator, we allow numeric assignment statements, where the
left-hand side is a measure fluent and the right-hand side is an arithmetic expression involving
measures. This is like an assignment and not like an equality in that the right-hand side refers to
values before the action and the left-hand side refers to the value of the measure fluent after the
action. As usual, the initial state is described by the effects of the start action:

Op(ACTlON:Start,
EFFECT: Cash — $(12.50) A

GasLevel <— Gallons(5) A

The Buy action reduces the amount of Cash one has:
Op(ACTlON:Buy(x, store),

EFFECT: Have(x) A Cash <— Cash — Price(x, store))
Getting gas can be described by an abstract Fillup operator:

Op(ACTlON:Fillup(GasLevel),
EFFECT: GasLevel — Gallons(l5) A

Cash ^- Cash - (UnitPrice(Gas) x (Gallons(\5) - GasLevel)))
The declared upper and lower bounds serve as implicit preconditions for each operator. For
example, Buy(x) has the implicit precondition Cash > Price(x) to ensure that the quantity will
be within range after the action. It takes some reasonably sophisticated algebraic manipulation
code to automatically generate these preconditions, but it is less error-prone to do that than to
require the user to explicitly write down the preconditions.

These examples should give you an idea of the versatility and power of using measures
to reason about consumable resources. Although practical planners such as SIPE, O-PLAN, and
DEVISER all have mechanisms for resource allocation, the theory behind them has not been
formulated in a clean way, and there is disagreement about just what should be represented and
how it should be reasoned with. We will sketch an outline of one approach.

It is a good idea to plan for scarce resources first. This can be done using an abstraction
hierarchy of preconditions, as in Section 12.3, or by a special resource mechanism. Either way, it
is desirable to delay the choice of a causal link for the resource measures. That is, when planning
to buy a quart of milk, it is a good idea to check if Cash > (Quarts(l) x UnitPrice(Milk, store)),
but it would be premature to establish a causal link to that precondition from either the start state
or some other step. The idea is to first pick the steps of the plan and do a rough check to see if the
resource requirements are satisfiable. If they are, then the planner can continue with the normal
mechanism of resolving threats for all the preconditions.

An easy way of doing the rough check on resources is to keep track of the minimum
and maximum possible values of each quantity at each step in the plan. For example, if in the
initial state we have Cash^$(\2.5Q) and in the description of measures we have $(0.50) <
UnitPrice(Bananas,store) x Pounds(l) < $(1.00) and $(1.00) < UnitPrice(Milk,store) x
Quarts(\) < $(1.50), then a plan with the steps Buy(Milk) and Buy(Bananas) will have the



388 Chapter 12. Practical Planning

range $(10.00) < Cash < $(11.00) at the finish. If we started out with less than $(1.50), then
this approach would lead to failure quickly, without having to try all permutations of Buy steps
at all combinations of stores.

There is a trade-off in deciding how much of the resource quantity information we want to
deal with in the rough check. We could implement a full constraint satisfaction problem solver for
arbitrary arithmetic inequalities (making sure we tie this process in with the normal unification
of variables). However, with complicated domains, we can end up spending just as long solving
the constraint satisfaction problem as we would have spent resolving all the conflicts.

Temporal constraints
In most ways, time can be treated like any other resource. The initial state specifies a start time for
the plan, for example, Time -^8:30. (Here 8:30 isashorthand for Minutes(% x 60 + 30).) We then
can say how much time each operation consumes. (In the case of time, of course, consumption
means adding to the amount.) Suppose it takes 10 seconds to pump each gallon of gas, and 3
minutes to do the rest of the Fillup action. Then an effect of Fillup is

Time — Time + Minutes(3) + (Seconds(lO)/Gallons(l)) x (Gallons(\5) - GasLevel))

It is handy to provide the operator Wait(x), which has the effect Time ^- Time + x and no other
preconditions or effects (at least in static domains).

There are two ways in which time differs from other resources. First, actions that are
executed in parallel consume the maximum of their respective times rather than the sum. Second,
constraints on the time resource have to be consistent with ordering constraints. That is, if 51, -< Sj
is one of the ordering constraints, then Time at 5, must be less than Time at Sj.

Another important constraint is that time never goes backward. This implies that no
operators generate time instead of consuming it. Thus, if the goal state specifies a deadline (a
maximum time), and you have a partial plan whose steps require more time than is allowed, you
can backtrack immediately, without considering any completions of the plan. (See Exercise 12.9
for more on this.)

12.6 SUMMARY

In this chapter we have seen several ways to extend the planning language—the representation |
of states and operators—to allow the planner to handle more complex, realistic domains. Each
extension requires a corresponding change to the planning algorithm, and there is often a difficulty
trade-off between expressiveness and worst-case efficiency. However, when the more expressive s
representations are used wisely, they can lead to an increase in efficiency.

We have tried to present the field of planning in a way that emphasizes the best aspects of 1
progress in AI. The field started with a vague set of requirements (to control a robot) and after some!
experimenting with an initially promising but ultimately intractable approach (situation calculus!
and theorem proving) settled down to a well-understood paradigm (STRiPS-style planning). Frornl



Section 12.6. Summary 389

there, progress was made by a series of implementations, and formalizations of ever more
ambitious variations on the basic planning language.

• The STRIPS language is too restricted for complex, realistic domains, but can be extended
in several ways.

• Planners based on extended STRlPS-like languages and partial-order least-commitment
algorithms have proven capable of handling complex domains such as spacecraft missions
and manufacturing.

• Hierarchical decomposition allows nonprimitive operators to be included in plans, with
a known decomposition into more primitive steps.

• Hierarchical decomposition is most effective when it serves to prune the search space.
Pruning is guaranteed when either the downward solution property (every abstract solution
can be decomposed into a primitive solution) or upward solution property (inconsistent
abstract plans have no primitive solutions) holds.

• We can make the planning language closer to situation calculus by allowing conditional
effects (the effect of an operator depends on what is true when it is executed) and universal
quantification (the precondition and effect can refer to all objects of a certain class).

• Many actions consume resources, such as money, gas, or raw materials. It is convenient
to treat these as numeric measures in a pool rather than try to reason about, say, each
individual coin and bill in the world. Actions can generate and consume resources, and it
is usually cheap and effective to check partial plans for satisfaction of resource constraints
before attempting further refinements.

• Time is one of the most important resources. With a few exceptions, time can be handled
with the general mechanisms for manipulating resource measures.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
Abstract and hierarchical planning was introduced in the ABSTRIPS system (Sacerdoti, 1974),

MACROPS a variant of STRIPS. (Actually, the facility in STRIPS itself for learning macrops—"macro-
operators" consisting of a sequence of bottom-level steps—could be considered the first mech-
anism for hierarchical planning.) Hierarchy was also used in the LAWALY system (Siklossy
and Dreussi, 1973). Wilkins (1986) discusses some ambiguities in the meaning of the term
"hierarchical planning." Yang (1990) explains the "unique main subaction" property in the con-
text of abstraction planning. Erol, Hendler, and Nau (1994) present a complete hierarchical
decomposition planner to which our HD-POP owes a great deal.

Work on deciding what hierarchical plans are worth knowing about and how to adapt
previously constructed plans to novel situations goes under the name adaptive planning (Alterman,
1988) or case-based planning (Hammond, 1989).

Continuous time was first dealt with by DEVISER (Vere, 1983). A more recent plan-
ner focusing on the treatment of continuous time constraints is FORBIN (Dean et al., 1990).
NONLIN+ (Tate and Whiter, 1984) and SlPE (Wilkins, 1988; Wilkins, 1990) could reason



390 Chapter 12. Practical Planning

about the allocation of limited resources to various plan steps. MOLGEN (Stefik, 1981b;
Stefik, 198 la) allowed reasoning about objects that are only partially specified (via constraints).
GARI (Descotte and Latombe, 1985) allowed hierarchical reasoning with constraints, in that some
lower-level constraints are given lower priorities and may be violated at some stages during plan
construction. O-PLAN (Bell and Tate, 1985) had a uniform, general representation for constraints
on time and resources.

Classical situation calculus had allowed the full predicate calculus for describing the
preconditions and effects of plan steps. Later formalisms have tried to get much of this expres-
siveness back, without sacrificing the efficiency gained by the use of STRIPS operators. The ADL
planning formalism (Pednault, 1986) allows for multiagent planning and avoids the problems
with the STRIPS formalism that were pointed out by Lifschitz (1986). PEDESTAL (McDer-
mott, 1991) was the first (partial) implementation of ADL. UCPOP (Penberthy and Weld, 1992;
Barrett et al., 1993) is a more complete implementation of ADL that also allows for partial-order
planning. POP-DUNC is based largely on this work. Weld (1994) describes UCPOP and gives a
general introduction to partial-order planning with actions having conditional effects. Kambham-
pati and Nau (1993) analyze the applicability of Chapman's (1987) NP-hardness results to actions
with conditional effects. Wolfgang Bibel (1986) has attempted to revive the use of full predicate
calculus for planning, counting on advances in theorem proving to avoid the intractability that
this led to in the early days of planning.

The improvements in the richness of the representations used in modern planners have
helped make them more nearly equal to the challenges of real-world planning tasks than was
STRIPS. Several systems have been used to plan for scientific experimentation and observation.
MOLGEN was used in the design of scientific experiments in molecular genetics. T-SCHED
(Drabble, 1990) was used to schedule mission command sequences for the UOSAT-II satellite.
PLAN-ERS1 (Fuchs et al., 1990), based on O-PLAN, was used for observation planning at the
European Space Agency; SPIKE (Johnston and Adorf, 1992) was used for observation planning
at NASA for the Hubble space telescope. Manufacturing has been another fertile application
area for advanced planning systems. OPTIMUM-AIV (Aarup et al., 1994), based on O-PLAN,
has been used in spacecraft assembly at the European Space Agency. ISIS (Fox et al., 1981;;
Fox, 1990) has been used for job shop scheduling at Westinghouse. GARI planned the machining
and construction of mechanical parts. FORBIN was used for factory control. NONLIN+ was used
for naval logistics planning. SIPE has had a number of applications, including planning for aircraft
carrier flight deck operations.

EXERCISES

12.1 Give decompositions for the Hire Builder and Obtain Permit steps in Figure 12.1, and
show how the decomposed subplans connect into the overall plan.
12.2 Rework the previous exercise using an approximation hierarchy. That is, assign criticality •;
levels to each precondition of each step. How did you decide which preconditions get higher <
criticality levels?



Section 12.6. Summary 391

12.3 Give an example in the house-building domain of two abstract subplans that cannot be
merged into a consistent plan without sharing steps. (Hint: Places where two physical parts of
the house come together are also places where two subplans tend to interact.)

12.4 Construct an example of the violation of the downward solution property. That is, find an
abstract solution such that, when one of the steps is decomposed, the plan becomes inconsistent
in that one of its threats cannot be resolved.

12.5 Prove that the upward solution property always holds for approximation hierarchy planning
(see page 380). You may use Tenenberg (1988) for hints.

12.6 Add existential quantifiers (3) to the plan language, using whatever syntax restrictions you
find reasonable, and extend the planner to accommodate them.

12.7 Write operators for the shopping domain that will enable the planner to achieve the goal of
having three oranges by grabbing a bag, going to the store, grabbing the oranges, paying for them,
and returning home. Model money as a resource. Use universal quantification in the operators,
and show that the original contents of the bag will still be there at the end of the plan.

12.8 We said in Section 11.6 that the SELECT-SUB-GOAL part of the POP algorithm was not a
backtrack point—that we can work on subgoals in any order without affecting completeness (al-
though the choice certainly has an effect on efficiency). When we change the SELECT-SUB-GOAL
part to handle hierarchical decomposition, do we need to make it a backtrack point?

12.9 Some domains have resources that are monotonically decreasing or increasing. For
example, time is monotonically increasing, and if there is a Buy operator, but no Earn, Beg,
Borrow, or Steal, then money is monotonically decreasing. Knowing this can cut the search
space: if you have a partial plan whose steps require more money than is available, then you can
avoid considering any of the possible completions of the plan.

a. Explain how to determine if a measure is monotonic, given a set of operator descriptions.
b. Design an experiment to analyze the efficiency gains resulting from the use of monotonic

resources in planning.

12.10 Some of the operations in standard programming languages can be modelled as actions
that change the state of the world. For example, the assignment operation changes the contents
of a memory location; the print operation changes the state of the output stream. A program
consisting of these operations can also be considered as a plan, whose goal is given by the
specification of the program. Therefore, planning algorithms can be used to construct programs
that achieve a given specification.

a. Write an operator schema for the assignment operator (assigning the value of one variable
to another).

b. Show how object creation can be used by a planner to produce a plan for exchanging the
values of two variables using a temporary variable.



13 PLANNING AND ACTING

In which planning systems must face up to the awful prospect of actually having to
take their own advice.

CONDITIONAL
PLANNING

CONTINGENCY

SENSING ACTIONS

EXECUTION
MONITORING

REPLANNING

The assumptions required for flawless planning and execution, given the algorithms in the previous
chapters, are that the world be accessible, static, and deterministic—just as for our simple search
methods. Furthermore, the action descriptions must be correct and complete, describing all
the consequences exactly. We described a planning agent in this ideal case in Chapter 11; the
resemblance to the simple problem-solving agent of Chapter 3 was no coincidence.

In real-world domains, agents have to deal with both incomplete and incorrect information.
Incompleteness arises because the world is inaccessible; for example, in the shopping world, the
agent may not know where the milk is kept unless it asks. Incorrectness arises because the world
does not necessarily match the agent's model of it; for example, the price of milk may have
doubled overnight, and the agent's wallet may have been pickpocketed.

There are two different ways to deal with the problems arising from incomplete and
incorrect information:

<) Conditional planning: Also known as contingency planning, conditional planning deals
with incomplete information by constructing a conditional plan that accounts for each
possible situation or contingency that could arise. The agent finds out which part of
the plan to execute by including sensing actions in the plan to test for the appropriate
conditions. For example, the shopping agent might want to include a sensing action in its •;
shopping plan to check the price of some object in case it is too expensive. Conditional |
planning is discussed in Section 13.1.

<> Execution monitoring: The simple planning agent described in Chapter 11 executes its j
plan "with its eyes closed"—once it has a plan to execute, it does not use its percepts to J
select actions. Obviously this is a very fragile strategy when there is a possibility that the*;
agent is using incorrect information about the world. By monitoring what is happening j
while it executes the plan, the agent can tell when things go wrong. It can then
replanning to find a way to achieve its goals from the new situation. For example, if the ;
agent discovers that it does not have enough money to pay for all the items it has picked f
up, it can return some and replace them with cheaper versions. In Section 13.2 we lookj

392



Section 13.1. Conditional Planning 393

DEFERRING

at a simple replanning agent that implements this strategy. Section 13.3 elaborates on this
design to provide a full integration of planning and execution.

Execution monitoring is related to conditional planning in the following way. An agent that
builds a plan and then executes it while watching for errors is, in a sense, taking into account
the possible conditions that constitute execution errors. Unlike a conditional planner, however,
the execution monitoring agent is actually deferring the job of dealing with those conditions
until they actually arise. The two approaches of course can be combined by planning for some
contingencies and leaving others to be dealt with later if they occur. In Section 13.4, we will
discuss when one might prefer to use one or the other approach.

13.1 CONDITIONAL PLANNING

We begin by looking at the nature of conditional plans and how an agent executes them. This
will help to clarify the relationship between sensing actions in the plan and their effects on the
agent's knowledge base. We then explain how to construct conditional plans.

The nature of conditional plans
Let us consider the problem of fixing a flat tire. Suppose we have the following three action
schemata:

Op(ACT[ON:Remove(x),
PRECOND:On(X),
EFFECT. Off(x) A ClearHub(x) A ->On(x))

Op(ACT[ON:PutOn(x),
PRECOND:Off(x) A ClearHub(x),
EFFECT: OnW A -^ClearHub(x) A ~iOff(x))

Op( ACTION :Inflate(x),
PRECOND:Intact(x) A Flat(x),
EFFECT: Inflated(x) A ->Flat(x))

If our goal is to have an inflated tire on the wheel:
On(x) A Inflated(x)

and the initial conditions are

Inflated(Spare) A Intact(Spare) A Off (Spare) A On(Tire\) A Flat(Tire\)
then any of the standard planners described in the previous chapters would be able to come up
with the following plan:

\Remove(Tire\), PutOn(Spare)]
If the absence of Intact(Tire\) in the initial state really means that the tire is not intact (as the
standard planners assume), then this is all well and good. But suppose we have incomplete



394 Chapter 13. Planning and Acting

knowledge of the world—the tire may be flat because it is punctured, or just because it has
not been pumped up lately. Because changing a tire is a dirty and time-consuming business,
it would be better if the agent could execute a conditional plan: if Tire\ is intact, then inflate
it. If not, remove it and put on the spare. To express this formally, we can extend our original
notation for plan steps with a conditional step If(<Condition>, <ThenPart>, <ElsePart>,). Thus,
the tire-fixing plan now includes the step

If(lntact(Tire\\ [Inflate(Tire\)}, [Remove(Tire\}, PutOn(Spare)])

Thus, the conditional planning agent can sometimes do better than the standard planning agents
described earlier. Furthermore, there are cases where a conditional plan is the only possible
plan. If the agent does not know if its spare tire is flat or inflated, then the standard planner will
fail, whereas the conditional planner can insert a second conditional step that inflates the spare if
necessary. Lastly, if there is a possibility that both tires have holes, then neither planner can come
up with a guaranteed plan. In this case, a conditional planner can plan for all the cases where
success is possible, and insert a Fail action on those branches where no completion is possible.

Plans that include conditional steps are executed as follows. When the conditional step is
executed, the agent first tests the condition against its knowledge base. It then continues executing
either the then-part or the else-part, depending on whether the condition is true or false. The
then-part and the else-part can themselves be plans, allowing arbitrary nesting of conditionals.
The conditional planning agent design is shown in Figure 13.1. Notice that it deals with nested
conditional steps by following the appropriate conditional branches until it finds a real action to
do. (The conditional planning algorithm itself, CPOP, will be discussed later.)

The crucial part of executing conditional plans is that the agent must, at the time of
execution of a conditional step, be able to decide the truth or falsehood of the condition—that is,
the condition must be known to the agent at that point in the plan. If the agent does not know
if Tire\ is intact or not, it cannot execute the previously shown plan. What the agent knows at
any point is of course determined by the sequence of percepts up to that point, the sequence of
actions carried out, and the agent's initial knowledge. In this case, the initial conditions in the
knowledge base do not say anything about Intact(Tire\). Furthermore, the agent may have no
actions that cause lntact(Tire\) to become true.1 To ensure that a conditional plan is executable,
the agent must insert actions that cause the relevant conditions to become known by the agent.

Facts become known to the agent through its percepts, so what we mean by the previous
remark is that the agent must act in such a way as to make sure it receives the appropriate percepts.
For example, one way to come to know that a tire is intact is to put some air into it and place
one's listening device in close proximity. A hissing percept then enables the agent to infer that
the tire is not intact.2 Suppose we use the name CheckTire(x) to refer to an action that establishes
the state of the tire x. This is an example of a sensing action.

Using the situation calculus description of sensing actions described in Chapter 8, we
would write

Vx,s Tire(x) => KnowsWhether("Intact(x)",Result(CheckTire(x),s))

1 Note that if, for example, a Patch(Tire\) action were available, then a standard plan could be constructed.
2 Agents without sound percepts can wet the tire. A bubbling visual percept then suggests the tire is compromised.



Section 13.1. Conditional Planning 395

function CONDITIONAL-PLANNING- AGENT(percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan, initially NoPlan
t, a counter, initially 0, indicating time
G, a goal

TELL(KB, MAKE-PERCEPT-SENTENCE(/7Wepf, t))
current <— STATE-DESCR1PTION(#B, f)
itp = NoPlan then p ̂  CPOP(current, G, KB)
if p = NoPlan or p is empty then action ̂  NoOp
else

action'— FlRST(p)
while CoNDiTiONAL?(ac?wn) do

if ASK(/ffi, CONDITION-PARTlacft'on]) thenp <- APPEND(THEN-PART[acft'on],REST(/j))
else p <- APFEND(ELSE-PART[acft'on], REST(p))
acrion <— FiRST(/7)

end

TELL(/fS, MAKE-ACTION-SENTENCE(flCft'0M, 0)
f — f + 1
return action

Figure 13.1 A conditional planning agent.

In our action schema format, we would write
Op(ACT:iON:CheckTire(x),

PRECOND:77re(X),
EFFECT.KnowsWhether("Intact(x)"y)

Notice that as well as having knowledge effects, a sensing action can have ordinary effects. For
example, if the CheckTire action uses the water method, then the tire will become wet. Sensing
actions can also have preconditions that need to be established. For example, we might need to
fetch the pump in order to put some air in the tire in order to check it. A conditional planner
therefore will sometimes create plans that involve carrying out ordinary actions for the purpose
of obtaining some needed information.

CONTEXT

An algorithm for generating conditional plans
The process of generating conditional plans is much like the planning process described in
Chapter 11. The main additional construct is the context of a step in the plan. A step's context is
simply the union of the conditions that must hold in order for the step to be executed—essentially,
it describes the "branch" on which the step lies. For example, the action Inflate(Tire\) in the
earlier plan has a context Intact(Tire\). Once it is established that a step has a certain context,
then subsequent steps in the plan inherit that context. Because it cannot be the case that two steps



396 Chapter 13. Planning and Acting

with distinct contexts can both be executed, such steps cannot interfere with each other. Contexts
are therefore essential for keeping track of which steps can establish or violate the preconditions
of which other steps. An example will make this clear.

The flat-tire plan begins with the usual start and finish steps (Figure 13.2). Notice that the
finish step has the context True, indicating that no assumptions have been made so far.

_____ On(Tirel)

Start \Flat(Tirel)
Inflated/Spare)

On(x)
Finish
(True)

Figure 13.2 Initial plan state for the flat-tire problem.

CONDITIONAL LINK

CONDITIONAL STEP

There are two open conditions to be resolved: On(x) and Inflated(x). The first is satisfied
by adding a link from the start step, with the unifier {xlTire\}. The second is satisfied by adding
the step Inflate(Tire\), which has preconditions Flat(Tire\) and Intact(Tire\) (see Figure 13.3).

| Start \Flat(Tire1) —»_
Inflated(Spare)

Figure 13.3 Plan

* Flat(Tirel)
Intact(Tirel)

ish
jf (True)

Inflate(Tirel) ^
(IntactfTirel ))

after adding the Inflate(Tire\) step.

The open condition Flat(Tire\) is satisfied by adding a link from the start step. The
interesting part is what to do with the Intact(Tire\) condition. In the statement of the problem
there are no actions that can make the tire intact—that is, no action schema with the effect
Intact(x). At this point a standard causal-link planner would abandon this plan and try another
way to achieve the goal. There is, however, an action CheckTire(x) that allows one to know the
truth value of a proposition that unifies with Intact(Tire\). If (and this is sometimes a big if) the
outcome of checking the tire is that the tire is known to be intact, then the Inflate(Tire\) step can
be achieved. We therefore add the CheckTire step to the plan with a conditional link (shown as a
dotted arrow in Figure 13.4) to theInflate(Tire\) step. The CheckTire step is called a conditional
step because it will become a branch point in the final plan. The inflate step and the finish step
now acquire a context label stating that they are assuming the outcome lntaci(Tire\} rather than
-<Intact(Tirei). Because CheckTire has no preconditions in our simple formulation, the plan is
complete given the context of the finish step.

Obviously, we cannot stop here. We need a plan that works in both cases. The conditional
planner ensures this by adding a second copy of the original finish step, labelled with a context
that is the negation of the existing context (see Figure 13.5).3 In this way, the planner covers an

3 If the solution of this new branch requires further context assumptions, then a third copy of the finish step will be added
whose context is the negation of the disjunction of the existing finish steps. This continues until no more assumptions
are needed.



Section 13.1. Conditional Planning 397

| Start ~] Flat(Tlre 1) ~

Inflated/Spare) ̂  •— . __^_ „ ,,.. ,,

-preD im^rn,^ Inflate(Tirel) \
lnl*^_.-.-^' (lntnrt(Tirt!lH

Check(Tirel) \"~

frrffetfort(Ti>»<] 1 Flnlsh

ĵ - (IntactfTirel ))

Figure 13.4 The plan to inflate Tire\ will work provided that it is intact.

On(Tirel)
Start \Flat(Tire1)

Inflated(Spare)

On(Tirel)
Inflated/Tire 1) Finish

Flat(Tire1)
ln,ac,(Tire1) lnflate(Tire1)

(IntactfTirel))

<lntact(Tire1»

On(x) .
Inflated(x) \ Finish |

(~i/ntact(Tire1))

Figure 13.5 We must now plan for the case where Tire\ is not intact.

exhaustive set of possibilities—for every possible outcome, there is a corresponding finish step,
and a path to get to the finish step.

Now we need to solve the goal when Tire\ has a hole in it. Here the context is very useful.
If we were to try to add the step Inflate(Tire\) to the plan, we would immediately see that the
precondition lntact(Tire\) is inconsistent with the context -*Intact(Tire\). Thus, the only ways to
satisfy the Inflated(x) condition are to link it to the start step with the unifier {x/spare} or to add
an Inflate step for the spare. Because the latter leads to a dead end (because the spare is not flat),
we choose the former. This leads to the plan state in Figure 13.6.

The steps Remove(Tire\) and PutOn(Spare) are now added to the plan to satisfy the con-
dition On(Spare), using standard causal-link addition. Initially, the steps would have a True

^^^ On(Tirel)

Start |F/at(T/
/™

tac t(Tire1*, IntactfTirel)

Inflated(Tirel) Finish

Flat(Tirel)
Inflale(Tirel)
(IntactfTirel))

(Intact(Tirel))

On(Spare) ,—————
Inflated(Spare) I Fi"ish

< IntactfTirel

Figure 13.6 When Tire\ is not intact, we must use the spare instead.



398 Chapter 13. Planning and Acting

context, because it has not yet been established that they can only be executed under certain
circumstances. This means that we have to check how the steps interact with other steps in the
plan. In particular, the Remove(Tire\) step threatens the causal link protecting On(Tire\) in the
first finish step (the one with the context (Intact(Tire\)). In a standard causal-link planner, the
only solution would be to promote or demote the Remove(Tire\) step so that it cannot interfere.

CONDITIONING In the conditional planner, we can also resolve the threat by conditioning the step so that its
context becomes incompatible with the context of the step whose precondition it is threatening
(in this case, the first finish step). Conditioning is achieved by finding a conditional step that has
a possible outcome that would make the threatening step's context incompatible with the causal
link's context. In this case, the CheckTire step has a possible outcome ^lntact(Tire\). If we
make a conditional link from the CheckTire step to the Remove(Tire\) step, then the remove step
is no longer a threat. The new context is inherited by the PutOn(Spare) step, and the plan is now
complete (Figure 13.7).

On(T
| Start ~\Flat(-

Inflat

\

rire1) —

id(Spare) "̂""""""""••••••••̂ ^

int̂ V
Check(Tirel) \"

. ^-ilntact(Tirel)

^^_ Removef

,^l{r,^ \ Inflate(Tirel) Y
(Intact(Tirel))

irel) |̂ - Puton(Spare)
"V^^^ (-<lntact(Tire1)) (-'lntact(Tirei))

lnflated(Tire1) nish
^- (lntact(Tire1»

^^j^On(Spare) . ———————— ,
Inflated! Spare] Finish |
^ (-ilntact(Tirel))

^^

Figure 13.7 The complete plan for fixing the tire, showing causal and conditional links and
contexts (in parentheses).

The algorithm is called CPOP (for Conditional Partial-Order Planner). It builds on the POP
algorithm, and extends it by incorporating contexts, multiple finish steps and the conditioning
process for resolving potential threats. It is shown in Figure 13.8.

PARAMETERIZED
PLANS

Extending the plan language

The conditional steps we used in the previous section had only two possible outcomes. In some
cases, however, a sensing action can have any number of outcomes. For example, checking the
color of some object might result in a sentence of the form Color(x, c) being known for some
value of c. Sensing actions of this type can be used in parameterized plans, where the exact
actions to be carried out will not be known until the plan is executed. For example, suppose we
have a goal such as

Color(Chair, c) A Color(Table, c)



Section 13.1. Conditional Planning 399

function CPOP(initial, goals, operators) returns plan

plan <— MAKE-PLAN(;'mYra/, goals)
loop do

Termination'.
if there are no unsatisfied preconditions

and the contexts of the finish steps are exhaustive
then return plan

Alternative context generation:
if the plans for existing finish steps are complete and have contexts C\ ... Cn then

add a new finish step with a context -i (Ci V .. . V Cn)
this becomes the current context

Subgoal selection and addition:
find a plan step Sneeci with an open precondition c

Action selection:
choose a step Sadd from operators or STEPS(p/aw) that adds c or

knowledge of c and has a context compatible with the current context
if there is no such step

then fail
add Sadd ' ; Sneed to LlNKS( plan)
add Sadd < Swed to ORDERINGS( plan)
if Sadd is a newly added step then

add Sadd to STEPS(plan)
add Start < Sadd < FJ'W'S/Z to ORDERlNGS(p/an)

Threat resolution:
for each step 5,«r«» that potentially threatens any causal link 5, c

 ; 5}
with a compatible context do

choose one of
Promotion: AddS,i,rea, < S; to ORDERINGS(pfan)
Demotion: Add 5/ < 5*™; to ORDERINGS(p/a«)
Conditioning:

find a conditional step SCOnd possibly before both S,i,reat and 5,-, where
1. the context of SCOnd is compatible with the contexts of Sthreat and S/;
2. the step has outcomes consistent with S,hreat and S/, respectively

add conditioning links for the outcomes from Scnmt to S,/,,-raf and 5,
augment and propagate the contexts of S,/,reai and 5,

if no choice is consistent
then fail

end
end

Figure 13.8 The CPOP algorithm for constructing conditional plans.



400 Chapter 13. Planning and Acting

RUNTIME VARIABLE

MAINTENANCE GOAL

AUTOMATIC
PROGRAMMING

("the chair and table are the same color"). The chair is initially unpainted, and we have some
paints and a paintbrush. Then we might use the plan

[SenseColor(Table), KnowsWhat("Color(Table, c)"), GetPaint(c), Paint(Chair, c)]
The last two steps are parameterized, because until execution the agent will not know the value
of c. We call c a runtime variable, as distinguished from normal planning variables whose
values are known as soon as the plan is made. The step SenseColor(Table) will have the effect of
providing percepts sufficient to allow the agent to deduce the color of the table. Then the action
KnowsWhat("Color(Table,c)") is executed simply by querying the knowledge base to establish
a value for the variable c. This value can be used in subsequent steps such as GetPaint(c), or
in conditional steps such as If(c = Green, [ . . . ] , [...]). Sensing actions are defined just as in the
binary-condition case:

Op(AcnON:SenseColor(x),
EFFECT: Knows What("Color(x, c)"))

In situation calculus, the action would be described by
MX, s 3c KnowsWhat("Color(x,c)",Result(SenseColor(x),s))

The variables x and c are treated differently by the planner. Logically, c is existentially quantified
in the situation calculus representation, and thus must be treated as a Skolem function of the
object being sensed and the situation in which it is sensed. In the planner, runtime variables like
c unify only with ordinary variables, and not with constants or with each other. This corresponds
exactly to what would happen with Skolem functions.

When we have the ability to discover that certain facts are true, as well as the ability to
cause them to become true, then we may wish to have some control over which facts are changed
and which are preserved. For example, the goal of having the table and chair the same color
can be achieved by painting them both black, regardless of what color the table is at the start.
This can be prevented by protecting the table's color so that the agent has to sense it, rather than
painting over it. A maintenance goal can be used to specify this:

Color(Chair, c) A Color(Table, c) A Maintain(Color(Table,x))
The Maintain goal will ensure that no action is inserted in the plan that has an ordinary causal
effect that changes the color of the table. This is done in a causal-link planner by adding a causal
link from the start step to the finish step protecting the table's initial color.

Plans with conditionals start to look suspiciously like programs. Moreover, executing such
plans starts to look rather like interpreting a program. The similarity becomes even stronger when
we include loops in plans. A loop is like a conditional, except that when the condition holds, a
portion of the plan is repeated. For example, we might include a looping step to make sure the
chair is painted properly:

WMle(KnowsrUnevenColor(Chairy), [Paint(Chair, c), CheckColor(Chair)})
Techniques for generating plans with conditionals and loops are almost identical to those for
generating programs from logical specifications (so-called automatic programming). Even a
standard planner can do automatic programming of a simple kind if we encode as STRIPS operators
the actions corresponding to assignment statements, procedure calls, printing, and so on.



I Section 13.2. A Simple Replanning Agent 401

i 3.2 A SIMPLE REPLANNING AGENT

TRIANGLE TABLE

ACTION MONITORING

BOUNDED
WDETERMINACY

As long as the world behaves exactly as the action descriptions describe it, then executing a plan
in the ideal or incomplete-information cases will always result in goal achievement. As each step
is executed, the world state will be as predicted—as long as nothing goes wrong.

"Something going wrong" means that the world state after an action is not as predicted.
More specifically, the remaining plan segment will fail if any of its preconditions is not met. The
preconditions of a plan segment (as opposed to an individual step) are all those preconditions of
the steps in the segment that are not established by other steps in the segment. It is straightforward
to annotate a plan at each step with the preconditions required for successful completion of the
remaining steps. In terms of the plan description adopted in Chapter 11, the required conditions
are just the propositions protected by all the causal links beginning at or before the current
step and ending at or after it. Then we can detect a potential failure by comparing the current
preconditions with the state description generated from the percept sequence. This is the standard
model of execution monitoring, first used by the original STRIPS planner. STRIPS also introduced
the triangle table, an efficient representation for fully annotated plans.

A second approach is to check the preconditions of each action as it is executed, rather
than checking the preconditions of the entire remaining plan. This is called action monitoring.
As well as being simpler and avoiding the need for annotations, this method fits in well with
realistic systems where an individual action failure can be recognized. For example, if a robot
agent issues a command to the motor subsystem to move two meters forward, the subsystem can
report a failure if the robot bumps into an obstacle that materialized unexpectedly. On the other
hand, action monitoring is less effective than execution monitoring, because it does not look
ahead to see that an unexpected current state will cause an action failure some time in the future.
For example, the obstacle that the robot bumped into might have been knocked off the table by
accident much earlier in the plan. An agent using execution monitoring could have realized the
problem and picked it up again.

Action monitoring is also useful when a goal is serendipitously achieved. That is, if
someone or something else has already changed the world so that the goal is achieved, action
monitoring notices this and avoids wasting time by going through the rest of the plan.

These forms of monitoring require that the percepts provide enough information to tell
if a plan or action is about to fail. In an inaccessible world where the relevant conditions are
not perceivable, more complicated strategies are needed to cope with undetected but potentially
serious deviations from expectations. This issue is beyond the scope of the current chapter.

We can divide the causes of plan failure into two kinds, depending on whether it is possible
to anticipate the possible contingencies:

0 Bounded indeterminacy: In this case, actions can have unexpected effects, but the possible
effects can be enumerated and described as part of the action description axiom. For
example, the result of opening a can of paint can be described as the disjunction of having
paint available, having an empty can, or spilling the paint. Using a combination of CPOP
and the "D" (disjunctive) part of POP-DUNC we can generate conditional plans to deal
with this kind of indeterminacy.



402 Chapter 13. Planning and Acting

UNBOUNDED
INDETERMINACY <> Unbounded indeterminacy: In this case, the set of possible unexpected outcomes is too

large to be completely enumerated. This would be the case in very complex and/or dynamic
domains such as driving, economic planning, and military strategy. In such cases, we can
plan for at most a limited number of contingencies, and must be able to replan when reality
does not behave as expected.

The next subsection describes a simple method for replanning based on trying to get the plan
"back on track" as quickly as possible. Section 13.3 describes a more comprehensive approach
that deals with unexpected conditions as an integral part of the decision-making process.

Simple replanning with execution monitoring
One approach to replanning based on execution monitoring is shown in Figure 13.9. The simple
planning agent is modified so that it keeps track of both the remaining plan segment p and
the complete plan q. Before carrying out the first action of p, it checks to see whether the
preconditions of the/? are met. If not, it calls CHOOSE-BEST-CONTINUATION to choose some point
in the complete plan q such that the plan p' from that point to the end of q is easiest to achieve
from the current state. The new plan is to first achieve the preconditions of/?' and then execute it.

Consider how REPLANNlNG-AcENT will perform the task of painting the chair to match
the table. Suppose that the motor subsystem responsible for the painting action is imperfect
and sometimes leaves small areas unpainted. Then after the Paint(Chair,c) action is done, the
execution-monitoring part will check the preconditions for the rest of the plan; the preconditions

function REPLANNING-AGBNT( percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, an annotated plan, initially NoPlan
q, an annotated plan, initially NoPlan
G, a goal

TELL(/TS, MAKE-PERCEPT-SENTENCE( percept, t))
current*— STATE-DESCRIPTION(XB, t)
ifp = NoPlan then

p <— PLANNER(current, G, KB)
q — p
if p = NoPlan or p is empty then return NoOp

if PRECONDITIONS^) not currently true in KB then
p' <— CHOOSE-BEST-CONT!NUATION(cwrr«;f, q)
p <- APPEND(PLANNER(c«m'nf, PRECONDITIONS^'), KB),p')

q^-p
action <— FlRST(p)
p^REST(p)
return action

Figure 13.9 An agent that does execution monitoring and replanning.



Section 13.3. Fully Integrated Planning and Execution 403

are just the goal conditions because the remaining plan p is now empty, and the agent will detect
that the chair is not all the same color as the table. Looking at the original plan q, the current
state is identical to the precondition before the chair-painting step, so the agent will now try to
paint over the bare spots. This behavior will cycle until the chair is completely painted.

Suppose instead that the agent runs out of paint during the painting process. This is not
envisaged by the action description for Paint, but it will be detected because the chair will again
not be completely painted. At this point, the current state matches the precondition of the plan
beginning with GetPaint, so the agent will go off and get a new can of paint before continuing.

Consider again the agent's behavior in the first case, as it paints and repaints the chair.
Notice that the behavior is identical to that of a conditional planning agent running the looping
plan shown earlier. The difference lies in the time at which the computation is done and the
information is available to the computation process. The conditional planning agent reasons
explicitly about the possibility of uneven paint, and prepares for it even though it may not occur.
The looping behavior results from a looping plan. The replanning agent assumes at planning
time that painting succeeds, but during execution checks on the results and plans just for those
contingencies that actually arise. The looping behavior results not from a looping plan but from
the interaction between action failures and a persistent replanner.

We should mention the question of learning in response to failed expectations about the
results of actions. Consider a plan for the painting agent that includes an action to open a door
(perhaps to the paint store). If the door sticks a little, the replanning agent will try again until the
door opens. But if the door is locked, the agent has a problem. Of course, if the agent already
knows about locked doors, then Unlocked will be a precondition of opening the door, and the
agent will have inserted a ChecklfLocked action that observes the state of the door, and perhaps
a conditional branch to fetch the key. But if the agent does not know about locked doors, it will
continue pulling on the door indefinitely. What we would like to happen is for the agent to learn
that its action description is wrong; in this case, there is a missing precondition. We will see how
this kind of learning can take place in Chapter 21.

I33FULLY INTEGRATED PLANNING AND EXECUTION

SITUATED PLANNING
"btNT

In this section, we describe a more comprehensive approach to plan execution, in which the
planning and execution processes are fully integrated. Rather than thinking of the planner and
execution monitor as separate processes, one of which passes its results to the other, we can
think of them as a single process in a situated planning agent.4 The agent is thought of as
always being part of the way through executing a plan—the grand plan of living its life. Its
activities include executing some steps of the plan that are ready to be executed; refining the plan
to resolve any of the standard deficiencies (open conditions, potential clobbering, and so on);
refining the plan in the light of additional information obtained during execution; and fixing the
4 The word "situated," which became popular in AI in the late 1980s, is intended to emphasize that the process of
deliberation takes place in an agent that is directly connected to an environment. In this book all the agents are "situated,"
but the situated planning agent integrates deliberation and action to a greater extent than some of the other designs.



404 Chapter 13. Planning and Acting

plan in the light of unexpected changes in the environment, which might include recovering from
execution errors or removing steps that have been made redundant by serendipitous occurrences.
Obviously, when it first gets a new goal the agent will have no actions ready to execute, so it
will spend a while generating a partial plan. It is quite possible, however, for the agent to begin
execution before the plan is complete, especially when it has independent subgoals to achieve.
The situated agent continuously monitors the world, updating its world model from new percepts
even if its deliberations are still continuing.

As in the discussion of the conditional planner, we will first go through an example and
then give the planning algorithm. We will keep to the formulation of steps and plans used by
the partial-order planner POP, rather than the more expressive languages used in Chapter 12. It
is, of course, possible to incorporate more expressive languages, as well as conditional planning
techniques, into a situated planner.

The example we will use is a version of the blocks world. The start state is shown in
Figure 13.10(a), and the goal is On(C,D) A On(D,B). The action we will need is Move(x,y),
which moves block x onto block y, provided both are clear. Its action schema is

Op(ACTlON:Move(x, y),
PRECOND'.Clear(x) A Clear(y) A On(x,z),
EFFECT:On(x,y) A Clear(z) A -^On(x,z)f\ jClear(y))

A
tmt

(b) (c)

Figure 13.10 The sequence of states as the situated planning agent tries to reach the goal state
On(C, D) A On(D, B) as shown in (d). The start state is (a). At (b), another agent has interfered,
putting DonB. At (c), the agent has executed Move(C, D) but has failed, dropping C on A instead.
It retries Move(C,D), reaching the goal state (d).

The agent first constructs the plan shown in Figure 13.11. Notice that although the
preconditions of both actions are satisfied by the initial state, there is an ordering constraint
putting Move(D,B) before Move(C,D). This is needed to protect the condition Clear(D) until
Move(D, B) is completed.

At this point, the plan is ready to be executed, but nature intervenes. An external agent
moves D onto B (perhaps the agent's teacher getting impatient), and the world is now in the state
shown in Figure 13.10(b). Now Clear(B) and On(D,G) are no longer true in the initial state,
which is updated from the new percept. The causal links that were supplying the preconditions
Clear(B) and On(D, G) for the Move(D, B) action become invalid, and must be removed from the
plan. The new plan is shown in Figure 13.12. Notice that two of the preconditions for Move(D, B)



I Section 13.3. Fully Integrated Planning and Execution 405

Figure 13.11 The initial plan constructed by the situated planning agent. The plan is indistin-
guishable, so far, from that produced by a normal partial-order planner.

Figure 13.12 After someone else moves D onto B, the unsupported links protecting Clear(B)
and On(D, G) are dropped, producing this plan.

are now open, and the precondition On(D,y} is now uninstantiated because there is no reason to
assume the move will be from G any more.

Now the agent can take advantage of the "helpful" interference by noticing that the causal
link protecting On(D, B) and supplied by Move(D, B) can be replaced by a direct link from START.

EXTENDING This process is called extending a causal link, and is done whenever a condition can be supplied
by an earlier step instead of a later one without causing a new threat.

Once the old link from Move(D, B) is removed, the step no longer supplies any causal links
REDUNDANT STEP at all. It is now a redundant step. All redundant steps are dropped from the plan, along with

any links supplying them. This gives us the plan shown in Figure 13.13.

Figure 13.13 The link supplied by Move(D,B) has been replaced by one from START, and the
now-redundant step Move(D, B) has been dropped.

Now the step Move(C, D) is ready to be executed, because all of its preconditions are
satisfied by the START step, no other steps are necessarily before it, and it does not threaten any
other link in the plan. The step is removed from the plan and executed. Unfortunately, the agent
is clumsy and drops C onto A instead of D, giving the state shown in Figure 13.10(c). The new



406 Chapter 13. Planning and Acting

plan state is shown in Figure 13.14. Notice that although there are now no actions in the plan,
there is still an open condition for the FINISH step.

Start

Ontable(A)
On(B.E)

I On(C,A)
OnfD.B) —
Clear(F)
Clear(C)
Clear(D)
Clear(G)

OnfC.D) Finish

Figure 13.14 After Move(C,D) is executed and removed from the plan, the effects of the
START step reflect the fact that C ended up on A instead of the intended D. The goal precondition
On(C, D) is still open.

The agent now does the same planning operations as a normal planner, adding a new
step to satisfy the open condition. Once again, Move(C,D) will satisfy the goal condition. Its
preconditions are satisfied in turn by new causal links from the START step. The new plan appears
in Figure 13.15.

Start

Ontable(A)
On(B,E)

I' On(C,A)
On(D.B)
Clear(F)
Clear(C)
Clear(D)
Clear(G)

On(C,A)
Clear(C)
Clear(D) Move(C.D)

OnfC.D) Finish-OnfD.B) rmisn

Figure 13.15 The open condition is resolved by adding Move(C,D) back in. Notice the new
bindings for the preconditions.

Once again, Move(C,D) is ready for execution. This time it works, resulting in the goal
state shown in Figure 13.10(d). Once the step is dropped from the plan, the goal condition
On(C, D) becomes open again. Because the START step is updated to reflect the new world state,
however, the goal condition can be satisfied immediately by a link from the START step. This
is the normal course of events when an action is successful. The final plan state is shown in
Figure 13.16. Because all the goal conditions are satisfied by the START step and there are no
remaining actions, the agent resets the plan and looks for something else to do.

The complete agent design is shown in Figure 13.17 in much the same form as used for
POP and CPOP, although we abbreviate the part in common (resolving standard flaws). One
significant structural difference is that planning and acting are the same "loop" as implemented by
the coupling between agent and environment. After each plan modification, an action is returned
(even if it is a NoOp) and the world model is updated from the new percept. We assume that each
action finishes executing before the next percept arrives. To allow for extended execution with a .
completion signal, an executed action must remain in the plan until it is completed.



Section 13.4. Discussion and Extensions 407

Start

Ontable(A)
On(B,E)
On(C.D) —
On(D.B) —
Clear(F)
Clear(C)
Clear(A)
Clear(G)

^On(C.D)
-On(D,B) Finish

Figure 13.16 After Move(C,D) is executed and dropped from the plan, the remaining open
condition On(C,D) is resolved by adding a causal link from the new START step. The plan is now
completed.

13.4 DISCUSSION AND EXTENSIONS

We have arrived at an agent design that addresses many of the issues arising in real domains:
• The agent can use explicit domain descriptions and goals to control its behavior.
• By using partial-order planning, it can take advantage of problem decomposition to deal

with complex domains without necessarily suffering exponential complexity.
• By using the techniques described in Chapter 12, it can handle domains involving condi-

tional effects, universally quantified effects, object creation and deletion, and ramifications.
It can also use "canned plans" to achieve subgoals.

• It can deal with errors in its domain description, and, by incorporating conditional planning,
it can plan to obtain information when more is needed.

• It can deal with a dynamically changing world by incrementally fixing its plan as it detects
errors and unfulfilled preconditions.

Clearly, this is progress. It is, however, a good idea to examine each advance in capabilities and
try to see where it breaks down.

Comparing conditional planning and replanning
Looking at conditional planning, we see that almost all actions in the real world have a variety of
possible outcomes besides the expected outcome. The number of possible conditions that must
be planned for grows exponentially with the number of steps in the plan. Given that only one set
of conditions will actually occur, this seems rather wasteful as well as impractical. Many of the
events being planned for have only an infinitesimal chance of occurring.

Looking at replanning, we see that the planner is basically assuming no action failures, and
then fixing problems as they arise during execution. This too has its drawbacks. The planner may
produce very "fragile" plans, which are very hard to fix if anything goes wrong. For example,
the entire existence of "spare tires" is a result of conditional planning rather than replanning. If
the agent does not plan for a puncture, then it will not see the need for a spare tire. Unfortunately,
without a spare tire, even the most determined replanning agent might be faced with a long walk.



408 Chapter 13. Planning and Acting

function SiTUATED-PLANNiNG-AGENT(percepf) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan, initially NoPlan
t, a counter, initially 0, indicating time
G, a goal

, MAKE-PERCEPT-SENTENCE(percep/,
current'— STATE-DESCRIPTION(A:B, f)
EFFECTS(START(P)) — current
ifp- NoPlan then

G <— ASK(A"B, MAKE-GOAL-QUERY(f))
p «- MAKE-PLAN(«/rrenf, G, KB)

action <— NoOp (the default)

if there are no open preconditions and p has no steps other than START and FTNISH then
p <— NoPlan and skip remaining steps

Resolving standard flaws:
resolve any open condition by adding a causal link from any existing

possibly prior step or a new step
resolve potential threats by promotion or demotion

Remove unsupported causal links:
if there is a causal link START c

 ; S protecting a proposition c
that no longer holds in START then

remove the link and any associated bindings

Extend causal links back to earliest possible step:
if there is a causal link 5, _ ̂  S/, such that

another step 5, exists with 5, < S, and the link 5, '' , SA is safe then
replace 5) _L, Sk with S, _1+ S*

Remove redundant actions:
remove any step S that supplies no causal links

Execute actions when ready for execution:
if a step S in the plan other than FINISH satisfies the following:

(a) all preconditions satisfied by START;
(b) no other steps necessarily between START and S; and
(c) S does not threaten any causal link in p then

add ordering constraints to force all other steps after S
remove S from p, and all causal links to and from S
action <— the action in 5

TELL(/fB, MAKE-ACTION-SENTENCE(acft'on, ?))
t — t+ 1
return action

Figure 13.17 A situated planning agent.



Section 13.4. Discussion and Extensions 409

Conditional planning and replanning are really two extremes of a continuous spectrum.
One way to construct intermediate systems is to specify disjunctive outcomes for actions where
more than one outcome is reasonably likely. Then the agent can insert a sensing action to see
which outcome occurred and construct a conditional plan accordingly. Other contingencies are
dealt with by replanning. Although this approach has its merits, it requires the agent designer
to decide which outcomes need tb be considered. This also means that the decision must be
made once for each action schema, rather than depending on the particular context of the action.
In the case of the provision of spare tires, for example, it is clear that the decision as to which
contingencies to plan for depends not just on the likelihood of occurrence—after all, punctures are
quite rare—but also on the cost of an action failure. An unlikely condition needs to be taken into
account if it would result in catastrophe (e.g., a puncture when driving across a remote desert).
Even if a conditional plan can be constructed, it might be better to plan around the suspect action
altogether (e.g., by bringing two spare tires or crossing the desert by camel).

What all this suggests is that when faced with a complex domain and incomplete and
incorrect information, the agent needs a way to assess the likelihoods and costs of various
outcomes. Given this information, it should construct a plan that maximizes the probability of
success and minimizes costs, while ignoring contingencies that are unlikely or are easy to deal
with. Part V of this book deals with these issues in depth.

Coercion and abstraction

Although incomplete and incorrect information is the normal situation in real domains, there are
techniques that still allow an agent to make quite complex, long-range plans without requiring
the full apparatus of reasoning about likelihoods.

COERCION The first method an agent can apply is coercion, which reduces uncertainty about the world
by forcing it into a known state regardless of the initial state. A simple example is provided by
the table-painting problem. Suppose that some aspects of the world are permanently inaccessible
to the agent's senses—for example, it may have only a black and white camera. In this case, the
agent can pick up a can of paint and paint both the chair and the table from the same can. This
achieves the goal and reduces uncertainty. Furthermore, if the agent can read the label on the
can, it will even know the color of the chair and table.

A second technique is abstraction. Although we have discussed abstraction as a tool for
handling complexity (see Chapter 12), it also allows the agent to ignore details of a problem about
which it may not have exact and complete knowledge. For example, if the agent is currently in
London and plans to spend a week in Paris, it has a choice as to whether to plan the trip at an
abstract level (fly out on Sunday, return the following Saturday) or a detailed level (take flight B A
216 and then taxi number 13471 via the Boulevard Peripherique). At the abstract level, the agent
has actions such as Fly(London, Paris) that are reasonably certain to work. Even with delays,
oversold flights, and so on, the agent will still get to Paris. At the detailed level, there is missing
information (flight schedules, which taxi will turn up, Paris traffic conditions) and the possibility
of unexpected situations developing that would lead to a particular flight being missed.

AGGREGATION Aggregation is another useful form of abstraction for dealing with large numbers of
objects. For example, in planning its cash flows, the U.S. Government assumes a certain number



410 Chapter 13. Planning and Acting

of taxpayers will send in their tax returns by any given date. At the level of individual taxpayers,
there is almost complete uncertainty, but at the aggregate level, the system is reliable. Similarly,
in trying to pour water from one bottle into another using a funnel, it would be hopeless to plan
the path of each water molecule because of uncertainty as well as complexity, yet the pouring as
an aggregated action is very reliable.

The discussion of abstraction leads naturally to the issue of the connection between plans
and physical actions. Our agent designs have assumed that the actions returned by the planner
(which are concrete instances of the actions described in the knowledge base) are directly
executable in the environment. A more sophisticated design might allow planning at a higher
level of abstraction and incorporate a "motor subsystem" that can take an action from the plan and
generate a sequence of primitive actions to be carried out. The subsystem might, for example,
generate a speech signal from an utterance description returned by the planner; or it might
generate stepper-motor commands to turn the wheels of a robot to carry out a "move" action in a
motion plan. We discuss the connection between planning and motor programs in more detail in
Chapter 25. Note that the subsystem might itself be a planner of some sort; its goal is to find a
sequence of lower-level actions that achieve the effects of the higher-level action specified in the
plan. In any case, the actions generated by the higher-level planner must be capable of execution
independently of each other, because the lower-level motor system cannot allow for interactions
or interleavings among the subplans that implement different actions.

13.5 SUMMARY

The world is not a tidy place. When the unexpected or unknown occurs, an agent needs to do
something to get back on track. This chapter shows how conditional planning and replanning
can help an agent recover.

• Standard planning algorithms assume complete and correct information. Many domains
violate this assumption.

• Incomplete information can be dealt with using sensing actions to obtain the information
needed. Conditional plans include different subplans in different contexts, depending on
the information obtained.

• Incorrect information results in unsatisfied preconditions for actions and plans. Execution
monitoring detects violations of the preconditions for successful completion of the plan.
Action monitoring detects actions that fail.

• A simple replanning agent uses execution monitoring and splices in subplans as needed.
• A more comprehensive approach to plan execution involves incremental modifications to

the plan, including execution of steps, as conditions in the environment evolve.
• Abstraction and coercion can overcome the uncertainty inherent in most real domains.



Section 13.5. Summary 411

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Early planners, which lacked conditionals and loops, sometimes resorted to a coercive style in
response to environmental uncertainty. Sacerdoti's NOAH used coercion in its solution to the
"keys and boxes" problem, a planning challenge problem in which the planner knows little about
the initial state. Mason (1993) argued that sensing often can and should be dispensed with in
robotic planning, and describes a sensorless plan that can move a tool into a specific position on
a table by a sequence of tilting actions regardless of the initial position.

WARPLAN-C (Warren, 1976), a variant of WARPLAN, was one of the earliest planners to use
conditional actions. Olawski and Gini (1990) lay out the major issues involved in conditional
planning. Recent systems for partial-order conditional planning include UWL (Etzioni et ai,
1992) and CNLP (Peot and Smith, 1992), on which CPOP is based). C-BuRiDAN (Draper et al.,
1994) handles conditional planning for actions with probabilistic outcomes, thereby connecting
to the work on Markov decision problems described in Chapter 17.

There is a close relation between conditional planning and automated program synthesis,
for which there are a number of references in Chapter 10. The two fields have usually been
pursued separately because of the enormous difference in typical cost between execution of
machine instructions and execution of actions by robot vehicles or manipulators. Linden (1991)
attempts explicit cross-fertilization between the two fields.

The earliest major treatment of execution monitoring was PLANEX (Fikes et al., 1972),
which worked with the STRIPS planner to control the robot Shakey. PLANEX used triangle tables
to allow recovery from partial execution failure without complete replanning. Shakey's model of
execution is discussed further in Chapter 25. The NASL planner (McDermott, 1978a) treated a
planning problem simply as a specification for carrying out a complex action, so that execution
and planning were completely unified. It used theorem proving to reason about these complex
actions. IPEM (Integrated Planning, Execution, and Monitoring) (Ambros-Ingerson and Steel,
1988), which was the first system to smoothly integrate partial-order planning and planning
execution, forms the basis for the discussion in this chapter.

A system that contains an explicitly represented agent function, whether implemented as
a table or a set of condition-action rules, need not worry about unexpected developments in the
environment. All it has to do is to execute whatever action its function recommends for the
state in which it finds itself (or in the case of inaccessible environments, the percept sequence to

REACTIVE PLANNING date). The field of reactive planning aims to take advantage of this fact, thereby avoiding the
complexities of planning in dynamic, inaccessible environments. "Universal plans" (Schoppers,
1987) were developed as a scheme for reactive planning, but turned out to be a rediscovery of
the idea of policies in Markov decision processes. Brooks's (1986) subsumption architecture
(also discussed in Chapter 25) uses a layered finite state machine to represent the agent function,
and stresses the use of minimal internal state. Another important manifestation of the reactive
planning paradigm is Pengi (Agre and Chapman, 1987), designed as a response to the criticism
of classical AI planning in Chapman (1987). Ginsberg (1989) made a spirited attack on reactive
planning, including intractability results for some formulations of the reactive planning problem.
For an equally spirited response, see Schoppers (1989).



412 Chapter 13. Planning and Acting

EXERCISES

13.1 Consider how one might use a planning system to play chess.
a. Write action schemata for legal moves. Make sure to include in the state description some

way to indicate whose move it is. Will basic STRIPS actions suffice?
b. Explain how the opponent's moves can be handled by conditional steps.
c. Explain how the planner would represent and achieve the goal of winning the game.
d. How might we use the planner to do a finite-horizon lookahead and pick the best move,

rather than planning for outright victory?
e. How would a replanning approach to chess work? What might be an appropriate way to

combine conditional planning and replanning for chess?

13.2 Discuss the application of conditional planning and replanning techniques to the vacuum
world and wumpus world.

13.3 Represent the actions for the flat-tire domain in the appropriate format, formulate the
initial and goal state descriptions, and use the POP algorithm to solve the problem.

13.4 This exercise involves the use of POP to actually fix a flat tire (in simulation).
a. Build an environment simulator for the flat-tire world. Your simulator should be able to

update the state of the environment according to the actions taken by the agent. The easiest
way to do this is to take the postconditions directly from the operator descriptions and use
TELL and RETRACT to update a logical knowledge base representing the world state.

b. Implement a planning agent for your environment, and show that it fixes the tire.

13.5 In this exercise, we will add nondeterminism to the environment from Exercise 13.4.
a. Modify your environment so that with probability 0.1, an action fails—that is, one of the

effects does not occur. Show an example of a plan not working because of an action failure.
b. Modify your planning agent to include a simple replanning capability. It should call POP

to construct a repair plan to get back to the desired state along the solution path, execute
the repair plan (calling itself recursively, of course, if the repair plan fails), and then
continue executing the original plan from there. (You may wish to start by having failed
actions do nothing at all, so that this recursive repair method automatically results in a
"loop-until-success" behavior; this will probably be easier to debug!)

c. Show that your agent can fix the tire in this new environment.

13.6 Softbots construct and execute plans in software environments. One typical task for
softbots is to find copies of technical reports that have been published at some other institution.
Suppose that the softbot is given the task "Get me the most recent report by X on topic Y.
Relevant actions include logging on to a library information system and issuing queries, using
an Internet directory to find X's institution, sending email to X; connecting to X's institution
by ftp, and so on. Write down formal representations for a representative set of actions, and
discuss what sort of planning and execution algorithms would be needed.



PartV
UNCERTAIN KNOWLEDGE AND

REASONING

Parts III and IV covered the logical agent approach to AI. We used first-order
logic as the language to represent facts, and we showed how standard inference
procedures and planning algorithms can derive new beliefs and hence identify
desirable actions. In Part V, we reexamine the very foundation of the logical
approach, describing how it must be changed to deal with the often unavoidable
problem of uncertain information. Probability theory provides the basis for our
treatment of systems that reason under uncertainty. Also, because actions are
no longer certain to achieve goals, agents will need ways of weighing up the
desirability of goals and the likelihood of achieving them. For this, we use utility
theory. Probability theory and utility theory together constitute decision theory,
which allows us to build rational agents for uncertain worlds.

Chapter 14 covers the basics of probability theory, including the repre-
sentation language for uncertain beliefs. Belief networks, a powerful tool for
representing and reasoning with uncertain knowledge, are described in detail
in Chapter 15, along with several other formalisms for handling uncertainty.
Chapter 16 develops utility theory and decision theory in some depth. Finally,
Chapter 17 describes the full decision-theoretic agent design for uncertain envi-
ronments, thereby generalizing the planning methods of Part IV.



14 UNCERTAINTY

In which we see what an agent should do when not all is crystal clear.

14.1 ACTING UNDER UNCERTAINTY

• ,44: One problem with first-order logic, and thus with the logical-agent approach, is that agents
'**•" almost never have access to the whole truth about their environment. Some sentences can

be ascertained directly from the agent's percepts, and others can be inferred from current and
previous percepts together with knowledge about the properties of the environment. In almost
every case, however, even in worlds as simple as the wumpus world in Chapter 6, there will
be important questions to which the agent cannot find a categorical answer. The agent must

UNCERTAINTY therefore act under uncertainty. For example, a wumpus agent often will find itself unable to
discover which of two squares contains a pit. If those squares are en route to the gold, then the
agent might have to take a chance and enter one of the two squares.

Uncertainty can also arise because of incompleteness and incorrectness in the agent's
understanding of the properties of the environment. The qualification problem, mentioned in
Chapter 7, says that many rules about the domain will be incomplete, because there are too
many conditions to be explicitly enumerated, or because some of the conditions are unknown.
Suppose, for example, that the agent wants to drive someone to the airport to catch a flight, and
is considering a plan A90 that involves leaving home 90 minutes before the flight departs and
driving at a reasonable speed. Even though the airport is only about 15 miles away, the agent will
not be able to reach a definite conclusion such as "Plan Ago will get us to the airport in time," but
rather only the weaker conclusion "Plan Ayo will get us to the airport in time, as long as my car
doesn't break down or run out of gas, and I don't get into an accident, and there are no accidents
on the bridge, and the plane doesn't leave early, and there's no earthquake, . . . ."' A logical
1 Conditional planning can overcome uncertainty to some extent, but only if the agent's sensing actions can obtain the
required information, and if there are not too many different contingencies.



416 Chapter 14. Uncertainty

agent therefore will not believe that plan A9o will necessarily achieve the goal, and that makes it
difficult for the logical agent to conclude that plan A90 is the right thing to do.

Nonetheless, let us suppose that A90 is in fact the right thing to do. What do we mean by
saying this? As we discussed in Chapter 2, we mean that out of all the possible plans that could be
executed, Ago is expected to maximize the agent's performance measure, given the information it
has about the environment. The performance measure includes getting to the airport in time for
the flight, avoiding a long, unproductive wait at the airport, and avoiding speeding tickets along
the way. The information the agent has cannot guarantee any of these outcomes for A90, but it
can provide some degree of belief that they will be achieved. Other plans, such as A no, might
increase the agent's belief that it will get to the airport on time, but also increase the likelihood of
a long wait. The right thing to do, the rational decision, therefore, depends on both the relative
importance of various goals and the likelihood that, and degree to which, they will be achieved.
The remainder of this section sharpens up these ideas, in preparation for the development of
the general theories of uncertain reasoning and rational decisions that we present in this and
subsequent chapters.

LAZINESS

THEORETICAL
IGNORANCE

Handling uncertain knowledge
In this section, we look more closely at the nature of uncertain knowledge. We will use a
simple diagnosis example to illustrate the concepts involved. Diagnosis—whether for medicine,
automobile repair, or whatever—is a task that almost always involves uncertainty. If we tried to
build a dental diagnosis system using first-order logic, we might propose rules such as

V p Symptom(p, Toothache} => Disease(p, Cavity)

The problem is that this rule is wrong. Not all patients with toothaches have cavities; some of
them may have gum disease, or impacted wisdom teeth, or one of several other problems:

V p Symptom(p, Toothache) =>
Disease(p, Cavity) V Disease(p, GumDisease) V Disease(p, ImpactedWisdom)...

Unfortunately, in order to make the rule true, we have to add an almost unlimited list of possible
causes. We could try turning the rule into a causal rule:

V/? Disease(p, Cavity) => Symptom(p, Toothache)

But this rule is not right either; not all cavities cause pain. The only way to fix the rule is to
make it logically exhaustive: to extend the left-hand side to cover all possible reasons why a
cavity might or might not cause a toothache. Even then, for the purposes of diagnosis, one must
also take into account the possibility that the patient may have a toothache and a cavity that are
unconnected.

Trying to use first-order logic to cope with a domain like medical diagnosis thus fails for
three main reasons:

<> Laziness: It is too much work to list the complete set of antecedents or consequents needed
to ensure an exceptionless rule, and too hard to use the enormous rules that result.

0 Theoretical ignorance: Medical science has no complete theory for the domain.



Section 14.1. Acting under Uncertainty 417

DEGREE OF BELIEF
PROBABILITY
THEORY

EVIDENCE

<C> Practical ignorance: Even if we know all the rules, we may be uncertain about a particular
patient because all the necessary tests have not or cannot be run.

The connection between toothaches and cavities is just not a logical consequence in either
direction. This is typical of the medical domain, as well as most other judgmental domains: law,
business, design, automobile repair, gardening, dating, and so on. The agent's knowledge can at
best provide only a degree of belief in the relevant sentences. Our main tool for dealing with
degrees of belief will be probability theory, which assigns a numerical degree of belief between
0 and 1 to sentences.2

Probability provides a way of summarizing the uncertainty that comes from our laziness
and ignorance. We may not know for sure what afflicts a particular patient, but we believe that
there is, say, an 80% chance—that is, a probability of 0.8—that the patient has a cavity if he or she
has a toothache. This probability could be derived from statistical data—80% of the toothache
patients seen so far have had cavities—or from some general rules, or from a combination of
evidence sources. The 80% summarizes those cases in which all the factors needed for a cavity to
cause a toothache are present, as well as other cases in which the patient has both toothache and
cavity but the two are unconnected. The missing 20% summarizes all the other possible causes
of toothache that we are too lazy or ignorant to confirm or deny.

A probability of 0 for a given sentence corresponds to an unequivocal belief that the
sentence is false, while a probability of 1 corresponds to an unequivocal belief that the sentence is
true. Probabilities between 0 and 1 correspond to intermediate degrees of belief in the truth of the
sentence. The sentence itself is in fact either true or false. It is important to note that a degree of
belief is different from a degree of truth. A probability of 0.8 does not mean "80% true" but rather
an 80% degree of belief—that is, a fairly strong expectation. If an agent assigns a probability of
0.8 to a sentence, then the agent expects that in 80% of cases that are indistinguishable from the
current situation as far as the agent's knowledge goes, the sentence will turn out to be actually
true. Thus, probability theory makes the same ontological commitment as logic, namely, that
facts either do or do not hold in the world. Degree of truth, as opposed to degree of belief, is the
subject of fuzzy logic, which is covered in Section 15.6.

Before we plunge into the details of probability, let us pause to consider the status of prob-
ability statements such as "The probability that the patient has a cavity is 0.8." In propositional
and first-order logic, a sentence is true or false depending on the interpretation and the world; it
is true just when the fact it refers to is the case. Probability statements do not have quite the same
kind of semantics.3 This is because the probability that an agent assigns to a proposition depends
on the percepts that it has received to date. In discussing uncertain reasoning, we call this the
evidence. For example, suppose that the agent has drawn a card from a shuffled pack. Before
looking at the card, the agent might assign a probability of 1/52 to its being the ace of spades.
After looking at the card, an appropriate probability for the same proposition would be 0 or 1.
Thus, an assignment of probability to a proposition is analogous to saying whether or not a given
logical sentence (or its negation) is entailed by the knowledge base, rather than whether or not it

2 Until recently, it was thought that probability theory was too unwieldy for general use in AI, and many approximations
and alternatives to probability theory were proposed. Some of these will be covered in Section 15.6.
3 The objectivist view of probability, however, claims that probability statements are true or false in the same way as
logical sentences. In Section 14.5, we discuss this claim further.



418 Chapter 14. Uncertainty

is true. Just as entailment status can change when more sentences are added to the knowledge
base, probabilities can change when more evidence is acquired.4

All probability statements must therefore indicate the evidence with respect to which the
probability is being assessed. As the agent receives new percepts, its probability assessments
are updated to reflect the new evidence. Before the evidence is obtained, we talk about prior or
unconditional probability; after the evidence is obtained, we talk about posterior or conditional
probability. In most cases, an agent will have some evidence from its percepts, and will be
interested in computing the conditional probabilities of the outcomes it cares about given the
evidence it has. In some cases, it will also need to compute conditional probabilities with respect
to the evidence it has plus the evidence it expects to obtain during the course of executing some
sequence of actions.

PREFERENCES

UTILITY THEORY

Uncertainty and rational decisions
The presence of uncertainty changes radically the way in which an agent makes decisions. A
logical agent typically has a single (possibly conjunctive) goal, and executes any plan that is
guaranteed to achieve it. An action can be selected or rejected on the basis of whether or not it
achieves the goal, regardless of what other actions achieve. When uncertainty enters the picture,
this is no longer the case. Consider again the Ago plan for getting to the airport. Suppose it has a
95% chance of succeeding. Does this mean it is a rational choice? Obviously, the answer is "Not
necessarily." There might be other plans, such as A120, with higher probabilities of success. If it
is vital not to miss the flight, then it might be worth risking the longer wait at the airport. What
about A1440, a plan that involves leaving home 24 hours in advance? In most circumstances, this
is not a good choice, because although it almost guarantees getting there on time, it involves an
intolerable wait.

To make such choices, an agent must first have preferences between the different possible
outcomes of the various plans. A particular outcome is a completely specified state, including
such factors as whether or not the agent arrives in time, and the length of the wait at the airport.
We will be using utility theory to represent and reason with preferences. The term utility is
used here in the sense of "the quality of being useful," not in the sense of the electric company
or water works. Utility theory says that every state has a degree of usefulness, or utility, to an
agent, and that the agent will prefer states with higher utility.

The utility of a state is relative to the agent whose preferences the utility function is supposed
to represent. For example, the payoff functions for games in Chapter 5 are utility functions. The
utility of a state in which White has won a game of chess is obviously high for the agent playing
White, but low for the agent playing Black. Or again, some players (including the authors) might
be happy with a draw against the world champion, whereas other players (including the former
world champion) might not. There is no accounting for taste or preferences: you might think
that an agent who prefers jalapefio-bubble-gum ice cream to chocolate-chocolate-chip is odd or
even misguided, but you could not say the agent is irrational.

4 This is quite different from a sentence becoming true or false as the world changes. Handling a changing world
using probabilities requires the same kinds of mechanisms—situations, intervals and events—as we used in Chapter o
for logical representations.



Section 14.1. Acting under Uncertainty 419

It is also interesting that utility theory allows for altruism. It is perfectly consistent for
an agent to assign high utility to a state where the agent itself suffers a concrete loss but others
profit. Here, "concrete loss" must denote a reduction in "personal welfare" of the kind normally
associated with altruism or selfishness—wealth, prestige, comfort, and so on—rather than a loss
of utility per se. Therefore, utility theory is necessarily "selfish" only if one equates a preference
for the welfare of others with selfishness; conversely, altruism is only inconsistent with the
principle of utility maximization if one's goals do not include the welfare of others.

Preferences, as expressed by utilities, are combined with probabilities in the general theory
DECISION THEORY of rational decisions called decision theory:

Decision theory = probability theory + utility theory

The fundamental idea of decision theory is that an agent is rational if and only if it chooses
\ t: the action that yields the highest expected utility, averaged over all the possible outcomes of

the action. This is called the principle of Maximum Expected Utility (MEU). Probabilities
and utilities are therefore combined in the evaluation of an action by weighting the utility of a
particular outcome by the probability that it occurs. We saw this principle in action in Chapter 5,
where we examined optimal decisions in backgammon. We will see that it is in fact a completely
general principle.

Design for a decision-theoretic agent
The structure of an agent that uses decision theory to select actions is identical, at an abstract
level, to that of the logical agent described in Chapter 6. Figure 14.1 shows what needs to be
done. In this chapter and the next, we will concentrate on the task of computing probabilities for
current states and for the various possible outcomes of actions. Chapter 16 covers utility theory
in more depth, and Chapter 17 fleshes out the complete agent architecture.

function DT-AGENT('percept) returns an action
static: a set probabilistic beliefs about the state of the world

calculate updated probabilities for current state based on
available evidence including current percept and previous action

calculate outcome probabilities for actions,
given action descriptions and probabilities of current states

select action with highest expected utility
given probabilities of outcomes and utility information

return action

Figure 14.1 A decision-theoretic agent that selects rational actions. The steps will be fleshed
out in the next four chapters.



420 Chapter 14. Uncertainty

14.2 BASIC PROBABILITY NOTATION

Now that we have set up the general framework for a rational agent, we will need a formal language
for representing and reasoning with uncertain knowledge. Any notation for describing degrees of
belief must be able to deal with two main issues: the nature of the sentences to which degrees of
belief are assigned, and the dependence of the degree of belief on the agent's state of knowledge.
The version of probability theory we present uses an extension of propositional logic for its
sentences. The dependence on experience is reflected in the syntactic distinction between prior
probability statements, which apply before any evidence is obtained, and conditional probability
statements, which include the evidence explicitly.

UNCONDITIONAL

PRIOR PROBABILITY

RANDOM VARIABLES

DOMAIN

Prior probability
We will use the notation P(A) for the unconditional or prior probability that the proposition A
is true. For example, if Cavity denotes the proposition that a particular patient has a cavity,

P(Cavity) = O.I

means that in the absence of any other information, the agent will assign a probability of 0.1
(a 10% chance) to the event of the patient's having a cavity. It is important to remember that
P(A) can only be used when there is no other information. As soon as some new information
B is known, we have to reason with the conditional probability of A given B instead of P(A).
Conditional probabilities are covered in the next section.

The proposition that is the subject of a probability statement can be represented by a
proposition symbol, as in the P(A) example. Propositions can also include equalities involving
so-called random variables. For example, if we are concerned about the random variable
Weather, we might have

P( Weather = Sunny) = 0.7
P(Weather = Rain) = 0.2
P(Weather= Cloudy) = 0.08
P(Weather = Snow) = 0.02

Each random variable X has a domain of possible values (x\,...,xn) that it can take on.5 We will
usually deal with discrete sets of values, although continuous random variables will be discussed
briefly in Chapter 15. We can view proposition symbols as random variables as well, if we
assume that they have a domain [true,false). Thus, the expression P(Cavity) can be viewed as
shorthand for P(Cavity = true). Similarly, P(->Cavity) is shorthand for P(Cavity =false). Usually,
we will use the letters A, B, and so on for Boolean random variables, and the letters X, Y, and so
on for multivalued variables.

Sometimes, we will want to talk about the probabilities of all the possible values of a
random variable. In this case, we will use an expression such as P(Weather), which denotes a
5 In probability, the variables are capitalized, while the values are lowercase. This is unfortunately the reverse of logical
notation, but it is the tradition.



Section 14.2. Basic Probability Notation 421

PROBABILITY
DISTRIBUTION

vector of values for the probabilities of each individual state of the weather. Given the preceding
values, for example, we would write

P(Weather) = (0.7,0.2,0.08,0.02)
This statement defines a probability distribution for the random variable Weather.

We will also use expressions' such as P(Weather, Cavity) to denote the probabilities of all
combinations of the values of a set of random variables. In this case, P(Weather, Cavity) denotes
a 4 x 2 table of probabilities. We will see that this notation simplifies many equations.

We can also use logical connectives to make more complex sentences and assign probabil-
ities to them. For example,

P(Cavity A -^Insured) - 0.06
says there is an 6% chance that a patient has a cavity and has no insurance.

CONDITIONAL

POSTERIOR

PRODUCT RULE

Conditional probability
Once the agent has obtained some evidence concerning the previously unknown propositions
making up the domain, prior probabilities are no longer applicable. Instead, we use conditional
or posterior probabilities, with the notation P(A\B). This is read as "the probability of A given
that all we know is B." For example,

P(Cavity\Toothache) - 0.8
indicates that if a patient is observed to have a toothache, and no other information is yet available,
then the probability of the patient having a cavity will be 0.8. It is important to remember that
P(A\B) can only be used when all we know is B. As soon as we know C, then we must compute
P(A\B A C) instead of P(A\B). A prior probability P(A) can be thought of as a special case of
conditional probability P(A\), where the probability is conditioned on no evidence.

We can also use the P notation with conditional probabilities. P(X\ Y) is a two-dimensional
table giving the values of P(X=x,\Y = yj) for each possible /, j. Conditional probabilities can be
defined in terms of unconditional probabilities. The equation

P(A A B)
P(A\B) =

P(B)
(14.1)

holds whenever P(B) > 0. This equation can also be written as
P(A A B) = P(A\B}P(B)

which is called the product rule. The product rule is perhaps easier to remember: it comes from
the fact that for A and B to be true, we need B to be true, and then A to be true given B. We can
also have it the other way around:

P(A /\B) = P(B\A)P(A)
In some cases, it is easier to reason in terms of prior probabilities of conjunctions, but for the
most part, we will use conditional probabilities as our vehicle for probabilistic inference.

We can also extend our P notation to handle equations like these, providing a welcome
degree of conciseness. For example, we might write

P(X,Y) = P(X\Y)P(Y)



422 Chapter 14. Uncertainty

which denotes a set of equations relating the corresponding individual entries in the tables (not a
matrix multiplication of the tables). Thus, one of the equations might be

In general, if we are interested in the probability of a proposition A, and we have accu-
mulated evidence B, then the quantity we must calculate is P(A\B). Sometimes we will not
have this conditional probability available directly in the knowledge base, and we must resort to
probabilistic inference, which we describe in later sections.

As we have already said, probabilistic inference does not work like logical inference. It
is tempting to interpret the statement P(A\B) - 0.8 to mean "whenever B is true, conclude that
P(A) is 0.8." This is wrong on two counts: first, P(A) always denotes the prior probability of
A, not the posterior given some evidence; second, the statement P(A\B) = 0.8 is only applicable
when B is the only available evidence. When additional information C is available, we must
calculate P(A\B A C), which may bear little relation to P(A\B). In the extreme case, C might
tell us directly whether A is true or false. If we examine a patient who complains of toothache,
and discover a cavity, then we have additional evidence Cavity, and we conclude (trivially) that
P(Cavity\Toothache A Cavity) = 1 .0.

14.3 THE AXIOMS OF PROBABILITY

In order to define properly the semantics of statements in probability theory, we will need to
describe how probabilities and logical connectives interact. We take as given the properties of
the connectives themselves, as defined in Chapter 6. As for probabilities, it is normal to use a
small set of axioms that constrain the probability assignments that an agent can make to a set of
propositions. The following axioms are in fact sufficient:

1. All probabilities are between 0 and 1.
0 < P(A) < 1

2. Necessarily true (i.e., valid) propositions have probability 1, and necessarily false (i.e.,
unsatisfiable) propositions have probability 0.

P(True) = 1 P(False) = 0
3. The probability of a disjunction is given by

P(A V 5) = P(A) + P(B) - P(A A B)

The first two axioms serve to define the probability scale. The third is best remembered by
reference to the Venn diagram shown in Figure 14.2. The figure depicts each proposition as a
set, which can be thought of as the set of all possible worlds in which the proposition is true. The
total probability of A V B is seen to be the sum of the probabilities assigned to A and B, but with
P(A A B) subtracted out so that those cases are not counted twice.

From these three axioms, we can derive all other properties of probabilities. For example,
if we let B be -iA in the last axiom, we obtain an expression for the probability of the negation of



Section 14.3. The Axioms of Probability 423

True

A A /\ B

™

B

|

P

Figure 14.2 A Venn diagram showing the propositions A, B, A V B (the union of A and B), and
A A B (the intersection of A and B) as sets of possible worlds.

a proposition in terms of the probability of the proposition itself:

P(AV-.A) = P(A) + P(-.A) - P(A A --A) (by 3 with B = -.A)
P(True} = P(A) + P(-Vl) - P(False) (by logical equivalence)

1 = P(A) + P(-.A) (by 2)
P(-Vl) = 1 - P(A) (by algebra)

Why the axioms of probability are reasonable
The axioms of probability can be seen as restricting the set of probabilistic beliefs that an agent can
hold. This is somewhat analogous to the logical case, where a logical agent cannot simultaneously
believe A, B, and -i(A A B), for example. There is, however, an additional complication. In the
logical case, the semantic definition of conjunction means that at least one of the three beliefs
just mentioned must be false in the world, so it is unreasonable for an agent to believe all three.
With probabilities, on the other hand, statements refer not to the world directly, but to the agent's
own state of knowledge. Why, then, can an agent not hold the following set of beliefs, given that
these probability assignments clearly violate the third axiom?

P(A)
P(B)

P(A A B)
P(A V B)

0.4

0.3
0.0
0.8

(14.2)

This kind of question has been the subject of decades of intense debate between those who
advocate the use of probabilities as the only legitimate form for degrees of belief, and those who
advocate alternative approaches. Here, we give one argument for the axioms of probability, first
stated in 1931 by Bruno de Finetti.



424 Chapter 14. Uncertainty

The key to de Finetti's argument is the connection between degree of belief and actions.
The idea is that if an agent has some degree of belief in a proposition, A, then the agent should
be able to state odds at which it is indifferent to a bet for or against A. Think of it as a game
between two agents: Agent 1 states "my degree of belief in event A is 0.4." Agent 2 is then free
to choose whether to bet for or against A, at stakes that are consistent with the stated degree of
belief. That is, Agent 2 could choose to bet that A will occur, betting $4 against Agent 1's $6.
Or Agent 2 could bet $6 against $4 that A will not occur.6 If an agent's degrees of belief do not
accurately reflect the world, then you would expect it would tend to lose money over the long
run, depending on the skill of the opposing agent.

But de Finetti proved something much stronger: if Agent 1 expresses a set of degrees of
belief that violate the axioms of probability theory then there is a betting strategy for Agent 2 that
guarantees that Agent 1 will lose money. So if you accept the idea that an agent should be willing
to "put its money where its probabilities are," then you should accept that it is irrational to have
beliefs that violate the axioms of probability.

One might think that this betting game is rather contrived. For example, what if one refuses
to bet? Does that scupper the whole argument? The answer is that the betting game is an abstract
model for the decision-making situation in which every agent is unavoidably involved at every
moment. Every action (including inaction) is a kind of bet, and every outcome can be seen as a
payoff of the bet. One can no more refuse to bet than one can refuse to allow time to pass.

We will not provide the proof of de Finetti's theorem (see Exercise 14.15), but we will
show an example. Suppose that Agent 1 has the set of degrees of belief from Equation (14.2). If
Agent 2 chooses to bet $4 on A, $3 on B, and $2 on -i(A V B), then Figure 14.3 shows that Agent
1 always loses money, regardless of the outcomes for A and B.

Agent
Proposition

A
B

AV B

1
Belief

0.4
0.3
0.8

Bet

A
B

->(AV

Agent 2
Stakes

4 to 6
3 to 7

B) 2 to 8

Outcome
A A B A A -.B

-6
-7
2

-11

-6
3
2
-1

for Agent 1
-.A AS -

4
-7
2
-1

Figure 14.3 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set
that guarantees a loss for Agent 1 , no matter what the outcome of A and B.

-nAA-iB

4
3
-8
-1

of bets

Other strong philosophical arguments have been put forward for the use of probabilities,
most notably those of Cox (1946) and Carnap (1950). The world being the way it is, however,
practical demonstrations sometimes speak louder than proofs. The success of reasoning systems
based on probability theory has been much more effective in making converts. We now look at
how the axioms can be deployed to make inferences.

6 One might argue that the agent's preferences for different bank balances are such that the possibility of losing $1 is
not counterbalanced by an equal possibility of winning $1. We can make the bet amounts small enough to avoid this
problem, or we can use the more sophisticated treatment due to Savage (1954) to circumvent this issue altogether.



Section 14.3. The Axioms of Probability 425

JOINT PROBABILITY
DISTRIBUTION

ATOMIC EVENT

The joint probability distribution
In this section, we define the joint probability distribution (or "joint" for short), which com-
pletely specifies an agent's probability assignments to all propositions in the domain (both simple
and complex).

A probabilistic model of a'domain consists of a set of random variables that can take on
particular values with certain probabilities. Let the variables be X\ ... Xn. An atomic event is an
assignment of particular values to all the variables—in other words, a complete specification of
the state of the domain.

The joint probability distribution P ( X ] , . . . ,Xn) assigns probabilities to all possible atomic
events. Recall that P(X,) is a one-dimensional vector of probabilities for the possible values of
the variable X,-. Then the joint is an w-dimensional table with a value in every cell giving the
probability of that specific state occurring. Here is a joint probability distribution for the trivial
medical domain consisting of the two Boolean variables Toothache and Cavity:

Cavity
^Cavity

Toothache
0.04
0.01

^Toothache
0.06
0.89

Because the atomic events are mutually exclusive, any conjunction of atomic events is necessarily
false. Because they are collectively exhaustive, their disjunction is necessarily true. Hence, from
the second and third axioms of probability, the entries in the table sum to 1. In the same way,
the joint probability distribution can be used to compute any probabilistic statement we care to
know about the domain, by expressing the statement as a disjunction of atomic events and adding
up their probabilities. Adding across a row or column gives the unconditional probability of a
variable, for example, P(Cavity) = 0.06 + 0.04 = 0.10. As another example:

P(Cavity V Toothache) = 0.04 + 0.01 + 0.06 = 0.11

Recall that we can make inferences about the probabilities of an unknown proposition
A, given evidence B, by calculating P(A\B). A query to a probabilistic reasoning system will
therefore ask for the value of a particular conditional probability. Conditional probabilities can
be found from the joint using Equation (14.1):

P(Cavity A Toothache) 0.04
P(Cavity\Toothache) = = 0.80

P(Toothache) 0.04 + 0.01
Of course, in a realistic problem, there might be hundreds or thousands of random variables

to consider, not just two. In general it is not practical to define all the 2" entries for the joint
probability distribution over « Boolean variables, but it is important to remember that if we could
define all the numbers, then we could read off any probability we were interested in.

Modern probabilistic reasoning systems sidestep the joint and work directly with condi-
tional probabilities, which are after all the values that we are interested in. In the next section,
we introduce a basic tool for this task.



426 Chapter 14. Uncertainty

14.4 BAYES' RULE AND ITS USE

Recall the two forms of the product rule:
P(Af\B)=P(A\B)P(B) *
P(A f\B)= P(B\A)P(A)

Equating the two right-hand sides and dividing by P(A), we get

w = «p (14,)
BAYES RULE This equation is known as Bayes' rule (also Bayes' law or Bayes' theorem).7 This simple

equation underlies all modern AI systems for probabilistic inference. The more general case of
multivalued variables can be written using the P notation as follows:

P(X\Y)P(Y)
P(Y\X) =

P(X)
where again this is to be taken as representing a set of equations relating corresponding elements
of the tables. We will also have occasion to use a more general version conditionalized on some
background evidence E:

P(X\Y,E)P(Y\E) (M4)

The proof of this form is left as an exercise.

Applying Bayes' rule: The simple case
On the surface, Bayes' rule does not seem very useful. It requires three terms—a conditional
probability and two unconditional probabilities—just to compute one conditional probability.

Bayes' rule is useful in practice because there are many cases where we do have good
probability estimates for these three numbers and need to compute the fourth. In a task such
as medical diagnosis, we often have conditional probabilities on causal relationships and want
to derive a diagnosis. A doctor knows that the disease meningitis causes the patient to have a
stiff neck, say, 50% of the time. The doctor also knows some unconditional facts: the prior
probability of a patient having meningitis is 1/50,000, and the prior probability of any patient
having a stiff neck is 1/20. Letting S be the proposition that the patient has a stiff neck and M be
the proposition that the patient has meningitis, we have

P(S\M) = 0.5
P(M) = 1/50000
P(S) = 1/20

P(M\S) =
P(S\M)P(M) 0.5 x 1/50000

P(S) 1/20
= 0.0002

7 According to rule 1 on page 1 of Strunk and White's The Elements of Style, it should be Bayes's rather than Bayes'.
The latter is, however, more commonly used.



ISection 14.4. Bayes' Rule and Its Use 427

That is, we expect only one in 5000 patients with a stiff neck to have meningitis. Notice that
even though a stiff neck is strongly indicated by meningitis (probability 0.5), the probability of
meningitis in the patient remains small. This is because the prior on stiff necks is much higher
than that for meningitis.

One obvious question to ask is why one might have available the conditional probability
in one direction but not the other. In the meningitis case, perhaps the doctor knows that 1 out
of 5000 patients with stiff necks has meningitis, and therefore has no need to use Bayes' rule.
Unfortunately, diagnostic knowledge is often more tenuous than causal knowledge. If there is a
sudden epidemic of meningitis, the unconditional probability of meningitis, P(M), will go up.
The doctor who derived P(M\S) from statistical observation of patients before the epidemic will
have no idea how to update the value, but the doctor who computes P(M\S) from the other three
values will see that P(M\S) should go up proportionately to P(M}. Most importantly, the causal
information P(S\M) is unaffected by the epidemic, because it simply reflects the way meningitis
works. The use of this kind of direct causal or model-based knowledge provides the crucial
robustness needed to make probabilistic systems feasible in the real world.

RELATIVE
LIKELIHOOD

Normalization
Consider again the equation for calculating the probability of meningitis given a stiff neck:

P(S\M)P(M)
P(M\S) =

P(S)
Suppose we are also concerned with the possibility that the patient is suffering from whiplash W
given a stiff neck:

P(S\W)P(W)P(W\S) =
P(S)

Comparing these two equations, we see that in order to compute the relative likelihood of
meningitis and whiplash, given a stiff neck, we need not assess the prior probability P(S) of a stiff
neck. To put numbers on the equations, suppose that P(S\W) = 0.8 and P(W) = 1/1000. Then

P(M\S) _ P(S\M)P(M) _ 0.5 x 1/50000 _ J_
P(W\S) ~ P(S\W)P(W) ~ 0.8 x 1/1000 ~ 80

That is, whiplash is 80 times more likely than meningitis, given a stiff neck.
In some cases, relative likelihood is sufficient for decision making, but when, as in this

case, the two possibilities yield radically different utilities for various treatment actions, one needs
exact values in order to make rational decisions. It is still possible to avoid direct assessment of
the prior probability of the "symptoms," by considering an exhaustive set of cases. For example,
we can write equations for M and for -iM:

P(S\M)P(M)P(M\S) =
P(S)

P(S)
Adding these two equations, and using the fact that P(M\S) + P(-^M\S) = 1, we obtain

P(S) = P(S\M)P(M) -



428 Chapter 14. Uncertainty

Substituting into the equation for P(M\S), we have

P(S\M)P(M)P(M\S) = P(S\M)P(M)

NORMALIZATION This process is called normalization, because it treats 1/P(S) as a normalizing constant that
allows the conditional terms to sum to 1. Thus, in return for assessing the conditional probability
P(S\-<M), we can avoid assessing P(S) and still obtain exact probabilities from Bayes' rule. In
the general, multivalued case, we obtain the following form for Bayes' rule:

P(Y\X) = aP(X\Y)P(Y)

where a is the normalization constant needed to make the entries in the table P(Y|X) sum to 1.
The normal way to use normalization is to calculate the unnormalized values, and then scale them
all so that they add to 1 (Exercise 14.7).

BAYESIAN UPDATING

Using Bayes' rule: Combining evidence
Suppose we have two conditional probabilities relating to cavities:

P(Cavity\Toothache) = 0.8
P(Cavity\ Catch) = 0.95

which might perhaps have been computed using Bayes' rule. What can a dentist conclude if her
nasty steel probe catches in the aching tooth of a patient? If we knew the whole joint distribution,
it would be easy to read off P(Cavity\Toothache A Catch). Alternatively, we could use Bayes'
rule to reformulate the problem:

„ , P(Toothache/\ Catch\Cavity)P(Cavity)
P(Cavity Toothache A Catch) = ————————————!——J—-————

^' P(Toothache A Catch)
For this to work, we need to know the conditional probabilities of the pair Toothache A Catch

given Cavity. Although it seems feasible to estimate conditional probabilities (given Cavity) for
n different individual variables, it is a daunting task to come up with numbers for n2 pairs of
variables. To make matters worse, a diagnosis may depend on dozens of variables, not just two.
That means we need an exponential number of probability values to complete the diagnosis—
we might as well go back to using the joint. This is what first led researchers away from
probability theory toward approximate methods for evidence combination that, while giving
incorrect answers, require fewer numbers to give any answer at all.

In many domains, however, the application of Bayes' rule can be simplified to a form
that requires fewer probabilities in order to produce a result. The first step is to take a slightly
different view of the process of incorporating multiple pieces of evidence. The process of
Bayesian updating incorporates evidence one piece at a time, modifying the previously held
belief in the unknown variable. Beginning with Toothache, we have (writing Bayes' rule in such
a way as to reveal the updating process):

P(Toothache\ Cavity)P(Cavity\Toothache) = P(Cavity)-
P(Toothache)



Section 14.4. Bayes' Rule and Its Use 429

CONDITIONAL
INDEPENDENCE

When Catch is observed, we can apply Bayes' rule with Toothache as the constant conditioning
context (see Exercise 14.5):

„._, , . P(Catch\Toothache A Cavity)
P(Cavity\Toothache A Catch) = P(Cavity\Toothache)- '

= P(Cavity)

P(Catch\Toothache)
P(Toothache\Cavity) P(Catch\Toothache A Cavity)

P(Toothache) P(Catch\Toothache)
Thus, in Bayesian updating, as each new piece of evidence is observed, the belief in the unknown
variable is multiplied by a factor that depends on the new evidence. Exercise 14.8 asks you to
prove that this process is order-independent, as we would hope.

So far we are not out of the woods, because the multiplication factor depends not just
on the new evidence, but also on the evidence already obtained.. Finding a value for the nu-
merator, P(Catch\Toothache A Cavity), is not necessarily any easier than finding a value for
P(Toothache A Catch\Cavity). We will need to make a substantive assumption in order to sim-
plify our expressions. The key observation, in the cavity case, is that the cavity is the direct cause
of both the toothache and the probe catching in the tooth. Once we know the patient has a cavity,
we do not expect the probability of the probe catching to depend on the presence of a toothache;
similarly, the probe catching is not going to change the probability that the cavity is causing a
toothache. Mathematically, these properties are written as

P(Catch\Cavity/\ Toothache) = P(Catch\Cavity)
P(Toothache\Cavity A Catch) - P(Toothache\Cavity)

These equations express the conditional independence of Toothache and Catch given Cavity.
Given conditional independence, we can simplify the equation for updating:

P(Toothache\Cavity) P(Catch\Cavity)
P(CaVity\Toothacher, Catch) = P(Cavlty) ^J^ P(Catch\Toothache}

There is still the term P(Catch\Toothache), which might seem to involve considering all pairs
(triples, etc.) of symptoms, but in fact this term goes away. Notice that the product of the
denominators is P(Catch\Toothache)P(Toothache), or P(Toothache A Catch). We can elimi-
nate this term by normalization, as before, provided we also assess P(Toothache\^Cavity) and
P(Catch\->Cavity). Thus, we are back where we were with a single piece of evidence: we just
need to evaluate the prior for the cause, and the conditional probabilities of each of its effects.

We can also use conditional independence in the multivalued case. To say thatX and Y are
independent given Z, we write

P(X\Y,Z) = P(X\Z)
which represents a set of individual conditional independence statements. The corresponding
simplification of Bayes' rule for multiple evidence is

P(Z\X, Y) = aP(Z)P(X\Z)P(Y\Z)
where a is a normalization constant such that the entries in P(Z|X, Y) sum to 1.

It is important to remember that this simplified form of Bayesian updating only works
when the conditional independence relationships hold. Conditional independence information
therefore is crucial to making probabilistic systems work effectively. In Chapter 15, we show
how it can be represented and manipulated in a systematic fashion.



430 Chapter 14. Uncertainty

14.5 WHERE Do PROBABILITIES COME FROM?

FREQUENTIST There has been endless debate over the source and status of probability numbers. The frequentist
position is that the numbers can eome only from experiments: if we test 100 people and find that
10 of them have a cavity, then we can say the probability of a cavity is approximately 0.1. A

OBJECTIVIST great deal of work has gone into making such statistical assessments reliable. The objectivist
view is that probabilities are real aspects of the universe—propensities of objects to behave in
certain ways—rather than being just descriptions of an observer's degree of belief. In this view,

SUBJECTIVIST frequentist measurements are attempts to observe the real probability value. The subjectivist
view describes probabilities as a way of characterizing an agent's beliefs, rather than having any
external physical significance. This allows the doctor or analyst to make these numbers up, to
say, "In my opinion, I expect the probability of a cavity to be about 0.1." Several more reliable
techniques, such as the betting systems described earlier, have also been developed for eliciting
probability assessments from humans.

In the end, even a strict frequentist position involves subjective analysis, so the difference
probably has little practical importance. Consider the probability that the sun will still exist
tomorrow (a question first raised by Hume's Inquiry). There are several ways to compute this:

• The probability is undefined, because there has never been an experiment that tested the
existence of the sun tomorrow.

• The probability is 1, because in all the experiments that have been done (on past days) the
sun has existed.

• The probability is 1 — e, where e is the proportion of stars in the universe that go supernova
and explode per day.

• The probability is (d + 1 )/(d + 2), where d is the number of days that the sun has existed so
far. (This formula is due to Laplace.)

• The probability can be derived from the type, age, size, and temperature of the sun, even
though we have never observed another star with those exact properties.

The first three of these methods are frequentist, whereas the last two are subjective. But even if
you prefer not to allow subjective methods, the choice of which of the first three experiments to

REFERENCE CLASS use is a subjective choice known as the reference class problem. It is the same problem faced
by the doctor who wants to know the chances that a patient has a particular disease. The doctor
wants to consider other patients who are similar in important ways—age, symptoms, perhaps
sex—and see what proportion of them had the disease. But if the doctor considered everything
that is known about the patient—weight to the nearest gram, hair color, maternal grandmother s
maiden name—the result would be that there are no other patients who are exactly the same, and
thus no reference class from which to collect experimental data. This has been a vexing problem
in the philosophy of science. Carnap (along with other philosophers) tried in vain to find a way
of reducing theories to objective truth—to show how a series of experiments necessarily leads
to one theory and not another. The approach we will take in the next chapter is to minimize the
number of probabilities that need to be assessed, and to maximize the number of cases available
for each assessment, by taking advantage of independence relationships in the domain.



Section 14.6. Summary 431

j_4.6 SUMMARY ____________________________

This chapter shows that probability is the right way to reason about uncertainty.

• Uncertainty arises because of both laziness and ignorance. It is inescapable in complex,
dynamic, or inaccessible worlds.

• Uncertainty means that many of the simplifications that are possible with deductive infer-
ence are no longer valid.

• Probabilities express the agent's inability to reach a definite decision regarding the truth of
a sentence, and summarize the agent's beliefs.

• Basic probability statements include prior probabilities and conditional probabilities
over simple and complex propositions.

• The axioms of probability specify constraints on reasonable assignments of probabili-
ties to propositions. An agent that violates the axioms will behave irrationally in some
circumstances.

• The joint probability distribution specifies the probability of each complete assignment
of values to random variables. It is usually far too large to create or use.

• Bayes' rule allows unknown probabilities to be computed from known, stable ones.
• In the general case, combining many pieces of evidence may require assessing a large

number of conditional probabilities.
• Conditional independence brought about by direct causal relationships in the domain

allows Bayesian updating to work effectively even with multiple pieces of evidence.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
Although games of chance date back at least to around 300 B.C., the mathematical analysis of
odds and probability appears to be much later. Some work done by Mahaviracarya in India
is dated to roughly the ninth century A.D. In Europe, the first attempts date only to the Italian
Renaissance, beginning around 1500 A.D. The first significant systematic analyses were produced
by Girolamo Cardano around 1565, but they remained unpublished until 1663. By that time, the
discovery by Blaise Pascal (in correspondence with Pierre Fermat in 1654) of a systematic way
of calculating probabilities had for the first time established probability as a widely and fruitfully
studied mathematical discipline. The first published textbook on probability was De Ratiociniis
in Ludo Aleae (Huygens, 1657). Pascal also introduced conditional probability, which is covered
in Huygens's textbook. The Rev. Thomas Bayes (1702-1761) introduced the rule for reasoning
about conditional probabilities that was named after him. It was published posthumously (Bayes,
1763). Kolmogorov (1950, first published in German in 1933) presented probability theory
in a rigorously axiomatic framework for the first time. Renyi (1970) later gave an axiomatic
presentation that took conditional probability, rather than absolute probability, as primitive.



432 Chapter 14. Uncertainty

CONFIRMATION

INDUCTIVE LOGIC

Pascal used probability in ways that required both the objective interpretation, as a property
of the world based on symmetry or relative frequency, and the subjective interpretation as degree
of belief: the former in his analyses of probabilities in games of chance, the latter in the famous
"Pascal's wager" argument about the possible existence of God. However, Pascal did not clearly
realize the distinction between these two interpretations. The distinction was first drawn clearly
by James Bernoulli (1654-1705).

Leibniz introduced the "classical" notion of probability as a proportion of enumerated,
equally probable cases, which was also used by Bernoulli, although it was brought to prominence
by Laplace (1749-1827). This notion is ambiguous between the frequency interpretation and
the subjective interpretation. The cases can be thought to be equally probable either because of
a natural, physical symmetry between them, or simply because we do not have any knowledge
that would lead us to consider one more probable than another. The use of this latter, subjective
consideration to justify assigning equal probabilities is known as the principle of indifference
(Keynes, 1921).

The debate between objective and subjective interpretations of probability became sharper
in the twentieth century. Kolmogorov (1963), R. A. Fisher (1922), and Richard von Mises(1928)
were advocates of the relative frequency interpretation. Karl Popper's (1959, first published in
German in 1934) "propensity" interpretation traces relative frequencies to an underlying physical
symmetry. Frank Ramsey (1931), Bruno de Finetti (1937), R. T. Cox (1946), Leonard Savage
(1954), and Richard Jeffrey (1983) interpreted probabilities as the degrees of belief of specific
individuals. Their analyses of degree of belief were closely tied to utilities and to behavior,
specifically to the willingness to place bets. Rudolf Carnap, following Leibniz and Laplace,
offered a different kind of subjective interpretation of probability: not as any actual individual's
degree of belief, but as the degree of belief that an idealized individual should have in a particular
proposition/? given a particular body of evidence E. Carnap attempted to go further than Leibniz
or Laplace by making this notion of degree of confirmation mathematically precise, as a logical
relation between p and E. The study of this relation was intended to constitute a mathematical
discipline called inductive logic, analogous to ordinary deductive logic (Carnap, 1948; Carnap,
1950). Carnap was not able to extend his inductive logic much beyond the prepositional case,
and Putnam (1963) showed that some fundamental difficulties would prevent a strict extension
to languages capable of expressing arithmetic.

The question of reference classes is closely tied to the attempt to find an inductive logic. The
approach of choosing the "most specific" reference class of sufficient size was formally proposed
by Reichenbach (1949). Various attempts have been made to formulate more sophisticated
policies in order to avoid some obvious fallacies that arise with Reichenbach's rule, notably by
Henry Kyburg (1977; 1983), but such approaches remain somewhat ad hoc. More recent work
by Bacchus, Grove, Halpern, and Roller (1992) extends Carnap's methods to first-order theories
on finite domains, thereby avoiding many of the difficulties associated with reference classes.

Bayesian probabilistic reasoning has been used in AI since the 1960s, especially in medical
diagnosis. It was used not only to make a diagnosis from available evidence, but also to select
further questions and tests when available evidence was inconclusive (Gorry, 1968; Gorry et
al, 1973), using the theory of information value (Section 16.6). One system outperformed
human experts in the diagnosis of acute abdominal illnesses (de Dombal et al., 1974). These
early Bayesian systems suffered from a number of problems, however. Because they lacked any



Section 14.6. Summary 433

theoretical model of the conditions they were diagnosing, they were vulnerable to unrepresentative
data occurring in situations for which only a small sample was available (de Dombal et al., 1981).
Even more fundamentally, because they lacked a concise formalism (such as the one to be
described in Chapter 15) for representing and using conditional independence information, they
depended on the acquisition, storage, and processing of enormous amounts of probabilistic data.
De Dombal's system, for example, was built by gathering and analyzing enough clinical cases
to provide meaningful data for every entry in a large joint probability table. Because of these
difficulties, probabilistic methods for coping with uncertainty fell out of favor in AI from the
1970s to the mid-1980s. In Chapter 15, we will examine the alternative approaches that were
taken and the reason for the resurgence of probabilistic methods in the late 1980s.

There are many good introductory textbooks on probability theory, including those by
Chung (1979) and Ross (1988). Morris DeGroot (1989) offers a combined introduction to
probability and statistics from a Bayesian standpoint, as well as a more advanced text (1970).
Richard Hamming's (1991) textbook gives a mathematically sophisticated introduction to prob-
ability theory from the standpoint of a propensity interpretation based on physical symmetry.
Hacking (1975) and Hald (1990) cover the early history of the concept of probability.

EXERCISES

14.1 Show from first principles that
P(A|BAA)= 1

14.2 Consider the domain of dealing five-card poker hands from a standard deck of 52 cards,
under the assumption that the dealer is fair.

a. How many atomic events are there in the joint probability distribution (i.e., how many
five-card hands are there)?

b. What is the probability of each atomic event?
c. What is the probability of being dealt a royal straight flush (the ace, king, queen, jack and

ten of the same suit)?
d. What is the probability of four of a kind?

14.3 After your yearly checkup, the doctor has bad news and good news. The bad news is that
you tested positive for a serious disease, and that the test is 99% accurate (i.e., the probability of
testing positive given that you have the disease is 0.99, as is the probability of testing negative
given that you don't have the disease). The good news is that this is a rare disease, striking only
one in 10,000 people. Why is it good news that the disease is rare? What are the chances that
you actually have the disease?

14.4 Would it be rational for an agent to hold the three beliefs P(A) = OA, P(B) = 0.3, and
P(A V B) = 0.5? If so, what range of probabilities would be rational for the agent to hold for
A A Bl Make up a table like the one in Figure 14.3 and show how it supports your argument



434 Chapter 14. Uncertainty

about rationality. Then draw another version of the table where P(A V B) = 0.7. Explain why it
is rational to have this probability, even though the table shows one case that is a loss and three
that just break even. (Hint: what is Agent 1 committed to about the probability of each of the
four cases, especially the case that is a loss?)

14.5 It is quite often useful to consider the effect of some specific propositions in the context
of some general background evidence that remains fixed, rather than in the complete absence of
information. The following questions ask you to prove more general versions of the product rule
and Bayes' rule, with respect to some background evidence E:

a. Prove the conditionalized version of the general product rule:

P(A,B\E) = P(A\B,E)P(B\E)

b. Prove the conditionalized version of Bayes' rule:

P(5|A,C)P(A|C)
P(A|B,C) =

P(B\C)

14.6 Show that the statement

P(A,B\C) = P(A\C)P(B\C)

is equivalent to the statement

P(A|fi,C) = P(A|C)

and also to

P(fi|A,C) = P(fi|C)

14.7 In this exercise, you will complete the normalization calculation for the meningitis exam-
ple. First, make up a suitable value for P(S|->A/), and use it to calculate unnormalized values for
P(M\S) and P(-iM|S) (i.e., ignoring the P(S) term in the Bayes' rule expression). Now normalize
these values so that they add to 1.

14.8 Show that the degree of belief after applying the Bayesian updating process is independent
of the order in which the pieces of evidence arrive. That is, show that P(A\B, C) = P(A\C,B)
using the Bayesian updating rule.

14.9 This exercise investigates the way in which conditional independence relationships affect
the amount of information needed for probabilistic calculations.

a. Suppose we wish to calculate P(H\E\,E2), and we have no conditional independence
information. Which of the following sets of numbers are sufficient for the calculation?

(i) P(£i,Ei), P(H), P(£, \H), P(E2\H)
(ii) P(£, ,E2), P(H), P(£,, E2 \H)

(iii) P(H),P(E,\H),P(E2\H)
b. Suppose we know that P(E} \H,E2) = P(£, \H) for all values of H, E\, E2. Now which of

the above three sets are sufficient?



Section 14.6. Summary 435

14.10 Express the statement that X and Y are conditionally independent given Z as a constraint
on the joint distribution entries for P(X, Y, Z).

14.11 (Adapted from Pearl (1988).) You are a witness of a night-time hit-and-run accident
involving a taxi in Athens. All taxis in Athens are blue or green. You swear, under oath, that
the taxi was blue. Extensive testing shows that under the dim lighting conditions, discrimination
between blue and green is 75% reliable. Is it possible to calculate the most likely color for the
taxi? (Hint: distinguish carefully between the proposition that the taxi is blue and the proposition
that it appears blue.)

What now, given that 9 out of 10 Athenian taxis are green?

14.12 (Adapted from Pearl (1988).) Three prisoners, A, B, and C, are locked in their cells. It
is common knowledge that one of them will be executed the next day and the others pardoned.
Only the governor knows which one will be executed. Prisoner A asks the guard a favor: "Please
ask the governor who will be executed, and then take a message to one of my friends B and C to
let him know that he will be pardoned in the morning." The guard agrees, and comes back later
and tells A that he gave the pardon message to B.

What are As chances of being executed, given this information? (Answer this mathemati-
cally, not by energetic waving of hands.)

14.13 This exercise concerns Bayesian updating in the meningitis example. Starting with a
patient about whom we know nothing, show how the probability of having meningitis, P(M), is
updated after we find the patient has a stiff neck. Next, show how P(M) is updated again when
we find the patient has a fever. (Say what probabilities you need to compute this, and make up
values for them.)

14.14 In previous chapters, we found the technique of reiflcation useful in creating represen-
tations in first-order logic. For example, we handled change by reifying situations, and belief by
reifying sentences. Suppose we try to do this for uncertain reasoning by reifying probabilities,
thus embedding probability entirely within first-order logic. Which of the following are true?

a. This would not work.
b. This would work fine; in fact, it is just another way of describing probability theory.
c. This would work fine; it would be an alternative to probability theory.

14.15 Prove that the three axioms of probability are necessary for rational behavior in betting
situations, as shown by de Finetti.



15 PROBABILISTIC
REASONING SYSTEMS

In which we explain how to build reasoning systems that use network models to
reason with uncertainty according to the laws of probability theory.

Chapter 14 gave the syntax and semantics of probability theory. This chapter introduces an
inference mechanism, thus giving us everything we need to build an uncertain-reasoning system.

The main advantage of probabilistic reasoning over logical reasoning is in allowing the
agent to reach rational decisions even when there is not enough information to prove that any
given action will work. We begin by showing how to capture uncertain knowledge in a natural
and efficient way. We then show how probabilistic inference, although exponentially hard in the
worst case, can be done efficiently in many practical situations. We conclude the chapter with a
discussion of knowledge engineering techniques for building probabilistic reasoning systems, a
case study of one successful system, and a survey of alternate approaches.

15.1 REPRESENTING KNOWLEDGE IN AN UNCERTAIN DOMAIN

In Chapter 14, we saw that the joint probability distribution can answer any question about
the domain, but can become intractably large as the number of variables grows. Furthermore,
specifying probabilities for atomic events is rather unnatural and may be very difficult unless a
large amount of data is available from which to gather statistical estimates.

We also saw that, in the context of using Bayes' rule, conditional independence relationships
among variables can simplify the computation of query results and greatly reduce the number
of conditional probabilities that need to be specified. We use a data structure called a belief

BELIEF NETWORK network' to represent the dependence between variables and to give a concise specification of
the joint probability distribution. A belief network is a graph in which the following holds:
1 This is the most common name, but there are many others, including Bayesian network, probabilistic network,
causal network, and knowledge map. An extension of belief networks called a decision network or influence diagram
will be covered in Chapter 16.

436



Section 15.1. Representing Knowledge in an Uncertain Domain 437

1. A set of random variables makes up the nodes of the network.
2. A set of directed links or arrows connects pairs of nodes. The intuitive meaning of an

arrow from node X to node Y is that X has a direct influence on Y.
3. Each node has a conditional probability table that quantifies the effects that the parents

have on the node. The parents of a node are all those nodes that have arrows pointing to it.
4. The graph has no directed cycles (hence is a directed, acyclic graph, or DAG).

It is usually easy for a domain expert to decide what direct conditional dependence relationships
hold in the domain—much easier, in fact, than actually specifying the probabilities themselves.
Once the topology of the belief network is specified, we need only specify conditional probabil-
ities for the nodes that participate in direct dependencies, and use those to compute any other
probability values.

Consider the following situation. You have a new burglar alarm installed at home. It is
fairly reliable at detecting a burglary, but also responds on occasion to minor earthquakes. (This
example is due to Judea Pearl, a resident of Los Angeles; hence the acute interest in earthquakes.)
You also have two neighbors, John and Mary, who have promised to call you at work when they
hear the alarm. John always calls when he hears the alarm, but sometimes confuses the telephone
ringing with the alarm and calls then, too. Mary, on the other hand, likes rather loud music and
sometimes misses the alarm altogether. Given the evidence of who has or has not called, we
would like to estimate the probability of a burglary. This simple domain is described by the belief
network in Figure 15.1.

The topology of the network can be thought of as an abstract knowledge base that holds
in a wide variety of different settings, because it represents the general structure of the causal
processes in the domain rather than any details of the population of individuals. In the case of the
burglary network, the topology shows that burglary and earthquakes directly affect the probability
of the alarm going off, but whether or not John and Mary call depends only on the alarm—the
network thus represents our assumption that they do not perceive any burglaries directly, and they
do not feel the minor earthquakes.

Figure 15.1 A typical belief network.



438 Chapter 15. Probabilistic Reasoning Systems

CONDITIONAL
PROBABILITY TABLE

CONDITIONING CASE

Notice that the network does not have nodes corresponding to Mary currently listening to
loud music, or to the telephone ringing and confusing John. These factors are summarized in
the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls. This shows
both laziness and ignorance in operation: it would be a lot of work to determine any reason why
those factors would be more or less likely in any particular case, and we have no reasonable way
to obtain the relevant information anyway. The probabilities actually summarize a potentially
infinite set of possible circumstances in which the alarm might fail to go off (high humidity,
power failure, dead battery, cut wires, dead mouse stuck inside bell,...) or John or Mary might
fail to call and report it (out to lunch, on vacation, temporarily deaf, passing helicopter, ...). In
this way, a small agent can cope with a very large world, at least approximately. The degree of
approximation can be improved if we introduce additional relevant information.

Once we have specified the topology, we need to specify the conditional probability table
or CPT for each node. Each row in the table contains the conditional probability of each node
value for a conditioning case. A conditioning case is just a possible combination of values for
the parent nodes (a miniature atomic event, if you like). For example, the conditional probability
table for the random variable Alarm might look like this:

Burglary Earthquake

True True
True False
False True
False False

P(Alarm\Burglary, Earthquake)
True False

0.950 0.050
0.950 0.050
0.290 0.710
0.001 0.999

Each row in a conditional probability table must sum to 1, because the entries represent an
exhaustive set of cases for the variable. Hence only one of the two numbers in each row shown
above is independently specifiable. In general, a table for a Boolean variable with n Boolean
parents contains 2" independently specifiable probabilities. A node with no parents has only one
row, representing the prior probabilities of each possible value of the variable.

The complete network for the burglary example is shown in Figure 15.2, where we show
just the conditional probability for the True case of each variable.

15.2 THE SEMANTICS OF BEEIEF NETWORKS

The previous section described what a network is, but not what it means. There are two ways
in which one can understand the semantics of belief networks. The first is to see the network as
a representation of the joint probability distribution. The second is to view it as an encoding of
a collection of conditional independence statements. The two views are equivalent, but the first
turns out to be helpful in understanding how to construct networks, whereas the second is helpful
in designing inference procedures.



Section 15.2. The Semantics of Belief Networks 439

Figure 15.2 A typical belief network with conditional probabilities. The letters B, E, A, J, and
M stand for Burglary, Earthquake, Alarm, JohnCalls, and Mary Calls, respectively. All variables
(nodes) are Boolean, so the probability of, say, ->P(A) in any row of its table is 1 — P(A).

Representing the joint probability distribution
A belief network provides a complete description of the domain. Every entry in the joint
probability distribution can be calculated from the information in the network. A generic entry
in the joint is the probability of a conjunction of particular assignments to each variable, such
as P(X] =x\ A . . . A Xn =*„). We use the notation P(x\, ..., xn) as an abbreviation for this. The
value of this entry is given by the following formula:

P(x}, (15.1)xn) = [[P(x,\Parents(Xiy)
i = i

Thus, each entry in the joint is represented by the product of the appropriate elements of the
conditional probability tables (CPTs) in the belief network. The CPTs therefore provide a
decomposed representation of the joint.

To illustrate this, we can calculate the probability of the event that the alarm has sounded
but neither a burglary nor an earthquake has occurred, and both John and Mary call. We use
single-letter names for the variables:

P(J A M A A A -iB A -.£)
= P(J\A)P(M\A)P(A\^B A -i£)P(-nB)P(-.£)
= 0.90 x 0.70 x 0.001 x 0.999 x 0.998 = 0.00062

Section 14.3 explained that the joint distribution can be used to answer any query about
the domain. If a belief network is a representation of the joint, then it too can be used to answer
any query. Trivially, this can be done by first computing all the joint entries. We will see below
that there are much better methods.



440 Chapter 15. Probabilistic Reasoning Systems

A method for constructing belief networks

Equation (15.1) defines what a given belief network means. It does not, however, explain how to
construct a belief network such that the resulting joint distribution is a good representation of a
given domain. We will now show that Equation (15.1) implies certain conditional independence
relationships that can be used to guide the knowledge engineer in constructing the topology of
the network. First, we rewrite the joint in terms of a conditional probability using the definition
of conditional probability:

P(xt, ...,xn) = P(xn\xn-i, ...,xi)P(xn_\, ...,x\)

Then we repeat this process, reducing each conjunctive probability to a conditional probability
and a smaller conjunction. We end up with one big product:

P(x\ , = P(xn P(x2\xi)P(x\)

Comparing this with Equation (15.1), we see that the specification of the joint is equivalent to the
general assertion that

= P(Xi\Parents(Xi)) (15.2)

provided that Parents(Xf) C {*,_], . . . , x\}. This last condition is easily satisfied by labelling
the nodes in any order that is consistent with the partial order implicit in the graph structure.

What the preceding equation says is that the belief network is a correct representation of the
domain only if each node is conditionally independent of its predecessors in the node ordering,
given its parents. Hence, in order to construct a belief network with the correct structure for the
domain, we need to choose parents for each node such that this property holds. Intuitively, the
parents of node X,- should contain all those nodes in X\, ..., X/_i that directly influence X/. For
example, suppose we have completed the network in Figure 15.1 except for the choice of parents
for MaryCalls. MaryCalls is certainly influenced by whether or not there is a Burglary or an
Earthquake, but it is not directly influenced. Intuitively, our knowledge of the domain tells us that
these events only influence Mary's calling behavior through their effect on the alarm. Also, given
the state of the alarm, whether or not John calls has no influence on Mary's calling. Formally
speaking, we believe that the following conditional independence statement holds:

P(MaryCalls\ JohnCalls, Alarm, Earthquake, Burglary) = P(MaryCalls\Alarm)

The general procedure for incremental network construction is as follows:

1. Choose the set of relevant variables X, that describe the domain.
2. Choose an ordering for the variables.
3. While there are variables left:

(a) Pick a variable X,- and add a node to the network for it.
(b) Set Parents(Xi) to some minimal set of nodes already in the net such that the condi-

tional independence property (15.2) is satisfied.
(c) Define the conditional probability table for X,-.



Section 15.2. The Semantics of Belief Networks 441

Because each node is only connected to earlier nodes, this construction method guarantees that
the network is acyclic. Another important property of belief networks is that they contain no
redundant probability values, except perhaps for one entry in each row of each conditional
probability table. This means that it is impossible for the knowledge engineer or domain expert
to create a belief network that violates the axioms of probability. We will see examples of the
application of the construction method in the next section.

LOCALLY
STRUCTURED
SPARSE

Compactness and node ordering

As well as being a complete and nonredundant representation of the domain, a belief network can
often be far more compact than the full joint. This property is what makes it feasible to handle
a large number of pieces of evidence without the exponential growth in conditional probability
values that we saw in the discussion of Bayesian updating in Section 14.4.

The compactness of belief networks is an example of a very general property of locally
structured (also called sparse) systems. In a locally structured system, each subcomponent
interacts directly with only a bounded number of other components, regardless of the total
number of components. Local structure is usually associated with linear rather than exponential
growth in complexity. In the case of belief networks, it is reasonable to suppose that in most
domains each random variable is directly influenced by at most k others, for some constant k. If
we assume Boolean variables for simplicity, then the amount of information needed to specify the
conditional probability table for a node will be at most 2k numbers, so the complete network can
be specified by n2k numbers. In contrast, the joint contains 2" numbers. To make this concrete,
suppose we have 20 nodes (n = 20) and each has at most 5 parents (k = 5). Then the belief network
requires 640 numbers, but the full joint requires over a million.

There are domains in which each variable can be influenced directly by all the others, so
that the network is fully connected. Then specifying the conditional probability tables requires
the same amount of information as specifying the joint. The reduction in information that occurs
in practice comes about because real domains have a lot of structure, which networks are very
good at capturing. In some domains, there will be slight dependencies that should strictly be
included by adding a new link. But if these dependencies are very tenuous, then it may not be
worth the additional complexity in the network for the small gain in accuracy. For example, one
might object to our burglary network on the grounds that if there is an earthquake, then John
and Mary would not call even if they heard the alarm, because they assume the earthquake is the
cause. Whether to add the link from Earthquake to JohnCalls and MaryCalls (and thus enlarge
the tables) depends on the importance of getting more accurate probabilities compared to the cost
of specifying the extra information.

Even in a locally structured domain, constructing a locally structured belief network is
not a trivial problem. We require not only that each variable is directly influenced by only a
few others, but also that the network topology actually reflects those direct influences with the
appropriate set of parents. Because of the way that the construction procedure works, the "direct
influencers" will have to be added to the network first if they are to become parents of the node
they influence. Therefore, the correct order to add nodes is to add the "root causes" first, then
the variables they influence, and so on until we reach the "leaves," which have no direct causal
influence on the other variables.



442 Chapter 15. Probabilistic Reasoning Systems

Figure 15.3 Network structure depends on order of introduction.

What happens if we happen to choose the wrong order? Let us consider the burglary
example again. Suppose we decide to add the nodes in the order MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake. We get a somewhat more complicated network (Figure 15.3, left). The
process goes as follows:

• Adding MaryCalls: no parents.
• Adding JohnCalls: if Mary calls, that probably means the alarm has gone off, which of

course would make it more likely that John calls. Therefore, there is a dependence:
P(JohnCalls\MaryCalls) j P(JohnCalls)

Hence, JohnCalls needs MaryCalls as a parent.
• Adding Alarm: clearly, if both call, it is more likely that the alarm has gone off than if just

one or neither call, so we need both MaryCalls and JohnCalls as parents.
• Adding Burglary: if we know the alarm state, then the call (or lack of it) from John or

Mary might tell us about whether our telephone is ringing or whether Mary's music is on
loud, but it does not give us further information about a burglary. That is,

P(Burglary\Alarm, JohnCalls, MaryCalls) = P(Burglary\Alarm)
Hence we need just Alarm as parent.

• Adding Earthquake: if the alarm is on, it is more likely that there has been an earthquake
(because the alarm is an earthquake detector of sorts). But if we know there has been a
burglary, then that accounts for the alarm and the probability of an earthquake would be
only slightly above normal. Hence we need both Alarm and Burglary as parents:

P(Earthquake\Burglary,Alarm, JohnCalls, MaryCalls) = P(Earthquake\Burglary,Alarm)

The resulting network has two more links than the original network in Figure 15.1, and requires
three more probabilities to be specified. But the worst part is that some of the links represent



Section 15.2. The Semantics of Belief Networks 443

tenuous relationships that require difficult and unnatural probability judgments, such as assessing
the probability of Earthquake given Burglary and Alarm. This phenomenon is quite general.
If we try to build a diagnostic model with links from symptoms to causes (as from MaryCalls
to Alarm, or Alarm to Burglary), we end up having to specify additional dependencies between
otherwise independent causes, and often between separately occurring symptoms as well. If we
stick to a causal model, we end-up having to specify fewer numbers, and the numbers will often
be easier to come up with. In the domain of medicine, for example, it has been shown by Tversky
and Kahneman (1982) that expert physicians prefer to give probability judgments for causal rules
rather than for diagnostic ones.

The right-hand side of Figure 15.3 shows a really bad ordering of nodes: MaryCalls,
JohnCalls, Earthquake, Burglary, Alarm. This network requires 31 distinct probabilities to be
specified—exactly the same as the full joint distribution. It is important to realize, however, that
any of the three networks can represent exactly the same joint distribution. The last two versions
simply fail to represent all the conditional independence relationships, and end up specifying a
lot of unnecessary numbers instead.

CANONICAL
DISTRIBUTIONS

DETERMINISTIC
NODES

NOISY-OR

LEAK NODE

Representation of conditional probability tables

Even with a fairly small number of parents, a node's conditional probability table still requires
a lot of numbers. Filling in the table would appear to require a good deal of time and also a
lot of experience with all the possible conditioning cases. In fact, this is a worst-case scenario,
where the relationship between the parents and the child is completely arbitrary. Usually, such
relationships fall into one of several categories that have canonical distributions—that is, they
fit some standard pattern. In such cases, the complete table can be specified by naming the pattern
and perhaps supplying a few parameters.

The simplest example is provided by deterministic nodes. A deterministic node has its
value specified exactly by the values of its parents, with no uncertainty. The relationship can
be a logical one—for example, the relationship between parent nodes Canadian, US, Mexican
and the child node NorthAmerican is simply that the child is the disjunction of the parents. The
relationship can also be numerical—for example, if the parent nodes are the prices of a particular
model of car at several dealers, and the child node is the price that a bargain hunter ends up
paying, then the child node is the minimum of the parent values; or if the parent nodes are the
inflows (rivers, runoff, precipitation) into a lake and the outflows (rivers, evaporation, seepage)
from the lake and the child is the change in lake level, then the child is the difference between
the the inflow parents and the outflow parents.

Uncertain relationships can often be characterized by so-called "noisy" logical relation-
ships. The standard example is the so-called noisy-OR relation, which is a generalization of
the logical OR. In propositional logic, we might say Fever is true if and only if Cold, Flu, or
Malaria is true. The noisy-OR model adds some uncertainty to this strict logical approach. The
model makes three assumptions. First, it assumes that each cause has an independent chance
of causing the effect. Second, it assumes that all the possible causes are listed. (This is not as
strict as it seems, because we can always add a so-called leak node that covers "miscellaneous
causes") Third, it assumes that whatever inhibits, say, Cold from causing a fever is independent
of whatever inhibits Flu from causing a fever. These inhibitors are not represented as nodes but



444 Chapter 15. Probabilistic Reasoning Systems

rather are summarized as "noise parameters." If P(Fever\Cold) = 0.4, P(Fever\Flu) = 0.8, and
P(Fever\Malaria) = 0.9, then the noise parameters are 0.6, 0.2, and 0.1, respectively. If no parent
node is true, then the output node is false with 100% certainty. If exactly one parent is true, then
the output is false with probability equal to the noise parameter for that node. In general, the
probability that the output node is False is just the product of the noise parameters for all the
input nodes that are true. For this example, we have the following:

Cold
F
F
F
F
T
T
T
T

Flu
F
F
T
T
F
F
T
T

Malaria

F
T
F
T
F
T
F
T

P(Fever)

0.0
0.9
0.8
0.98
0.4
0.94
0.88
0.988

P(-~Fever)

1.0
0.1
0.2
0.02 = 0.2 x
0.6
0.06 = 0.6 x
0.12 = 0.6 x
0.012 = 0.6)

0.1

0.1
0.2
< 0.2 x 0.1

In general, noisy logical relationships in which a variable depends on k parents can be described
using O(K) parameters instead of 0(2*) for the full conditional probability table. This makes
assessment and learning much easier. For example, the CPSC network (Pradhan et al., 1994)
uses noisy-OR and noisy-MAX, and requires "only" 8,254 values instead of 133,931,430 for a
network with full CPTs.

Conditional independence relations in belief networks
The preceding analysis shows that a belief network expresses the conditional independence of a
node and its predecessors, given its parents, and uses this independence to design a construction
method for networks. If we want to design inference algorithms, however, we will need to know
whether more general conditional independences hold. If we are given a network, is it possible
to "read off" whether a set of nodes X is independent of another set Y, given a set of evidence
nodes El The answer is yes, and the method is provided by the notion of direction-dependent

D-SEPARATION separation or d-separation.
,,:4ip" First, we will say what d-separation is good for. If every undirected path2 from a node in
''"•§?••' X to a node in Y is d-separated by E, then X and Y are conditionally independent given E. The

definition of d-separation is somewhat complicated. We will need to appeal to it several times in
constructing our inference algorithms. Once this is done, however, the process of constructing
and using belief networks does not involve any uses of d-separation.

A set of nodes E d-separates two sets of nodes X and Y if every undirected path from a
BLOCKED node in X to a node in Y is blocked given E. A path is blocked given a set of nodes E if there is

a node Z on the path for which one of three conditions holds:
1. Z is in £ and Z has one arrow on the path leading in and one arrow out.

2 An undirected path is a path through the network that ignores the direction of the arrows.



Section 15.3. Inference in Belief Networks 445

2. Z is in E and Z has both path arrows leading out.
3. Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z.

Figure 15.4 shows these three cases. The proof that d-separated nodes are conditionally indepen-
dent is also complicated. We will use Figure 15.5 to give examples of the three cases:

1. Whether there is Gas in the car and whether the car Radio plays are independent given
evidence about whether the SparkPlugs fire.

2. Gas and Radio are independent if it is known if the Battery works.
3. Gas and Radio are independent given no evidence at all. But they are dependent given

evidence about whether the car Starts. For example, if the car does not start, then the radio
playing is increased evidence that we are out of gas. Gas and Radio are also dependent
given evidence about whether the car Moves, because that is enabled by the car starting.

Figure 15.4 Three ways in which a path from X to Y can be blocked, given the evidence E. If
every path from X to Y is blocked, then we say that E d-separates X and Y.

15.3 INFERENCE IN BELIEF NETWORKS

The basic task for any probabilistic inference system is to compute the posterior probability
distribution for a set of query variables, given exact values for some evidence variables. That
is, the system computes P(Query\Evidence). In the alarm example, Burglary is an obvious query
variable, and JohnCalls and MaryCalls could serve as evidence variables. Of course, belief
networks are flexible enough so that any node can serve as either a query or an evidence variable.
There is nothing to stop us from asking P(Alarm\ JohnCalls,Earthquake), although it would be
somewhat unusual. In general, an agent gets values for evidence variables from its percepts (or
from other reasoning), and asks about the possible values of other variables so that it can decide



446 Chapter 15. Probabilistic Reasoning Systems

Figure 15.5 A belief network describing some features of a car's electrical system and engine.

what action to take. The two functions we need are BELIEF-NET-TELL, for adding evidence to the
network, and BELIEF-NET-ASK, for computing the posterior probability distribution for a given
query variable.

The nature of probabilistic inferences
Before plunging into the details of the inference algorithms, it is worthwhile to examine the kinds
of things such algorithms can achieve. We will see that a single mechanism can account for a
very wide variety of plausible inferences under uncertainty.

Consider the problem of computing P(Burglary\JohnCalls\ the probability that there is
a burglary given that John calls. This task is quite tricky for humans, and therefore for many
reasoning systems that attempt to encode human judgment. The difficulty is not the complexity
of the problem, but keeping the reasoning straight. An incorrect but all-too-common line of
reasoning starts by observing that when the alarm goes off, JohnCalls will be true 90% of the
time. The alarm is fairly accurate at reflecting burglaries, so P(Burglary\JohnCalls) should also
be about 0.9, or maybe 0.8 at worst. The problem is that this line of reasoning ignores the prior
probability of John calling. Over the course of 1000 days, we expect one burglary, for which
John is very likely to call. However, John also calls with probability 0.05 when there actually is
no alarm—about 50 times over 1000 days. Thus, we expect to receive about 50 false alarms from
John for every 1 burglary, so P(Burglary\JohnCalls) is about 0.02. In fact, if we carry out the
exact computation, we find that the true value is 0.016. It is less than our 0.02 estimate because
the alarm is not perfect.

Now suppose that as soon as we get off the phone with John, Mary calls. We are now inter-
ested in incrementally updating our network to give P(Burglary\JohnCalls A MaryCalls). Again,
humans often overestimate this value; the correct answer is only 0.29. We can also determine
that P(Alarm\JohnCalls/\ MaryCalls) is 0.76 and P(Earthquake\JohnCalls A MaryCalls) is 0.18.



I Section 15.3. Inference in Belief Networks 447

DIAGNOSTIC
INFERENCES

INFERENCES

INTERCAUSAL
INFERENCES

EXPLAINING AWAY

MIXED INFERENCES

In both of these problems, the reasoning is diagnostic. But belief networks are not limited
to diagnostic reasoning and in fact can make four distinct kinds of inference:

0 Diagnostic inferences (from effects to causes).
Given that JohnCalls, infer that P(Burglary\JohnCalls) = 0.016.

0 Causal inferences (from causes to effects).
Given Burglary, P(JohnCalls\Burglary) = 0.86 and P(MaryCalls\Burglary) = 0.67.

<) Intercausal inferences (between causes of a common effect).
Given Alarm, we have P(Burglary\Alarm) = 0.376. But if we add the evidence that
Earthquake is true, then P(Burglary\Alarm A Earthquake) goes down to 0.003. Even
though burglaries and earthquakes are independent, the presence of one makes the other
less likely. This pattern of reasoning is also known as explaining away.3

0 Mixed inferences (combining two or more of the above).
Setting the effect JohnCalls to true and the cause Earthquake to false gives

P(Alarm\JohnCalls A -^Earthquake) = 0.03
This is a simultaneous use of diagnostic and causal inference. Also,

P(Burglary\JohnCalls A -^Earthquake) - 0.017
This is a combination of intercausal and diagnostic inference.

These four patterns are depicted in Figure 15.6. Besides calculating the belief in query variables
given definite values for evidence variables, belief networks can also be used for the following:

• Making decisions based on probabilities in the network and on the agent's utilities.
• Deciding which additional evidence variables should be observed in order to gain useful

information.
• Performing sensitivity analysis to understand which aspects of the model have the greatest

impact on the probabilities of the query variables (and therefore must be accurate).
• Explaining the results of probabilistic inference to the user.

These tasks are discussed further in Chapter 16. In this chapter, we focus on computing posterior
probabilities of query variables. In Chapter 18, we show how belief networks can be learned
from example cases.

SENSITIVITY
ANALYSIS

SINGLY CONNECTED

An algorithm for answering queries
In this section, we will derive an algorithm for BELIEF-NET-ASK. This is a rather technical
section, and some of the mathematics and notation are unavoidably intricate. The algorithm itself,
however, is very simple. Our version will work rather like the backward-chaining algorithm in
Chapter 9, in that it begins at the query variable and chains along the paths from that node until
it reaches evidence nodes. Because of the complications that may arise when two different paths
converge on the same node, we will derive an algorithm that works only on singly connected
3 To get this effect, we do not have to know that Earthquake is true, we just need some evidence for it. When one of the
authors first moved to California, he lived in a rickety house that shook when large trucks went by. After one particularly
large shake, he turned on the radio, heard the Carole King song / Feel the Earth Move, and considered this strong evidence
that a large truck had not gone by.



448 Chapter 15. Probabilistic Reasoning Systems

( E )
Diagnostic

V Q )
Causal

(Explaining Away)
Intercausal

( E )

Mixed

Figure 15.6 Simple examples of four patterns of reasoning that can be handled by belief
networks. E represents an evidence variable and Q is a query variable.

POLYTREES

CAUSAL SUPPORT

EVIDENTIAL
SUPPORT

networks, also known as polytrees. In such networks, there is at most one undirected path
between any two nodes in the network. Algorithms for general networks (Section 15.4) will use
the polytree algorithms as their main subroutine.

Figure 15.7 shows a generic singly connected network. Node X has parents V = U\ ... Um,
and children Y = Y\ ... Yn. For each child and parent we have drawn a box that contains all the
node's descendants and ancestors (except for X). The singly connected property means that all
the boxes are disjoint and have no links connecting them. We are assuming that X is the query
variable, and that there is some set of evidence variables E. The aim is to compute P(X\E).
(Obviously, if X is itself an evidence variable in E, then calculating PX\E is trivial. We will
assume that X is not in E.)

In order to derive the algorithm, it will be helpful to be able to refer to different portions of
the total evidence. The first distinction we will need is the following:

EX is the the causal support for X—the evidence variables "above" X that are connected to X
through its parents.

EX is the evidential support for X—the evidence variables "below" X that are connected to X
through its children.

Sometimes we will need to exclude certain paths when considering evidence connected to a
certain variable. For example, we will use EU^X to refer to all the evidence connected to node
Ui except via the path from X. Similarly, Ey, x means all the evidence connected to 7,- through
its parents except for X. Notice that the total evidence E can be written as Ex (all the evidence
connected to X) and as Ex\ (all the evidence connected to X with no exceptions).

Now we are ready to compute P(X\E). The general strategy is roughly the following:

• Express P(X\E) in terms of the contributions of £J and E% •
• Compute the contribution of EJ by computing its effect on the parents of X, and then

passing that effect on to X. Notice that computing the effect on each parent of X is a
recursive instance of the problem of computing the effect on X.

• Compute the contribution of E% by computing its effect on the children of X, and then
passing that effect on to X. Notice that computing the effect on each child of X is a recursive
instance of the problem of computing the effect on X.



Section 15.3. Inference in Belief Networks 449

Figure 15.7 A generic singly connected network. The network is shown partitioned according
to the parents and children of the query variable X.

Our derivation will work by applying Bayes' rule and other standard methods for manipulating
probability expressions, until we have massaged the formulas into something that looks like a
recursive instance of the original problems. Along the way, we will use simplifications sanctioned
by the conditional independence relationships inherent in the network structure.

The total evidence E consists of the evidence above X and the evidence below X, since we
are assuming that X itself is not in E. Hence, we have

To separate the contributions of £J and E% , we apply the conditionalized version of Bayes' rule
(Equation (14.4)) keeping E% as fixed background evidence:

Because X d-separates £J from E% in the network, we can use conditional independence to
simplify the first term in the numerator. Also, we can treat 1/P(£^ £J) as a normalizing constant,
giving us

P(X\E) = aP(E^ |X)P(X|£J)
So now we just need to compute the two terms P(E% \X) and P(X|£J). The latter is easier, so we
shall look at it first.



450 Chapter 15. Probabilistic Reasoning Systems

We compute P(X\E%) by considering all the possible configurations of the parents of X,
and how likely they are given EJ. Given each configuration, we know the probability of X
directly from the CPT; we then average those probabilities, weighted by the likelihood of each
configuration. To say this formally, let U be the vector of parents U\, ..., Um, and let u be an
assignment of values to them.4 Then we have

Now U d-separates X from EJ, so we can simplify the first term to P(X|u). We can simplify the
second term by noting that EJ d-separates each [7, from the others, and by remembering that the
probability of a conjunction of independent variables is equal to the product of their individual
probabilities. This gives us

The final step is to simplify the last term of this equation by partitioning EX into E(y,\x, • • • , EUm\x
(the separate boxes in Figure 15.7) and using the fact that E(/,\x d-separates t/, from all the other
evidence in £J. So that gives us

P(X|EJ) =

(15.3)

EU,\X)
u /

which we can plug into our earlier equation to yield

P(X|E) = aP(Ex |X) ̂  P(X|u)"

Finally, this is starting to look like an algorithm: P(X|u) is a lookup in the conditional probability
table of X, and P((//|E(/;\x) is a recursive instance of the original problem, which was to compute
P(X|E) — that is, P(X|£x\)- Note that the set of evidence variables in the recursive call is a proper
subset of those in the original call — a good sign that the algorithm will terminate.

Now we return to P(EX |X), with an eye toward coming up with another recursive solution.
In this case we average over the values of K,, the children of X, but we will also need to include
YI'S parents. We let Z, be the parents of Y, other than X, and let z, be an assignment of values to
the parents. The derivation is similar to the previous one. First, because the evidence in each F;
box is conditionally independent of the others given X, we get

Averaging over 7, and z/ yields

|X) = n E E V(Er,\x IX yi, z,-)P(y,-, z,- |X)

Breaking EY:\X into the two independent components Ey. and EJ.\X:

|X) = n E E P(^ \X,yi, z/)P(£^Ax|X, v,, z,-)P(v;, z;|X)

4 For example, if there are two Boolean parents, U\ and 1/2, then u ranges over four possible assignments, of which
[true,false} is one.



I Section 15.3. Inference in Belief Networks 451

Ey. is independent of X and z, given y,, and Ey, x is independent of X and y,. We can also pull a
term with no z, out of the z, summation:

P(E^ \X) = n E P(Ey, I
i >'i

Apply Bayes' rule to P(£y, x|z,-):

Rewriting the conjunction F/, z/:
r (Z,

-P(y1-|X,z,-)P(z,-|X)

Now P(z/|X) = P(ZJ), because Z and X are d-separated, so we can cancel them out. We can also
replace P(Ey*x) by a normalizing constant /?,:

X, z,-)|X) = [I E ̂  ?/) E A^(
/ V,' Z;

Finally, the parents of K,- (the Zy-) are independent of each other, so we can multiply them together,
just as we did with the {/, parents previously. We also combine the /?,• into one big normalizing
constant 3:

i*' z<) n p(z<> (15.4)

Notice that each of the terms in the final expression is easily evaluated:
• P(Ey yj) is a recursive instance of P(£J \X).
• P(yi xzi) is a conditional probability table entry for Yj.
• Pfaj EZij\Yi) is a recursive instance of the P(X\E) calculation—that is, P(X\EX\)

It is now a simple matter to turn all this into an algorithm. We will need two basic routines.
SUPPORT-EXCEPT(X,V) computes P(X\Ex\v), using a slight generalization of Equation (15.3) to
handle the "except" variable V. EVIDENCE-EXCEPT(X,V) computes P(E~>V\X), using a general-
ization of Equation (15.4). The algorithms are shown in Figure 15.8.

The computation involves recursive calls that spread out from X along all paths in the
network. The recursion terminates on evidence nodes, root nodes (which have no parents), and
leaf nodes (which have no children). Each recursive call excludes the node from which it was
called, so each node in the tree is covered only once. Hence the algorithm is linear in the number
of nodes in the network. Remember that this only works because the network is a polytree. If
there were more than one path between a pair of nodes, then our recursions would either count
the same evidence more than once or they would fail to terminate.

We have chosen to present a "backward-chaining" algorithm because it is the simplest
algorithm for polytrees. One drawback is that it computes the probability distribution for just
one variable. If we wanted the posterior distributions for all the non-evidence variables, we
would have to run the algorithm once for each. This would give a quadratic runtime, and



452 Chapter 15. Probabilistic Reasoning Systems

function BELIEF-NET-ASK(X) returns a probability distribution over the values of X
inputs: X, a random variable

SUPPORT-EXCEPT(X, null)

function SUPPORT-EXCEPT(A", V) returns P(X\EX\ v)

if EviDENCE?(X) then return observed point distribution forX
else

calculate P(E~\ V\X) = EVIDENCE-EXCEPT(X, V)
U — PARENTS [X]

if U is empty
then return a P(E~\ V\X) P(X)

else
for each U; in U

calculate and store P(Ui\EVj \x) = SUPPORT-ExcEPT(t/,,X)
'return a V\X) £ P(X|u)

function EviDENCE-ExcEPT(X, V) returns P(E~\ V\X)

Y—CHILDREN[X] - V
if Y is empty

then return a uniform distribution
else

for each Y, in Y do
calculate P(E~ | v,) = EviDENCE-ExcEPT(7,, null)
Z, — PARENTS' [7,] - X
for each Zy- in Z,

calculate P(Zjj\Ez..\ Yl) = SUPPORT-EXCEPT(Z,>, 7,)
return 13 fl £ P(Ey:\yi) E PCv,-|X,Z/) fl P(^\EZiA r.)

Figure 15.8 A backward-chaining algorithm for solving probabilistic queries on a polytree.
To simplify the presentation, we have assumed that the network is fixed and already primed with
evidence, and that evidence variables satisfy the predicate EVIDENCE?. The probabilities P(X|U),
where U denotes the parents of X, are available from the CPT for X. Calculating the expressions
« . . . and ̂  . . . is done by normalization.

would involve many repeated calculations. A better way to arrange things is to "memoize" the
computations by forward-chaining from the evidence variables. Given careful bookkeeping, the
entire computation can be done in linear time. It is interesting to note that the forward-chaining
version can be viewed as consisting of "messages" being "propagated" through the network. This
leads to a simple implementation on parallel computers, and an intriguing analogy to message
propagation among neurons in the brain (see Chapter 19).



Section 15.4. Inference in Multiply Connected Belief Networks 453

L 5.4 INFERENCE IN MULTIPLY CONNECTED BELIEF NETWORKS

CONNECTED

CLUSTERING

CONDITIONING

STOCHASTIC
SIMULATION

A multiply connected graph is one in which two nodes are connected by more than one path.
One way this happens is when there are two or more possible causes for some variable, and the
causes share a common ancestor. Alternatively, one can think of multiply connected networks
as representing situations in which one variable can influence another through more than one
causal mechanism. For example, Figure 15.9 shows a situation in which whether it is cloudy has
a causal link to whether it rains, and also a causal link to whether the lawn sprinklers are turned
on (because a gardener who observes clouds is less likely to turn the sprinklers on). Both rain
and sprinklers have an effect on whether the grass gets wet.

There are three basic classes of algorithms for evaluating multiply connected networks,
each with its own areas of applicability:

0 Clustering methods transform the network into a probabilistically equivalent (but topo-
logically different) polytree by merging offending nodes.

0 Conditioning methods do the transformation by instantiating variables to definite values,
and then evaluating a polytree for each possible instantiation.

<> Stochastic simulation methods use the network to generate a large number of concrete
models of the domain that are consistent with the network distribution. They give an
approximation of the exact evaluation.

In the general case, exact inference in belief networks is known to be NP-hard. It is fairly
straightforward to prove this, because a general belief network can represent any propositional
logic problem (if all the probabilities are 1 or 0) and propositional logic problems are known to
be NP-complete. For very large networks, approximation using stochastic simulation is currently
the method of choice. The problem of approximating the posterior probabilities to within an
arbitrary tolerance is itself NP-hard, but for events that are not too unlikely the calculations are
usually feasible.

Clustering methods
One way of evaluating the network in Figure 15.9 is to transform it into a polytree by combining

MEGANODE the Sprinkler and Rain node into a meganode called Sprinkler+Rain, as shown in Figure 15.10.
The two Boolean nodes are replaced by a meganode that takes on four possible values: TT, TF,
FT, and FF. The meganode has only one parent, the Boolean variable Cloudy, so there are two
conditioning cases. Once the network has been converted to a polytree, a linear-time algorithm
can be applied to answer queries. Queries on variables that have been clustered can be answered
by averaging over the values of the other variables in the cluster.

Although clustering makes it possible to use a linear-time algorithm, the NP-hardness of
the problem does not go away. In the worst case, the size of the network increases exponen-
tially, because the conditional probability tables for the clusters involve the cross-product of the
domains of the variables. In Figure 15.10, there are six independently specifiable numbers in
Sprinkler+Rain, as opposed to four total in Sprinkler and Rain. (One of the numbers in each row



454 Chapter 15. Probabilistic Reasoning Systems

is not independent, because the row must sum to 1. In Figure 15.9, we dropped one of the two
columns, but here we show all four.)

The tricky part about clustering is choosing the right meganodes. There are several ways
to make this choice, but all of them ultimately produce meganodes with large probability tables.
Despite this problem, clustering methods are currently the most effective approach for exact
evaluation of multiply connected networks.

CUTSET
CONDITIONING

Cutset conditioning methods
The cutset conditioning method takes the opposite approach. Instead of transforming the
network into one complex polytree, this method transforms the network into several simpler

Figure 15.9 A multiply connected network with conditional probability tables.

S+R
T T
T F
F T
F F

P(W)

.99

.90

.90

.00

P(C) = .5

P(S+R=x)
C TT TF FT FF

T .08 .02 .72 .18
F .40 .10 .40 .10

Figure 15.10 A clustered equivalent of the multiply connected network.



Section 15.4. Inference in Multiply Connected Belief Networks 455

CUTSET

BOUNDED CUTSET
CONDITIONING

polytrees. Each simple network has one or more variables instantiated to a definite value. P(X\E)
is computed as a weighted average over the values computed by each polytree.

A set of variables that can be instantiated to yield polytrees is called a cutset. In Fig-
ure 15.11, the cutset is just {Cloudy}, and because it is a Boolean variable, there are just two
resulting polytrees. In general, the number of resulting polytrees is exponential in the size of the
cutset, so we want to find a smalTcutset if possible.

Cutset conditioning can be approximated by evaluating only some of the resulting polytrees.
The error in the approximation is bounded by the total probability weight of the polytrees not yet
evaluated. The obvious approach is to evaluate the most likely polytrees first. For example, if we
need an answer accurate to within 0.1, we evaluate trees in decreasing order of likelihood until
the total probability exceeds 0.9. This technique is called bounded cutset conditioning, and is
useful in systems that need to make approximately correct decisions quickly.

Figure 15.11 Networks created by instantiation.

Stochastic simulation methods
LOGIC SAMPLING In the stochastic simulation method known as logic sampling, we run repeated simulations of

the world described by the belief network, and estimate the probability we are interested in by
counting the frequencies with which relevant events occur. Each round of the simulation starts by
randomly choosing a value for each root node of the network, weighting the choice by the prior
probabilities. If the prior P(Cloudy) = 0.5, then we would pick Cloudy = True half the time, and
Cloudy = False half the time. Whatever value is chosen, we can then choose values randomly for
Sprinkler and Rain, using the conditional probabilities of those nodes given the known value of
Cloudy. Finally, we do the same for WetGrass, and the first round is done.

To estimate P(WetGrass\Cloudy) (or in general P(X\E)), we repeat the process many times,
and then compute the ratio of the number of runs where WetGrass and Cloudy are true to the
number of runs where just Cloudy is true. This will always converge to the right value, although
it may take many runs.

The main problem is when we are interested in some assignment of values to E that rarely
occurs. For example, suppose we wanted to know

P(WetGrass\Sprinkler A Rain)



456 Chapter 15. Probabilistic Reasoning Systems

LIKELIHOOD
WEIGHTING

Because Sprinkler A Rain is rare in the world, most of the simulation rounds would end up with
different values for these evidence variables, and we would have to discard those runs. The
fraction of useful runs decreases exponentially with the number of evidence variables.

We can get around this problem with an approach called likelihood weighting. The idea is
that every time we reach an evidence variable, instead of randomly choosing a value (according
to the conditional probabilities), we take the given value for the evidence variable, but use the
conditional probabilities to see how likely that is. For example, to compute P(WetGrass\Rairi)
we would do the following:

1. Choose a value for Cloudy with prior P(Cloudy) - 0.5. Assume we choose Cloudy = False.
2. Choose a value for Sprinkler. We see that P(Sprinkler -^Cloudy) = 0.5, so we randomly

choose a value given that distribution. Assume we choose Sprinkler - True.
3. Look at Rain. This is an evidence variable that has been set to True, so we look at the table

to see that P(Rain\->Cloudy) = 0.2. This run therefore counts as 0.2 of a complete run.
4. Look at WetGrass. Choose randomly with P(WetGrass\Sprinkler A Rain) = 0.99; assume

we choose WetGrass = True.
5. We now have completed a run with likelihoodO.2 that says Wetgrass = True given Rain. The

next run will result in a different likelihood, and (possibly) a different value for WetGrass.
We continue until we have accumulated enough runs, and then add up the evidence for
each value, weighted by the likelihood score.

Likelihood weighting usually converges considerably faster than logic sampling, and can handle
very large networks. In the CPSC project (Pradhan et al., 1994), for example, a belief network has
been constructed for internal medicine that contains 448 nodes, 906 links and 8,254 conditional
probability values. (The front cover shows a small portion of the network.) Likelihood weighting
typically obtains accurate values in around 35 minutes on this network.

The main difficulty with likelihood weighting, and indeed with any stochastic sampling
method, is that it takes a long time to reach accurate probabilities for unlikely events. In general,
the runtime necessary to reach a given level of accuracy is inversely proportional to the probability
of the event. Events such as the meltdown of a nuclear reactor on a particular day are extremely
unlikely, but there is a very big difference between 10~5 and 10~I0, so we still need to get
accurate values. Researchers are currently working to find ways around this problem.

[5.5 KNOWLEDGE ENGINEERING FOR UNCERTAIN REASONING

The approach to knowledge engineering for probabilistic reasoning systems is very much like
the approach for logical reasoning systems outlined in Section 8.2:

• Decide what to talk about. This remains a difficult step. It is important to decide which ,
factors will be modelled, and which will just be summarized by probability statements. In.;
an expert system of all dental knowledge, we will certainly want to talk about toothaches,
gum disease, and cavities. We may want to know if a patient's parents have a history of|
gum disease, but we probably do not need to talk about the patient's third cousins. Once we I



Section 15.5. Knowledge Engineering for Uncertain Reasoning 457

have an initial set of factors, we can extend the model by asking, "What directly influences
this factor?" and "What does this factor directly influence?"
Decide on a vocabulary of random variables. Determine the variables you want to use,
and what values they can take on. Sometimes it is useful to quantize a continuous-valued
variable into discrete ranges.
Encode general knowledge about the dependence between variables. Here there is a qual-
itative part, where we say what variables are dependent on what others, and a quantitative
part, where we specify probability values. The values can come either from the knowledge
engineer's (or expert's) subjective experience, or from measurements of frequencies in a
database of past experiences, or from some combination of the two.
Encode a description of the specific problem instance. For example, we say that the
particular patient we are interested in is a 34-year-old female with moderate to severe pain
in the lower jaw.
Pose queries to the inference procedure and get answers. The most common query is to
ask for the value of some hypothesis variable. For example, given the patient's symptoms,
what is the probability of gum disease, or of any other disorder. It is also common to use
sensitivity analysis to determine how robust the answers are with respect to perturbations
in the conditional probability table values.

SIMILARITY
NETWORKS

Case study: The Pathfinder system
PATHFINDER is a diagnostic expert system for lymph-node diseases, built by members of the
Stanford Medical Computer Science program during the 1980s (see Heckerman (1991) for a
discussion). The system deals with over 60 diseases and over 100 disease findings (symptoms
and test results). Four versions of the system have been built, and the history is instructive
because it shows a trend toward increasing sophistication in reasoning with uncertainty.

PATHFINDER I was a rule-based system written with the logical metareasoning system MRS.
It did not do any uncertain reasoning.

PATHFINDER II experimented with several methods for uncertain reasoning, including
certainty factors and the Dempster-Shafer theory (see Section 15.6). The results showed that
a simplified Bayesian model (in which all disease findings were assumed to be independent)
outperformed the other methods. One interesting result of the experiment was that 10% of cases
were diagnosed incorrectly because the expert had given a probability of zero to an unlikely but
possible event.

PATHFINDER III used the same simplified Bayesian model, but with a reassessment of the
probabilities using a different protocol and paying attention to low-probability events.

PATHFINDER IV used a belief network to represent the dependencies that could not be
handled in the simplified Bayesian model. The author of the system sat down with an expert
physician and followed the knowledge engineering approach described earlier. Deciding on a
vocabulary took 8 hours, devising the topology of the network took 35 hours, and making the
14,000 probability assessments took another 40 hours. The physician reportedly found it easy to
think in terms of probabilities on causal links, and a concept called similarity networks made
it easier for the expert to assess a large number of probabilities. The network constructed in this



458 Chapter 15. Probabilistic Reasoning Systems

process covers one of the 32 major areas of pathology. The plan is to cover all of pathology
through consultations with leading experts in each area.

An evaluation of PATHFINDER III and IV used 53 actual cases of patients who were referred
to a lymph-node specialist. As referrals, these cases were probably of above-average difficulty. In
a blind evaluation, expert analysis of the diagnoses showed that PATHFINDER III scored an average
7.9 out of 10, and PATHFINDER IV scored 8.9, significantly better. The difference amounts to
saving one life every thousand cases or so. A recent comparison showed that Pathfinder is now
outperforming the experts who were consulted during its creation—those experts being some of
the world's leading pathologists.

15.6 OTHER APPROACHES TO UNCERTAIN REASONING

Other sciences (e.g., physics, genetics, economics) have long favored probability as a model for
uncertainty. Pierre Laplace said in 1819 that "Probability theory is nothing but common sense
reduced to calculation." James Maxwell said in 1850 that "the true logic for this world is the cal-
culus of Probabilities, which takes account of the magnitude of the probability which is, or ought
to be, in a reasonable man's mind." Stephen Jay Gould (1994) claimed that "misunderstanding
of probability may be the greatest of all general impediments to scientific literacy."

Given this long tradition, it is perhaps surprising that AI has considered many alternatives
to probability. The earliest expert systems of the 1970s ignored uncertainty and used strict logical
reasoning, but soon it became clear that this was impractical for most real-world domains. The
next generation of expert systems (especially in medical domains) used probabilistic techniques.
Initial results were promising, but they did not scale up because of the exponential number of
probabilities required in the full joint distribution. (Belief net algorithms were not known then.)
As a result, probabilistic approaches fell out of favor from roughly 1975 to 1988, and a variety
of alternatives were tried for a variety of reasons:

• One common view is that probability theory is essentially numerical, whereas human
judgmental reasoning is more "qualitative." Certainly, we are not consciously aware
of doing numerical calculations of degrees of belief. (On the other hand, it might be
that we have some kind of numerical degrees of belief encoded directly in strengths of
connections and activations in our neurons. In that case, the difficulty of conscious access
to those strengths is only to be expected.) One should also note that qualitative reasoning
mechanisms can be built directly on top of probability theory, so that the "no numbers"
argument against probability has little force. Nonetheless, some qualitative schemes have a
good deal of appeal in their own right. One of the most well-studied is default reasoning,
which treats conclusions not as "believed to a certain degree," but as "believed until a better
reason is found to believe something else."

• Rule-based approaches to uncertainty also have been tried. Such approaches hope to build
on the success of logical rule-based systems, but add a sort of "fudge factor" to each rule to
accommodate uncertainty. These methods were developed in the mid-1970s, and formed
the basis for a large number of expert systems in medicine and other areas.



Section 15.6. Other Approaches to Uncertain Reasoning 459

• One area that we have not addressed so far is the question of ignorance, as opposed to
uncertainty. Consider flipping a coin. If we know the coin to be fair, then a probability
of 0.5 for heads is reasonable. If we know the coin is biased, but we do not know
which way, then 0.5 is the only reasonable probability. Obviously, the two cases are
different, yet probability seems not to distinguish them. The Dempster-Shafer theory
uses interval-valued degrees of belief to represent an agent's knowledge of the probability
of a proposition. Other methods using second-order probabilities are also discussed.

• Probability makes the same ontological commitment as logic: that events are true or false
in the world, even if the agent is uncertain as to which is the case. Researchers in fuzzy
logic have proposed an ontology that allows vagueness: that an event can be "sort of" true.
Vagueness and uncertainty are in fact orthogonal issues, as we will see.

The following sections treat each of these approaches in slightly more depth. We will not provide
detailed technical material, but we provide references for further study.

NONMONOTONICITY

MONOTONICITY

DEFAULT LOGIC

CIRCUMSCRIPTION

SPECIFICITY
PREFERENCE

Default reasoning
Commonsense reasoning is often said to involve "jumping to conclusions." For example, when
one sees a car parked on the street, one would normally be willing to accept that it has four wheels
even though only three are visible. (If you feel that the existence of the fourth wheel is dubious,
consider also the question as to whether the three visible wheels are real or merely cardboard
facsimiles.) Probability theory can certainly provide a conclusion that the fourth wheel exists
with high probability. On the other hand, introspection suggests that the possibility of the car
not having four wheels does not even arise unless some new evidence presents itself. Thus, it
seems that the four-wheel conclusion is reached by default, in the absence of any reason to doubt
it. If new evidence arrives—for example, if one sees the owner carrying a wheel and notices
that the car is jacked up—then the conclusion can be retracted. This kind of reasoning is said to
exhibit nonmonotonicity, because the set of beliefs does not grow monotonically over time as
new evidence arrives. First-order logic, on the other hand, exhibits strict monotonicity.

Reasoning schemes such as default logic (Reiter, 1980), nonmonotonic logic (McDermott
and Doyle, 1980) and circumscription (McCarthy, 1980) are designed to handle reasoning with
default rules and retraction of beliefs. Although the technical details of these systems are quite
different, they share a number of problematic issues that arise with default reasoning:

• What is the semantic status of default rules? If "Cars have four wheels" is false, what does
it mean to have it in one's knowledge base? What is a good set of default rules to have?
Without a good answer to these questions, default reasoning systems will be nonmodular,
and it will be hard to develop a good knowledge engineering methodology.

• What happens when the evidence matches the premises of two default rules with conflict-
ing conclusions? We saw examples of this in the discussion of multiple inheritance in
Section 10.6. In some schemes, one can express priorities between rules so that one rule
takes precedence. Specificity preference is a commonly used form of priority in which
a special-case rule takes precedence over the general case. For example, "Three-wheeled
cars have three wheels" takes precedence over "Cars have four wheels."



460 Chapter 15. Probabilistic Reasoning Systems

• Sometimes a system may draw a number of conclusions on the basis of a belief that is
later retracted. How can a system keep track of which conclusions need to be retracted
as a result? Conclusions that have multiple justifications, only some of which have been
abandoned, should be retained; whereas those with no remaining justifications should be
dropped. These problems have been addressed by truth maintenance systems, which are
discussed in Section 10.8.

• How can beliefs that have default status be used to make decisions? This is probably the
hardest issue for default reasoning. Decisions often involve trade-offs, and one therefore
needs to compare the strength of belief in the outcomes of different actions. In cases
where the same kinds of decisions are being made repeatedly, it is possible to interpret
default rules as "threshold probability" statements. For example, the default rule "My
brakes are always OK" really means "The probability that my brakes are OK, given no
other information, is sufficiently high that the optimal decision is for me to drive without
checking them." When the decision context changes—for example, when one is driving
a heavily laden truck down a steep mountain road—the default rule suddenly becomes
inappropriate, even though there is no new evidence to suggest that the brakes are faulty.

To date, no default reasoning system has successfully addressed all of these issues. Furthermore,
most systems are formally undecidable, and very slow in practice. There have been several
attempts to subsume default reasoning in a probabilistic system, using the idea that a default rule
is basically a conditional probability of 1 — f. For reasons already mentioned, such an approach
is likely to require a full integration of decision making before it fully captures the desirable
features of default reasoning.

LOCALITY

DETACHMENT

TRUTH-
FUNCTIONALITY

Rule-based methods for uncertain reasoning
In addition to monotonicity, logical reasoning systems have three other important properties that
probabilistic reasoners lack:

0 Locality: In logical systems, whenever we have a rule of the form A => B, we can conclude
B given evidence A, without worrying about any other rules. In probabilistic systems, we
need to consider all of the available evidence.

<C> Detachment: Once a logical proof is found for a proposition B, the proposition can be
used regardless of how it was derived. That is, it can be detached from its justification.
In dealing with probabilities, on the other hand, the source of the evidence for a belief is |
important for subsequent reasoning.

0 Truth-functionality: In logic, the truth of complex sentences can be computed from the
truth of the components. Probability combination does not work this way, except under
strong independence assumptions.

These properties confer obvious computational advantages. There have been several attempts to
devise uncertain reasoning schemes by attaching degrees of belief to propositions and rules in
what is essentially a logical system. This means treating degree of belief as a generalized truth
value, in order to retain truth-functionality. That is, each proposition is assigned a degree of
belief, and the degree of belief in, say, A V B is a function of the belief in A and the belief in B.



Section 15.6. Other Approaches to Uncertain Reasoning 461

The bad news for truth-functional systems is that the properties of locality, detachment,
and truth-functionality are simply not appropriate for uncertain reasoning. Let us look at truth-
functionality first. Let H\ be the event of a coin coming up heads on a fair flip, let T\ be the
event of the coin coming up tails on that same flip, and let H2 be the event of the coin coming
up heads on a second flip. Clearly, all three events have the same probability, 0.5, and so a
truth-functional system must assign the same belief to the conjunction of any two of them. But
we can see that the probability of the conjunction depends on the events themselves, and not just
on their probabilities:

CERTAINTY FACTORS

P(A)

/>(//,) = 0.5

P(B)
P(//,) = 0.5
p(r,) = o.5
P(H2) = 0.5

P(A V B)

P(H{ V //,) = 0.50
P(H} v r , ) = 1.00
P(Hi V H2) = 0.75

It gets worse when we chain evidence together. Truth-functional systems have rules of the form
A H-> B, which allow us to compute the belief in B as a function of the belief in the rule and the
belief in A. Both forward- and backward-chaining systems can be devised. The belief in the
rule is assumed to be constant, and is usually specified by the knowledge engineer, for example,
A H-o.9 B.

Consider the wet-grass situation from Section 15.4. If we wanted to be able to do both
causal and diagnostic reasoning, we would need the two rules:

Rain i— WetGrass and WetGrass H-*• Rain

If we are not careful, these two rules will act in a feedback loop so that evidence for Rain increases
the belief in WetGrass, which in turn increases the belief in Rain even more. Clearly, uncertain
reasoning systems need to keep track of the paths along which evidence is propagated.

Intercausal reasoning (or explaining away) is also tricky. Consider what happens when we
have the two rules:

Sprinkler i— WetGrass and WetGrass i—» Rain
Suppose we see that the sprinkler is on. Chaining forward through our rules, this increases the
belief that the grass will be wet, which in turn increases the belief that it is raining. But this
is ridiculous: the fact that the sprinkler is on explains away the wet grass, and should reduce
the belief in rain. In a truth-functional system, the transitively derived rule Sprinkler t—> Rain is
unavoidable.

Given these difficulties, how is it possible that truth-functional systems were ever consid-
ered useful? The answer lies in restricting the tasks required of them, and in carefully engineering
the rule base so that undesirable interactions do not occur. The most famous example of a truth-
functional system for uncertain reasoning is the certainty factors model, which was developed
for the MYCIN medical diagnosis program and widely used in expert systems of the late 1970s and
1980s. Almost all uses of certainty factors involved rule sets that were either purely diagnostic
(as in MYCIN) or purely causal. Furthermore, evidence was only entered at the "roots" of the rule
set, and most rule sets were singly connected. Heckerman (1986) has shown that under these
circumstances, a minor variation on certainty-factor inference was exactly equivalent to Bayesian



462 Chapter 15. Probabilistic Reasoning Systems

inference on polytrees. In other circumstances, certainty factors could yield disastrously incorrect
degrees of belief through overcounting of evidence. Details of the method can be found under
the "Certainty Factors" entry in Encyclopedia ofAI, but the use of certainty factors is no longer
recommended (even by one of its inventors—see the foreword to Heckerman (1991)).

DEMPSTER-SHAFER

BELIEF FUNCTION

Representing ignorance: Dempster-Shafer theory

The Dempster-Shafer theory is designed to deal with the distinction between uncertainty and
ignorance. Rather than computing the probability of a proposition, it computes the probability
that the evidence supports the proposition. This measure of belief is called a belief function,
written Bel(X).

We return to coin flipping for an example of belief functions. Suppose a shady character
comes up to you and offers to bet you $10 that his coin will come up heads on the next flip. Given
that the coin may or may not be fair, what belief should you ascribe to the event of it coming up
heads? Dempster-Shafer theory says that because you have no evidence either way, you have to
say that the belief Bel(Heads) = 0, and also that Bel(-^Heads) = 0. This makes Dempster-Shafer
reasoning systems skeptical in a way that has some intuitive appeal. Now suppose you have an
expert at your disposal who testifies with 90% certainty that the coin is fair (i.e., he is 90% sure
that P(Heads) = 0.5). Then Dempster-Shafer theory gives Bel(Heads) = 0.9 x 0.5 = 0.45 and
likewise Bel(-<Heads) = 0.45. There is still a 0.1 "gap" that is not accounted for by the evidence.
"Dempster's rule" (Dempster, 1968) shows how to combine evidence to give new values for Bel,
and Shafer's work extends this into a complete computational model.

As with default reasoning, there is a problem in connecting beliefs to actions. With prob-
abilities, decision theory says that if P(Heads) = P(-^Heads) - 0.5 then (assuming that winning
$10 and losing $10 are considered equal opposites) the reasoner will be indifferent between the
action of accepting and declining the bet. A Dempster-Shafer reasoner has Bel(-^Heads) - 0,
and thus no reason to accept the bet, but then it also has Bel(Heads) - 0, and thus no reason to
decline it. Thus, it seems that the Dempster-Shafer reasoner comes to the same conclusion about
how to act in this case. Unfortunately, Dempster-Shafer theory allows no definite decision in
many other cases where probabilistic inference does yield a specific choice. In fact, the notion
of utility in the Dempster-Shafer model is not yet well-understood, partly because the semantics
of Bel is not defined precisely with respect to decision making.

One interpretation of Dempster-Shafer theory is that it defines a probability interval—the
interval for Heads is [0,1] before our expert testimony, and [0.45,0.55] after. The width of the
interval can be a good aid in deciding when we need to acquire more evidence: it can tell you
that the expert's testimony will help you if you do not know whether the coin is fair, but will
not help you if you have already determined that the coin is fair. In the Bayesian approach, this
kind of reasoning can be done easily by examining how much one's belief would change if one
were to acquire more evidence. For example, knowing whether the coin is fair would have a
significant impact on the belief that it will come up heads. A Bayesian probability therefore has
an "implicit" uncertainty associated with the various possible changes that it might undergo as a
result of future observations.



Section 15.6. Other Approaches to Uncertain Reasoning 463

Representing vagueness: Fuzzy sets and fuzzy logic
FUZZY SET THEORY Fuzzy set theory is a means of specifying how well an object satisfies a vague description. For

example, consider the proposition "Nate is tall." Is this true, given that Nate is 5' 10"? Most
people would hesitate to answer "true" or "false," preferring to say, "sort of." Note that this is not
a question of uncertainty about the external world — we are sure of Nate's height. Rather it is a
case of vagueness or uncertainty about the meaning of the linguistic term "tall." So most authors

I ?- say that fuzzy set theory is not a method for uncertain reasoning at all.
Another way to think of this is as similarity to a prototype — how close is Nate to our

prototype for tall person? We could express this in logical notation by making TallPerson a
constant and having a function Similarity that compares things to it:

Similarity(Nate, TallPerson) = SortOf

Fuzzy set theory takes a slightly different approach: it treats TallPerson as a fuzzy predicate and
says that the truth value of TallPerson(Nate) is a number between 0 and 1 , rather than being just
True or False. The name "fuzzy set" derives from the interpretation of the predicate as implicitly
defining a set of its members, a set that does not have sharp boundaries. Consider a kennel
with 60 rottweilers and 40 retrievers. If we pick a dog at random, the probability of it being a
rottweiler is 0.6; this is uncertainty. The uncertainty can be resolved by looking at the dog. But if
a rottweiler and a retriever were to mate, then the puppies would be half rottweiler, half retriever.
There is no uncertainty here, no additional evidence we can gather to determine the breed of the
puppies. Rather, this is a case of fuzziness at the boundary between two breeds.

FUZZY LOGIC Fuzzy logic takes a complex sentence such as TallPerson(Nate) V Smart(Nate) and deter-
mines its truth value as a function of the truth values of its components. The rules for evaluating
the fuzzy truth, T, of a complex sentence are

T(A/\B) = min(T(A),T(B))
T(AVB) = max(TXA),

Fuzzy logic is therefore a truth-functional system, and is thus subject to all the usual problems.
It has the additional problem that it is inconsistent with normal propositional or first-order logic.
We would like any logic to ensure that standard equivalences such as A V -iA -o- True hold, but
in fuzzy logic, T(A V -^A)^T(True).

Despite these serious semantic difficulties, fuzzy logic has been very successful in commer-
cial applications, particularly in control systems for products such as automatic transmissions,
trains, video cameras, and electric shavers. Elkan (1993) argues that these applications are suc-
cessful because they have small rule bases, have no chaining of inferences, and have tunable
parameters that can be adjusted to improve the system's performance (often by learning tech-
niques). The fact that they are implemented with fuzzy operators is incidental to their success.
Elkan predicts that when more complex applications are tackled with fuzzy logic, they will run
into the same kinds of problems that plagued knowledge-based systems using certainty factors
and other approaches. As one might expect, the debate continues.



464 Chapter 15. Probabilistic Reasoning Systems

15.7 SUMMARY

Both Chapter 9 and this chapter are concerned with reasoning properly, but there is a difference
in just what that means. In first-order logic, proper reasoning means that conclusions follow from
premises—that if the initial knowledge base faithfully represents the world, then the inferences
also faithfully represent the world. In probability, we are dealing with beliefs, not with the state
of the world, so "proper reasoning" means having beliefs that allow an agent to act rationally.

In Chapter 10, we saw a variety of approaches to the problem of implementing logical
reasoning systems. In this chapter, we see much more of a consensus: efficient reasoning
with probability is so new that there is one main approach—belief networks—with a few minor
variations. The main points are as follows:

• Conditional independence information is a vital and robust way to structure information
about an uncertain domain.

• Belief networks are a natural way to represent conditional independence information. The
links between nodes represent the qualitative aspects of the domain, and the conditional
probability tables represent the quantitative aspects.

• A belief network is a complete representation for the joint probability distribution for the
domain, but is often exponentially smaller in size.

• Inference in belief networks means computing the probability distribution of a set of query
variables, given a set of evidence variables.

• Belief networks can reason causally, diagnostically, in mixed mode, or intercausally. No
other uncertain reasoning mechanism can handle all these modes.

• The complexity of belief network inference depends on the network structure. In polytrees
(singly connected networks), the computation time is linear in the size of the network.

• There are various inference techniques for general belief networks, all of which have
exponential complexity in the worst case. In real domains, the local structure tends to
make things more feasible, but care is needed to construct a tractable network with more
than a hundred nodes.

• It is also possible to use approximation techniques, including stochastic simulation, to get
an estimate of the true probabilities with less computation.

• Various alternative systems for reasoning with uncertainty have been suggested. All the
truth-functional systems have serious problems with mixed or intercausal reasoning.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The use of networks to represent probabilistic information began early in the twentieth century,
with the work of Sewall Wright on the probabilistic analysis of genetic inheritance and animal
growth factors (Wright, 1921; Wright, 1934). One of his networks appears on the cover of this



Section 15.7. Summary 465

QUALITATIVE

book. I. J. Good (1961) investigated the use of Bayesian inference in belief networks.5 The in-
fluence diagram or decision network representation for decision problems, which incorporated
a DAG representation for random variables, was used in decision analysis in the late 1970s (see
Chapter 16), but no interesting evaluation algorithms were developed for decision networks until
1986 (Shachter, 1986). Judea Pearl (1982a) developed the message-passing method for carrying
out inference in networks that had the form of trees. Jin Kim (Kirn and Pearl, 1983) extended
the method to all singly connected networks. The backward-chaining algorithm given in the text
was derived by the authors, but has much in common with the methods of Pearl (1988) and of
Shachter et al. (1990). Gregory Cooper (1990) showed that the general problem of inference in
unconstrained belief networks is NP-hard, and Paul Dagum and Mike Luby (1993) showed the
corresponding approximation problem to be NP-hard.

David Spiegelhalter and Steffen Lauritzen pioneered the use of clustering for inference
in multiply connected networks (Spiegelhalter, 1986; Lauritzen and Spiegelhalter, 1988). Finn
Jensen and colleagues (1990) developed an object-oriented computational scheme for clustering.
The scheme is implemented in the HUGIN system, an efficient and widely used tool for uncertain
reasoning (Andersen et al., 1989). Eric Horvitz, H. Jacques Suermondt, and Gregory Cooper
(1989) developed bounded cutset conditioning, building on earlier work on cutsets (Pearl, 1986).
The logic sampling method is due to Max Henrion (1988), and likelihood weighting was developed
by Fung and Chang (1989) and Shachter and Peot (1989). A large-scale application of likelihood
weighting to medical diagnosis appears in Shwe and Cooper (1991). The latter paper also
incorporates elements of the "Markov blanket" simulation scheme developed by Pearl (1987). The
first expert system using belief networks was CONVINCE (Kim, 1983; Kim and Pearl, 1987). More
recent systems include the MUNIN system for diagnosing neuromuscular disorders (Andersen et
al., 1989) and the PATHFINDER system for pathology (Heckerman, 1991).

The extension of belief networks to handle continuous random variables is an important
topic of current research. The basic technical problem is that the distributions must be repre-
sentable by a finite number of parameters, and must come from a family of distributions that
is closed under belief net updating. To date, only Gaussian distributions have been used. Net-
works with continuous variables but no discrete variables have been considered (Pearl, 1988;
Shachter and Kenley, 1989). Such networks can be evaluated in polynomial time, regard-
less of topology. The inclusion of discrete variables has been investigated by Lauritzen and
Wermuth (1989), and implemented in the cHUGIN system (Olesen, 1993). Currently, exact
algorithms are known only for the case in which discrete variables are ancestors, not descendants,
of continuous variables. Stochastic simulation algorithms, on the other hand, can handle arbitrary
distributions and topologies.

Qualitative probabilistic networks (Wellman, 1990) provide a purely qualitative abstrac-
tion of belief networks, using the notion of positive and negative influences between variables.
Wellman shows that in many cases such information is sufficient for optimal decision making
without the need for precise specification of probability values. Work by Adnan Darwiche and
Matt Ginsberg (1992) extracts the basic properties of conditioning and evidence combination
from probability theory and shows that they can also be applied in logical and default reasoning.

5 I. J. Good was chief statistician for Turing's codebreaking team in World II. In 2001: A Space Odyssey, Arthur
C. Clarke credited Good and Minsky with making the breakthrough that led to the development of the HAL computer.



466 Chapter 15. Probabilistic Reasoning Systems

POSSIBILITY THEORY

The literature on default and nonmonotonic reasoning is very large. Early work is col-
lected in Readings in Nonmonotonic Reasoning (Ginsberg, 1987). Shoham (1988) discusses
the nonmonotonic nature of reasoning about time and change, and proposes a semantics based
on general preferences between possible models of a default knowledge base. Geffner (1992)
provides an excellent introduction to default reasoning, including early philosophical work on
default conditionals. Some informative computational complexity results on default reasoning
have been derived by Kautz and Selman (1991). Bain and Muggleton (1991) provide methods for
learning default rules, suggesting a role for them as compact representations of data containing
regularities with exceptions. Autoepistemic logic (Moore, 1985b) attempts to explain nonmono-
tonicity as arising from the agent's reflection on its own states of knowledge. A comprehensive
retrospective and summary of work in this area is given by Moore (1993).

Applications of nonmonotonic reasoning have been largely limited to improving the the-
oretical underpinnings of logic programming. The use of negation as failure in Prolog can be
viewed as source of nonmonotonicity because adding new facts will rule out some potential
derivations (Clark, 1978). An important subclass of the so-called default theories in the default
logic of (Reiter, 1980) can be shown to be equivalent to logic programs in a language in which
both negation as failure and classical logical negation are available (Gelfond and Lifschitz, 1991).
The same is true of circumscriptive theories (Gelfond and Lifschitz, 1988). Autoepistemic logic
can, in turn, be closely imitated by circumscription (Lifschitz, 1989).

Certainty factors were invented for use in the medical expert system MYCIN (Shortliffe,
1976), which was intended both as an engineering solution and as a model of human judgment
under uncertainty. The collection Rule-Based Expert Systems (Buchanan and Shortliffe, 1984)
provides a complete overview of MYCIN and its descendants. David Heckerman (1986) showed
that a slightly modified version of certainty factors can be analyzed as a disguised form of reason-
ing with standard probability theory. The PROSPECTOR expert system (Duda et al., 1979) used a
rule-based approach in which the rules were justified by a global independence assumption. More
recently, Bryan Todd has shown that a rule-based system can perform correct Bayesian infer-
ence, provided that the structure of the rule set exactly reflects a set of conditional independence
statements that is equivalent to the topology of a belief network (Todd et al., 1993).

Dempster-Shafer theory originates with a paper by Arthur Dempster (1968) proposing a
generalization of probability to interval values, and a combination rule for using them. Later work
by Glenn Shafer (1976) led to the Dempster-Shafer theory being viewed as a competing approach
to probability. Ruspini et al. (1992) analyze the relationship between the Dempster-Shafer theory
and standard probability theory from an Al standpoint. Shenoy (1989) has proposed a method
for decision making with Dempster-Shafer belief functions.

Fuzzy sets were developed by Lotfi Zadeh (1965) in response to the perceived difficulty
of providing exact inputs for intelligent systems. The text by Zimmermann (1991) provides a
thorough introduction to fuzzy set theory. As we mentioned in the text, fuzzy logic has often
been perceived incorrectly as a direct competitor to probability theory whereas in fact it addresses
a different set of issues. Possibility theory (Zadeh, 1978) was introduced to handle uncertainty
in fuzzy systems, and has much in common with probability. Dubois and Prade (1994) provide
a thorough survey of the connections between possibility theory and probability theory. An
interesting interview/debate with Lotfi Zadeh (the founder of fuzzy logic) and William Kahan
(the Turing award winner) appears in Woehr (1994).



Section 15.7. Summary 467

The three approaches to quantitative reasoning about uncertainty just surveyed—fuzzy
logic, certainty factors, and Dempster-Shafer theory—were the three main alternatives to which
AI researchers resorted after early probabilistic systems fell out of favor in the early 1970s, as de-
scribed in Chapter 14. The later development of nonmonotonic logics in the early 1980s was also,
in part, a response to the need for an effective method for handling uncertainty. The resurgence
of probability depended mainly on the discovery of belief networks as a method for representing
and using conditional independence information. This resurgence did not come without a fight—
probabilistic methods were attacked both by logicists, who believed that numerical approaches
to AI were both unnecessary and introspectively implausible, and by supporters of the other
quantitative approaches to uncertainty. Peter Cheeseman's (1985) pugnacious "In Defense of
Probability," and his later article "An Inquiry into Computer Understanding" (Cheeseman, 1988,
with commentaries) give something of the flavor of the debate.

It is fair to say that certainty factors are now of historical interest only (for reasons noted
above), and although fuzzy logic is a healthy, ongoing enterprise, it is increasingly perceived
as a way of handling continuous-valued variables rather than uncertainty. Nonmonotonic logics
continue to be of interest as a purely qualitative mechanism, although there is a good deal of work
aimed at showing how nonmonotonic inference is best viewed as a special case of probabilistic
reasoning with probabilities close to 0 or 1 (Goldszmidt et al., 1990). Dempster-Shafer theory
is still perceived by its supporters as a viable alternative to Bayesian systems. Nonprobabilists
continue to be irritated by the dogmatic "Bayesianity" of the probabilists.

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Pearl,
1988) is a comprehensive textbook and reference on belief networks, by one of the major contrib-
utors to the field. Probabilistic Reasoning in Expert Systems: Theory and Algorithms (Neapolitan,
1990) gives a relatively readable introduction to belief networks from the standpoint of their use
in expert systems. Readings in Uncertain Reasoning (Shafer and Pearl, 1990) is a voluminous
collection of important papers about probability, belief networks, and other formalisms for rea-
soning about uncertainty, and their applications in AI. Uncertainty in Artificial Intelligence (Kanal
and Lemmer, 1986) is an anthology containing a number of important early papers about belief
networks and other matters having to do with reasoning under uncertainty. Although this volume
is not numbered, a series of numbered anthologies with the same title have also been published.
New research on probabilistic reasoning appears both in mainstream AI journals such as Artificial
Intelligence and in more specialized journals such as the International Journal of Approximate
Reasoning. The proceedings of the Conferences on Uncertainty in Artificial Intelligence (known
as UAI) are an excellent source for current research.

EXERCISES

15.1 Consider the problem of dealing with a car that will not start, as diagrammed in Figure 15.5.

a. Extend the network with the Boolean variables IcyWeather and StarterMotorWorking.
b. Give reasonable conditional probability tables for all the nodes.



468 Chapter 15. Probabilistic Reasoning Systems

c. How many independent values are contained in the joint probability distribution for eight
Boolean nodes, assuming no conditional independence relations hold among them?

d. How many independent probability values do your network tables contain?
e. The conditional probability table for Starts is a canonical one. Describe, in English, what

its structure will be in general, as more possible causes for not starting are added.

15.2 In your local nuclear power station, there is an alarm that senses when a temperature
gauge exceeds a given threshold. The gauge measures the core temperature. Consider the
Boolean variables A (alarm sounds), FA (alarm is faulty), and FC (gauge is faulty), and the
multivalued nodes G (gauge reading) and T (actual core temperature).

a. Draw a belief net for this domain, given that the gauge is more likely to fail when the core
temperature gets too high.

b. Is your network a polytree?
c. Suppose there are just two possible actual and measured temperatures, Normal and High;

and that the gauge gives the incorrect temperature x% of the time when it is working, but
v% of the time when it is faulty. Give the conditional probability table associated with G.

d. Suppose the alarm works unless it is faulty, in which case it never goes off. Give the
conditional probability table associated with A.

e. Suppose the alarm and gauge are working, and the alarm sounds. Calculate the probability
that the core temperature is too high.

f. In a given time period, the probability that the temperature exceeds threshold is p. The cost
of shutting down the reactor is c.s; the cost of not shutting it down when the temperature is
in fact too high is cm (m is for meltdown). Assuming the gauge and alarm to be working
normally, calculate the maximum value for x for which the gauge is of any use (i.e., if x is
any higher than this, we have to shut down the reactor all the time).

g. Suppose we add a second temperature gauge H, connected so that the alarm goes off when
either gauge reads High. Where do H and FH (the event of H failing) go in the network?

h. Are there circumstances under which adding a second gauge would mean that we would
need more accurate (i.e., more likely to give the correct temperature) gauges? Why (not)?

15.3 Two astronomers, in different parts of the world, make measurements M\ and MI of the
number of stars N in some small region of the sky, using their telescopes. Normally, there is
a small possibility of error by up to one star. Each telescope can also (with a slightly smaller
probability) be badly out of focus (events F\ and ^2), in which case the scientist will undercount
by three or more stars. Consider the three networks shown in Figure 15.12.

a. Which of these belief networks correctly (but not necessarily efficiently) represent the
above information?

b. Which is the best network?
c. Give a reasonable conditional probability table for the values of P(M\ \N~). (For simplicity,

consider only the possible values 1, 2, and 3 in this part.)
d. Suppose MI = 1 and M3 = 3. What are the possible numbers of stars?
e. Of these, which is the most likely number?



Section 15.7. Summary 469

Figure 15.12 Three possible networks for the telescope problem.

15.4 You are an Al consultant for a credit card company, and your task is to construct a belief
net that will allow the company to determine whether or not to grant a person a card.

a. What are the evidence variables? These are the variables for which you can obtain
information, on the basis of which it is legal to make decisions, and that are relevant to
the decision. Thus, Age might be one of your variables, but VotingRecord and HairColor
would not.

b. What is the output variable (i.e., what proposition is the company going to examine the
probabilities of in order to determine whether to grant a card)? This should not be Decision
with values \es and no because the company has control over the value of this variable.

c. Construct your network by incrementally adding variables in causal order, as described in
the chapter. You may wish to add intermediate nodes such as Reliability and Futurelncome.
(Remember that the company cares about what will happen in the future, not about the past
per se.) Set the conditional probabilities for each node. Write commentary to describe
your reasoning in choosing your variables and links. If you find that a node has too many
predecessors (so that the conditional probability table becomes too big), that is a good hint
that you need some intermediate variables.

d. Build a file of test data corresponding to your evidence variables. As far as possible these
should be real people! Do some interviewing to get real data if you can; try to get a wide
variety of cases, from deadbeats to trust-fund babies. Run the data through your network
to see if the net's results correspond to your own judgements. Examine not only the output
variable, but the value of other intermediate variables. You may need to go through several
iterations of steps (c) and (d).

e. Write a report showing various test cases and explaining the advantages of your approach.
Your report should be enough to convince the company to adopt your product.

15.5 You are an AI consultant for an auto insurance company. Your task is construct a belief
network that will allow the company to decide how much financial risk they run from various
policy holders, given certain data about the policy holders. (In case you think all class projects



470 Chapter 15. Probabilistic Reasoning Systems

are just toys to amuse sadistic instructors, bear in mind that a 1 % improvement in risk assessment
is worth well over a billion dollars a year.)

In order to design a belief network, you need output variables and evidence variables.
The output variables are those for which the insurance company is trying to get a probability
distribution for their possible values. The evidence variables are those variables for which you
can obtain information, on the basis of which it is legal to make decisions, and that are relevant
to the decision.

Output variables represent the costs of various catastrophic events that the insurance com-
pany might have to reimburse. (We do not consider the ways in which the company tries to
avoid payment.) In the automobile insurance domain, the major output variables are medical cost
(MedCost), property cost (PropCost), and intangible liability cost (ILiCost). Medical and prop-
erty costs are those incurred by all individuals involved in an accident; auto theft or vandalism
might also incur property costs. Intangible liability costs are legal penalties for things like "pain
and suffering," punitive damages, and so forth, that a driver might incur in an accident in which
he or she is at fault.

Evidence variables for this domain include the driver's age and record; whether or not he
or she owns another car; how far he or she drives per year; the vehicle's make, model and year;
whether it has safety equipment such as an airbag and antilock brakes; where it is garaged and
whether it has an antitheft device.

Build a network for this problem. You will need to decide on suitable domains for the
variables, bearing in mind the need to discretize (unless you plan to use a stochastic simulation al-
gorithm). You will also need to add intermediate nodes such as DrivingSkill andAutoRuggedness.
Write commentary to describe your reasoning in choosing your domains, variables, links, and
inference algorithm. If you find that a node has too many predecessors (so that the conditional
probability table becomes too big), that is a good hint that you need some intermediate variables.
Generate a few reasonable-looking test cases to get a feeling for what your network does with
them. How would you convince the insurance company to adopt your product?

15.6 Is probabilistic reasoning monotonic or nonmonotonic? Do these concepts even apply to
probabilities?



16 MAKING SIMPLE
DECISIONS

In which we see how an agent should make decisions so that it gets what it wants—on
average, at least.

In this chapter, we return to the idea of utility theory that was introduced in Chapter 14 and show
how it is combined with probability theory to yield a decision-theoretic agent—one that can make
rational decisions based on what it believes and what it wants. Such an agent can make decisions
in contexts where uncertainty and conflicting goals leave a logical agent with no way to decide.

Section 16.1 introduces the basic principle of decision theory: the maximization of expected
utility. Section 16.2 shows that the behavior of any rational agent can be captured by supposing a
utility function that is being maximized. Section 16.3 discusses the nature of utility functions in
more detail, and in particular their relation to individual quantities such as money. Section 16.4
shows how to handle utility functions that depend on several quantities. In Section 16.5, we
describe the implementation of decision-making systems. In particular, we introduce a formalism
called decision networks (also known as influence diagrams) that extends belief networks by
incorporating actions and utilities. The remainder of the chapter discusses issues that arise in
applications of decision theory to expert systems.

16.1 COMBINING BELIEFS AND DESIRES UNDER UNCERTAINTY

In the Port-Royal Logic, written in 1662, the French philosopher Arnauld stated that

To judge what one must do to obtain a good or avoid an evil, it is necessary to consider not
only the good and the evil in itself, but also the probability that it happens or does not happen;
and to view geometrically the proportion that all these things have together.

These days, it is more common in scientific texts to talk of utility rather than good and evil, but
the principle is exactly the same. An agent's preferences between world states are captured by a
utility function, which assigns a single number to express the desirability of a state. Utilities are
combined with the outcome probabilities for actions to give an expected utility for each action.

471



472 Chapter 16. Making Simple Decisions

EXPECTED UTILITY

MAXIMUM EXPECTED
UTILITY

ONE-SHOT
DECISIONS

We will use the notation U(S) to denote the utility of state S according to the agent that
is making the decisions. For now, we will consider states as complete snapshots of the world,
similar to the situations of Chapter 7. This will simplify our initial discussions, but it can become
rather cumbersome to specify the utility of each possible state separately. In Section 16.4, we
will see how states can be decomposed under some circumstances for the purpose of utility
assignment.

An nondeterministic action A will have possible outcome states Resulti(A), where i
ranges over the different outcomes. Prior to execution of A, the agent assigns probability
P(Resulti(A)\Do(A),E) to each outcome, where E summarizes the agent's available evidence
about the world, and Do(A) is the proposition that action A is executed in the current state.
Then we can calculate the expected utility of the action given the evidence, EU(A\E), using the
following formula:

EU(A\E) = '^2lP(Resulti(A)\E,Do(A}) U(Resultt(A)) (16.1)

The principle of maximum expected utility (MEU) says that a rational agent should choose an
action that maximizes the agent's expected utility.

In a sense, the MEU principle could be seen as defining all of AI.1 All an intelligent agent
has to do is calculate the various quantities, maximize over its actions, and away it goes. But this
does not mean that the AI problem is solved by the definition!

Although the MEU principle defines the right action to take in any decision problem,
the computations involved can be prohibitive, and sometimes it is difficult even to formulate
the problem completely. Knowing the initial state of the world requires perception, learning,
knowledge representation, and inference. Computing P(Result,(A) \Do(A), E) requires a complete
causal model of the world and, as we saw in Chapter 15, NP-complete updating of belief nets.
Computing the utility of each state, U (Result i(A)), often requires search or planning, because an
agent does not know how good a state is until it knows where it can get to from that state. So,
decision theory is not a panacea that solves the AI problem. But it does provide a framework in
which we can see where all the components of an AI system fit in.

The MEU principle has a clear relation to the idea of performance measures introduced in
Chapter 2. The basic idea is very simple. Consider the possible environments that could lead to
an agent having a given percept history, and consider the different possible agents that we could
design. If an agent maximizes a utility function that correctly reflects the performance measure
by which its behavior is being judged, then it will achieve the highest possible performance score,
if we average over the possible environments in which the agent could be placed. This is the
central justification for the MEU principle itself.

In this chapter, we will only be concerned with single or one-shot decisions, whereas
Chapter 2 defined performance measures over environment histories, which usually involve
many decisions. In the next chapter, which covers the case of sequential decisions, we will show
how these two views can be reconciled.

1 Actually, it is not quite true that AI is, even in principle, a field that attempts to build agents that maximize their expected
utility. We believe, however, that understanding such agents is a good place to start. This is a difficult methodological
question, to which we return in Chapter 27.



Section 16.2. The Basis of Utility Theory 473

16.2 THE BASIS OF UTILITY THEORY___________________

Intuitively, the principle of Maximum Expected Utility (MEU) seems like a reasonable way to
make decisions, but it is by no means obvious that it is the only rational way. After all, why
should maximizing the average utility be so special—why not try to maximize the sum of the
cubes of the possible utilities, or try to minimize the worst possible loss? Also, couldn't an agent
act rationally just by expressing preferences between states without giving them numeric values?
Finally, why should a utility function with the required properties exist at all? Perhaps a rational
agent can have a preference structure that is too complex to be captured by something as simple
as a single real number for each state.

Constraints on rational preferences
These questions can be answered by writing down some constraints on the preferences that a
rational agent should have, and then showing that the MEU principle can be derived from the
constraints. Writing down these constraints is a way of defining the semantics of preferences.
The idea is that, given some preferences on individual atomic states, the theory should allow one
to derive results about preferences for complex decision-making scenarios. This is analogous
to the way that the truth value of a complex logical sentence is derived from the truth value of
its component propositions, and the way the probability of a complex event is derived from the
probability of atomic events.

LOTTERIES In the language of utility theory, the complex scenarios are called lotteries to emphasize
the idea that the different attainable outcomes are like different prizes, and that the outcome is
determined by chance. The lottery L, in which there are two possible outcomes—state A with
probability/) and state B with the remaining probability—is written

L=[p,A; l-p,B]

In general, a lottery can have any number of outcomes. Each outcome can be either an atomic
state or another lottery. A lottery with only one outcome can be written either as A or [1, A]. It
is the decision-maker's job to choose among lotteries. Preferences between prizes are used to
determine preferences between lotteries. The following notation is used to express preferences
or the lack of a preference between lotteries or states:

A >- B A is preferred to B
A ~ B the agent is indifferent between A and B
A ~ B the agent prefers A to B or is indifferent between them

Now we impose reasonable constraints on the preference relation, much as we imposed rationality
constraints on degrees of belief in order to obtain the axioms of probability in Chapter 14. One
reasonable constraint is that preference should be transitive, that is, if A >- B and B >- C, then
we would expect A >- C. We argue for transitivity by showing that an agent whose preferences
do not respect transitivity would behave irrationally. Suppose, for example, that an agent has
the nontransitive preferences A >- B >- C >- A, where A, B, and C are goods that can be freely



474 Chapter 16. Making Simple Decisions

exchanged. If the agent currently has A, then we could offer to trade C for A and some cash. The
agent prefers C, and so would be willing to give up some amount of cash to make this trade. We
could then offer to trade B for C, extracting more cash, and finally trade A for B. This brings us
back where we started from, except that the agent has less money. It seems reasonable to claim
that in this case the agent has not acted rationally.

The following six constraints are known as the axioms of utility theory. They specify the
most obvious semantic constraints on preferences and lotteries.

ORDERABILITY <) Ordcrability: Given any two states, a rational agent must either prefer one to the other or
else rate the two as equally preferable. That is, an agent should know what it wants.

(A >- B) V (B >- A) V (A ~ 5)

TRANSITIVITY 0 Transitivity: Given any three states, if an agent prefers A to B and prefers B to C, then the
agent must prefer A to C.

(A >- B) A (B >- C) => (A >- C)

CONTINUITY 0 Continuity: If some state B is between A and C in preference, then there is some probability
p for which the rational agent will be indifferent between getting B for sure and the lottery
that yields A with probability/? and C with probability 1 — p.

A >- B y C => 3p [/>, A; 1 — p, C] ~ fi
SUBSTITUTABILITY <> Substitutability: If an agent is indifferent between two lotteries, A and B, then the agent is

indifferent between two more complex lotteries that are the same except that B is substituted
for A in one of them. This holds regardless of the probabilities and the other outcome(s) in
the lotteries.

A ~ B => lp,A; l-p,C]~ \p,B;l -p,C]
MONOTONICITY <) Monotonicity: Suppose there are two lotteries that have the same two outcomes, A and B.

If an agent prefers A to B, then the agent must prefer the lottery that has a higher probability
for A (and vice versa).

A>B => (p>q O [p,A; l~p,B]t[q,A; 1 -q,B])
DECOMPOSABILITY <> Dccomposability: Compound lotteries can be reduced to simpler ones using the laws of

probability. This has been called the "no fun in gambling" rule because it says that an
agent should not prefer (or disprefer) one lottery just because it has more choice points
than another.2

[p, A; 1 — p, [q,B; 1 — q,C]\ ~ [p,A; (1 — p)q,B; (1 — p)(l — q),C]

. . . and then there was Utility
Notice that the axioms of utility theory do not say anything about utility. They only talk about
preferences. Preference is assumed to be a basic property of rational agents. The existence of a
utility function follows from the axioms of utility:
2 It is still possible to account for an agent who enjoys gambling by reifying the act of gambling itself: just include in
the appropriate outcome states the proposition "participated in a gamble," and base utilities in part on that proposition.



Section 16.3. Utility Functions 475

1 . Utility principle
If an agent's preferences obey the axioms of utility, then there exists a real-valued function
U that operates on states such that U(A) > U(B) if and only if A is preferred to B, and
U(A) - U(B) if and only if the agent is indifferent between A and B.

U(A) > U(B) o A X B
U(A) = U(B) ^ A ~ B

2. Maximum Expected Utility principle
The utility of a lottery is the sum of the probabilities of each outcome times the utility of
that outcome.

In other words, once the probabilities and utilities of the possible outcome states are specified,
the utility of a compound lottery involving these states can be computed. U(\p\ , S\ ; p2, S^; • • • 1)
is completely determined by U(Si) and the probability values.

It is important to remember that the existence of a utility function that describes an agent's
preference behavior does not necessarily mean that the agent is explicitly maximizing that utility
function in its own deliberations. As we showed in Chapter 2, rational behavior can be generated
in any number of ways, some of which are more efficient than explicit utility maximization. By
observing an agent's preferences, however, it is possible to construct the utility function that
represents what it is that the agent's actions are trying to achieve.

16.3 UTILITY FUNCTIONS

Utility is a function that maps from states to real numbers. Is that all we can say about utility
functions? Strictly speaking, that is it. Beyond the constraints listed earlier, an agent can have
any preferences it likes. For example, an agent might prefer to have a prime number of dollars
in its bank account; in which case, if it had $16 it would give away $3. It might prefer a dented
1973 Ford Pinto to a shiny new Mercedes. Preferences can also interact: for example, it might
only prefer prime numbers of dollars when it owns the Pinto, but when it owns the Mercedes, it
might prefer more dollars to less.

If all utility functions were as arbitrary as this, however, then utility theory would not
be of much help because we would have to observe the agent's preferences in every possible
combination of circumstances before being able to make any predictions about its behavior.
Fortunately, the preferences of real agents are usually more systematic. Conversely, there are
systematic ways of designing utility functions that, when installed in an artificial agent, cause it
to generate the kinds of behavior we want.



476 Chapter 16. Making Simple Decisions

MONOTONIC
PREFERENCE

VALUE FUNCTION

ORDINAL UTILITY

EXPECTED
MONETARY VALUE

The utility of money
Utility theory has its roots in economics, and economics provides one obvious candidate for a
utility measure: money (or more specifically, an agent's total net assets). The almost universal
exchangeability of money for all kinds of goods and services suggests that money plays a
significant role in human utility functions.3

If we restrict our attention to actions that only affect the amount of money that an agent has,
then it will usually be the case that the agent prefers more money to less, all other things being
equal. We say that the agent exhibits a monotonic preference for money. This is not, however,
sufficient to guarantee that money behaves as a utility function. Technically speaking, money
behaves as a value function or ordinal utility measure, meaning just that the agent prefers to
have more rather than less when considering definite amounts. To understand monetary decision
making under uncertainty, we also need to examine the agent's preferences between lotteries
involving money.

Suppose you have triumphed over the other competitors in a television game show. The
host now offers you a choice: you can either take the $ 1 ,000,000 prize or you can gamble it on
the flip of a coin. If the coin comes up heads, you end up with nothing, but if it comes up tails,
you get $3,000,000. If you're like most people, you would decline the gamble and pocket the
million. Are you being irrational?

Assuming you believe that the coin is fair, the expected monetary value (EMV) of the
gamble is ±($0) + ^($3,000,000) = $1,500,000, and the EMV of taking the original prize is of
course $1 ,000,000, which is less. But that does not necessarily mean that accepting the gamble
is a better decision. Suppose we use S,, to denote the state of possessing total wealth $n, and
that your current wealth is $k. Then the expected utilities of the two actions of accepting and
declining the gamble are

EU(Accept) = £
EU (Decline) = 1,000.000)

To determine what to do, we need to assign utilities to the outcome states. Utility is not directly
proportional to monetary value because the utility — the positive change in lifestyle — for your
first million is very high (or so we are told), whereas the utility for additional millions is much
smaller. Suppose you assign a utility of 5 to your current financial status (S^), a 10 to the state
S/t+3.ooo.ooo> and an 8 to the state S&+ 1,000.000- Then the rational action would be to decline, because
the expected utility of accepting is only 7.5 (less than the 8 for declining). On the other hand,
suppose that you happen to have $500,000,000 in the bank already (and appear on game shows
just for fun, one assumes). In this case, the gamble is probably acceptable, provided that you
prefer more money to less, because the additional benefit of the 503rd million is probably about
the same as that of the 501st million.

In 1738, long before television game shows, Bernoulli came up with an even more com-
pelling example, known as the St. Petersburg paradox. Suppose you are offered a chance to play
a game in which a fair coin is tossed repeatedly until it comes up heads. If the first heads appears
on the nth toss, you win 2" dollars. How much would you pay for a chance to play this game?

This despite the assurances of a well-known song to the effect that the best things in life are free.



I
Section 16.3. Utility Functions 477

The probability of the first head showing up on the nth toss is 1/2", so the expected monetary
value (EMV) of this game is

EMV(St.P.) = P(Headsi)MV(HeadSi) = ̂ -2'' = - + - + - + • • • = DO

Thus, an agent who is trying to maximize its expected monetary gain should be willing to pay
any finite sum for a chance to play this game. Somehow this does not seem rational to most
people. Bernoulli resolved the alleged paradox by positing that the utility of money is measured
on a logarithmic scale (at least for positive amounts):

U(Sk+n) = log2n ( fo rn>0)
With this utility function, the expected utility of the game is 2:

1 1 7 3
EU(St.P.) = P(Heads,)U(HeadSi) = 7 Iog2

 2' = + + + " ' = 2

which means that a rational agent with the given utility scale should be willing to pay up to $4
for a chance to play the game, because U(S/t+4) = Iog2 4 = 2.

Bernoulli chose Iog2 as the utility function just to make this problem work out. However,
in a pioneering study of actual utility functions, Gray son ( 1 960) found an almost perfect fit to the
logarithmic form. One particular curve, for a certain Mr. Beard, is shown in Figure 16.1 (a). The
data obtained for Mr. Beard's preferences are consistent with a utility function

U(Sk+n) = -263.31 + 22.09 log(n + 150,000)
for the range between n = -$150, 000 and n = $800, 000.

We should not assume that this is the definitive utility function for monetary value, but
it is likely that most people have a utility function that is concave for positive wealth. Going
into debt is usually considered disastrous, but preferences between different levels of debt can
display a reversal of the concavity associated with positive wealth. For example, someone already

+u +u

-150.000

+$
800,000

(a) (b)

Figure 16.1 The utility of money, (a) Empirical data for Mr. Beard over a limited range, (b)
A typical curve for the full range.



478 Chapter 16. Making Simple Decisions

RISK-AVERSE

RISK-SEEKING
CERTAINTY
EQUIVALENT

INSURANCE
PREMIUM

RISK-NEUTRAL

$ 10,000,000 in debt might well accept a gamble on a fair coin with a gain of $ 10,000,000 for heads
and a loss of $20,000,000 for tails.4 This yields the S-shaped curve shown in Figure 16.1(b).

If we restrict our attention to the positive part of the curves, where the slope is decreasing,
then for any lottery L, the utility of being faced with that lottery is less than the utility of being
handed the expected monetary value of the lottery as a sure thing:

U(SL) < U(SEMV(L))

That is, agents with curves of this shape are risk-averse: they prefer a sure thing with a payoff
that is less than the expected monetary value of a gamble. On the other hand, in the "desperate"
region at large negative wealth in Figure 16.1 (b), the behavior is risk-seeking. The value an agent
will accept in lieu of a lottery is called the certainty equivalent of the lottery. Studies have shown
that most people will accept about $400 in lieu of a gamble that gives $1000 half the time and
$0 the other half—that is, the certainty equivalent of the lottery is $400. The difference between
the expected monetary value of a lottery and its certainty equivalent is called the insurance
premium. Risk aversion is the basis for the insurance industry, because it means that insurance
premiums are positive. People would rather pay a small insurance premium than gamble with the
price of their house against the possibility of a fire. From the insurance company's point of view,
the risk is very low because the law of large numbers makes it almost certain that the claims it
pays will be substantially less than the premiums it receives.

Notice that for small changes in wealth relative to the current wealth, almost any curve
will be approximately linear. An agent that has a linear curve is said to be risk-neutral. For
gambles with small sums, therefore, we expect risk neutrality. In a sense, this justifies the
simplified procedure that proposed small gambles to assess probabilities and to justify the axioms
of probability in Chapter 14.

NORMALIZED
UTILITIES

STANDARD LOTTERY

Utility scales and utility assessment
The axioms of utility do not specify a unique utility function for an agent, given its preference
behavior. It is simple to see that an agent using a utility function

U'(S) = k]+k2U(S),
where k\ is a constant and k^ is any positive constant, will behave identically to an agent using
U(S), provided they have the same beliefs.5 The scale of utilities is therefore somewhat arbitrary.

One common procedure for assessing utilities is to establish a scale with a "best possible
prize" at U(S) = MT and a "worst possible catastrophe" at £7(5) - M J _ . Normalized utilities
use a scale with u±_ = 0 and MT = 1- Utilities of intermediate outcomes are assessed by asking
the agent to indicate a preference between the given outcome state S and a standard lottery
[p, MT ; (1 — P\ u j_ ]. The probability p is adjusted until the agent is indifferent between S and the
standard lottery. Assuming normalized utilities, the utility of S is given by p.

In medical, transportation, and environmental decision problems, among others, people's
lives are at stake. In such cases, MJ_ is the value assigned to immediate death (or perhaps many
4 Such behavior might be called desperate, but it is nonetheless perfectly rational if one is already in a desperate situation.
5 In Chapter 5, we saw that move choice in deterministic games is unchanged by any monotonic transformation of the
evaluation function, but in backgammon, where positions are lotteries, only linear transformations preserve move choice.



Section 16.3. Utility Functions 479

HUMAN JUDGMENT AND FALLIBILITY

Decision theory is a normative theory: it describes how a rational agent should
act. The application of economic theory would be greatly enhanced if it were also a
descriptive theory of actual human decision making. However, there is experimental
evidence indicating that people systematically violate the axioms of utility theory.
An example is given by the psychologists Tversky and Kahneman (1982), based on
an example by the economist Allais (1953). Subjects in this experiment are given a
choice between lotteries A and B, and then between C and D:

A : 80% chance of $4000 C : 20% chance of $4000
B : 100% chance of $3000 D : 25% chance of $3000

The majority of subjects choose B over A and C over D. But if we assign £/($0) = 0,
then the first of these choices implies that 0.8f/($4000) < t/($3000), whereas the
second choice implies exactly the reverse. In other words, there seems to be no utility
function that is consistent with these choices. One possible conclusion is that humans
are simply irrational by the standards of our utility axioms. An alternative view is that
the analysis does not take into account regret—the feeling that humans know they
would experience if they gave up a certain reward (B) for an 80% chance at a higher
reward, and then lost. In other words, if A is chosen, there is a 20% chance of getting
no money and feeling like a complete idiot.

Kahneman and Tversky go on to develop a descriptive theory that explains how
people are risk-averse with high-probability events, but are willing to take more risks
with unlikely payoffs. The connection between this finding and AI is that the choices
our agents can make are only as good as the preferences they are based on. If our
human informants insist on contradictory preference judgments, there is nothing our
agent can do to be consistent with them.

Fortunately, preference judgments made by humans are often open to revision
in the light of further consideration. In early work at Harvard Business School on
assessing the utility of money, Keeney and Raiffa (1976, p. 210) found the foil owing:

A great deal of empirical investigation has shown that there is a serious deficiency
in the assessment protocol. Subjects tend to be too risk-averse in the small and
therefore . . . the fitted utility functions exhibit unacceptably large risk premiums
for lotteries with a large spread. . . . Most of the subjects, however, can reconcile
their inconsistencies and feel that they have learned an important lesson about how
they want to behave. As a consequence, some subjects cancel their automobile
collision insurance and take out more term insurance on their lives.

Even today, human (ir)rationality is the subject of intensive investigation.



480 Chapter 16. Making Simple Decisions

MICROMORT

QALY

deaths). Although nobody feels comfortable with putting a value on human life, it is a fact that
trade-offs are made all the time. Aircraft are given a complete overhaul at intervals determined
by trips and miles flown, rather than after every trip. Car bodies are made with relatively thin
sheet metal to reduce costs, despite the decrease in accident survival rates. Leaded fuel is still
widely used even though it has known health hazards. Paradoxically, a refusal to "put a monetary
value on life" means that life is often undervalued. Ross Shachter relates an experience with a
government agency that commissioned a study on removing asbestos from schools. The study
assumed a particular dollar value for the life of a school-age child, and argued that the rational
choice under that assumption was to remove the asbestos. The government agency, morally
outraged, rejected the report out of hand. It then decided against asbestos removal.

Some attempts have been made to find out the value that people place on their own lives.
Two common "currencies"6 used in medical and safety analysis are the micromort (a one in a
million chance of death) and the QALY, or quality-adjusted life year (equivalent to a year in good
health with no infirmities). A number of studies across a wide range of individuals have shown
that a micromort is worth about $20 (1980 dollars). We have already seen that utility functions
need not be linear, so this does not imply that a decision maker would kill himself for $20 million.
Again, the local linearity of any utility curve means that micromort and QALY values are useful
for small incremental risks and rewards, but not necessarily for large risks.

16.4 MULTIATTRIBUTE UTILITY FUNCTIONS

MULTIATTRIBUTE
UTILITY THEORY

REPRESENTATION
THEOREMS

Decision making in the field of public policy involves both millions of dollars and life and death.
For example, in deciding what levels of a carcinogenic substance to allow into the environment,
policy makers must weigh the prevention of deaths against the economic hardship that might
result from the elimination of certain products and processes. Siting a new airport requires
consideration of the disruption caused by construction; the cost of land; the distance from centers
of population; the noise of flight operations; safety issues arising from local topography and
weather conditions; and so on. Problems like these, in which outcomes are characterized by two
or more attributes, are handled by multiattribute utility theory, or MAUT.

We will call the attributes X\, X2, and so on; their values will be x \ , X 2 , and so on; and a
complete vector of attribute values will be x = (x\,x2, ...}. Each attribute is generally assumed
to have discrete or continuous scalar values. For simplicity, we will assume that each attribute is
defined in such a way that, all other things being equal, higher values of the attribute correspond to
higher utilities. For example, if we choose as an attribute in the airport problem AbsenceOfNoise,
then the greater its value, the better the solution. In some cases, it may be necessary to subdivide
the range of values so that utility varies monotonically within each range.

The basic approach adopted in multiattribute utility theory is to identify regularities in the
preference behavior we would expect to see, and to use what are called representation theorems

(l We use quotation marks because these measures are definitely not currencies in the standard sense of being exchange-
able for goods at constant rates regardless of the current "wealth" of the agent making the exchange.



Section 16.4. Multiattribute utility functions 481

to show that an agent with a certain kind of preference structure has a utility function

U(xi,...,xa)=f\fi(xi),...,fn(xn)]

where/ is, we hope, a simple function such as addition. Notice the similarity to the use of belief
networks to decompose the joint probability of several random variables.

Dominance
Suppose that airport site Si costs less, generates less noise pollution, and is safer than site S2. One

STRICT DOMINANCE would not hesitate to reject S2. We say that there is strict dominance of Si over S2. In general,
if an option is of lower value on all attributes than some other option, it need not be considered
further. Strict dominance is often very useful in narrowing down the field of choices to the real
contenders, although it seldom yields a unique choice. Figure 16.2(a) shows a schematic diagram
for the two-attribute case.

X2 X2

l This region
1 dominates A

°D

-*-x.

(a) (b)

Figure 16.2 Strict dominance, (a) Deterministic: Option A is strictly dominated by B but not
by C or D. (b) Uncertain: A is strictly dominated by B but not by C.

STOCHASTIC
DOMINANCE

That is fine for the deterministic case, in which the attribute values are known for sure.
What about the general case, where the action outcomes are uncertain? A direct analogue of strict
dominance can be constructed, where, despite the uncertainty, all possible concrete outcomes for
Si strictly dominate all possible outcomes for S2. (See Figure 16.2(b) for a schematic depiction.)
Of course, this will probably occur even less often than in the deterministic case.

Fortunately, there is a more useful generalization called stochastic dominance, which
occurs very frequently in real problems. Stochastic dominance is easiest to understand in the
context of a single attribute. Suppose that we believe the cost of siting the airport at Si to be
normally distributed around $3.7 billion, with standard deviation $0.4 billion; and the cost at $2 to
be normally distributed around $4.0 billion, with standard deviation $0.35 billion. Figure 16.3(a)
shows these distributions, with cost plotted as a negative value. Then, given only the information



482 Chapter 16. Making Simple Decisions

1.7

1

>- 0-8

1 0.6

1 0.4

0.2

0

• \ si; / •, \ 52 ------ _

' / '• \

6 .5.5 .5 .4,5 .4 .3.5 .3 .2.5 -2

1

0.8

£ 0.6
.£

t 0.4

0.2

0
-

' ' ' ' .. • *,,-' ' '/'

/

/ / SI ——
/ /' S2

6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
Negative cost Negative cost

(a) (b)

Figure 16.3 Stochastic dominance, (a) Si stochastically dominates 82 on cost, (b) Cumulative
distributions for the negative cost of Si and 82.

that utility decreases with cost, we can say that Si stochastically dominates 82 — that is, £2 can be
discarded. It is important to note that this does not follow from comparing the expected costs.
For example, if we knew the cost of S\ to be exactly $3.7 billion, then we would be unable to
make a decision without additional information on the utility of money.7

The exact relationship between the attribute distributions needed to establish stochastic
dominance is best seen by examining the cumulative distributions, shown in Figure 16.3(b). The
cumulative distribution measures the probability that the cost is less than or equal to any given
amount — that is, it integrates the original distribution. If the cumulative distribution for S\ is
always to the right of the cumulative distribution for 52, then stochastically speaking 5i is cheaper
than ST. Formally, if two actions A i and A 2 lead to probability distributions /7i(X) and pi(x) on
attribute A", then A \ stochastically dominates A 2 on X if

p\(x')dx> p2(x')dx

If an action is stochastically dominated by another action on all attributes, then it can be discarded.
The stochastic dominance condition might seem rather technical, and perhaps not so easy

to determine without extensive probability calculations. In fact, it can be decided very easily in
many cases. Suppose, for example, that the construction cost depends on the distance to centers
of population. The cost itself is uncertain, but the greater the distance, the greater the cost. If
5i is less remote than 52, then Si will dominate S2 on cost. Although we will not present them
here, there exist algorithms for propagating this kind of qualitative information among uncertain
variables in qualitative probabilistic networks, enabling a system to make rational decisions
based on stochastic dominance without ever needing to use numerical probabilities or utilities.

7 It might seem odd that more information on the cost of Si could make the agent less able to decide. The paradox is
resolved by noting that the decision reached in the absence of exact cost information is less likely to be correct.



Section 16.4. Multiattribute utility functions 483

Preference structure and multiattribute utility
Suppose we have n attributes, each of which has m distinct possible values. This gives a set of
possible outcomes of size m". In the worst case, the agent's utility function yields an arbitrary set
of preferences over these mn states with no regularities beyond those implied by the basic axioms
of utility. Multiattribute utility theory is based on the supposition that most utility functions have
much more structure than that, allowing us to use simplified decision procedures.

PREFERENCE
INDEPENDENCE

MUTUAL
PREFERENTIAL
INDEPENDENCE

.

Preferences without uncertainty
Let us begin by considering the case in which there is no uncertainty in the outcomes of actions,
and we are just considering preferences between concrete outcomes. In this case, the basic
regularity in preference structure is called preference independence. Two attributes X\ and
Xi are preferentially independent of a third attribute XT, if the preference between outcomes
(x\,X2,x-}) and (x>

},x>
2,x^) does not depend on the particular value .Q for attribute X^.

Going back to the airport example, where we have (among other attributes) Noise, Cost,
and Deaths to consider, one may propose that Noise and Cost are preferentially independent of
Deaths. For example, if we prefer a state with 20,000 people residing in the flight path and a
construction cost of $4 billion to a state with 70,000 people residing in the flight path and a cost of
$3.7 billion when the safety level is 0.06 deaths per million passenger miles in both cases, then we
would have the same preference when the safety level is 0.13 or 0.01; and the same independence
would hold for preferences between any other pair of values for Noise and Cost. It is also
apparent that Cost and Deaths are preferentially independent of Noise, and that Noise and Deaths
are preferentially independent of Cost. We say that the set of attributes {Noise, Cost, Deaths}
exhibits mutual preferential independence (MPI). MPI says that whereas each attribute may
be important, it does not affect the way in which one trades off the other attributes against each
other.

Mutual preferential independence is something of a mouthful, but thanks to a remarkable
theorem due to the economist Debreu (1960), we can derive from it a very simple form for the
agent's value function: Ifattributes X\, ..., Xn are mutually preferentially independent, then the
agent's preference behavior can be described as maximizing the function

V(S) =

where each V,- is a value function referring only to the attribute X,. For example, it might well be
the case that the airport decision can be made using a value function

V(S) - -Noise x 104 - Cost - Deaths x 1012

A value function of this type is called an additive value function. Additive functions are an
extremely natural way to describe an agent's value function, and are valid in many real-world
situations. Even when MPI does not strictly hold, as might be the case at extreme values of
the attributes, an additive value function can still provide a good approximation to the agent's
preferences. This is especially true when the violations of MPI occur in portions of the attribute
ranges that are unlikely to occur in practice.



484 Chapter 16. Making Simple Decisions

UTILITY
INDEPENDENCE

MUTUALLY UTILITY-
INDEPENDENT

MULTIPLICATIVE
UTILITY FUNCTION

Preferences with uncertainty

When uncertainty is present in the domain, we will also need to consider the structure of
preferences between lotteries and to understand the resulting properties of utility functions,
rather than just value functions. The mathematics of this problem can become quite complicated,
so we will give just one of the main results to give a flavor of what can be done. The reader is
referred to Keeney and Raiffa (1976) for a thorough survey of the field.

The basic notion of utility independence extends preference independence to cover lot-
teries: a set of attributes X is utility-independent of a set of attributes Y if preferences between
lotteries on the attributes in X are independent of the particular values of the attributes in Y. A set
of attributes is mutually utility-independent (MUI) if each subset is utility-independent of the
remaining attributes. Again, it seems reasonable to propose that the airport attributes are MUI.

MUI implies that the agent's behavior can be described using a multiplicative utility
function (Keeney, 1974). The general form of a multiplicative utility function is best seen by
looking at the case for three attributes. For simplicity, we will use t/, to mean [/,-(X,-(.s)):

U = k}U}+k2U2+kiUi + klk2 U\ U2 + k2k3 U2 U3 + k?,k\ U3 U\ + k\ k2k3 U{ U2 U3

Although this does not look very simple, it contains three single-attribute utility functions and
just three constants. In general, an w-attribute problem exhibiting MUI can be modelled using
n single-attribute utilities and n constants. Each of the single-attribute utility functions can
be developed independently of the other attributes, and this combination will be guaranteed to
generate the correct overall preferences. Additional assumptions are required to obtain a purely
additive utility function.

16.5 DECISION NETWORKS

In this section, we will look at a general mechanism for making rational decisions. The notation
INFLUENCE DIAGRAM is often called a influence diagram (Howard and Matheson, 1984), but we will use the more
DECISION NETWORK descriptive term decision network. Decision networks combine belief networks with additional

node types for actions and utilities. We will use the airport siting problem as an example.

CHANCE NODES

Representing a decision problem using decision networks
In its most general form, a decision network represents information about the agent's current
state, its possible actions, the state that will result from the agent's action, and the utility of that
state. It therefore provides a substrate for implementing utility-based agents of the type first
introduced in Section 2.3. Figure 16.4 shows a decision network for the airport siting problem.
It illustrates the three types of nodes used:

0 Chance nodes (ovals) represent random variables, just as they do in belief nets. The agent
may be uncertain about the construction cost, the level of air traffic and the potential for
litigation, as well as the Deaths, Noise, and total Cost variables, each of which also depends



Section 16.5. Decision Networks 485

DECISION NODES

UTILITY NODES

Figure 16.4 A simple decision network for the airport-siting problem.

ACTON-UTILITY

on the site chosen. Each chance node has associated with it a conditional probability table
(CPT) that is indexed by the state of the parent nodes. In decision networks, the parent
nodes can include decision nodes as well as chance nodes. Note that each of the current-
state chance nodes could be part of a large belief network for assessing construction costs,
air traffic levels, or litigation potential. For simplicity, these are omitted.

0 Decision nodes (rectangles) represent points where the decision-maker has a choice of
actions. In this case, the AirportSite action can take on a different value for each site under
consideration. The choice influences the cost, safety, and noise that will result. In this
chapter, we will assume that we are dealing with a single decision node. Chapter 17 deals
with cases where more than one decision must be made.

<) Utility nodes (diamonds) represent the agent's utility function.8 The utility node has as
parents all those variables describing the outcome state that directly affect utility. The table
associated with a utility node is thus a straightforward tabulation of the agent's utility as a
function of the attributes that determine it. As with canonical CPTs, multiattribute utility
functions can be represented by a structured description rather than a simple tabulation.
A simplified form is also used in many cases. The notation remains identical, but the

chance nodes describing the outcome state are omitted. Instead, the utility node is connected
directly to the current-state nodes and the decision node. In this case, rather than representing
a utility function on states, the table associated with the utility node represents the expected
utility associated with each action, as defined in Equation (16.1). We therefore call such tables
action-utility tables. Figure 16.5 shows the action-utility representation of the airport problem.

Notice that because the Noise, Deaths, and Cost chance nodes in Figure 16.4 refer to future
states, they can never have their values set as evidence variables. Thus, the simplified version
8 These nodes are often called value nodes in the literature. We prefer to maintain the distinction between utility and
value functions, as discussed earlier, because the outcome state may represent a lottery.



486 Chapter 16. Making Simple Decisions

Figure 16.5 A simplified representation of the airport-siting problem. Chance nodes corre-
sponding to outcome states have been factored out.

that omits these nodes can be used whenever the more general form can be used. Although the
simplified form contains fewer nodes, the omission of an explicit description of the outcome of
the siting decision means that it is less flexible with respect to changes in circumstances. For
example, in Figure 16.4, a change in aircraft noise levels can be reflected by a change in the
conditional probability table associated with the Noise node, whereas a change in the weight
accorded to noise pollution in the utility function can be reflected by a change in the utility table.
In the action-utility diagram, Figure 16.5, on the other hand, all such changes have to be reflected
by changes to the action-utility table. Essentially, the action-utility formulation is a compiled
version of the original formulation.

Evaluating decision networks
Actions are selected by evaluating the decision network for each possible setting of the decision
node. Once the decision node is set, it behaves exactly like a chance node that has been set as an
evidence variable. The algorithm for evaluating decision networks is the following:

1. Set the evidence variables for the current state.
2. For each possible value of the decision node:

(a) Set the decision node to that value.
(b) Calculate the posterior probabilities for the parent nodes of the utility node, using a

standard probabilistic inference algorithm.
(c) Calculate the resulting utility for the action.

3. Return the action with the highest utility.
This is a straightforward extension of the belief network algorithm, and can be incorporated
directly into the agent design given in Figure 14.1. We will see in Chapter 17 that the possibility:
of executing several actions in sequence makes the problem much more interesting.



Section 16.6. The Value of Information 487

16.6 THE VALUE OF INFORMATION____________________

In the preceding analysis, we have assumed that all relevant information, or at least all available
information, is provided to the agent before it makes its decision. In practice, this is hardly ever
the case. One of the most important parts of decision making is knowing what questions to ask.

I :i For example, a doctor cannot expect to be provided with the results of all possible diagnostic tests
and questions at the time a patient first enters the consulting room.9 Tests are often expensive and
sometimes hazardous (both directly and because of associated delays). Their importance depends
on two factors: whether the different possible outcomes would make a significant difference to
the optimal course of action, and the likelihood of the various outcomes.

TNHFE°oRRYATION VALUE This section describes information value theory, which enables an agent to choose what
information to acquire. The acquisition of information is achieved by sensing actions, as
described in Chapter 13. Because the agent's utility function seldom refers to the contents of the
agent's internal state, whereas the whole purpose of sensing actions is to affect the internal state,
we must evaluate sensing actions by their effect on the agent's subsequent actions. Information
value theory is therefore a special kind of sequential decision making.

A simple example
Suppose an oil company is hoping to buy one of n indistinguishable blocks of ocean drilling
rights. Let us assume further that exactly one of the blocks contains oil worth C dollars, and that
the price of each block is C/n dollars. If the company is risk-neutral, then it will be indifferent
between buying a block or not.

Now suppose that a seismologist offers the company the results of a survey of block number
3, which indicates definitively whether the block contains oil. How much should the company
be willing to pay for the information? The way to answer this question is to examine what the
company would do if it had the information:

• With probability 1/n, the survey will show that block 3 contains the oil. In this case, the
company will buy block 3 for C/n dollars, and make a profit of C — C/n = (n — l)C/«
dollars.

• With probability (n — \ )/«, the survey will show that the block contains no oil, in which
case the company will buy a different block. Now the probability of finding oil in one of
the other blocks changes from l/« to \/(n - 1), so the company makes an expected profit
of Cl(n - 1) - C/n = C/n(n - 1) dollars.

Now we can calculate the expected profit given the survey information:
1 (n-\)C n-1 C
- x ————— + ——— x ———- = C/n
n n n n(n — 1)

Therefore, the company should be willing to pay the seismologist up to C/n dollars for the
information: the information is worth as much as the block itself.
9 In the United States, the only question that is always asked beforehand is whether the patient has insurance.



488 Chapter 16. Making Simple Decisions

The value of information derives from the fact that with the information, one's course of
action may change to become more appropriate to the actual situation. One can discriminate
according to the situation, whereas without the information one has to do what's best on average
over the possible situations. In general, the value of a given piece of information is defined to be
the difference in expected value between best actions before and after information is obtained.

VALUE OF PERFECT
INFORMATION

A general formula
It is simple to derive a general mathematical formula for the value of information. Usually, we
assume that exact evidence is obtained about the value of some random variable Ej, so the phrase
value of perfect information (VPI) is used. Let the agent's current knowledge be E. Then the
value of the current best action a is defined by

EU(a\E) = max U(Resultt(A)) P(Resulti(A)\E,Do(A))

and the value of the new best action (after the new evidence Ej is obtained) will be

EU(aEj = max U(Resulti(A)) P(Resulti(A)\E,Do(A),Ej)

But Ej is a random variable whose value is currently unknown, so we must average over all
possible values ejk that we might discover for Ej, using our current beliefs about its value. The
value of discovering Ej is then denned as

VPIE(Ej) = j ^P(Ej = ejk\E)EU(aejt\E,Ej = ejk) ] - EU(a\E)
\ k I

In order to get some intuition for this formula, consider the simple case where there are
only two actions A i and A2 from which to choose. Their current expected utilities are U\ and U2.
The information Ej will yield some new expected utility U( and U'2 for the actions, but before
we obtain Ej, we will have some probability distributions over the possible values of V( and U2
(which we will assume are independent).

Suppose that A\ and A2 represent two different routes through a mountain range in winter.
A i is a nice, straight highway through a low pass, and A2 is a winding dirt road over the top. Just
given this information, A i is clearly preferable, because it is quite likely that the second route is
blocked by avalanches, whereas it is quite unlikely that the first route is blocked by traffic. U\ is
therefore clearly higher than U2. It is possible to obtain satellite reports Ej on the actual state of
each road, which would give new expectations U{ and U2 for the two crossings. The distributions
for these expectations are shown in Figure 16.6(a). Obviously, in this case, it is not worth the
expense of obtaining satellite reports, because it is so unlikely that they will cause a change of
plan. With no change of plan, information has no value.

Now suppose that we are choosing between two different winding dirt roads of slightly
different lengths, and we are carrying a seriously injured passenger. Then, although U\ and 1/2
may be quite close, the distributions of U( and U2 are very broad. There is a significant possibility
that the second route will turn out to be clear whereas the first is blocked, and in this case the
difference in utilities will be very high. The VPI formula indicates that it might be worth getting
the satellite reports. This situation is shown in Figure 16.6(b).



Section 16.6. The Value of Information 489

Now suppose that we are choosing between the two dirt roads in summertime, when
blockage by avalanches is unlikely. In this case, satellite reports might show one route to be more
scenic than the other because of flowering alpine meadows, or perhaps wetter because of errant
streams. It is therefore quite likely that we would change our plan if we had the information. But
in this case, the difference in value between the two routes is still likely to be very small, so we
will not bother to obtain the reports. This situation is shown in Figure 16.6(c).

In summary, we can say that information has value to the extent that it is likely to cause a
change of plan, and to the extent that the new plan will be significantly better than the old plan.

P ( U I E , ) P ( U I E j ) P t U I E J

(a)

U2 U,

(b)

Figure 16.6 Three generic cases for the value of information. In (a), A\ will almost certainly
remain superior to A I , so the information is not needed. In (b), the choice is unclear and the
information is crucial. In (c), the choice is unclear but because it makes little difference, the
information is less valuable.

Properties of the value of information
One might ask if it is possible for information to be deleterious—can it actually have negative
expected value? Intuitively, one should expect this to be impossible. After all, one could in the
worst case just ignore the information and pretend one has never received it. This is confirmed by
the following theorem, which applies to any decision-theoretic agent: The value of information
is nonnegative:

Vj,E VPIE(Ej)>0

proof as an exercise (Exercise 16.11). It is important to remember that VPI depends on the
current state of information, which is why it is subscripted. It can change as more information is
acquired. In the extreme case, it will become zero if the variable in question already has a known



490 Chapter 16. Making Simple Decisions

value. Thus, VPI is not additive. That is,

VPIE(Ej, Ek) 4 VPIE(Ej) + VPlE(Ek) (in general)

It is, however, order-independent, which should be intuitively obvious. That is,

VPIE(Ej,Ek) = VPIE(Ej) + VPIE.Ej(Ek) = VPIK(Ek) + VPIEA(Ej)
Order independence distinguishes sensing actions from ordinary actions, and simplifies the
problem of calculating the value of a sequence of sensing actions.

Implementing an information-gathering agent
As we mentioned earlier, a sensible agent should ask questions of the user in a reasonable order,
should avoid asking questions that are irrelevant, should take into account the importance of each
piece of information in relation to its cost, and should stop asking questions when appropriate.
All of these capabilities can be achieved by using the value of information as a guide.

Figure 16.7 shows the overall design of an agent that can gather information intelligently
before acting. For now, we will assume that with each observable evidence variable £,-, there
is an associated cost, Cost(Ef), which reflects the cost of obtaining the evidence through tests,
consultants, questions, or whatever. The agent requests what appears to be the most valuable
piece of information, compared to its cost. We assume that the result of the action Request(Ej) is
that the next percept provides the value of £}. If no observation is worth its cost, the agent selects
a non-information-gathering action.

MYOPIC

function INFORMATION-GATHERING-AGENT( percept) returns an action
static: D, a decision network

integrate percept into D
j <— the value that maximizes VPI(Ej) — Cost(Ej)
ifVPf(Ej) > Cost(Ej)

then return REQUEST(£,)
else return the best action from D

Figure 16.7 Design of a simple information-gathering agent. The agent works by repeatedly
selecting the observation with the highest information value, until the costs of observing are
greater than the benefits.

The agent algorithm we have described implements a form of information gathering that
is called myopic. This is because it uses the VPI formula short-sightedly, calculating the value
of information assuming that only a single evidence variable will be acquired. If there is no
single evidence variable that will help a lot, a myopic agent may hastily take an action when
it would have been better to request two or more variables first, and then take action. Myopic
control is based on the same heuristic idea as greedy search, and often works well in practice.
(For example, it has been shown to outperform expert physicians in selecting diagnostic tests.)



Section 16.7. Decision-Theoretic Expert Systems 491

However, a perfectly rational information-gathering agent should consider all possible sequences
of information requests terminating in an external action. Because VPI is order-independent,
this is somewhat simplified by the fact that any permutations of a given sequence of information
requests has the same value. Thus, one need consider only subsets of the possible information
requests, without worrying about ordering.

16.7 DECISION-THEORETIC EXPERT SYSTEMS

DECISION ANALYSIS The field of decision analysis, which evolved in the 1950s and 1960s, studies the application of
decision theory to actual decision problems. It is used to help make rational decisions in important
domains where the stakes are high, such as business, government, law, military strategy, medical
diagnosis and public health, engineering design, and resource management. The process involves
a careful study of the possible actions and outcomes as well as the preferences placed on each

DECISION MAKER outcome. It is traditional in decision analysis to talk about two roles: the decision maker states
DECISION ANALYST preferences between outcomes, and the decision analyst enumerates the possible actions and

outcomes and elicits preferences from the decision maker to determine the best course of action.
Until the early 1980s, the use of computers in decision analysis was quite limited, and the main
purpose of analysis was seen as helping humans to make decisions that actually reflect their own
preferences.

As we discussed in Chapter 15, early expert system research concentrated on answering
questions, rather than making decisions. Those systems that did recommend actions rather
than providing opinions on matters of fact generally did so using condition-action rules, rather
than with explicit representations of outcomes and preferences. The eventual emergence of
belief networks made it possible to build large-scale systems that generated sound probabilistic
inferences from evidence. The addition of decision networks means that expert systems can be
developed that recommend optimal decisions, reflecting the preferences of the user as well as the
available evidence.

There are many advantages that accrue from the inclusion of explicit utility models and
calculations in the expert system framework. The expert benefits from the process of making
his or her (or the client's) preferences explicit, and the system can automate the action selection
process as well as the process of drawing conclusions from evidence. A system that incorporates
utilities can avoid one of the most common pitfalls associated with the consultation process:
confusing likelihood and importance. A common strategy in early medical expert systems,
for example, was to rank possible diagnoses in order of likelihood, and report the most likely.
Unfortunately, this can be disastrous, because it will miss cases of relatively rare, but treatable,
conditions that are easily confused with more common diseases. The confusion of Hodgkin's
disease (a form of cancer) with mononucleosis (a mild and very common viral infection) is a
classic case in point. (For the majority of patients in general practice, moreover, the most likely
diagnosis is "There's nothing wrong with you.") Obviously, a testing or treatment plan should
depend both on probabilities and utilities. Finally, the availability of utility information helps in
the knowledge engineering and consultation process, as we now explain.



492 Chapter 16. Making Simple Decisions

The knowledge engineering process required for building and using decision-theoretic
expert system is as follows:

• Determine the scope of the problem. Determine what are the possible actions, outcomes,
and evidence to consider. Normally, the analyst will have to interview one or more experts
in the domain to discover the important factors. Note that we recommended the same sort
of determination as the first step of knowledge engineering in Section 8.2.

• Lay out the topology. Once all the relevant factors are determined, we need to know
which ones are influenced by which others. It is particularly important to understand
which aspects of the outcome state determine its utility.

• Assign probabilities. In decision networks, the conditional probabilities reflect not only
causal influences between random variables, but also the effects of actions.

• Assign utilities. A utility function is often assessed using the techniques described earlier.
Computer programs exist that automate the task of extracting preferences for various lotter-
ies and constructing a utility function. Identifying the preference structure of multiattribute
utility functions is also vital in reducing the dimensionality of the assessment problem. It
can reduce the number of questions exponentially.

• Enter available evidence. For each specific case in which the system is used, there may
be some initial evidence available.

• Evaluate the diagram. Calculate the optimal action according to the existing evidence.

• Obtain new evidence. Calculate the value of information, comparing it with the costs of
acquisition, and perform the appropriate observations, if any. Notice that purely inferential
expert systems, without utilities, cannot decide what new evidence to acquire.

• Perform sensitivity analysis. This important step checks to see if the best decision is
sensitive to small changes in the assigned probabilities and utilities by systematically
varying these parameters and running the evaluation again. If small changes lead to
significantly different decisions, then it may be worthwhile to spend more resources to
collect better data. If all variations lead to the same decision, then the user will have more
confidence that it is the right decision.

Sensitivity analysis is particularly important, because one of the main criticisms of probabilistic |
approaches to expert systems is that it is too difficult to assess the numerical probabilities
required. Sensitivity analysis often reveals that many of the numbers need only be specified very
approximately—within, say, 0.2 of the value that might be obtained from an exhaustive analysis.
Some systems allow probabilities to be specified as ranges. This leads to ranges for the utilities of
actions. If the range of one action dominates the ranges of all others, then no further probability .
assessment need occur. For example, it might be the case that the optimal siting of an airport is
insensitive to the predicted air traffic over a large range of values, given the system's beliefs about
the other relevant factors, so that the user can remain unruffled by his or her lack of expertise on |
air traffic prediction.



Section 16.8. Summary 493

16.8 SUMMARY______________________________

This chapter shows how to combine utility theory with probability to enable an agent to select
actions that will maximize its expected performance.

• Probability theory describes what an agent should believe on the basis of evidence, utility
theory describes what an agent wants, and decision theory puts the two together to describe
what an agent should do.

• We can use decision theory to build a system that makes decisions by considering all
possible actions and choosing the one that leads to the best expected outcome. Such a
system is known as a rational agent.

• Utility theory shows that an agent whose preferences between lotteries are consistent with
a set of simple axioms can be described as possessing a utility function; furthermore, the
agent selects actions as if maximizing its expected utility.

• Multiattribute utility theory deals with utilities that depend on several distinct attributes
of states. Stochastic dominance is a particularly useful technique for making unambiguous
decisions even without precise utility values for attributes.

• Decision networks provide a simple formalism for expressing and solving decision prob-
lems. They are a natural extension of belief networks, containing decision and utility nodes
in addition to chance nodes.

• Sometimes solving a problem involves finding more information before making a decision.
The value of information is defined as the expected improvement in utility compared to
making a decision without the information.

• Expert systems that incorporate utility information have additional capabilities compared
to pure inference systems. In addition to being able to make decisions, they can decide
to acquire information based on its value, and they can calculate the sensitivity of their
decisions to small changes in probability and utility assessments.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
One of the earliest applications of the principle of maximum expected utility (although a deviant
one involving infinite utilities) was Pascal's Wager, first published as part of the Port-Royal Logic
(Arnauld, 1662). The derivation of numerical utilities from preference (utility ordering) was first
carried out by Ramsey (1931); the axioms for preference in the present text are closer in form to
those rediscovered in Theory of Games and Economic Behavior (Von Neumann and Morgenstern,
1944). A good presentation of these axioms, in the course of a discussion on risk preference, is
given by Howard (1977). Ramsey had derived subjective probabilities (not just utilities) from an
agent's preferences; Savage (1954) and Jeffrey (1983) carry out more recent constructions of this
kind. Von Winterfeldt and Edwards (1986) provide a modern perspective on decision analysis
and its relationship to human preference structures.



494 Chapter 16. Making Simple Decisions

The St. Petersburg paradox was first presented by Bernoulli (1738). Jeffrey (1983) presents
a resolution of the paradox based not on logarithmic utility functions, but on denying that playing
the game is a real possibility (because no one could have a bank from which rewards of arbitrarily
high utility could be paid out).

The micromort utility measure is discussed by Howard (1989). QALYs are much more
widely used in medical and social policy decision-making than are micromorts; see (Russell,
1990) for a typical example of an argument for a major change in public health policy on grounds
of increased expected utility measured in QALYs.

The book Decisions with Multiple Objectives: Preferences and Value Trade-Offs (Keeney
and Raiffa, 1976) gives a thorough introduction to multiattribute utility theory. It describes early
computer implementations of methods for eliciting the necessary parameters for a multiattribute
utility function, and includes extensive accounts of real applications of the theory. In AI, the
principal reference for MAUT is Wellman's (1985) paper, which includes a system called URP
(Utility Reasoning Package) that can use a collection of statements about preference indepen-
dence and conditional independence to analyze the structure of decision problems. The use of
stochastic dominance together with qualitative probability models was investigated extensively
by Wellman (1988; 1990). Wellman and Doyle (1992) provide a preliminary sketch of how a
complex set of utility-independence relationships might be used to provide a structured model of
a utility function, in much the same way that belief networks provide a structured model of joint
probability distributions.

Decision theory has been a standard tool in economics, finance, and management science
since the 1950s. Until the 1980s, decision trees were the main tool used for representing simple
decision problems. Decision networks or influence diagrams were introduced by Howard and
Matheson (1984), although the underlying concepts were developed much earlier by a group
(including Howard and Matheson) at SRI (Miller et al., 1976). Howard and Matheson's method
involved the derivation of a decision tree from a decision network, but in general the tree is of
exponential size. Shachter (1986) developed a method for making decisions based directly on a
decision network, without the creation of an intermediate decision tree. The collection by Oliver
and Smith (1990) has a number of useful articles on decision networks, as does the 1990 special
issue of the journal Networks. Papers on decision networks and utility modelling also appear
regularly in the journal Management Science.

Information value theory was first analyzed by Ron Howard (1966). His paper ends with
the following remark:

If information value theory and associated decision theoretic structures do not in the future
occupy a large part of the education of engineers, then the engineering profession will find
that its traditional role of managing scientific and economic resources for the benefit of man
has been forfeited to another profession.

To date, the implied revolution in managerial methods has not occurred, although as the use of
information value theory in systems such as Pathfinder becomes more widespread, it may yet
become part of every decision-maker's armory.

Surprisingly few AI researchers adopted decision-theoretic tools after the early applications
in medical decision making described in Chapter 14. One of the few exceptions was Jerry
Feldman, who applied decision theory to problems in vision (Feldman and Yakimovsky, 1974) and



Section 16.8. Summary 495

EXERCISES

planning (Feldman and Sproull, 1977). After the resurgence of interest in probabilistic methods
in AI in the 1980s, decision-theoretic expert systems gained widespread acceptance (Horvitz et
al., 1988)—in fact, from 1991 onward, the cover design of the journal Artificial Intelligence has
depicted a decision network, although some artistic license appears to have been taken with the
direction of the arrows.

16.1 (Adapted from David Heckerman.) This exercise concerns the Almanac Game, which is
used by decision analysts to calibrate numeric estimations. For each of the questions below, give
your best guess of the answer, that is, a number that you think is as likely to be too high as it is
to be too low. Also give your guess at a 25th percentile estimate, that is, a number that you think
has a 25% chance of being too high, and a 75% chance of being too low. Do the same for the
75th percentile. (Thus, you should give three estimates in all—low, median, and high—for each
question.)

a. Number of passengers who flew between New York and Los Angeles in 1989.
b. Population of Warsaw in 1992.
c. Year in which Coronado discovered the Mississippi River.
d. Number of votes received by Jimmy Carter in the 1976 presidential election,
e. Number of newspapers in the U.S. in 1990.
f. Height of Hoover Dam in feet,
g. Number of eggs produced in Oregon in 1985.
h. Number of Buddhists in the world in 1992.
i. Number of deaths due to AIDS in the U.S. in 1981.
j. Number of U.S. patents granted in 1901.

The correct answers appear after the last exercise for this chapter. From the point of view of
decision analysis, the interesting thing is not how close your median guesses came to the real
answers, but rather how often the real answer came within your 25% and 75% bounds. If it was
about half the time, then your bounds are accurate. But if you're like most people, you will be
more sure of yourself than you should be, and fewer than half the answers will fall within the
bounds. With practice, you can calibrate yourself to give realistic bounds, and thus be more
useful in supplying information for decision making. Try this second set of questions and see if
there is any improvement:

a. Year of birth of Zsa Zsa Gabor.
b. Maximum distance from Mars to the sun in miles.
c. Value in dollars of exports of wheat from the U.S. in 1992.
d. Tons handled by the port of Honolulu in 1991.
e. Annual salary in dollars of the governor of California in 1993.



496 Chapter 16. Making Simple Decisions

LEXICOGRAPHIC
PREFERENCE

f. Population of San Diego in 1990.
g. Year in which Roger Williams founded Providence, R.I.
h. Height of Mt. Kilimanjaro in feet.
i. Length of the Brooklyn Bridge in feet.
j. Number of deaths due to automobile accidents in the U.S. in 1992.

16.2 Tickets to the state lottery cost $1. There are two possible prizes: a $10 payoff with
probability 1/50, and a $1,000,000 payoff with probability 1/2,000,000. What is the expected
monetary value of a lottery ticket? When (if ever) is it rational to buy a ticket? Be precise—show
an equation involving utilities. You may assume that t/($10) = 10 x £/($!), but you may not
make any assumptions about {/($!, 000,000). Sociological studies show that people with lower
income buy a disproportionate number of lottery tickets. Do you think this is because they are
worse decision makers or because they have a different utility function?

16.3 Assess your own utility for different incremental amounts of money. Do this by running
a series of preference tests between some definite amount M\ and a lottery [p,M2', (1 — p), 0].
Choose different values of M\ 1 and A/2, and vary p until you are indifferent between the two
choices. Plot the resulting utility function.

16.4 Write a computer program to automate the process in Exercise 16.3. Try your program out
on several people of different net worth and political outlook. Comment on the consistency of your
results, both across individuals and within the set of choices made by a single individual.

16.5 It has sometimes been suggested that lexicographic preference is a form of rational
behavior that is not captured by utility theory. Lexicographic preferences rank attributes in some
order X i , ..., Xn, and treat each attribute as infinitely more important than attributes later in the
order. In choosing between two prizes, the value of attribute X, only matters if the prizes have
the same values for X\, ..., X,_ i . In a lottery, an infinitesimal probability of a tiny improvement
in a more important attribute is considered better than a dead certainty of a huge improvement in
a less important attribute. For example, in the airport-siting problem, it might be proposed that
preserving human life is of paramount importance, and therefore if one site is more dangerous
than another, it should be ruled out immediately, without considering the other attributes. Only
if two sites are equally safe should they be compared on other attributes such as cost.

a. Give a precise definition of lexicographic preference between deterministic outcomes.
b. Give a precise definition of lexicographic preference between lotteries.
c. Does lexicographic preference violate any of the axioms of utility theory? If so, give an

example. (Hint: consider pair-wise preference comparisons of three different possibilities.)
d. Suggest a set of attributes for which you might exhibit lexicographic preferences.

16.6 Show that if X{ and X2 are preferentially independent of X3, and X2 and X3 are preferentially
independent of X|, then it follows that X3 and Xi are preferentially independent of X2.

16.7 Encode the airport-siting problem as shown in Figure 16.4, provide reasonable probabilities
and utilities, and solve the problem for the case of choosing among three sites. What happens



Section 16.8. Summary 497

if changes in technology mean that each aircraft generates half as much noise? What if noise
avoidance becomes three times more important?

16.8 Repeat Exercise 16.7, using the action-utility representation shown in Figure 16.5.

16.9 For either of the airport-siting diagrams constructed in Exercises 16.7 and 16.8, to which
conditional probability table entry is the utility most sensitive, given the available evidence?

16.10 (Adapted from Pearl (1988).) A used-car buyer can decide to carry out various tests with
various costs (e.g., kick the tires, take the car to a qualified mechanic), and then, depending on
the outcome of the tests, decide which car to buy. We will assume that the buyer is deciding
whether to buy car c\ , that there is time to carry out at most one test, and that t [ is the test of c\
and costs $50.

A car can be in good shape (quality q+) or bad shape (quality q~), and the tests may help
to indicate what shape the car is in. Car c\ costs $1,500, and its market value is $2,000 if it is in
good shape; if not, $700 in repairs will be needed to make it in good shape. The buyer's estimate
is that c\ has a 70% chance of being in good shape.

a. Calculate the expected net gain from buying c\ , given no test.
b. Tests can be described by the probability that the car will pass or fail given that the car is

in good or bad shape. We have the following information:

Use Bayes' theorem to calculate the probability that the car will pass (or fail) its test, and
hence the probability that it is in good (or bad) shape given each possible test outcome.

c. Calculate the optimal decisions given either a pass or a fail, and their expected utilities.
d. Calculate the value of information of the test, and derive an optimal conditional plan for

the buyer.

16.11 Prove that the value of information is nonnegative, as stated in Section 16.6.

16.12 How much is a micromort worth to you? Devise a protocol to determine this.

The answers for Exercise 16.1 (where M stands for million): First set: 3M, 1.6M, 1541, 41M,
1611, 221, 649M, 295M, 132, 25546. Second set: 1917, 155M, 4500M, 11M, 120000, 1.1M,
1636, 19340,1595,41710.



17 MAKING COMPLEX
DECISIONS

In which we examine methods for deciding what to do today, given that we will have
a chance to act again tomorrow.

SEQUENTIAL
DECISION
PROBLEMS

In this chapter, we address the computational issues involved in making decisions. Whereas
Chapter 16 was concerned with single decision problems, in which the utility of each action's
outcome was well-known, in this chapter we will be concerned with sequential decision prob-
lems, where the agent's utility depends on a sequence of decisions. Sequential decision problems,
which include utilities, uncertainty, and sensing, generalize the search and planning problems
described in Parts II and IV.

The chapter divides roughly into two parts. Sections 17.1 through 17.3 deal with classical
techniques from control theory, operations research, and decision analysis that were developed to
solve sequential decision problems under uncertainty. They operate in much the same way that
the search algorithms of Part II solved sequential decision problems in deterministic domains:
by looking for a sequence of actions that leads to a good state. The difference is that what they
return is not the fixed sequence of actions, but rather a policy—that is, a set of situation-action
rules for each state—arrived at by calculating utilities for each state.

The second part, Sections 17.4 through 17.6, develops a complete sketch of a decision-
theoretic agent using a richer representation of states in terms of random variables in a belief
network. We also show how to efficiently update the network over time, and how to be able to
safely forget things about the past.

17.1 SEQUENTIAL DECISION PROBLEMS

Suppose that an agent is situated in the environment shown in Figure 17.1. Beginning in the start |
state, it must execute a sequence of actions. The environment terminates when the agent reaches
one of the states marked +1 or -1. In each location, the available actions are called North, South,
East, and West. We will assume for now that the agent knows which state it is in initially, and |
that it knows the effects of all of its actions on the state of the world.

498



Section 17.1. Sequential Decision Problems 499

START

Figure 17.1 A simple environment that presents the agent with a sequential decision problem.

In the deterministic version of the problem, each action reliably moves one square in
the intended direction, except that moving into a wall results in no change in position. In the
stochastic version, the actions are unreliable. Each action achieves the intended effect with
probability 0.8, but the rest of the time, the action moves the agent at right angles to the intended
direction. For example, from the start square (1,1), the action North moves the agent to (1,2)
with probability 0.8, but with probability 0.1, it moves East to (2,1), and with probability 0.1, it

TRANSITION MODEL moves West, bumps into the wall, and stays in (1,1). We will use the term transition model (or
just "model," where no confusion can arise) to refer to the set of probabilities associated with the
possible transitions between states after any given action. The notation M"f means the probability
of reaching state j if action a is done in state i.

The tricky part is the utility function. Other than the terminal states (the ones marked +1
and -1), there is no indication of a state's utility. So we have to base the utility function on
a sequence of states—an environment history—rather than on a single state. Let us suppose
that the utility for a sequence will be the terminal state's value minus l/25th the length of the
sequence, so a sequence of length 6 that leads to the +1 box has utility 0.76.

In the deterministic case, with knowledge of the initial state and the effects of actions, the
problem can be solved directly by the search algorithms described in Chapter 3. This is true
regardless of whether the environment is accessible or inaccessible. The agent knows exactly
which state it will be in after any given action, so there is no need for sensing.

In the more general, stochastic case, the agent will not know exactly which state it will
reach after any given sequence of actions. For example, if the agent is in location (3,2), then the
action sequence [North, East] might end up in any of five states (see Exercise 17.1), and reaches
the +1 state at (4,3) with probability only 0.64.

One tempting way to deal with action sequences would be to consider sequences as long
actions. Then one could simply apply the basic Maximum Expected Utility principle to sequences.
The rational action would then be the first action of the optimal sequence. Now, although this
approach is closely related to the way that search algorithms work, it has a fundamental flaw. It



500 Chapter 17. Making Complex Decisions

POLICY

MARKOV DECISION
PROBLEM
MDP

MARKOV PROPERTY

POMDP

assumes that the agent is required to commit to an entire sequence of actions before executing
it. If the agent has no sensors, then this is the best it can do. But if the agent can acquire
new sensory information after each action, then committing to an entire sequence is irrational.
For example, consider the sequence [North, East}, starting at (3,2). With probability 0.1, North
bumps the agent into the wall, leaving it still in (3,2). In this case, carrying on with the sequence
and executing East would be a bad choice.

In reality, the agent will have the opportunity to choose a new action after each step, given
whatever additional information its sensors provide. We therefore need an approach much more
like the conditional planning algorithms of Chapter 13, rather than the search algorithms of
Chapter 3. Of course, these will have to be extended to handle probabilities and utilities. We will
also have to deal with the fact that the "conditional plan" for a stochastic environment may have
to be of infinite size, because it is possible, although unlikely, for the agent to get stuck in one
place (or in a loop) no matter how hard it tries not to.

We begin our analysis with the case of accessible environments. In an accessible envi-
ronment, the agent's percept at each step will identify the state it is in. If it can calculate the
optimal action for each state, then that will completely determine its behavior. No matter what
the outcome of any action, the agent will always know what to do next.

A complete mapping from states to actions is called a policy. Given a policy, it is possible
to calculate the expected utility of the possible environment histories generated by that policy.
The problem, then, is not to calculate the optimal action sequence, but to calculate the optimal
policy—that is, the policy that results in the highest expected utility. An optimal policy for the
world in Figure 17.1 is shown in Figure 17.2(a). Notice that because the cost of taking a step is
fairly small compared to the penalty for ending up in (4,2) by accident, the optimal policy for
the state (3,1) is conservative. The policy recommends taking the long way round, rather than
taking the short cut and thereby risking entering (4,2). As the cost of taking a step is increased,
the optimal policy will, at some point, switch over to the more direct route (see Exercise 17.4).
As the cost of a step is decreased, the policy will become extremely conservative. For example,
if the cost is 0.01, the policy for the state (3,2) is to head West directly into the wall, thereby
avoiding any chance of falling into (4,2).

Once a policy has been calculated from the transition model and the utility function, it
is a trivial matter to decide what to do. A policy represents the agent function explicitly, and
is therefore a description of a simple reflex agent, computed from the information used for a
utility-based agent. Figure 17.3 shows the corresponding agent design.

The problem of calculating an optimal policy in an accessible, stochastic environment
with a known transition model is called a Markov decision problem (MDP), after the Russian
statistician Andrei A. Markov. Markov's work is so closely associated with the assumption of
accessibility, that decision problems are often divided into "Markov" and "non-Markov." More
strictly, we say the Markov property holds if the transition probabilities from any given state
depend only on the state and not on previous history. The next two sections give algorithms for
calculating optimal policies in Markov decision problems.

In an inaccessible environment, the percept does not provide enough information to de-
termine the state or the associated transition probabilities. In the operations research literature,
such problems are called partially observable Markov decision problems, or POMDP. Meth-
ods used for MDPs are not directly applicable to POMDPs. For example, suppose our agent



Section 17.1. Sequential Decision Problems 501

Figure 17.2 (a) An optimal policy for the stochastic environment, (b) The utilities of the states.

function SIMPLE-POLICY-AGENT(perce/?0 returns an action
static: M, a transition model

U, a utility function on environment histories
P, a policy, initially unknown

if P is unknown then P *
return P\percepi\

- the optimal policy given U, M

Figure 17.3 An agent that calculates and uses an optimal policy.

is equipped with a sonar ring that gives it the distance to the nearest wall in each of the four
directions. For such an agent, the locations (2,1) and (2,3) are indistinguishable, yet different
actions are needed in each. Furthermore, the Markov property does not hold for percepts (as
opposed to states), because the next percept does not depend just on the current percept and the
action taken.

The correct approach for POMDPs is to calculate a probability distribution over the possible
states given all previous percepts, and to base decisions on this distribution. Although the optimal
decision is not uniquely determined by the current percept, it is determined uniquely (up to ties)
by the agent's probability distribution over the possible states that it could be in. For example,
the sonar-equipped agent might believe that it is in state (2,1) with probability 0.8 and in state
(2,3) with probability 0.2. The utility of action A is then

0.8 x utility of doing A in (2,1) +
0.2 x utility of doing A in (2,3)

This seems simple enough. Unfortunately, in POMDPs, calculating the utility of an action in a
state is made more difficult by the fact that actions will cause the agent to obtain new percepts,
which will cause the agent's beliefs to change in complex ways. Essentially, the agent must take



502 Chapter 17. Making Complex Decisions

into account the information that it might obtain, as well as the state it will reach. POMDPs
therefore include the value of information (Section 16.6) as one component of the decision
problem.

The standard method for solving a POMDP is to construct a new MDP in which this
probability distribution plays the,role of the state variable. Unfortunately, the new MDP is not
easy to solve. The new state space is characterized by real-valued probabilities, and is therefore
infinite. Exact solution methods for POMDPs require some fairly advanced tools, and are beyond
the scope of this book. The bibliographical notes at the end of this chapter provide pointers to
suitable additional reading.

Instead of trying to find exact solutions, one can often obtain a good approximation using
a limited lookahead. (See, for example, the algorithms in Chapter 5.) Section 17.4 shows how
this approach can be realized for POMDPs using the technology of decision networks. Before
tackling POMDPs, however, we first present the most common solution methods for making
decisions in accessible worlds.

17.2 VALUE ITERATION

VALUE ITERATION

SEPARABILITY

ADDITIVE

In this section, we present an algorithm for calculating an optimal policy called value iteration.
The basic idea is to calculate the utility of each state, U(state), and then use the state utilities to
select an optimal action in each state.

The difficult part about calculating U(state) is that we do not know where an action will
lead. We can think of a sequence of actions as generating a tree of possible histories, with the
current state as the root of the tree, and each path from the root to a leaf representing a possible
history of states. We use the notation H(state,policy) to denote the history tree starting from
state and taking action according to policy. This can be thought of as a random variable that is
dependent on the transition model M. Then the utility of a state ;' is given by the expected utility
of the history beginning at that state and following an optimal policy:

U(i) = EU(H(i, policy* )\M) = ̂  P(H(i,policy*)\M)Uh(H(i,policy'r)) (17.1)

where policy* is an optimal policy defined by the transition model M and the utility function on
histories U/,. We will explain shortly how to derive an optimal policy.

Having a utility function on states is only useful to the extent that it can be used to make
rational decisions, using the Maximum Expected Utility principle (Equation (16.1), page 472).
In the case of sequential decisions, we have to be quite careful about this. For a utility function on
states (U) to make sense, we require that the utility function on histories (£//,) have the property
of separability. A utility function Uh is separable if and only if we can find a function/ such
that

Uh([s0,sl , . . . , *„ ] ) =f(s0, U h ( [ s i , . . .,*„]))
(Exercise 17.2 asks you to construct a utility function violating this property.) The simplest form
of separable utility function is additive:

io, si,..., .?„]) = tf(so) + Uh([st,..., «„]))



Section 17.2. Value Iteration 503

REWARD FUNCTION where R is called a reward function.' Consider again the utility function defined for Figure 17.1:
an environment history of length n terminating in a state of value v has a utility of v - (l/25)«.
This utility function is separable and additive, and the reward function R is -1/25 for nonterminal
states, +1 for state (4,3) and -1 for state (4,2). As we discuss in what follows, utility functions
over histories are almost always additive in practice. Notice that additivity was implicit in our
use of path cost functions in heuristic search algorithms (Chapter 4).

Given an additive utility function [//,, we can recover the standard Maximum Expected
Utility principle that an optimal action is one with maximal expected utility of outcome states:

policy* (i) = arg max Yj MyU(j) (17.2)

DYNAMIC
PROGRAMMING

where My is the probability of reaching state j if action a is taken in state i, and arg maxa/(a)
returns the value of a with the highest value for/(a). Similarly, the utility of a state can be
expressed in terms of the utility of its successors:

U(f) = R(i) + max VM"U(j )
a z—' J

(17.3)

Equation (17.3) is the basis for dynamic programming, an approach to solving sequential
decision problems developed in the late 1950s by Richard Bellman (1957).

The simplest dynamic programming context involves an n-step decision problem, where
the states reached after « steps are considered terminal states and have known utilities. If there
are \A\ possible actions at each step, then the total complexity of a naive approach—exhaustive
enumeration—would be 0(|/4|"). The dynamic programming approach starts by calculating the
utilities of all states at step n — 1 in terms of the utilities of the terminal states. One then calculate
the utilities of states at step n - 2, and so on. Because calculating the utility of one state,
using Equation (17.3), costs O(|A|), the total cost of solving the decision problem is no more
than O(n|/4||5|), where |,S| is the number of possible states. In small state spaces, this can be a
huge saving.2 Dynamic programming has since become a field of its own, with a huge array of
applications and a large library of techniques for different types of separable utility functions.

In most of the decision problems that AI is interested in (including the world of Figure 17.1),
the environment histories are potentially of unbounded length because of loops. This means that
there is no n for which to start the n-step dynamic programming algorithm. Fortunately, there
is a simple algorithm for approximating the utilities of states to any degree of accuracy using an
iterative procedure. We apply Equation (17.3) repeatedly, on each step updating the utility of
each state based on the old utility estimates of the neighboring states:

Ut+i (i) <- R(f) + max (17.4)

where U,(i) is the utility estimate for state i after t iterations. As t -^ oo, the utility values will
converge to stable values given certain conditions on the environment. The algorithm, called
VALUE-ITERATION, is shown in Figure 17.4.
1 Thus, the utility function is additive, in the sense defined in Chapter 16, given attributes corresponding to the rewards
received in each state in the sequence. There are some problems in applying this equation to infinite histories, which will
be discussed later.
2 The saving is of the same sort as that achieved by checking repeated states during search (Section 3.6).



504 Chapter 17. Making Complex Decisions

function VALUE-!TERATION(M, K) returns a utility function
inputs: M, a transition model

R, a reward function on states
local variables: U, utility function, initially identical to R

U' , utility function, initially identical to R

repeat
U*-U'
for each state i do

f/'fi] ^R[i] + max,,
end

until CLOSE-ENOUGH([/, U')
return U

l U\j]

Figure 17.4 The value iteration algorithm for calculating utilities of states.

Given a utility function on states, it is trivial to calculate a corresponding policy using
Equation (17.2). Furthermore, the policy will actually be optimal, as proved by Bellman and
Dreyfus (1962). We can apply value iteration to the environment shown in Figure 17.1, which
yields the utility values shown in Figure 17.2(b). In Figure 17.5, we show the utility values
of some of the states at each iteration step of the algorithm. Notice how the states at different
distances from (4,3) accumulate negative reward until, at some point, a path is found to (4,3)
whereupon the utilities start to increase.

0.5

- (4,3)
- (3.3)
' (2,3)

,4.2,

10 15 20
Number of iterations

Figure 17.5 The utility values for selected states at each iteration step in the application of
VALUE-ITERATION to the 4x3 world in Figure 17.1.



Section 17.3. Policy Iteration 505

RMS ERROR

POLICY LOSS

How long should value iteration be allowed to run? Do we require the values to converge?
These are nontrivial questions. There are two obvious ways to measure the progress of value
iteration. The first uses the RMS error (RMS stands for "root mean square") of the utility values
compared to the correct values. The second assumes that the estimated utility values are not in
themselves important—what counts is the policy that they imply. The policy corresponding to
an estimated utility function U, is derived using Equation (17.2). We can measure the quality of
a policy using the expected policy loss—the difference between the expected utility obtained by
an agent using the policy, compared with an agent using the optimal policy. Figure 17.6 shows
how both measures approach zero as the value iteration process proceeds. Notice that the policy
(which is chosen from a discrete, finite set of possible policies) becomes exactly optimal long
before the utility estimates have converged to their correct values.

1 1 ———————————————————— ' ————————————————————

0.8

| 0.6

I 0.4

0.2

/Xx

\

" - -._

0.8

1 0.6

I 0.4

0.2

' X— ,

0 —— —— — —
0 5 10 15 20 0 5 10 15 20

Number of iterations Number of iterations

(a) (b)

Figure 17.6 (a) The RMS (root mean square) error of the utility estimates compared to the
correct values, as a function of iteration number during value iteration, (b) The expected policy
loss compared to the optimal policy.

17.3 POLICY ITERATION

POLICY ITERATION

VALUE
DETERMINATION

In the previous section, we observed that the optimal policy is often not very sensitive to the
exact utility values. This insight suggests an alternative way to find optimal policies. The policy
iteration algorithm works by picking a policy, then calculating the utility of each state given
that policy. It then updates the policy at each state using the utilities of the successor states
(Equation (17.2)), and repeats until the policy stabilizes. The step in which utility values are
determined from a given policy is called value determination. The basic idea behind policy
iteration, as compared to value iteration, is that value determination should be simpler than value
iteration because the action in each state is fixed by the policy. The policy iteration algorithm is
shown in Figure 17.7.



506 Chapter 17. Making Complex Decisions

function POLICY-!TERATION(M, R) returns a policy
inputs: M, a transition model

R, a reward function on states
local variables: U, a utility function, initially identical to R

P, a policy, initially optimal with respect to U

repeat
U — VALUE-DETERMINATION(P, U, M, K)
unchanged?^- true
for each state ; do

if maxfl £ Mfj UW >

Pl/1-aigmax,, £
i

unchanged? <— false
end

until unchanged?
return P

W then

Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

The VALUE-DETERMINATION algorithm can be implemented in one of two ways. The first
is a simplification of the VALUE-ITERATION algorithm, replacing Equation (17.4) with

and using the current utility estimates from policy iteration as the initial values. (Here Policy(i) is
the action suggested by the policy in state i.) While this can work well in some environments, it
will often take a very long time to converge in the early stages of policy iteration. This is because
the policy will be more or less random, so that many steps can be required to reach terminal
states.

The second approach is to solve for the utilities directly. Given a fixed policy P, the utilities
of states obey a set of equations of the form

For example, suppose P is the policy shown in Figure 17.2(a). Then using the transition model
M, we can construct the following set of equations:

«(l,2) = 0.8H(i,3)+0.2M(|,2)

and so on. This gives a set of 1 1 linear equations in 1 1 unknowns, which can be solved by linear
algebra methods such as Gaussian elimination. For small state spaces, value determination using
exact solution methods is often the most efficient approach.



Section 17.3. Policy Iteration 507

HOW IMMORTAL AGENTS DECIDE WHAT TO DO

Making decisions is not easy when one lives forever. The total reward obtained by
a policy can easily be unbounded. Because one cannot easily compare infinities,
it is difficult to say which policy is rational; moreover, both value iteration and
policy iteration will fail to terminate. If the agent's lifetime is finite but contains
millions of steps, then these algorithms are intractable. These difficulties arise from
fundamental problems associated with specifying utilities over histories so that the
resulting "optimal" behavior makes intuitive sense. The same issues arise for humans.
Should one live fast and die young, or live an unexciting life to a ripe old age?

One of the most common approaches is to use discounting. A discounting
function considers rewards received in future time steps to be less valuable than
rewards received in the current time step. Suppose that an environment history H
contains a stream of rewards, such that the agent receives reward Rf at the ith future time
step. The standard method of discounting uses the utility function U(H) = ]TV 7'/?,-,
where 7 is the discount factor. Provided 0 < 7 < 1, this sum will converge to a finite
amount. Discounting can be interpreted in at least three different ways:

• As a trick to get rid of the infinities. Essentially, it is a smoothed-out version of
the limited-horizon algorithms used in game-playing—the smaller the value of
7, the shorter the effective horizon.

• As an accurate model of both animal and human preference behavior. In
economics, it is widely used in assessing the value of investments.

• As a natural preference-independence assumption associated with rewards over
time. Discounting follows from an assumption of stationarity. Stationarity
means the following: if two reward sequences R\,R2,Rj,... and Si, 52, £3, • • •
begin with the same reward (i.e., R\ = S \ ) then the two sequences should be
preference-ordered the same way as the sequences /?2, /?3, • • • and £2, £3,.. •• If
stationarity seems like a reasonable assumption, then discounting is a reasonable
way to make decisions.

If the agent's lifetime is long (in number of steps) compared to the number of
states, then the optimal policy will be repetitive. For example, a taxi driver aiming
to maximize his income will usually adopt a standard set of waiting patterns for
times when he does not have a passenger. The system gain is defined as the average
reward obtained per unit time. It can be shown that after an initial "transient" period,
any optimal policy has a constant system gain. This fact can be used to compute
optimal policies—for example, telling the taxi driver where to wait at different times
of day—using a version of policy iteration.



508 Chapter 17. Making Complex Decisions

17.4 DECISION-THEORETIC AGENT DESIGN

In this section, we outline a comprehensive approach to agent design for environments with
uncertainty. It ties together belief and decision networks with the techniques for sequential
decision problems discussed earlier. It addresses the problem of large state spaces by decomposing
the state description into a set of random variables, much as the planning algorithms in Part IV
used logical representations to decompose the state space used by search algorithms. We begin
by describing the basic approach, which harks back to the sketch of the utility-based agent
provided in Chapter 2. We then show how sensing works in an uncertain, partially accessible
environment. Section 17.5 extends the idea of belief networks to cover environments that change
over time, and then Section 17.6 includes decisions, providing a complete agent design.

DECISION CYCLE

The decision cycle of a rational agent
Figure 17.8 repeats the schematic agent design for rational agents first shown in Figure 14.1. At
each step, the processing done by the agent is called the decision cycle. In this section, we will
make components of the cycle more precise. We begin with the first step, that of determining the
current state of the world.

function DECISION-THEORETlC-AGENT(/;><?rfe/7f) returns action

calculate updated probabilities for current state based on
available evidence including current percept and previous action

calculate outcome probabilities for actions
given action descriptions and probabilities of current states

select action with highest expected utility
given probabilities of outcomes and utility information

return action

Figure 17.8 A decision-theoretic agent (repeat of earlier figure).

STATE VARIABLES

In general, we will assume that we have a set of random variables X, that refer to the
current state of the world. We will call these the state variables. For example, if the agent is a
robot moving in the X-Y plane, then we might use X, and Y, to refer to the robot's position at
time t, and X, and Y, to refer to the velocity. Notice the similarity to the propositional version
of situation calculus used in Chapter 6 for the first logical-agent design. This similarity is not
a coincidence: probability theory essentially combines propositional logic with uncertainty. As
in situation calculus, it is important to distinguish between beliefs about a changing world and
changing beliefs about a given world. The former is achieved by having different propositions
referring to different times, and the latter by conditioning the probability of a given proposition
on additional evidence. Thus, if the percept history up to and including time t is E|, . . . , E<



Section 17.4. Decision-Theoretic Agent Design 509

PREDICTION PHASE

(where each E, may also consist of observations on several random variables), and the previous
actions have been A i . . . A,_ ] , then what we are interested in is

that is, the probability distribution over the current state given all available evidence. We refer to
this quantity as Bel(Xt) — the belief about the state at time t , given all evidence up to time t.

This is a rather complicated expression, and direct evaluation is out of the question because
it requires conditioning on a large number of variables. As in Chapter 1 4, we can use conditional
independence statements to simplify this expression. The main assumption is that the problem
is Markovian — the probability distribution for the current state of the world depends only on the
previous state and the action taken in it. If X, is the state of the world at time t and A, is the action
taken at time t, then we have

P(X, |X | . . .X f _ , ,A , . . . A , _ , ) = (17.5)

Whether the Markov property holds depends on which state variables the agent is tracking, and on
the details of the environment. For example, in the case of a robot moving in the X-Y plane, the
previous position and velocity might well be enough to predict the current position and velocity,
given the previous motor command — one can simply use Newton's laws to calculate the new
position and velocity. On the other hand, if the robot is battery-powered, then the effect of an
action will depend on whether the battery is exhausted. Because this in turn depends on how
much power was used by all previous commands, the Markov property is violated. We can restore
the Markov property by including Battery-Level, as one of the state variables that comprise X,.

We also assume that each percept depends only on the state at the time. This amounts to
the assertion that percepts (E,) are causally determined by the state of the world:

P(E,|X,. . .X, ,A| . . .A,-i , E , . . . E , _ , ) = P(Ef|X,) (17.6)

Finally, we assume that a similar equation holds for actions. The action taken depends only on
the percepts the agent has received to date:

i . . .£ ,_,) (17.7)

This final assertion is valid because of the structure of the agent itself: its only input from the
outside is the percept at each time step.

Taken together, Equations (17.5), (17.6), and (17.7) allow us to simplify the calculation of
the current state estimate Bel(X,). The calculation takes place in two phases:

<C> Prediction phase: first, we predict the probability distribution over states we would have
expected, given our knowledge of the previous state and how actions affect states. We call
this Bel, and calculate it by adding up the probabilities of arriving in a given state at time t
for each of the states we could have been in at time t — I:

Bel(Xt) = T P(X, X r _ , =x f_, ,A,_ 1)f ie/(X,_, =x ,_ , (17.8)

where x,_ i ranges over all possible values of the state variables X,_ t.
ESTIMATION PHASE 0 Estimation phase: now we have a distribution over the current state variables, given

everything but the most recent observation. The estimation phase updates this using the



510 Chapter 17. Making Complex Decisions

percept E,. Because both the state variables and the percept refer to the same time, this is
a simple matter of Bayesian updating, using Bel(X,) as the prior:

Bel(Xt) = aP(E, Xt)Bel(Xt) (17.9)
where a is a normalization constant.

Exercise 17.5 asks you to derive these equations from the assumptions listed earlier.
It is worth noting that the equations for Bel and Bel are a generalization of the technique

KALMAN FILTERING known in classical control theory as Kalman filtering (Kalman, 1960). Kalman filtering assumes
that each state variable is real-valued and distributed according to a Gaussian distribution; that
each sensor suffers from unbiased Gaussian noise; that each action can be described as a vector of
real values, one for each state variable; and that the new state is a linear function of the previous
state and the action. These assumptions, taken together, allow prediction and estimation to be
implemented by some simple matrix calculations, even with a large number of state variables.
Kalman filtering is universally applied in monitoring and controlling all sorts of dynamical
systems, from chemical plants to guided missiles. It has good success even in domains where
not all the assumptions are satisfied.

Given a probability distribution over the current state, it is a simple matter to carry out
the remaining steps of the decision cycle, which involve projecting forward the possible results
of the available actions and choosing the one with maximal expected utility. The belief update
equations also allow us to design an agent that keeps around just the current belief vector for
the state variables. The complete design is shown in Figure 17.9. Although the formulas
look quite complicated, bear in mind that they simply instantiate the basic design given in
Figure 17.8. Furthermore, the conditional probabilities appearing in the various expressions are

SENSOR MODEL exactly what we would expect to see. We have P(E, Xr), the sensor model, which describes
ACTION MODEL how the environment generates the sensor data; and we have P(X, X,_ i , A,_ i) , the action model,

which describes the effects of actions (and similarly for / , / + I).3 These are the same kinds
of information that we have used throughout the book to make decisions. The action model
generalizes the transition model used earlier for sequential decision problems. The sensor model
was not used there, of course, because we assumed an accessible environment in which the
percept and the state can be equated.

The following sections describe sensor and action models in more detail, and show how
the complete agent design can be implemented directly using the belief and decision network
technology described in the previous chapters.

STATIONARY
SENSOR MODEL

Sensing in uncertain worlds
We begin with the sensor model, which we denned previously as P(E,|X,), the probability of a
percept given a state of the world. Actually, this is unnecessarily complicated, because it allows
the sensor model to vary with time. We will instead assume a stationary sensor model:

V r P(Ef|X,) =
3 The notation used to describe the action model might make it look as if it only allows for actions by the agent. In fact,
because the actions of other agents are presumably themselves determined by the state variables X,_ i , the model can
certainly handle multiple agents as is.



Section 17.4. Decision-Theoretic Agent Design 511

function DECISION-THEORETIC-AGENT(£,) returns an action
inputs: Et, the percept at time t
static: BN, a belief network with nodes X

Bel(X), a vector of probabilities, updated over time

- J]Xi_| P(X, | X,_i=x,_i ,A,_i) Be/(X,_,=x,_i)

Bel(X,) — a P(E, | P X,) Bel(\,)
action <— arg max..i, J^X| \ Bel(X,=x,) 5^x,+, -P(X,+i = x,+i X,=x,,/4,) t/(x,+i)
return action

Figure 17.9 Detailed design for a decision-theoretic agent.

where E and X are random variables ranging over percepts and states, respectively. What this
means is that given a state of the world, the chances of the sensor giving a certain reading will be
the same today as it was yesterday. This does not mean, for example, that the sensor can never
break; it just means that we have to include in X all the variables that are important to the sensor's
performance. The advantage of the stationary sensor model is that the fixed model P(E|X) can
then be used at each time step.

The basic idea of a sensor model can be implemented very simply in a belief network,
because the assumption embodied in Equation (17.6) effectively isolates the sensor variables
for a given time step from the rest of the network. Figure 17.10(a) shows an abstract belief
network fragment with generalized state and sensor variables. The sensor model itself is the
conditional probability table associated with the percept node. The direction of the arrow is the
crucial element here: the state of the world causes the sensor to take on a particular value.4

The sensor model is therefore an example of the general principle, stated in Chapter 7 and
again in Chapter 15, that causal models are to be preferred when possible. If the sensor gives
a perfect report of the actual state, then the sensor model—the conditional probability table—
will be purely deterministic. Noise and errors in the sensor are reflected in the probabilities of
"incorrect" readings. In fact, we have already seen examples of sensor models of this kind: in
the burglar-alarm network (Figure 15.1), both JohnCalls and MaryCalls can be viewed as sensor
nodes for the Alarm state variable. Their conditional probability tables, shown in Figure 15.2,
show how reliable they are as sensors.

The next step is to break apart the generalized state and sensor variables into their compo-
nents. Typically, each sensor only measures some small aspect of the total state. An example is
shown in Figure 17.10(b), where temperature and pressure gauges measure the actual temperature
and pressure of some system. Decomposing the overall sensor model in Figure 17.10(a) into
its separate components greatly reduces the size of the CPTs, unless the sensors are very badly
designed. As an example of how not to couple sensor nodes to state nodes: consider two sensors

4 Of course, the process of inference will go the other way: evidence arrives at the sensor node, and is propagated to the
state variable. The inference process essentially inverts the sensor model. This is basically what makes a Kalman filter
simple. If P(E\X) is Gaussian, then P(X\E) is also Gaussian with an identical distribution, so that inversion is trivial.



512 Chapter 17. Making Complex Decisions

SENSOR MODEL

(a) (b)

Figure 17.10 (a) Belief network fragment showing the general relationship between state
variables and sensor variables, (b) An example with pressure and temperature gauges.

that (somehow) measure Pressure/Temperature and Pressure x Temperature. Each of the two
state nodes would have to be connected to both sensor nodes, resulting in large CPTs for the
sensor models.

Often, we will have several sensors that are measuring the same state variable. In Fig-
ure 17.11, we show an example where two gauges are being used to measure the actual temperature

. . , : f f c -, of some object, perhaps a superconductor. The crucial thing to notice here is that the sensor
• S values are conditionally independent of each other, given the actual value. The reasoning here is

similar to the reasoning for the conditional independence of symptoms given a disease. Although
the sensors are not unconditionally independent—in fact, they will usually display approximately
the same reading—they are correlated only inasmuch as they depend on the actual temperature.
When we have multiple sensors for the same state variables, the resulting inference process is

SENSOR FUSION called sensor fusion or data fusion. To see how important this can be, consider the situation
DATA FUSION when Gauge 1 reads 13.6°K, while Gauge 2 reads 14.4° K. If each gauge is accurate to within

0.5 °K, as represented in the sensor models, then the network will infer that the actual temperature
is between 13.9°K and 14.1 °K. Integrating the results of multiple sensors can provide greater
accuracy than any one sensor on its own. This is true whether the sensors are similar, as in the
case of temperature gauges, or very different, as in the case of sonar and infrared distance sensors
used in robotics. Detailed sensor models have been built for both sonar and infrared, which have
somewhat complementary performance. Sonar has a long range, but is subject to "ghost" images
caused by multiple reflections and specularities. Infrared is only accurate over short distances.
By using sensor fusion, it is often possible to create an accurate model of the robot's environment
in cases where the sensors used separately would be lost.

Anyone with hands-on experience of robotics, computerized process control, or other forms
of automatic sensing will readily testify to the fact that sensors fail. When a sensor fails, it does
not necessarily send a signal saying, "Oh, by the way, the data I'm about to send you is a load of .j|
nonsense." Instead, it simply sends the nonsense. This can be dangerous if taken literally. For
example, a robot's sonar distance sensor might start sending "infinity," meaning that no object 1



Section 17.4. Decision-Theoretic Agent Design 513

Figure 17.11 Measuring temperature using two separate gauges.

was detected within the sonar's range. This could be because the robot has wandered outside
or it could be because the sonar's detector is broken. In the latter case, the robot could start
crashing into walls. In order for the system to handle sensor failure, the sensor model must
include the possibility of failure. For example, in the case of sonar, a sensor model that says
that the sensor is accurate to within 10 cm explicitly disallows the possibility of failure, and
therefore forces the robot to take the sonar reading literally. For any given actual distance, the
sonar model should allow the possibility that the observed distance will be "infinity." Then the
robot can handle sensor failure more appropriately. For example, if the robot is in a corridor,
its prediction will be that the closest object remains about 60 cm away. If the sonar suddenly
reports "infinity," then the most likely conclusion is that the sensor has failed, not that the corridor
has disappeared. Furthermore, if the robot has more than one distance sensor, the sensor fusion
process will automatically discount the readings of the failed sensor.

It is also possible to use more detailed models of sensor failure by incorporating additional
state variables representing the condition of the sensor. Figure 17.12 shows a model of a vision-
based lane-position sensor. Such sensors are used in autonomous vehicles to keep them in the
center of their lane. They also could be used to sound a warning in a human-driven car when
it starts to stray off the road. The sensor's accuracy is directly affected by rain and an uneven
road surface. Furthermore, rain might also cause the sensor to fail by damaging the electronics,
as might a bumpy road. Sensor failure in turn affects the sensor's accuracy. This kind of model
is capable of some quite subtle reasoning. For example, if the system believes (perhaps from
another sensor's input) that it is raining, then that will alter the sensor accuracy variable, raising
the likelihood of larger error in the lane-position sensor. When an unexpected reading occurs, the
system will be less likely to assume that the car is out of position. Conversely, a large discrepancy
between expected and observed position can increase the system's belief that it is raining! A
really serious discrepancy would raise the posterior probability of sensor failure; hence this kind
of network can perform "diagnosis" of the sensors. In the next section, we will see how this
capability can be extended by reasoning over time.



514 Chapter 17. Making Complex Decisions

t Position \
Sensor '

Figure 17.12 A model of a lane-position sensor for an automated vehicle.

17.5 DYNAMIC BELIEF NETWORKS

STATE EVOLUTION
MODEL
MARKOV CHAIN

DYNAMIC BELIEF
NETWORK

PROBABILISTIC
PROJECTION

We now consider the evolution of the state of the environment over time, and how this can be
represented in a dynamic belief network. As we said earlier, the evolution of the environment
is modelled by the conditional probability distribution P(X, X,_| ,A,_|) , which describes how
the state depends on the previous state and the action of the agent. As with the sensor model,
we make a stationarity assumption: the conditional probabilities are the same for all t. In this
section, we will cover the case where the agent is passively monitoring and predicting a changing
environment, rather than acting on it. The agent is thus concerned with a sequence of X, values,
where each one is determined solely by the previous one: P(X, X,_i). This sequence is called
a state evolution model or Markov chain. Monitoring and prediction is important in its own
right, and it also makes the explanation simpler. In the next section, we will show how an agent
can use the X, to make decisions and take action.

In principle, we want to build a belief network with one node for each state and sensor
variable, for each time step. A network of this kind is called a dynamic belief network (DBN).
The generic structure of a DBN is shown in Figure 17.13. (In a real network for a specific
problem, the state and percept nodes would be replaced by several nodes each, with appropriate
connections. Notice also the resemblance to Figure 7.3.) If t is the current time step, then we
have have evidence for the percept nodes up to and including time t. The task of the network is
then to calculate the probability distribution for the state at time t. One may also want to know
how the state will evolve into the future—the probability distributions for State,+i and so on.
This task is called probabilistic projection. Both tasks can be carried out using the standard
algorithms from Chapter 15.

A little thought reveals that although the previous sentence is true, it may not be very
useful. A dynamic belief network of the kind shown in Figure 17.13 could be extremely large,
so the belief net algorithms could be extremely inefficient. Now we will see the benefit of all
the work that went into Equations (17.8) and (17.9) (for Bel and Bel). We can implement the
prediction and estimation phases as operations on the belief network. Furthermore, we need only



Section 17.5. Dynamic Belief Networks 515

SLICES

ROLLUP

STATE EVOLUTION MODEL

j-"-"""——~~——"""--•^

state-1 ")4-r( State.t+1 >-j-k( State.t+2

Percept.t+1) (Percept.t+2

SENSOR MODEL

Figure 17.13 The generic structure of a dynamic belief network. The shaded nodes show the
evidence that has been accumulated so far.

keep enough network structure to represent two time steps (otherwise known as two slices of the
network). Figure 17.14 shows the prediction-estimation process in operation, a truly beautiful
thing. Each cycle of the process works as follows:

<) Prediction: we begin with a two-slice network; let us call the slices t — I and /. We assume
that we have already calculated Bel(X,_ \), incorporating all evidence up to and including
E r _ j . Notice that slice ? — 1 has no connections to previous slices. The state variables in
t—\ have prior probabilities associated with them (see the next step). We then calculate
the belief vector Bel(Xt), according to Equation (17.8). This is actually the standard belief
network updating process applied to evidence E,_ i .

<) Rollup: now we remove slice t — 1. This requires adding a prior probability table for the
state variables at time /. This prior is just Bel(Xr).

<0> Estimation: now we add the new percept Er, applying standard belief network updating to
calculate Bel(X,), the probability distribution over the current state. We then add the slice
for t + 1. The network is now ready for the next cycle.

This process implements the formal algorithm specified in Figure 17.9, using the belief network
inference machinery for all the calculations. Notice that, as in the formal algorithm, the percept
history is summarized in the belief vector for the current state—a summarization justified by
Equation (17.5).

Probabilistic projection is also straightforward. We can take the network after step (c), add
slices for future times, and apply a belief network inference algorithm to calculate the posterior
probability distributions for the future states, given the current percept. Unlike the update cycle,
this might be expensive because it involves inference in a temporally extended network. However,
this network has a special property: none of the future nodes has any evidence associated with it.
This means that a simple stochastic simulation technique such as logic sampling (see page 455)
will work well, because every run can be consistent with the evidence. Given a desired accuracy
level for the sampling process, the time complexity will usually be O(n).

As an example of the application of dynamic belief networks, consider again the sensor-
failure model shown in Figure 17.12. We can extend this into a DBN (Figure 17.15) by adding
state evolution models for state variables Weather, Terrain and SensorFailure, as well as for the



516 Chapter 17. Making Complex Decisions

(a) Prediction

State.t-1 State.!

(b) Rollup

(c) Estimation

Percept.! j

State.t

SP
( Percep!.! J

C Slale.l /-rr( State.t+1

Figure 17.14 The steps in updating a dynamic belief network over time. Each step is described
in detail in the text.

principal state variable LanePosition. The model of interest here is that for SensorFailure. The
model is quite simple: basically, once a sensor has broken, it usually stays broken. What happens
over time is that as the sensor continues to send nonsense signals, it becomes more and more
likely that they are incorrect. This is especially true if there are other sensors through which
the network can infer LanePosition indirectly. It will even work, however, just using the state
evolution model for LanePosition, which will usually put limits on how much lateral motion we
can expect for a vehicle.

17.6 DYNAMIC DECISION NETWORKS

NE™ORKSECISION A11 we need in order to convert dynamic belief networks into dynamic decision networks
(DDNs) is to add utility nodes and decision nodes for actions. Figure 17.16 shows the generic
structure of a DDN for a sequential decision problem where the terminal states are three steps
ahead. The decision problem involves calculating the value of D, that maximizes the agent's
expected utility over the remaining state sequence.5 In addition to the decision nodes for the.

5 Usually, the final utility will be calculated as a sum of expected rewards R, + R,+\ . . . . We omit the reward nodes IB |
order to simplify the diagram.



Section 17.6. Dynamic Decision Networks 517

Figure 17.15 A two-slice fragment of a dynamic belief network for continuous monitoring of
the lane positioning of an automated vehicle. Evidence variables are shaded.

current and future time steps, notice that the network also contains the previous decision, Dt- \,
as an evidence node. It is treated as evidence because it has already happened.

The evaluation algorithm for DDNs is essentially the same as that for ordinary decision
networks. In the worst case, the DDN calculates the expected utility of each decision sequence
by fixing the decision nodes and applying probabilistic inference to calculate the final state. As
in our discussion of sequential decision problems earlier in the chapter, we must also be careful
to take into account the fact that, for each future decision, the agent does not currently know what
information will be available at the time the future decision is made. That is, for decision D,+(,
the agent will have available percepts E,+i, . . . , E,+i; but currently, it does not know what those
percepts will be. For example, an autonomous vehicle might be contemplating a lane change at
time t + i, but it will not know until then if there is another car blocking its path.

In our earlier discussion, we handled this by iteratively computing a policy that associates
a decision with each state. With DDNs, we do not have this option because the states are
represented implicitly by the set of state variables. Furthermore, in inaccessible environments,
the agent will not know what state it is in anyway. What we must do instead is consider each
possible instantiation of the future sensor variables as well as each possible instantiation of the
future decision variables. The expected utility of each decision sequence is then the weighted
sum of the utilities computed using each possible percept sequence, where the weight is the
probability of the percept sequence given the decision sequence. Thus, the DDN provides
approximate solutions for partially observable Markov decision problems, where the degree of
approximation depends on the amount of lookahead.

The preceding paragraph boils down to this: in evaluating an action, one must consider
not only its effect on the environment, but also its effect on the internal state of the agent via the
percepts it generates (see also Section 16.6). In still plainer terms: such considerations allow the
agent to see the value of (actively) looking before leaping, to hunt for lost keys, and so on.



518 Chapter 17. Making Complex Decisions

Figure 17.16 The generic structure of a dynamic decision network, showing a sequential
decision problem with three steps. Evidence variables are shaded.

Just as we used a limited horizon in game playing and with value iteration and policy
iteration, we can limit the extent of forward projection in the DON in order to reduce complexity.
This, combined with a heuristic estimate for the utility of the remaining steps, can provide
a reasonable approximation to rational action. There are many other possible approximation '.
techniques, such as using less detailed state variables for states in the distant future; using a
greedy heuristic search through the space of decision sequences; assuming "most likely" values
for future percept sequences rather than considering all possible values; and so on. There remain
many possible techniques for DON evaluation that are as yet unexplored.

Discussion
All in all, the DON promises potential solutions to many of the problems that arise as AI systems •;
are moved from static, accessible, and above all simple environments to dynamic, inaccessible,
complex environments that are closer to the real world.

• They can handle uncertainty correctly, and sometimes efficiently.
• They deal with continuous streams of sensor input.
• They can handle unexpected events because they have no fixed "plan."
• They can handle noisy sensors and sensor failure.
• They can act in order to obtain relevant information.
• They can handle relatively large state spaces because they decompose the state into a set,

of state variables with sparse connections.
• They exhibit "graceful degradation" under time pressure and in complex environments,

using various approximation techniques.
What is missing? The first, and probably the most important, defect of DDNs is that they retain!
the property of forward search through concrete states that is typical of the search algorithms!
studied in Part II. In Part IV, we explained how the ability to consider partially ordered,|
abstract plans using goal-directed search provided a massive increase in problem-solving power»|



Section 17.7. Summary 519

particularly when combined with plan libraries. At present, we do not really know how to
extend these methods into the probabilistic domain. A second, related problem is the basically
prepositional nature of our probabilistic language. It is impossible, within the language of
probability theory, to state properly beliefs such as "If any car hits a lamp post going over 30
mph, the occupants of the car will be injured with probability 0.6," because probability theory
has no quantifiers ("any car") and no functions ("occupants of the car"). What this means
in practice is that some of what goes on in DBNs and DDNs is that programs (rather than
pure probabilistic inferences) are responsible for choosing which random variables to instantiate
and for filling in their conditional probability tables. If we had an appropriate combination of
first-order logic with probability, many of these difficulties could be addressed within a well-
understood reasoning system. Work on such a language is one of the most important topics in
knowledge representation research, and some progress has been made recently (Bacchus, 1990;
Bacchus etal, 1992).

Overall, the potential payoff of combining DDN-like techniques with planning methods is
enormous. The technical and mathematical problems involved in getting it right are difficult, but
it is an important area of current research.

17.7 SUMMARY

This chapter shows how to use knowledge about the world to make decisions even when the
outcomes of an action are uncertain and the payoffs will not be reaped until several (or many)
actions have passed. The main points are as follows:

• Sequential decision problems in uncertain environments can be solved by calculating a
policy that associates an optimal decision with every state that the agent might reach.

• Value iteration and policy iteration are two methods for calculating optimal policies.
Both are closely related to the general computational technique of dynamic programming.

• Slightly more complex methods are needed to handle the case where the length of the action
sequence is unbounded. We briefly discussed the use of system gain and discounting.

• State-based methods for sequential decision problems do not scale well to large state
spaces. Heuristic techniques using best-first search and a limited horizon seem to mitigate
this to some extent, but suffer from local minima.

• Decomposing the state into a set of state variables provides a significant advantage. It also
simplifies the handling of inaccessible environments.

• We derived a simple updating cycle for a decision-theoretic agent, using a set of Markov
assumptions.

• We showed how dynamic belief networks can handle sensing and updating over time, and
provide a direct implementation of the update cycle.

• We showed how dynamic decision networks can solve sequential decision problems,
handling many (but not all) of the issues arising for agents in complex, uncertain domains.



520 Chapter 17. Making Complex Decisions

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Richard Bellman (1957) initiated the modern approach to sequential decision problems, and
proposed the dynamic programming approach in general and the value iteration algorithm in
particular. A remarkable Ph.D. thesis by Ron Howard (1960) introduced policy iteration and
the idea of system gain for solving infinite-horizon problems. Several additional results were
introduced by Bellman and Dreyfus (1962). The analysis of discounting in terms of stationary
preferences is due to Koopmans (1972). Bertsekas (1987) provides an authoritative modern text
on dynamic programming, which has become one of the most widely used tools for search and
optimization problems.

The observation that partially observable Markov decision problems can be transformed
into a regular Markov decision problem using the belief states is due to Astrom (1965). The
first complete algorithm for exact solution of partially-observable Markov decision problems
(POMDPs) was proposed by Edward Sondik (1971) in his Ph.D. thesis. (A later journal paper
by Smallwood and Sondik (1973) contains some errors but is more accessible.) Lovejoy (1991)
surveys the state of the art in POMDPs. In AI, Cassandra el al. (1994) have investigated the
application of POMDP algorithms to planning problems.

Several recent papers have attempted to combine dynamic programming algorithms such
as policy iteration with planning and search models from AI (Dean et al., 1993;Tash and Russell,
1994). This line of work involves approximating a Markov decision problem using a limited
horizon and abstract states, in an effort to overcome the combinatorics of large state spaces.
Heuristics based on the value of information can be used to select areas of the state space where
a local expansion of the horizon will yield a significant improvement in decision quality. Agents
using this approach can tailor their effort to handle time pressure, and generate some interesting
behaviors such as using familiar "beaten paths" to find their way around the state space quickly
without having to recompute optimal decisions at each point.

Many of the basic ideas for estimating the state of dynamical systems came from the
mathematician C. F. Gauss (1809). The prediction-estimation cycle for monitoring environments
under uncertainty was proposed by Kalman (Kalman, 1960), building on classified wartime
research by Wiener (1942) and Kolmogorov (1941). Kalman filtering, which Kalman derived
for linear systems with Gaussian noise, has since become an industry in itself (Gelb, 1974;
Bar-Shalom and Fortmann, 1988). Leonard and Durrant-Whyte (1992) describe probabilistic
sensor models in detail, with particular attention to the modelling of sonar sensors.

Dynamic belief networks (DBNs) can be viewed as a sparse encoding of a Markov process,
and were first used in AI by Dean and Kanazawa (1989), Nicholson (1992), and Kjaerulff (1992).
The last work includes a generic extension to the HUGIN belief net system to provide the necessary
facilities for dynamic belief network generation and compilation. The development given in this
chapter owes a good deal to the book by Dean and Wellman (1991), which provides extensive
discussion of the use of DBNs and DDNs (dynamic decision networks) in mobile robots. Huang
et al. (1994) describe an application of DBNs to the analysis of freeway traffic using computer
vision. A notation and an evaluation algorithm for additive DDNs are provided by Tatman and
Shachter(1990).



Section 17.7. Summary 521

EXERCISES

L

17.1 For the stochastic version of the world shown in Figure 17.1, calculate which squares can
be reached by the action sequence [Up,Right], and with what probabilities.

17.2 For a specific environment (which you can make up), construct a utility function on
histories that is not separable. Explain how the concept of utility on states fails in this case.

17.3 Consider the stochastic version of the environment shown in Figure 17.1.

a. Implement an environment simulator for this environment, such that the specific geography
of the environment is easily altered.

b. Create a SlMPLE-PoLiCY-AGENT that uses policy iteration, and measure its performance in
the environment simulator from various starting states.

c. Experiment with increasing the size of the environment. How does the execution time per
action vary with the size of the environment?

d. Analyze the policy iteration algorithm to find its worst-case complexity, assuming that
value determination is done using a standard equation-solving method.

e. Does value iteration terminate if the utility values are required to converge exactly?

17.4 For the environment shown in Figure 17.1, find all the threshold values for the cost of a
step, such that the optimal policy changes when the threshold is crossed.

17.5 Prove that the calculations in the prediction and estimation phases of the basic decision
cycle (Equations (17.8) and (17.9)) do in fact yield the correct value for5e/(X,), given assump-
tions (17.5), (17.6), and (17.7).

17.6 In this exercise, we will consider part of the problem of building a robot that plays
Ping-Pong.

One of the things it will have to do is find out where the ball is and estimate its trajectory. Let
us suppose for a moment that we have a vision system that can return an estimated instantaneous
(x,y,z) position for the ball. This position estimate for time f, will be used as an evidence node
Oi in a belief network that infers the desired information. The idea is that nodes Xj and V\ in
the network represent the ball's instantaneous position and velocity. The trajectory of the ball is
followed by having multiple copies of these nodes, one for each time step. In addition to these
nodes, we also have nodes for the instantaneous friction force F-, acting on the ball due to air
resistance, which depends only on the current velocity. The times t\, t2, t^,... can be assumed to
be separated by some small interval fit.

a. Which of the belief networks in Figure 17.17 correctly (but not necessarily efficiently) repre-
sent the preceding information? (You may assume that second-order effects—proportional
to 6t2—are ignored.)

b. Which is the best network?
c. Which networks can be solved by local propagation algorithms?



522 Chapter 17. Making Complex Decisions

©

(a) (b) (c)

Figure 17.17 Some proposed networks for Ping-Pong tracking.

d. The nodes in the networks shown in the figure refer to past and present times. Explain how
the networks can be extended and used to predict the position at any future time.

e. Now consider the vision subsystem, whose job it is to provide observation evidence. Its
input is an array of intensity values from the camera image. Assuming that the ball is
white, whereas most of the room is darker, explain briefly how to calculate the position of
the ball given the array.

f. Does it make more sense to calculate the position in coordinates relative to the robot or
relative to the room? Why?



Part VI
LEARNING

So far we have assumed that all the "intelligence" in an agent has been built in by
the agent's designer. The agent is then let loose in an environment, and does the
best it can given the way it was programmed to act. But this is not necessarily
the best approach—for the agent or the designer. Whenever the designer has
incomplete knowledge of the environment that the agent will live in, learning is
the only way that the agent can acquire what it needs to know. Learning thus
provides autonomy in the sense defined in Chapter 1. It also provides a good
way to build high-performance systems—by giving a learning system experience
in the application domain.

The four chapters in this part cover the field of machine learning—the
subfield of AI concerned with programs that learn from experience. Chapter 18
introduces the basic design for learning agents, and addresses the general problem
of learning from examples. Chapter 19 discusses the process of learning in neural
networks—collections of simple nonlinear processing elements—and in belief
networks. In Chapter 20, we tackle the general problem of improving the behavior
of an agent given some feedback as to its performance. Finally, Chapter 21 shows
how learning can be improved by using prior knowledge.



18 LEARNING FROM
OBSERVATIONS

In which we describe agents that can improve their behavior through diligent study
of their own experiences.

The idea behind learning is that percepts should be used not only for acting, but also for improving
the agent's ability to act in the future. Learning takes place as a result of the interaction between
the agent and the world, and from observation by the agent of its own decision-making processes.
Learning can range from trivial memorization of experience, as exhibited by the wumpus agent
in Chapter 7, to the creation of entire scientific theories, as exhibited by Albert Einstein. This
chapter starts with the design of general learning agents, and describes inductive learning—
constructing a description of a function from a set of input/output examples. We then give several
algorithms for inductive learning in logical agents and a theoretical analysis that explains why
learning works.

18.1 A GENERAL MODEL OF LEARNING AGENTS

LEARNING ELEMENT

A learning agent can be divided into four conceptual components, as shown in Figure 18.1. The
most important distinction is between the learning element, which is responsible for making
improvements, and the performance element, which is responsible for selecting external actions.
The performance element is what we have previously considered to be the entire agent: it takes in
percepts and decides on actions. The learning element takes some knowledge about the learning
element and some feedback on how the agent is doing, and determines how the performance
element should be modified to (hopefully) do better in the future. The design of the learning
element depends very much on the design of the performance element. When trying to design an
agent that learns a certain capability, the first question is not "How am I going to get it to learn
this?" but "What kind of performance element will my agent need to do this once it has learned
how?" For example, the learning algorithms for producing rules for logical systems are quite
different from the learning algorithms for producing belief networks. We will see, however, that
the principles behind the learning algorithms are much the same.

525



526 Chapter 18. Learning from Observations

Performance standard

Figure 18.1 A general model of learning agents.

CRITIC

PROBLEM
GENERATOR

The critic is designed to tell the learning element how well the agent is doing. The critic
employs a fixed standard of performance. This is necessary because the percepts themselves
provide no indication of the agent's success. For example, a chess program may receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know that
this is a good thing; the percept itself does not say so. It is important that the performance
standard is a fixed measure that is conceptually outside the agent; otherwise the agent could
adjust its performance standards to meet its behavior. In humans, this form of irrationality is
called "sour grapes" and is characterized by comments such as "Oh well, never mind, I didn't
want that stupid Nobel prize anyway."

The last component of the learning agent is the problem generator. It is responsible for
suggesting actions that will lead to new and informative experiences. The point is that if the
performance element had its way, it would keep doing the actions that are best, given what it
knows. But if the agent is willing to explore a little, and do some perhaps suboptimal actions in the
short run, it might discover much better actions for the long run. The problem generator's job is
to suggest these exploratory actions. This is what scientists do when they carry out experiments.
Galileo did not think that dropping rocks from the top of a tower in Pisa was valuable in itself;
he was not trying to break the rocks, nor to render pedestrians unconscious. His aim was to
demonstrate a better theory of the motion of objects.

To make the overall design more concrete, let us return to the automated taxi example. The
performance element consists of whatever collection of knowledge and procedures the taxi has
for selecting its driving actions (turning, accelerating, braking, honking, and so on). The taxi goes
out on the road and drives, using this performance element. The learning element formulates
goals, for example, to learn better rules describing the effects of braking and accelerating, to
learn the geography of the area, to learn how the taxi behaves on wet roads, and to learn what



Section 18.1. A General Model of Learning Agents 527

causes annoyance to other drivers. The critic observes the world and passes information along
to the learning element. For example, after the taxi makes a quick left turn across three lanes of
traffic, the critic observes the shocking language used by other drivers, the learning element is
able to formulate a rule saying this was a bad action, and the performance element is modified
by installing the new rule. Occasionally, the problem generator kicks in with a suggestion: try
taking 7th Avenue uptown this time, and see if it is faster than the normal route.

The learning element is also responsible for improving the efficiency of the performance
element. For example, when asked to make a trip to a new destination, the taxi might take a
while to consult its map and plan the best route. But the next time a similar trip is requested, the

SPEEDUP LEARNING planning process should be much faster. This is called speedup learning, and is dealt with in
Chapter 21. In this chapter, we concentrate on the acquisition of knowledge.

Machine learning researchers have come up with a large variety of learning elements. To
understand them, it will help to see how their design is affected by the context in which they will
operate. The design of the learning element is affected by four major issues:

• Which components of the performance element are to be improved.
• What representation is used for those components.
• What feedback is available.
• What prior information is available.

Components of the performance element
We have seen that there are many ways to build the performance element of an agent. The
components can include the following:

1. A direct mapping from conditions on the current state to actions.
2. A means to infer relevant properties of the world from the percept sequence.
3. Information about the way the world evolves.
4. Information about the results of possible actions the agent can take.
5. Utility information indicating the desirability of world states.
6. Action-value information indicating the desirability of particular actions in particular states.
7. Goals that describe classes of states whose achievement maximizes the agent's utility.

Each of the components can be learned, given the appropriate feedback. For example, if the
agent does an action and then perceives the resulting state of the environment, this information
can be used to learn a description of the results of actions (4). If the taxi exerts a certain braking
pressure when driving on a wet road, then it will soon find out how much actual deceleration is
achieved. Similarly, if the critic can use the performance standard to deduce utility values from
the percepts, then the agent can learn a useful representation of its utility function (5). If the
taxi receives no tips from passengers who have been thoroughly shaken up during the trip, it can
learn a useful component of its overall utility function. In a sense, the performance standard can
be seen as defining a set of distinguished percepts that will be interpreted as providing direct
feedback on the quality of the agent's behavior. Hardwired performance standards such as pain
and hunger in animals can be understood in this way.



528 Chapter 18. Learning from Observations

Representation of the components
Any of these components can be represented using any of the representation schemes in this book.
We have seen several examples: deterministic descriptions such as linear weighted polynomials
for utility functions in game-playing programs and propositional and first-order logical sentences
for all of the components in a logical agent; and probabilistic descriptions such as belief networks
for the inferential components of a decision-theoretic agent. Effective learning algorithms have
been devised for all of these. The details of the learning algorithm will be different for each
representation, but the main idea remains the same.

SUPERVISED
LEARNING

REINFORCEMENT
LEARNING
REINFORCEMENT

UNSUPERVISED
LEARNING

Available feedback
For some components, such as the component for predicting the outcome of an action, the
available feedback generally tells the agent what the correct outcome is. That is, the agent
predicts that a certain action (braking) will have a certain outcome (stopping in 10 feet), and the
environment immediately provides a percept that describes the actual correct outcome (stopping
in 15 feet). Any situation in which both the inputs and outputs of a component can be perceived
is called supervised learning. (Often, the outputs are provided by a friendly teacher.)

On the other hand, in learning the condition-action component, the agent receives some
evaluation of its action (such as a hefty bill for rear-ending the car in front) but is not told the
correct action (to brake more gently and much earlier). This is called reinforcement learning;
the hefty bill is called a reinforcement.1 The subject is covered in Chapter 20.2

Learning when there is no hint at all about the correct outputs is called unsupervised
learning. An unsupervised learner can always learn relationships among its percepts using
supervised learning methods—that is, it can learn to predict its future percepts given its previous
percepts. It cannot learn what to do unless it already has a utility function.

Prior knowledge
The majority of learning research in AI, computer science, and psychology has studied the case
in which the agent begins with no knowledge at all about what it is trying to learn. It only has
access to the examples presented by its experience. Although this is an important special case, it
is by no means the general case. Most human learning takes place in the context of a good deal
of background knowledge. Some psychologists and linguists claim that even newborn babies
exhibit knowledge of the world. Whatever the truth of this claim, there is no doubt that prior
knowledge can help enormously in learning. A physicist examining a stack of bubble-chamber
photographs may be able to induce a theory positing the existence of a new particle of a certain
mass and charge; but an art critic examining the same stack might learn nothing more than that
the "artist" must be some sort of abstract expressionist. In Chapter 21, we see several ways in
which learning is helped by the use of existing knowledge.
1 The terms reward and punishment are also used as synonyms for reinforcement.
2 Drawing the line between supervised and reinforcement learning is somewhat arbitrary; reinforcement learning can
also be thought of as supervised learning with a less informative feedback signal.



Section 18.2. Inductive Learning 529

Bringing it all together
Each of the seven components of the performance element can be described mathematically as
a function: for example, information about the way the world evolves can be described as a
function from a world state (the current state) to a world state (the next state or states); a goal can
be described as a function from a state to a Boolean value (0 or 1) indicating whether the state
satisfies the goal. The key point is that all learning can be seen as learning the representation of
a function. We can choose which component of the performance element to improve and how it
is to be represented. The available feedback may be more or less useful, and we may or may not
have any prior knowledge. The underlying problem remains the same.

18.2 INDUCTIVE LEARNING

EXAMPLE

PURE INDUCTIVE
INFERENCE
HYPOTHESIS

BIAS

INCREMENTAL
LEARNING

In supervised learning, the learning element is given the correct (or approximately correct) value
of the function for particular inputs, and changes its representation of the function to try to match
the information provided by the feedback. More formally, we say an example is a pair (x,f(x)),
where x is the input and/(jt) is the output of the function applied to x. The task of pure inductive
inference (or induction) is this: given a collection of examples of/, return a function h that
approximates/. The function h is called a hypothesis.

Figure 18.2 shows an example of this from plane geometry. The examples in Figure 18.2(a)
are (x,y) points in the plane, where y = f(x), and the task is to find a function h(x) that fits the
points well. In Figure 18.2(b) we have a piecewise-linear h function, while in Figure 18.2(c) we
have a more complicated h function. Both functions agree with the example points, but differ
on the >> values they assign to other x inputs. In (d) we have a function that apparently ignores
one of the example points, but fits the others with a simple function. The true/ is unknown,
so there are many choices for h, but without further knowledge, we have no way to prefer (b),
(c), or (d). Any preference for one hypothesis over another, beyond mere consistency with the
examples, is called a bias. Because there are almost always a large number of possible consistent
hypotheses, all learning algorithms exhibit some sort of bias. We will see many examples in this
and subsequent chapters.

To get back to agents, suppose we have a reflex agent3 that is being taught by a teacher.
Figure 18.3 shows that the REFLEX-LEARNING-ELEMENT updates a global variable, examples,
that holds a list of (percept, action) pairs. The percept could be a chess board position,
and the action could be the best move as determined by a helpful grandmaster. When the
REFLEX-PERFORMANCE-ELEMENT is faced with a percept it has been told about, it chooses the
corresponding action. Otherwise, it calls a learning algorithm INDUCE on the examples it has
seen so far. INDUCE returns a hypothesis h which the agent uses to choose an action.

There are many variants on this simple scheme. For example, the agent could perform
incremental learning: rather than applying the learning algorithm to the entire set of examples
each time a new prediction is needed, the agent could just try to update its old hypothesis whenever

Recall that reflex agents map directly from percepts to actions.



530 Chapter 18. Learning from Observations

(a) (b) (c) (d)

Figure 18.2 In (a) we have some example (input,output) pairs. In (b), (c), and (d) we have
three hypotheses for functions from which these examples could be drawn.

global examples — {}

function REFLEX-PERFORMANCE-ELEMENT(percgpf) returns an action

if (percept, a) in examples then return a
else

h <- lNDVCE(examples)
return h( percept)

procedure REFEEX-LEARNiNG-ELEMENT(perce/?r, action)
inputs: percept, feedback percept

action, feedback action

examples^- examples U {(percept,action)}

Figure 18.3 Skeleton for a simple reflex learning agent. The learning element just stores each
example percept/action pair. The performance element either does whatever was done last time
for a given percept, or it induces an action from similar percepts. The set of examples is a global
variable that is shared by the learning and performance elements.

a new example arrives. Also, the agent might receive some feedback concerning the quality of
the actions it chooses. These variants, and many others, are examined in this part.

REFLEX-PERFORMANCE-ELEMENT makes no commitment to the way in which the hypoth-
esis is represented. Because of its expressiveness and well-understood semantics, logic has been
intensively studied as the target language for learning algorithms. In this chapter, we discuss two
approaches to learning logical sentences: decision tree methods, which use a restricted represen-
tation of logical sentences specifically designed for learning, and the version-space approach,
which is more general but often rather inefficient. In Chapter 19, we discuss neural networks,
which are a general representation for nonlinear, numerical functions. The linear weighted poly-
nomials used for game-playing evaluation functions are a special case of neural networks. The



Section 18.3. Learning Decision Trees 531

design of learning algorithms for belief networks is also a very active area of research, and a
brief sketch is provided in Section 19.6.

The choice of representation for the desired function is probably the most important issue
facing the designer of a learning agent. As well as affecting the nature of the learning algorithm,
it can affect whether the problem is feasible at all. As with reasoning, in learning there is
a fundamental trade-off between expressiveness—is the desired function representable in the
representation language—and efficiency—is the learning problem going to be tractable for a
given choice of representation language. If one chooses to learn sentences in a nice, expressive
language such as first-order logic, then one will probably have to pay a heavy penalty in terms of
both computation time and the number of examples required to learn a good set of sentences.

By "a good set of sentences," we mean a set that not only correctly reflects the experiences
the agent has already had, but also one that correctly predicts its future experiences. Therein
lies one of the most vexing philosophical problems of all time. How can one possibly know that
one's learning algorithm has produced a theory that will correctly predict the future? And if one
does not, then how can one say that the algorithm is any good? Certainly, if one cannot say for
sure that an algorithm is any good, then one cannot hope to design good learning algorithms!
In Section 18.6, we discuss a mathematical approach to the study of induction algorithms that
provides tentative answers to these questions, and also sheds considerable light on the complexity
of learning different kinds of function representations.

18.3 LEARNING DECISION TREES

Decision tree induction is one of the simplest and yet most successful forms of learning algorithm.
It serves as a good introduction to the area of inductive learning, and is easy to implement. We
first describe the performance element, and then show how to learn it. Along the way, we will
introduce many of the ideas and terms that appear in all areas of inductive learning.

Decision trees as performance elements
DECISION TREE A decision tree takes as input an object or situation described by a set of properties, and outputs a

yes/no "decision." Decision trees therefore represent Boolean functions. Functions with a larger
range of outputs can also be represented, but for simplicity we will usually stick to the Boolean
case. Each internal node in the tree corresponds to a test of the value of one of the properties,
and the branches from the node are labelled with the possible values of the test. Each leaf node
in the tree specifies the Boolean value to be returned if that leaf is reached.

As an example, consider the problem of whether to wait for a table at a restaurant. The aim
GOAL PREDICATE here is to learn a definition for the goal predicate4 WillWait, where the definition is expressed as a

.
4 The term goal concept is often used. Unfortunately, the word "concept" has been used in so many different ways in
machine learning that we think it best to avoid it for a few years.



532 Chapter 18. Learning from Observations

decision tree.5 In setting this up as a learning problem, we first have to decide what properties or
attributes are available to describe examples in the domain.6 Suppose we decide on the following
list of attributes:

1. Alternate: whether there is a suitable alternative restaurant nearby.
2. Bar. whether the restaurant has a comfortable bar area to wait in.
3. Fri/Sat: true on Fridays and Saturdays.
4. Hungry: whether we are hungry.
5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
6. Price: the restaurant's price range ($, $$, $$$).
7. Raining: whether it is raining outside.
8. Reservation: whether we made a reservation.
9. Type: the kind of restaurant (French, Italian, Thai, or Burger).

10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
The decision tree usually used by the first author for this domain is shown in Figure 18.4. Notice
that the tree does not use the Price and Type attributes, considering these to be irrelevant given the
data it has seen. Logically, the tree can be expressed as a conjunction of individual implications
corresponding to the paths through the tree ending in Yes nodes. For example, the path for a
restaurant full of patrons, with an estimated wait of 10-30 minutes when the agent is not hungry
is expressed by the logical sentence

V r Patrons(r,Full)f\ WaitEstimate(r,0-\0) A Hungry(r,N) => WillWait(r)

Expressiveness of decision trees
If decision trees correspond to sets of implication sentences, a natural question is whether they
can represent any set. The answer is no, because decision trees are implicitly limited to talking
about a single object. That is, the decision tree language is essentially prepositional, with each
attribute test being a proposition. We cannot use decision trees to represent tests that refer to two
or more different objects, for example,

3 ^2 Nearby(r2, r) A Price(r,p) A Price(r2,p2) A Cheaper(p2,p)
(is there a cheaper restaurant nearby). Obviously, we could add another Boolean attribute with
the name CheaperRestaurantNearby, but it is intractable to add all such attributes.

Decision trees are fully expressive within the class of prepositional languages, that is, any
Boolean function can be written as a decision tree. This can be done trivially by having each row
in the truth table for the function correspond to a path in the tree. This would not necessarily be
a good way to represent the function, because the truth table is exponentially large in the number
of attributes. Clearly, decision trees can represent many functions with much smaller trees.
5 Meanwhile, the automated taxi is learning whether to wait for the passengers in case they give up waiting for a table
and want to go on to another restaurant.
6 One might ask why this isn't the job of the learning program. In fact, it is, but we will not be able to explain how it is
done until Chapter 21.



Section 18.3. Learning Decision Trees 533

For some kinds of functions, however, this is a real problem. For example, if the function
PARITY FUNCTION is the parity function, which returns 1 if and only if an even number of inputs are 1, then an

exponentially large decision tree will be needed. It is also difficult to use a decision tree to
MAJORITY FUNCTION represent a majority function, which returns 1 if more than half of its inputs are 1.

In other words, decision trees are good for some kinds of functions, and bad for others.
Is there any kind of representation that is efficient for all kinds of functions? Unfortunately,
the answer is no. We can show this in a very general way. Consider the set of all Boolean
functions on n attributes. How many different functions are in this set? This is just the number
of different truth tables that we can write down, because the function is defined by its truth table.
The truth table has 2" rows, because each input case is described by n attributes. We can consider
the "answer" column of the table as a 2" bit number that defines the function. No matter what
representation we use for functions, some of the functions (almost all of them, in fact) are going
to require at least this many bits to represent.

If it takes 2" bits to define the function, this means that there are 22" different functions
on n attributes. This is a scary number. For example, with just six Boolean attributes, there are
about 2 x 1019 different functions to choose from. We will need some ingenious algorithms to
find consistent hypotheses in such a large space.

Reservation? Fri/Sat? llil Alternate?

mm iiils^;;;ilj:te,g;»i tK^J Ksr;?;, «<<• --^L&JIS^S

Figure 18.4 A decision tree for deciding whether to wait for a table.



534 Chapter 18. Learning from Observations

Inducing decision trees from examples
An example is described by the values of the attributes and the value of the goal predicate. We

CLASSIFICATION call the value of the goal predicate the classification of the example. If the goal predicate is
true for some example, we call it a positive example; otherwise we call it a negative example.
A set of examples X\,... ,X\2 for the restaurant domain is shown in Figure 18.5. The positive
examples are ones where the goal WillWait is true (X\,Xi,,...) and negative examples are ones

TRAINING SET where it is false (X2,X5,...). The complete set of examples is called the training set.

X,
X2
Xj
X,
xsxh
X!

X8

X,
X\o
XH
Xl2

Attributes

Alt

Yes
Yes
No
Yes
Yes
No
No
No
No
Yes
No
Yes

Bat-

No
No
Yes
No
No
Yes
Yes
No
Yes
Yes
No
Yes

Fri

No
No
No
Yes
Yes
No
No
No
Yes
Yes
No
Yes

Hun

Yes
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes

Pat

Some
Full
Some
Full
Full
Some
None
Some
Full
Full
None
Full

Price

$$$
$
$
s

$$$
$$
$

$$
$

$$$
$
s

Rain

No
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No

Res

Yes
No
No
No
Yes
Yes
No
Yes
No
Yes
No
No

Type

French
Thai

Burger
Thai

French
Italian
Burger

Thai
Burger
Italian
Thai

Burger

Est

0-10
30-60
0-10
10-30
>60

0-10
0-10
0-10
>60

10-30
0-10
30-60

Goal

WillWait

Yes
No
Yes
Yes
No
Yes
No
Yes
No
No
No
Yes

Figure 18.5 Examples for the restaurant domain.

The problem of finding a decision tree that agrees with the training set might seem difficult,
but in fact there is a trivial solution. We could simply construct a decision tree that has one path
to a leaf for each example, where the path tests each attribute in turn and follows the value for
the example, and the leaf has the classification of the example. When given the same example
again,7 the decision tree will come up with the right classification. Unfortunately, it will not have
much to say about any other cases!

The problem with this trivial tree is that it just memorizes the observations. It does not
extract any pattern from the examples and so we cannot expect it to be able to extrapolate to
examples it has not seen.

Extracting a pattern means being able to describe a large number of cases in a concise
way. Rather than just trying to find a decision tree that agrees with the examples, we should try
to find a concise one, too. This is an example of a general principle of inductive learning often
called Ockham's razor:8 The most likely hypothesis is the simplest one that is consistent with
all observations. Some people interpret this as meaning "the world is inherently simple." Even
if the world is complex, however, Ockham's razor still makes sense. There are far fewer simple
7 The same example or an example with the same description—this distinction is very important and we will return to
it in Chapter 21.
8 Sometimes spelled "Occam," although the origin of this corruption is obscure.



Section 18.3. Learning Decision Trees 535

hypotheses than complex ones, so that there is only a small chance that any simple hypothesis
that is wildly incorrect will be consistent with all observations. Hence, other things being equal,
a simple hypothesis that is consistent with the observations is more likely to be correct than a
complex one. We discuss hypothesis quality further in Section 18.6.

Unfortunately, finding the smallest decision tree is an intractable problem, but with some
simple heuristics, we can do a good job of finding a smallish one. The basic idea behind the
DECISION-TREE-LEARNING algorithm is to test the most important attribute first. By "most
important," we mean the one that makes the most difference to the classification of an example.
This way, we hope to get to the correct classification with a small number of tests, meaning that
all paths in the tree will be short and the tree as a whole will be small.

Figure 18.6 shows how the algorithm gets started. We are given 12 training examples,
which we classify into positive and negative sets. We then decide which attribute to use as the
first test in the tree. Figure 18.6(a) shows that Patrons is a fairly important attribute, because if the
value is None or Some, then we are left with example sets for which we can answer definitively
(No and Yes, respectively). (If the value is Full, we will need additional tests.) In Figure 18.6(b)
we see that Type is a poor attribute, because it leaves us with four possible outcomes, each of
which has the same number of positive and negative answers. We consider all possible attributes
in this way, and choose the most important one as the root test. We leave the details of how
importance is measured for Section 18.4, because it does not affect the basic algorithm. For now,
assume the most important attribute is Patrons.

After the first attribute test splits up the examples, each outcome is a new decision tree
learning problem in itself, with fewer examples and one fewer attribute. There are four cases to
consider for these recursive problems:

1. If there are some positive and some negative examples, then choose the best attribute to
split them. Figure 18.6(c) shows Hungry being used to split the remaining examples.

2. If all the remaining examples are positive (or all negative), then we are done: we can
answer Yes or No. Figure 18.6(c) shows examples of this in the None and Some cases.

3. If there are no examples left, it means that no such example has been observed, and we
return a default value calculated from the majority classification at the node's parent.

4. If there are no attributes left, but both positive and negative examples, we have a problem. It
means that these examples have exactly the same description, but different classifications.

NOISE This happens when some of the data are incorrect; we say there is noise in the data. It also
happens when the attributes do not give enough information to fully describe the situation,
or when the domain is truly nondeterministic. One simple way out of the problem is to use
a majority vote.

We continue to apply the DECISION-TREE-LEARNING algorithm (Figure 18.7) until we get the tree
shown in Figure 18.8. The tree is distinctly different from the original tree shown in Figure 18.4,
despite the fact that the data were actually generated from an agent using the original tree.

One might conclude that the learning algorithm is not doing a very good job of learning
the correct function. This would be the wrong conclusion to draw. The learning algorithm looks
at the examples, not at the correct function, and in fact, its hypothesis (see Figure 18.8) not only
agrees with all the examples, but is considerably simpler than the original tree. The learning
algorithm has no reason to include tests for Raining and Reservation, because it can classify all



536 Chapter 18. Learning from Observations

(a)

(b)

French Burger

(c)

None

Figure 18.6 Splitting the examples by testing on attributes. In (a), we see that Patrons is a
good attribute to test first; in (b), we see that Type is a poor one; and in (c), we see that Hungry is
a fairly good second test, given that Patrons is the first test.

the examples without them. It has also detected an interesting regularity in the data (namely, that
the first author will wait for Thai food on weekends) that was not even suspected. Many hours
have been wasted by machine learning researchers trying to debug their learning algorithms when
in fact the algorithm was behaving properly all along.

Of course, if we were to gather more examples, we might induce a tree more similar to the
original. The tree in Figure 18.8 is bound to make a mistake; for example, it has never seen a
case where the wait is 0-10 minutes but the restaurant is full. For a case where Hungry is false,
the tree says not to wait, but the author would certainly wait. This raises an obvious question: if
the algorithm induces a consistent but incorrect tree from the examples, how incorrect will the
tree be? The next section shows how to analyze this experimentally.



Section 18.3. Learning Decision Trees 537

function DECISION-TREE-LEARNING(CTamp/e.?, attributes, default) returns a decision tree
inputs: examples, set of examples

attributes, set of attributes
default, default value for the goal predicate

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MAJORITY- VALVE(examples)
else

best <— CHOOSE- ATTR\B\]TB(attributes, examples)
tree «— a new decision tree with root test best
for each value v, of best do

example.fi — {elements of examples with best = v,}
subtree — DECISION-TREE-LEARNING(e«™/?fe.s,, attributes — best,

MAJORITY- VALUE(examples})
add a branch to tree with label v, and subtree subtree

end
return tree

Figure 18.7 The decision tree learning algorithm.

Figure 18.8 The decision tree induced from the 12-example training set.



538 Chapter 18. Learning from Observations

Assessing the performance of the learning algorithm
A learning algorithm is good if it produces hypotheses that do a good job of predicting the
classifications of unseen examples. In Section 18.6, we will see how prediction quality can be
estimated in advance. For now, we will look at a methodology for assessing prediction quality
after the fact.

Obviously, a prediction is good if it turns out to be true, so we can assess the quality of a
hypothesis by checking its predictions against the correct classification once we know it. We do

TEST SET this on a set of examples known as the test set. If we train on all our available examples, then
we will have to go out and get some more to test on, so often it is more convenient to adopt the
following methodology:

1. Collect a large set of examples.
2. Divide it into two disjoint sets: the training set and the test set.
3. Use the learning algorithm with the training set as examples to generate a hypothesis H.
4. Measure the percentage of examples in the test set that are correctly classified by H.
5. Repeat steps 1 to 4 for different sizes of training sets and different randomly selected

training sets of each size.

The result of this is a set of data that can be processed to give the average prediction quality
as a function of the size of the training set. This can be plotted on a graph, giving what is

LEARNING CURVE called the learning curve for the algorithm on the particular domain. The learning curve for
DECISION-TREE-LEARNING with the restaurant examples is shown in Figure 18.9. Notice that as
the training set grows, the prediction quality increases. (For this reason, such curves are also
called happy graphs.) This is a good sign that there is indeed some pattern in the data and the
learning algorithm is picking it up.

The key idea of the methodology is to keep the training and test data separate, for the same
reason that the results of an exam would not be a good measure of quality if the students saw the
test beforehand. The methodology of randomly dividing up the examples into training and test
sets is fair when each run is independent of the others—in that case, no run can "cheat" and tell
the other runs what the right answers are. But there is the problem that you, as the designer of
the learning algorithm, can cheat. If you run some examples, notice a pattern, and change either
the learning or the performance element, then the runs are no longer independent, and you have
effectively passed on information about the test set. In theory, every time you make a change to
the algorithm, you should get a new set of examples to work from. In practice, this is too difficult,
so people continue to run experiments on tainted sets of examples.

Practical uses of decision tree learning
Decision trees provide a simple representation for prepositional knowledge that can be used for
decision making and classification of objects. Although decision tree learning cannot generate
interesting scientific theories because of its representational restrictions, it has been used in a
wide variety of applications. Here we describe just two.



Section 18.3. Learning Decision Trees 539

1

0.9
tj

a 0.8a)
c
° 0.7
o
g
8 0.6

tf=

0.5

0.4
20 40 60

Training set size
80 100

Figure 18.9 A learning curve for the decision tree algorithm on 100 randomly generated
examples in the restaurant domain. The graph summarizes 20 trials.

Designing oil platform equipment

In 1986, BP deployed an expert system called GASOIL for designing gas-oil separation systems
for offshore oil platforms. Gas-oil separation is done at the wellhead by a very large, complex,
and expensive separation system, whose design depends on a number of attributes including
the relative proportions of gas, oil, and water, and the flow rate, pressure, density, viscosity,
temperature, and susceptibility to waxing. At the time, GASOIL was the largest commercial
expert system in the world, containing approximately 2500 rules. Building such a system by
hand would have taken roughly 10 person-years. Using decision-tree learning methods applied
to a database of existing designs, the system was developed in 100 person-days (Michie, 1986).
It is said to outperform human experts and to have saved BP many millions of dollars.

Learning to fly

There are two ways to design an automatic controller for a complex system. One can construct
a precise model of the dynamics of the system, and use one of a variety of formal methods
(including AI planning methods) to design a controller that has certain guaranteed properties.
Alternatively, one can simply learn the correct mapping from the state of the system to the
correct action. For very complex systems, such as aircraft and electorates, developing a detailed
model may be infeasible, which leaves the second alternative. Sammut et al. (1992) adopted this
alternative for the task of learning to fly a Cessna on a flight simulator. The data was generated
by watching three skilled human pilots performing an assigned flight plan 30 times each. Each
time the pilot took an action by setting one of the control variables such as thrust or flaps, a
training example was created. In all, 90,000 examples were obtained, each described by 20 state
variables and labelled by the action taken. From these examples, a decision tree was extracted



540 Chapter 18. Learning from Observations

using the C4.5 system (Quinlan, 1993). The decision tree was then converted into C code and
inserted into the flight simulator's control loop so that it could fly the plane itself.

The results are surprising: not only does the program learn to fly, it learns to fly somewhat
better than its teachers. This is because the generalization process cleans up the occasional
mistakes made by humans. Such results suggest that machine learning techniques may yield
controllers that are more robust than conventional, manually programmed autopilots. For difficult
tasks such as flying helicopters carrying heavy loads in high winds, no autopilots are available
and very few humans are competent. Such tasks are potentially suitable for systems based on
automated learning.

18.4 USING INFORMATION THEORY

This section looks at a mathematical model for choosing the best attribute and at methods for
dealing with noise in the data. It can be skipped by those who are not interested in these details.

The scheme used in decision tree learning for selecting attributes is designed to minimize
the depth of the final tree. The idea is to pick the attribute that goes as far as possible toward
providing an exact classification of the examples. A perfect attribute divides the examples into
sets that are all positive or all negative. The Patrons attribute is not perfect, but it is fairly good.
A really useless attribute such as Type leaves the example sets with roughly the same proportion
of positive and negative examples as the original set.

All we need, then, is a formal measure of "fairly good" and "really useless" and we
can implement the CHOOSE- ATTRIBUTE function of Figure 18.7. The measure should have its
maximum value when the attribute is perfect and its minimum value when the attribute is of no

INFORMATION use at all . One suitable measure is the expected amount of information provided by the attribute,
where we use the term in the mathematical sense first defined in (Shannon and Weaver, 1949).
To understand the notion of information, think about it as providing the answer to a question, for
example, whether a coin will come up heads. If one already has a good guess about the answer,
then the actual answer is less informative. Suppose you are going to bet $1 on the flip of a coin,
and you believe that the coin is rigged so that it will come up heads with probability 0.99. You
will bet heads (obviously), and have expected value $0.98 for the bet. That means you would
only be willing to pay less than $0.02 for advance information about the actual outcome of the
flip. If the coin were fair, your expected value would be zero, and you would be willing to pay
up to $ 1 .00 for advance information — the less you know, the more valuable the information.

Information theory uses this same intuition, but instead of measuring the value of infor-
mation in dollars, it measures information content in bits. One bit of information is enough to
answer a yes/no question about which one has no idea, such as the flip of a fair coin. In general,
if the possible answers v, have probabilities P(v,), then the information content / of the actual
answer is given by

, P(Vn)) = ~P(Vi) 10g2 P(Vi)



Section 18.4. Using Information Theory 541

This is just the average information content of the various events (the — Iog2 P terms) weighted
by the probabilities of the events. To check this equation, for the tossing of a fair coin we get

V l l \ = _ l ] o 1 1, 1

If the coin is loaded to give 99% heads we get / (1/100,99/100) = 0.08 bits, and as the probability
of heads goes to 1, the information of the actual answer goes to 0.

For decision tree learning, the question that needs answering is: for a given example, what
is the correct classification? A correct decision tree will answer this question. An estimate of
the probabilities of the possible answers before any of the attributes have been tested is given
by the proportions of positive and negative examples in the training set. Suppose the training
set contains p positive examples and n negative examples. Then an estimate of the information
contained in a correct answer is

, ( P n \ P , P « , «/ ——, —— = -—— Iog2 —— - —— Iog2 ——
\p + n p + n) p + n p + n p + n p + n

For the restaurant training set shown in Figure 18.5, we have p = n = 6, so we need 1 bit of
information.

Now a test on a single attribute A will not usually tell us this much information, but it will
give us some of it. We can measure exactly how much by looking at how much information we
still need after the attribute test. Any attribute A divides the training set E into subsets E\,..., Ev
according to their values for A, where A can have v distinct values. Each subset £, has />/ positive
examples and n, negative examples, so if we go along that branch we will need an additional
/ (pjl(pi + «,), HiKpi + «,-)) bits of information to answer the question. A random example has the
z'th value for the attribute with probability (/?,• + «,)/(/? + n), so on average, after testing attribute A,
we will need

V

Remainder(A) - V^ ———-I
^ p + n

INFORMATION GAIN bits of information to classify the example. The information gain from the attribute test is
denned as the difference between the original information requirement and the new requirement:

L

Gain(A) = 1 ( -?—, —H— 1 - Remainder^)
\p + n p + nj

and the heuristic used in the CHOOSE-ATTRIBUTE function is just to choose the attribute with the
largest gain.

Looking at the attributes Patrons and Type and their classifying power, as shown in Fig-
ure 18.6, we have

[2 4 6 / 2 4\1
Gain(Patrons) = 1 - — /(0,1) + -r^/O.O) + — / -, - % 0.541 bits[12 12 12 \6 6/J

f 2 / I 1\ 2 / I 1\ 4 fl 2\ 4 /2 2
c°*'"»»' - •- y G- o+n' G- o+12' (4- 4-) <-12' (4-«

In fact, Patrons has the highest gain of any of the attributes and would be chosen by the decision-
tree learning algorithm as the root.



542 Chapter 18. Learning from Observations

OVERFITTING

DECISION TREE
PRUNING

NULL HYPOTHESIS

Noise and overfitting
We saw earlier that if there are two or more examples with the same descriptions (in terms of
the attributes) but different classifications, then the DEClSlON-TREE-LEARNiNG algorithm must
fail to find a decision tree consistent with all the examples. The solution we mentioned before is
to have each leaf node report either the majority classification for its set of examples or report
the estimated probabilities of each classification using the relative frequencies. The former is
appropriate for an agent that requires the decision tree to represent a strict logical function,
whereas the latter can be used by a decision-theoretic agent.

Unfortunately, this is far from the whole story. It is quite possible, and in fact likely, that
even when vital information is missing, the decision tree learning algorithm will find a decision
tree that is consistent with all the examples. This is because the algorithm can use the irrelevant
attributes, if any, to make spurious distinctions among the examples.

Consider the problem of trying to predict the roll of a die. Suppose that experiments are
carried out during an extended period of time with various dice, and that the attributes describing
each training example are as follows:

1. Day: the day on which the die was rolled (Mon, Tue, Wed, Thu).
2. Month: the month in which the die was rolled (Jan or Feb).
3. Color: the color of the die (Red or Blue).

As long as there are no two examples with identical descriptions, DECISION-TREE-LEARNING will
find an exact hypothesis. This will, however, be totally spurious. What we would like is that
DECISION-TREE-LEARNING return a single leaf node with probabilities close to 1/6 for each roll,
once it has seen enough examples.

Whenever there is a large set of possible hypotheses, one has to be careful not to use the
resulting freedom to find meaningless "regularity" in the data. This problem is called overfitting.
It is a very general phenomenon, and occurs even when the target function is not at all random.
It afflicts every kind of learning algorithm, not just decision trees.

A complete mathematical treatment of overfitting is beyond the scope of this book. Here we
present a simple technique called decision tree pruning. Pruning works by preventing recursive
splitting on attributes that are not clearly relevant, even when the data at that node in the tree is
not uniformly classified. The question is, how do we detect an irrelevant attribute?

Suppose we split a set of examples using an irrelevant attribute. Generally speaking, we
would expect the resulting subsets to have roughly the same proportions of each class as the
original set. In this case, the information gain will be close to zero.9 Thus, the information gain
is a good clue to irrelevance. Now the question is, how large a gain should we require in order to,
split on a particular attribute?

This is exactly the sort of question addressed by classical tests for statistical significance.
A significance test begins by assuming that there is no underlying pattern (the so-called null,
hypothesis). Then the actual data are analyzed to calculate the extent to which it deviates from |
a perfect absence of pattern. If the degree of deviation is statistically unlikely (usually taken to f
mean a 5% probability or less), then that is considered to be good evidence for the presence of a >

9 In fact, the gain be will be greater than zero unless the proportions are all exactly the same (see Exercise 18.9).



Section 18.4. Using Information Theory 543

significant pattern in the data. The probabilities are calculated from standard distributions of the
amount of deviation one would expect to see due to random sampling.

In this case, the null hypothesis is that the attribute is irrelevant, and hence the information
gain for an infinitely large sample would be zero. We need to calculate the probability that, under
the null hypothesis, a sample of size v would exhibit the observed deviation from the expected
distribution of positive and negative examples. We can measure the deviation by comparing
the actual numbers of positive and negative examples in each subset, p\ and n,, to the expected
numbers /7, and h\ assuming true irrelevance:

Pi=P
Pi + nt

p + n p + n
A convenient measure of the total deviation is given by

(Pi ~ Pi) ("i ~ »i
Pi n,

Under the null hypothesis, the value of D is distributed according to the \2 (chi-squared) distri-
bution with v — 1 degrees of freedom. The probability that the attribute is really irrelevant can be
calculated with the help of standard \2 tables, or with statistical software. Exercise 18.10 asks
you to make the appropriate changes to DECISION-TREE-LEARNING to implement this form of

\2 PRUNING pruning, which is known as \2 pruning.
With pruning, noise can be tolerated—classification errors give a linear increase in predic-

tion error, whereas errors in the descriptions of examples (i.e, the wrong output for a given input)
have an asymptotic effect that gets worse as the tree shrinks down to smaller sets. Trees con-
structed with pruning perform significantly better than trees constructed without pruning when
the data contain a large amount of noise. The pruned trees are often much more compact, and
are therefore easier to understand.

CROSS-VALIDATION Cross-validation is another technique that eliminates the dangers of overfitting. The basic
idea of cross-validation is to try to estimate how well the current hypothesis will predict unseen
data. This is done by setting aside some fraction of the known data, and using it to test the
prediction performance of a hypothesis induced from the rest of the known data. This can be
done repeatedly with different subsets of the data, with the results averaged. Cross-validation can
be used in conjunction with any tree-construction method (including pruning) in order to select
a tree with good prediction performance.

Broadening the applicability of decision trees
In order to extend decision tree induction to a wider variety of problems, a number of issues must
be addressed. We will briefly mention each, suggesting that a full understanding is best obtained
by doing the associated exercises:

0 Missing data: In many domains, not all the attribute values will be known for every
example. The values may not have been recorded, or they may be too expensive to obtain.
This gives rise to two problems. First, given a complete decision tree, how should one
classify an object that is missing one of the test attributes? Second, how should one modify



544 Chapter 18. Learning from Observations

the information gain formula when some examples have unknown values for the attribute?
These questions are addressed in Exercise 18.11.

0 Multivalued attributes:When an attribute has a large number of possible values, the
information gain measure gives an inappropriate indication of the attribute's usefulness.
Consider the extreme case where every example has a different value for the attribute—for
instance, if we were to use an attribute RestaurantName in the restaurant domain. In such
a case, each subset of examples is a singleton and therefore has a unique classification, so
the information gain measure would have its highest value for this attribute. However, the

GAIN RATIO attribute may be irrelevant or useless. One possible solution is to use the gain ratio, as
described in Exercise 18.12.

0 Continuous-valued attributes: Attributes such as Height and Weight have a large or
infinite set of possible values. They are therefore not well-suited for decision-tree learning
in raw form. An obvious way to deal with this problem is to discretize the attribute.
For example, the Price attribute for restaurants was discretized into $, $$, and $$$ values.
Normally, such discrete ranges would be defined by hand. A better approach is to preprocess
the raw attribute values during the tree-growing process in order to find out which ranges
give the most useful information for classification purposes.

A decision-tree learning system for real-world applications must be able to handle all of these
problems. Handling continuous-valued variables is especially important, because both physical
and financial processes provide numerical data. Several commercial packages been built that
meet these criteria, and they have been used to develop several hundred fielded systems.

18.5 LEARNING GENERAL LOGICAL DESCRIPTIONS

In this section, we examine ways in which more general kinds of logical representations can be
learned. In the process, we will construct a general framework for understanding learning algo-
rithms, centered around the idea that inductive learning can be viewed as a process of searching

HYPOTHESIS SPACE for a good hypothesis in a large space—the hypothesis space—defined by the representation
language chosen for the task. We will also explain what is going on in logical terms: the logical
connections among examples, hypotheses, and the goal. Although this may seem like a lot of
extra work at first, it turns out to clarify many of the issues in learning. It enables us to go well
beyond the simple capabilities of the decision tree learning algorithm, and allows us to use the
full power of logical inference in the service of learning.

CANDIDATE
DEFINITION

Hypotheses
The situation is usually this: we start out with a goal predicate, which we will generically call Q-
(For example, in the restaurant domain, Q will be WillWait.) Q will be a unary predicate, and we
are trying to find an equivalent logical expression that we can use to classify examples correctly.
Each hypothesis proposes such an expression, which we call a candidate definition of the goal



Section 18.5. Learning General Logical Descriptions 545

predicate. Using C, to denote the candidate definition, each hypothesis //, is a sentence of the
form MX Q(x) o C/(jt). For example, the decision tree shown in Figure 18.8 expresses the
following logical definition (which we will call Hr for future reference):

Mr WillWait(r) O Patrons(r,Some)
V Patrpns(r, Full) A ^Hungry(r) A Type(r, French)
V Patrons(r, Full) A -iHungry(r) A Type(r, Thai) A Fri/Sat(r)
V Patrons(r, Full) A -^Hungry(r) A Type(r, Burger)

The hypothesis space is then the set of all hypotheses that the learning algorithm is designed
to entertain. For example, the DECISION-TREE-LEARNING algorithm can entertain any decision
tree hypothesis defined in terms of the attributes provided; its hypothesis space therefore consists
of all these decision trees. We will generically use the letter H to denote the hypothesis space
[Hi ,...,//„}. Presumably, the learning algorithm believes that one of the hypotheses is correct;
that is, it believes the sentence

//, V H2 V #3 V ... V Hn (18.1)
Each hypothesis predicts that a certain set of examples—namely, those that satisfy its candidate

EXTENSION definition—will be examples of the goal predicate. This set is called the extension of the
predicate. Two hypotheses with different extensions are therefore logically inconsistent with
each other, because they disagree on their predictions for at least one example. If they have the
same extension, they are logically equivalent.

FALSE NEGATIVE

Examples
Logically speaking, an example is an object to which the goal concept may or may not apply,
and that has some logical description. Let us generically call the z'th example Xt. Its description
will be the sentence A(X,), where D, can be any logical expression taking a single argument.
The classification will be given by a sentence Q(Xj) if the example is positive, and -*Q(Xi) if
the example is negative. For instance, the first example from Figure 18.5 is described by the
sentences

Alternate^) A
and the classification

A ^Fri/Sat(X}) A Hungry(X}) A .

WillWait(Xi)
The complete training set is then just the conjunction of all these sentences. A hypothesis agrees
with all the examples if and only if it is logically consistent with the training set; ideally, we
would like to find such a hypothesis.

Let us examine this notion of consistency more carefully. Obviously, if hypothesis //, is
consistent with the entire training set, it has to be consistent with each example. What would it
mean for it to be inconsistent with an example? This can happen in one of two ways:

• An example can be a false negative for the hypothesis, if the hypothesis says it should be
negative but in fact it is positive. For instance, the new example X\^ described by

Patmns(Xi3,Full) A Wait(X}3,0-10) A -<Hungry(Xi3) A ... A WillWait(Xn)



546 Chapter 18. Learning from Observations

would be a false negative for the hypothesis Hr given earlier. From Hr and the example
description, we can deduce both WillWait(Xii), which is what the example says, and
-^WillWait(X\3), which is what the hypothesis predicts. The hypothesis and the example
are therefore logically inconsistent.

FALSE POSITIVE • An example can be a false positive for the hypothesis, if the hypothesis says it should be
positive but in fact it is negative.10

If an example is a false positive or false negative for a hypothesis, then the example and the
hypothesis are logically inconsistent with each other. Assuming that the example is a correct
observation of fact, then the hypothesis can be ruled out. Logically, this is exactly analogous to
the resolution rule of inference (see Chapter 9), where the disjunction of hypotheses corresponds
to a clause and the example corresponds to a literal that resolves against one of the literals in the
clause. An ordinary logical inference system therefore could, in principle, learn from the example
by eliminating one or more hypotheses. Suppose, for example, that the example is denoted by
the sentence 7], and the hypothesis space is H\ V HI V HT, V #4. Then if I\ is inconsistent with
//2 and //3, the logical inference system can deduce the new hypothesis space H\ V ftj.

We therefore can characterize inductive learning in a logical setting as a process of gradually
eliminating hypotheses that are inconsistent with the examples, narrowing down the possibilities.
Because the hypothesis space is usually vast (or even infinite in the case of first-order logic), we
do not recommend trying to build a learning system using resolution-based theorem proving and
a complete enumeration of the hypothesis space. Instead, we will describe two approaches that
find logically consistent hypotheses with much less effort.

CURRENT-BEST-
HYPOTHESIS

GENERALIZATION

SPECIALIZATION

Current-best-hypothesis search
The idea behind current-best-hypothesis search is to maintain a single hypothesis, and to adjust
it as new examples arrive in order to maintain consistency. The basic algorithm was described
by John Stuart Mill (1843), and may well have appeared even earlier.

Suppose we have some hypothesis such as Hr, of which we have grown quite fond. As
long as each new example is consistent, we need do nothing. Then along comes a false negative
example, X\T,. What do we do?

Figure 18.10(a) shows Hr schematically as a region: everything inside the rectangle is part
of the extension of H,. The examples that have actually been seen so far are shown as "+" or
"-", and we see that Hr correctly categorizes all the examples as positive or negative examples of
WillWait. In Figure 18.10(b), a new example (circled) is a false negative: the hypothesis says it
should be negative but it is actually positive. The extension of the hypothesis must be increased to
include it. This is called generalization; one possible generalization is shown in Figure 18.10(c).
Then in Figure 18.10(d), we see a false positive: the hypothesis says the new example (circled)
should be positive, but it actually is negative. The extension of the hypothesis must be decreased
to exclude the example. This is called specialization; in Figure 18.10(e) we see one possible
specialization of the hypothesis.
10 The terms "false positive" and "false negative" were first used in medicine to describe erroneous results from laboratory
tests. A result is a false positive if it indicates that the patient has the disease when in fact no disease is present.



Section 18.5. Learning General Logical Descriptions 547

-

_

(a)

-

-

-

(b)

i. -

-

(c)

-

-i|a
(d)

-

- illliiLiia|g|i

(e)

3-

Figure 18.10 (a) A consistent hypothesis, (b) A false negative, (c) The hypothesis is general-
ized, (d) A false positive, (e) The hypothesis is specialized.

We can now specify the CURRENT-BEST-LEARNING algorithm, shown in Figure 18.11. No-
tice that each time we consider generalizing or specializing the hypothesis, we must check for con-
sistency with the other examples, because there is no guarantee that an arbitrary increase/decrease
in the extension will avoid including/excluding any other negative/positive examples.

function CURRENT-EEST-LEARNWG(examples) returns a hypothesis

H — any hypothesis consistent with the first example in examples
for each remaining example in examples do

if e is false positive for H then
H — choose a specialization of H consistent with examples

else if e is false negative for H then
H -̂ choose a generalization of H consistent with examples

if no consistent specialization/generalization can be found then fail
end
return H

Figure 18.11 The current-best-hypothesis learning algorithm. It searches for a consistent
hypothesis and backtracks when no consistent specialization/generalization can be found.

We have defined generalization and specialization as operations that change the extension
of a hypothesis. Now we need to determine exactly how they can be implemented as syntactic
operations that change the candidate definition associated with the hypothesis, so that a program
can carry them out. This is done by first noting that generalization and specialization are also
logical relationships between hypotheses. If hypothesis H\, with definition C,, is a generalization
of hypothesis //2 with definition €2, then we must have

V* C2(x) => Ci(x)
Therefore in order to construct a generalization of //2, we simply need to find a definition C\
that is logically implied by €2- This is easily done. For example, if C2(x) is Alternate(x) A



548 Chapter 18. Learning from Observations

Patrons(x, Some), then one possible generalization is given by Cj (x) = Patrons(x, Some). This is
CONDIT!OGNS called dropping conditions. Intuitively, it generates a weaker definition and therefore allows a

larger set of positive examples. There are a number of other generalization operations, depending
on the language being operated on. Similarly, we can specialize a hypothesis by adding extra
conditions to its candidate definition or by removing disjuncts from a disjunctive definition. Let
us see how this works on the restaurant example, using the data in Figure 18.5.

• The first example X\ is positive. Alternate(X\) is true, so let us assume an initial hypothesis
H I : VJE WillWait(x) & Alternate^)

• The second example X2 is negative. H\ predicts it to be positive, so it is a false positive.
Therefore, we need to specialize H\. This can be done by adding an extra condition that
will rule out Xi. One possibility is

//2 : Vz WillWait(x) <£> Alternate(x) A Patrons(x, Some)

• The third example X^ is positive. HI predicts it to be negative, so it is a false negative.
Therefore, we need to generalize HI. This can be done by dropping the Alternate condition,
yielding

H3: MX WillWait(x) <£> Patrons(x,Some)
• The fourth example X/\ is positive. HT, predicts it to be negative, so it is a false negative.

We therefore need to generalize HT,. We cannot drop the Patrons condition, because that
would yield an all-inclusive hypothesis that would be inconsistent with X2. One possibility
is to add a disjunct:

H4 : Vx WillWait(x) <=> Patmns(x, Some) V (Patrons(x, Full) A Fri/Sat(x))
Already, the hypothesis is starting to look reasonable. Obviously, there are other possibilities
consistent with the first four examples; here are two of them:

H'4 : \/x WillWait(x) O -^WaitEstimate(x, 30-60)

H% : Vx WillWait(x) <£> Patmns(x,Some)
V(Patmns(x, Full) A WaitEstimate(x, 10-30))

The CURRENT-BEST-LEARNING algorithm is described nondeterministically, because at any point,
there may be several possible specializations or generalizations that can be applied. The choices
that are made will not necessarily lead to the simplest hypothesis, and may lead to an unrecoverable
situation where no simple modification of the hypothesis is consistent with all of the data. In
such cases, the program must backtrack to a previous choice point.

The CURRENT-BEST-LEARNING algorithm and its variants have been used in a many machine
learning systems, starting with Patrick Winston's (1970) "arch-learning" program. With a large
number of instances and a large space, however, some difficulties arise:

1. Checking all the previous instances over again for each modification is very expensive.
2. It is difficult to find good search heuristics, and backtracking all over the place can take

forever. As we saw earlier, hypothesis space can be a doubly exponentially large place.



Section 18.5. Learning General Logical Descriptions 549

VERSION SPACE
CANDIDATE
ELIMINATION

Least-commitment search
Backtracking arises because the current-best-hypothesis approach has to choose a particular
hypothesis as its best guess even though it does not have enough data yet to be sure of the choice.
What we can do instead is to keep around all and only those hypotheses that are consistent with
all the data so far. Each new instance will either have no effect or will get rid of some of the
hypotheses. Recall that the original hypothesis space can be viewed as a disjunctive sentence

//i V H2 V //3 ... V //„

As various hypotheses are found to be inconsistent with the examples, this disjunction shrinks,
retaining only those hypotheses not ruled out. Assuming that the original hypothesis space does in
fact contain the right answer, the reduced disjunction must still contain the right answer because
only incorrect hypotheses have been removed. The set of hypotheses remaining is called the
version space, and the learning algorithm (sketched in Figure 18.12) is called the version space
learning algorithm (also the candidate elimination algorithm).

BOUNDARY SET

function VERSiON-SPACE-LEARNiNG(?.raHf/7/<>.r) returns a version space
local variables: V, the version space: the set of all hypotheses

V — the set of all hypotheses
for each example e in examples do

if V is not empty then V— VERS1ON-SPACE-LJPDATE(V, e)
end
return V

function VERSiON-SpACE-UPDATE(V.e) returns an updated version space

V— {h G V : h is consistent with e}

Figure 18.12 The version space learning algorithm. It finds a subset of Vthat is consistent
with the examples.

One important property of this approach is that it is incremental: one never has to go back
and reexamine the old examples. All remaining hypotheses are guaranteed to be consistent with
them anyway. It is also a least-commitment algorithm because it makes no arbitrary choices
(cf. the partial-order planning algorithm in Chapter 11). But there is an obvious problem. We
already said that the hypothesis space is enormous, so how can we possibly write down this
enormous disjunction?

The following simple analogy is very helpful. How do you represent all the real numbers
between 1 and 2? After all, there is an infinite number of them! The answer is to use an interval
representation that just specifies the boundaries of the set: [1,2]. It works because we have an
ordering on the real numbers.

We also have an ordering on the hypothesis space, namely, generalization/specialization.
This is a partial ordering, which means that each boundary will not be a point but rather a set
of hypotheses called a boundary set. The great thing is that we can represent the entire version



550 Chapter 18. Learning from Observations

G-SET

S-SET

space using just two boundary sets: a most general boundary (the G-set) and a most specific
boundary (the S-set). Everything in between is guaranteed to be consistent with the examples.
Before we prove this, let us recap:

• The current version space is the set of hypotheses consistent with all the examples so far.
It is represented by the S-set and G-set, each of which is a set of hypotheses.

• Every member of the S-set is consistent with all observations so far, and there are no
consistent hypotheses that are more specific.

• Every member of the G-set is consistent with all observations so far, and there are no
consistent hypotheses that are more general.

We want the initial version space (before any examples have been seen) to represent all possible
hypotheses. We do this by setting the G-set to contain just True (the hypothesis that contains
everything), and the S-set to contain just False (the hypothesis whose extension is empty).

Figure 18.13 shows the general structure of the boundary set representation of the version
space. In order to show that the representation is sufficient, we need the following two properties:

1. Every consistent hypothesis (other than those in the boundary sets) is more specific than
some member of the G-set, and more general than some member of the S-set. (That is,
there are no "stragglers" left outside.) This follows directly from the definitions of S and
G. If there were a straggler h, then it would have to be no more specific than any member
of G, in which case it belongs in G; or no more general than any member of S, in which
case it belongs in S.

2. Every hypothesis more specific than some member of the G-set and more general than
some member of the S-set is a consistent hypothesis. (That is, there are no "holes" between
the boundaries.) Any h between S and G must reject all the negative examples rejected by
each member of G (because it is more specific), and must accept all the positive examples
accepted by any member of S (because it is more general). Thus, h must agree with all the
examples, and therefore cannot be inconsistent. Figure 18.14 shows the situation: there are
no known examples outside S but inside G, so any hypothesis in the gap must be consistent.

We have therefore shown that ifS and G are maintained according to their definitions, then they
provide a satisfactory representation of the version space. The only remaining problem is how to
update S and G for a new example (the job of the VERSION-SPACE-UPDATE function). This may
appear rather complicated at first, but from the definitions and with the help of Figure 18.13, it is
not too hard to reconstruct the algorithm.

We need to worry about the members S, and G, of the S- and G-sets. For each one, the new
instance may be a false positive or a false negative.

1. False positive for S,•: This means S, is too general, but there are no consistent specializations
of 5,- (by definition), so we throw it out of the S-set.

2. False negative for S,: This means S,- is too specific, so we replace it by all its immediate
generalizations.

3. False positive for G,: This means G, is too general, so we replace it by all its immediate
specializations.

4. False negative for G,: This means G, is too specific, but there are no consistent generaliza-
tions of G, (by definition) so we throw it out of the G-set.



Section 18.5. Learning General Logical Descriptions 551

this region all inconsistent

More general

More specific

Figure 18.13 The version space contains all hypotheses consistent with the examples.

SI

Figure 18.14 The extensions of the members of G and 5. No known examples lie in between.

We continue these operations for each new instance until one of three things happens:

1. We have exactly one concept left in the version space, in which case we return it as the
unique hypothesis.

2. The version space collapses—either S or G becomes empty, indicating that there are no
consistent hypotheses for the training set. This is the same case as the failure of the simple
version of the decision tree algorithm.



552 Chapter 18. Learning from Observations

3. We run out of examples with several hypotheses remaining in the version space. This
means the version space represents a disjunction of hypotheses. For any new example,
if all the disjuncts agree, then we can return their classification of the example. If they
disagree, one possibility is to take the majority vote.

We leave as an exercise the application of the VERSION-SPACE-LEARNING algorithm to the
restaurant data.

GENERALIZATION
HIERARCHY

Discussion
There are two principal drawbacks to the version-space approach:

• If the domain contains noise or insufficient attributes for exact classification, the version
space will always collapse.

• If we allow unlimited disjunction in the hypothesis space, the S-set will always contain a
single most-specific hypothesis, namely, the disjunction of the descriptions of the positive
examples seen to date. Similarly, the G-set will contain just the negation of the disjunction
of the descriptions of the negative examples.

To date, no completely successful solution has been found for the problem of noise. The problem
of disjunction can be addressed by allowing limited forms of disjunction or by including a gen-
eralization hierarchy of more general predicates. For example, instead of using the disjunction
WaitEstimate(x, 30-60) V WaitEstimate(x, >60), we might use the single literal LongWait(x). The
set of generalization and specialization operations can be easily extended to handle this.

The pure version space algorithm was first applied in the Meta-DENDRAL system, which
was designed to learn rules for predicting how molecules would break into pieces in a mass
spectrometer (Buchanan and Mitchell, 1978). Meta-DENDRAL was able to generate rules that
were sufficiently novel to warrant publication in a journal of analytical chemistry—the first real
scientific knowledge generated by a computer program. It was also used in the elegant LEX
system (Mitchell et ai, 1983), which was able to learn to solve symbolic integration problems
by studying its own successes and failures. Although version space methods are probably not
practical in most real-world learning problems, mainly because of noise, they provide a good
deal of insight into the logical structure of hypothesis space.

18.6 WHY LEARNING WORKS : COMPUTATIONAL LEARNING THEORY

Learning means behaving better as a result of experience. We have shown several algorithms for
inductive learning, and explained how they fit into an agent. The main unanswered question was
posed in Section 18.2: how can one possibly know that one's learning algorithm has produced a
theory that will correctly predict the future? In terms of the definition of inductive learning, how
do we know that the hypothesis h is close to the target function/ if we don't know what/ is?

These questions have been pondered for several centuries, but unless we find some answers,
machine learning will, at best, be puzzled by its own success. Fortunately, within the last decade,



Section 18.6. Why Learning Works: Computational Learning Theory 553

COMPUTATIONAL
LEARNING THEORY

PROBABLY
APPROXIMATELY
CORRECT
PAC-LEARNING

STATIONARY

answers have begun to emerge. We will focus on the answers provided by computational
learning theory, a field at the intersection of AI and theoretical computer science.

The underlying principle is the following: any hypothesis that is seriously wrong will
almost certainly be "found out" with high probability after a small number of examples, because
it will make an incorrect prediction. Thus, any hypothesis that is consistent with a sufficiently
large set of training examples is unlikely to be seriously wrong—that is, it must be Probably
Approximately Correct. PAC-learning is the subfield of computational learning theory that is
devoted to this idea.

There are some subtleties in the preceding argument. The main question is the connection
between the training and the test examples—after all, we want the hypothesis to be approximately
correct on the test set, not just on the training set. The key assumption, introduced by Valiant, is
that the training and test sets are drawn randomly from the same population of examples using
the same probability distribution. This is called the stationarity assumption. It is much more
precise than the usual proposals for justifying induction, which mutter something about "the
future being like the past." Without the stationarity assumption, the theory can make no claims
at all about the future because there would be no necessary connection between future and past.
The stationarity assumption amounts to supposing that the process that selects examples is not
malevolent. Obviously, if the training set consisted only of weird examples—two-headed dogs,
for instance—then the learning algorithm cannot help but make unsuccessful generalizations
about how to recognize dogs.

ERROR

C-BALL

,

How many examples are needed?
In order to put these insights into practice, we will need some notation:

• Let X be the set of all possible examples.
• Let D be the distribution from which examples are drawn.
• Let H be the set of possible hypotheses.
• Let m be the number of examples in the training set.

Initially, we will assume that the true function/ is a member of H. Now we can define the error
of a hypothesis h with respect to the true function/ given a distribution D over the examples as
the probability that h is different from/ on an example:

error(/0 = P(h(x) if(x)\x drawn from D)

This is the same quantity being measured experimentally by the learning curves shown earlier.
A hypothesis h is called approximately correct if error(/z) < e, where e is a small constant.

The plan of attack is to show that after seeing m examples, with high probability, all consistent
hypotheses will be approximately correct. One can think of an approximately correct hypothesis
as being "close" to the true function in hypothesis space—it lies inside what is called the f-ball
around the true function/. Figure 18.15 shows the set of all hypotheses H, divided into the e-ball
around/ and the remainder, which we call Hbad-

We can calculate the probability that a "seriously wrong" hypothesis hi, e Hbad is consistent
with the first m examples as follows. We know that error(/z/,) > e. Thus, the probability that it



554 Chapter 18. Learning from Observations

H

Hbad / \

w
Figure 18.15 Schematic diagram of hypothesis space, showing the "c-ball" around the true
function/.

agrees with any given example is < (1 — t). The bound for m examples is

P(hb agrees with m examples) < (1 — f)'"

For Hbad to contain a consistent hypothesis, at least one of the hypotheses in Hbad must be
consistent. The probability of this occurring is bounded by the sum of the individual probabilities:

P(Hbad contains a consistent hypothesis) < |Hbad|0 - <0'"

SAMPLE
COMPLEXITY

We would like to reduce the probability of this event below some small number 6:

We can achieve this if we allow the algorithm to see

», > 1 (in - + In i
f 6

(18-2)

examples. Thus, if a learning algorithm returns a hypothesis that is consistent with this many
examples, then with probability at least 1 - 6, it has error at most ( . In other words, it is probably
approximately correct. The number of required examples, as a function of e and 6, is called the
sample complexity of the hypothesis space.

It appears, then, that the key question is the size of the hypothesis space. As we saw
earlier, if H is the set of all Boolean functions on n attributes, then |H| = 22". Thus, the sample
complexity of the space grows as 2". Because the number of possible examples is also 2", this
says that any learning algorithm for the space of all Boolean functions will do no better than a
lookup table, if it merely returns a hypothesis that is consistent with all known examples. Another
way to see this is to observe that for any unseen example, the hypothesis space will contain as
many consistent hypotheses predicting a positive outcome as predict a negative outcome.



Section 18.6. Why Learning Works: Computational Learning Theory 555

The dilemma we face, then, is that unless we restrict the space of functions the algorithm
can consider, it will not be able to learn; but if we do restrict the space, we may eliminate the
true function altogether. There are two ways to "escape" this dilemma. The first way is to insist
that the algorithm returns not just any consistent hypothesis, but preferably the simplest one. The
theoretical analysis of such algorithms is beyond the scope of this book, but in most cases, finding
the simplest hypothesis is intractable. The second escape, which we pursue here, is to focus on
learnable subsets of the entire set of Boolean functions. The idea is that in most cases we do
not need the full expressive power of Boolean functions, and can get by with more restricted
languages. We now examine one such restricted language in more detail.

Learning decision lists
DECISION LIST A decision list is a logical expression of a restricted form. It consists of a series of tests, each

of which is a conjunction of literals. If a test succeeds when applied to an example description,
the decision list specifies the value to be returned. If the test fails, processing continues with the
next test in the list." Decision lists resemble decision trees, but their overall structure is simpler,
whereas the individual tests are more complex. Figure 18.16 shows a decision list that represents
the hypothesis H4 obtained by the earlier CURRENT-BEST-LEARNING algorithm:

V* WillWait(x) & Patrons(x, Some) V (Patmns(x, Full) A FrilSat(x))

&-DL

k-DT

Patronsfx, Some) Patrons(x,Full) A Fri/Sat(x) No

Yes Yes

Figure 18.16 A decision list for the restaurant problem.

If we allow tests of arbitrary size, then decision lists can represent any Boolean function
(Exercise 18.13). On the other hand, if we restrict the size of each test to at most k literals,
then it is possible for the learning algorithm to generalize successfully from a small number of
examples. We call this language &-DL. The example in Figure 18.16 is in 2-DL. It is easy to
show (Exercise 18.13) that k-DL includes as a subset the language k-m, the set of all decision
trees of depth at most k. It is important to remember that the particular language referred to by
k-DL depends on the attributes used to describe the examples. We will use the notation &-DL(«) to
denote a &-DL language using n Boolean attributes.

The first task is to show that k-DL is learnable — that is, any function in &-DL can be accurately
approximated after seeing a reasonable number of examples. To do this, we need to calculate
the number of hypotheses in the language. Let the language of tests — conjunctions of at most k
literals using n attributes — be Conj(n, k). Because a decision list is constructed of tests, and each
test can be attached to either a Yes or a No outcome or can be absent from the decision list, there
1 ' A decision list is therefore identical in structure to a COND statement in Lisp.



556 Chapter 18. Learning from Observations

are at most 3lc""./<"-*)l distinct sets of component tests. Each of these sets of tests can be in any
order, so

The number of conjunctions of If literals from n attributes is given by

;=o
Hence, after some work, we obtain

We can plug this into Equation (18.2) to show that the number of examples needed for PAC-
learning a /C-DL function is polynomial in n:

m > - ( In - + O(nk Iog2(nk))

Therefore, any algorithm that returns a consistent decision list will PAC-learn a k-DL function in
a reasonable number of examples, for small k. The next task is to find an efficient algorithm that
returns a consistent decision list. We will use a greedy algorithm called DECISION-LIST-LEARNING
that repeatedly finds a test that agrees exactly with some subset of the training set. Once it finds
such a test, it adds it to the decision list under construction and removes the corresponding
examples, It then constructs the remainder of the decision list using just the remaining examples.
This is repeated until there are no examples left. The algorithm is shown in Figure 18.17.

This algorithm does not specify the method for selecting the next test to add to the decision
list. Although the formal results given earlier do not depend on the selection method, it would
seem reasonable to prefer small tests that match large sets of uniformly classified examples, so
that the overall decision list will be as compact as possible. The simplest strategy is to find
the smallest test t that matches any uniformly classified subset, regardless of the size of the
subset. Even this approach works quite well. The results for the restaurant data are shown in
Figure 18.18, and suggest that learning decision lists is an effective way to make predictions.

function DECisiON-LiST-LEARNiNG(e.ra;wp/<?.v) returns a decision list, No or failure

if examples is empty then return the value No
t — a test that matches a nonempty subset examples, of examples

such that the members of examples, are all positive or all negative
if there is no such t then return failure
if the examples in examples, are positive then o <— Yes
else o — No
return a decision list with initial test / and outcome o

and remaining elements given by DEClsiON-LlST-LEARNING(<?.«zmp/es - examples,)

Figure 18.17 An algorithm for learning decision lists.



Section 18.6. Why Learning Works: Computational Learning Theory 557

l

0.9

3 0.8

1 0.7
u

8 0.6

0.5

0.4
(

/'"* ^^'^ DLL ——
- V' J DTL •

:'; /

^
'L

) 20 40 60 80 100
Training set size

Figure 18.18 Graph showing the predictive performance of the DECISION-LlST-LEARNING
algorithm on the restaurant data, as a function of the number of examples seen. The curve for
DECISION-TREE-LEARNING is shown for comparison.

IDENTIFICATION IN
THE LIMIT

Discussion
Computational learning theory has generated a new way of looking at the problem of learning.
In the early 1960s, the theory of learning focussed on the problem of identification in the limit.
An identification algorithm must return a hypothesis that exactly matches the true function.
The standard approach combines the current-best-hypothesis and version space methods: the
current best hypothesis is the first consistent hypothesis in some fixed simplicity ordering of the
hypothesis space. As examples arrive, the learner abandons simpler hypotheses as they become
inconsistent. Once it reaches the true function, it will never abandon it. Unfortunately, in many
hypothesis spaces, the number of examples and the computation time required to reach the true
function is enormous. Computational learning theory does not insist that the learning agent
find the "one true law" governing its environment, but instead that it find a hypothesis with a
certain degree of predictive accuracy. It also brings sharply into focus the trade-off between the
expressiveness of the hypothesis language and the complexity of learning.

The results we have shown are worst-case complexity results, and do not necessarily
reflect the average-case sample complexity as measured by the learning curves we have shown.
An average-case analysis must also make assumptions as to the distribution of examples and
the distribution of true functions that the algorithm will have to learn. As these issues become
better understood, computational learning theory is providing valuable guidance to machine
learning researchers who are interested in predicting or modifying the learning ability of their
algorithms. Besides decision lists, results have been obtained for almost all known subclasses
of Boolean functions, for neural networks (see Chapter 19) and for sets of first-order logical
sentences (see Chapter 21). The results show that the pure inductive learning problem, where the
agent begins with no prior knowledge about the target function, is generally very hard. As we



558 Chapter 18. Learning from Observations

show in Chapter 21, the use of prior knowledge to guide inductive learning makes it possible to
learn quite large sets of sentences from reasonable numbers of examples, even in a language as
expressive as first-order logic.

18.7 SUMMARY

We have seen that all learning can be seen as learning a function, and in this chapter we
concentrate on induction: learning a function from example input/output pairs. The main points
were as follows:

• Learning in intelligent agents is essential for dealing with unknown environments (i.e.,
compensating for the designer's lack of omniscience about the agent's environment).

• Learning is also essential for building agents with a reasonable amount of effort (i.e.,
compensating for the designer's laziness, or lack of time).

• Learning agents can be divided conceptually into a performance element, which is re-
sponsible for selecting actions, and a learning element, which is responsible for modifying
the performance element.

• Learning takes many forms, depending on the nature of the performance element, the
available feedback, and the available knowledge.

• Learning any particular component of the performance element can be cast as a problem
of learning an accurate representation of a function.

• Learning a function from examples of its inputs and outputs is called inductive learning.
• The difficulty of learning depends on the chosen representation. Functions can be repre-

sented by logical sentences, polynomials, belief networks, neural networks, and others.
• Decision trees are an efficient method for learning deterministic Boolean functions.
• Ockham's razor suggests choosing the simplest hypothesis that niatches the observed

examples. The information gain heuristic allows us to find a simple decision tree.
• The performance of inductive learning algorithms is measured by their learning curve,

which shows the prediction accuracy as a function of the number of observed examples.
• We presented two general approaches for learning logical theories. The current-best-

hypothesis approach maintains and adjusts a single hypothesis, whereas the version space
approach maintains a representation of all consistent hypotheses. Both are vulnerable to
noise in the training set.

• Computational learning theory analyses the sample complexity and computational com-
plexity of inductive learning. There is a trade-off between the expressiveness of the
hypothesis language and the ease of learning.



Section 18.7. Summary 559

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The general architecture for learning systems portrayed in Figure 18.1 is classic in the machine
learning literature (Buchanan et^al., 1978). The architecture itself, as embodied in programs,
goes back at least as far as Arthur Samuel's (1959; 1967) program for playing checkers, which
improved its performance through learning. It is described further in Chapter 20.

Claude Shannon was the inventor of information theory (Shannon and Weaver, 1949),
which revolutionized the study of communication as well as contributing to the success of
decision-tree learning. He also contributed one of the earliest examples of machine learning, a
mechanical mouse named Theseus that learned how to travel efficiently through a maze by trial
and error. EPAM, the "Elementary Perceiver And Memorizer" (Feigenbaum, 1961), was one of
the earliest systems to use decision trees (or discrimination nets). EPAM was intended as a
cognitive-simulation model of human concept learning. CLS (Hunt et al., 1966) used a heuristic
lookahead method to construct decision trees. ID3 (Quinlan, 1979) added the crucial idea of using
information content to provide the heuristic function. Quinlan (1986) experimentally investigates
the effect of noise on learning and describes a modification of ID3 designed to handle noise. A
copy of C4.5, an industrial-strength version of ID3, can be found in Quinlan (1993).

William of Ockham (c. 1285-1349), the most influential philosopher of his century and a
major contributer to medieval epistemology, logic, and metaphysics, is credited with a statement
called "Ockham's Razor"—in Latin, Entia non sunt multiplicanda praeter necessitatem, and in
English, "Entities are not to be multiplied without necessity." Unfortunately, this laudable piece
of advice is nowhere to be found in his writings in precisely these words.

The current-best-hypothesis approach has been a mainstay of the philosophy of science,
as a model of scientific theory formation, for centuries. In AI, the approach is most closely
associated with the work of Patrick Winston, whose Ph.D. thesis (Winston, 1970) addressed the
problem of learning descriptions of complex objects. Tom Mitchell (1977; 1982) invented version
spaces and the learning algorithm that uses them. They were initially used in the Meta-DENDRAL
expert system for chemistry (Buchanan and Mitchell, 1978), and later in Mitchell's (1983) LEX
system, which learns to solve calculus problems. The importance of bias in inductive learning
was emphasized by Mitchell (1980), who showed that an unbiased algorithm is incapable of
learning because its hypothesis space always contains equal numbers of consistent hypotheses
that predict Q and -<Q for any example and for any goal predicate Q.

Historically, the earliest research on the theoretical analysis of learning focused on the
problem of "identification in the limit" (Gold, 1967), which involves showing that a learning
algorithm will eventually converge on the correct hypothesis once it has seen enough examples.
This approach was motivated in part by models of scientific discovery from the philosophy
of science (Popper, 1962), but has been applied mainly to the problem of learning grammars
from example sentences. Osherson, Stob, and Weinstein (1986) provide a modern and rigorous
treatment of the field.

Whereas the identification-in-the-limit approach concentrates on eventual convergence,
COMPLEX!^ me study of Kolmogorov complexity or algorithmic complexity, developed independently by

Solomonoff (1964) and Kolmogorov (1965), attempts to provide a formal definition for the notion
of simplicity used in Ockham's razor. To escape the problem that simplicity depends on the way



560 Chapter 18. Learning from Observations

MINIMUM
DESCRIPTION
LENGTH

UNIFORM
CONVERGENCE
THEORY

OCKHAM
ALGORITHM

in which information is represented, it is proposed that simplicity be measured by the length of
the shortest program for a universal Turing machine that correctly reproduces the observed data.
Although there are many possible universal Turing machines, and hence many possible "shortest"
programs, these programs differ in length by at most a constant that is independent of the amount
of data. This beautiful insight, which essentially shows that any initial representation bias will
eventually be overcome by the data itself, is marred only by the undecidability of computing the
length of the shortest program. Approximate measures such as the minimum description length
or MDL (Rissanen, 1984) can be used instead, and have produced excellent results in practice.
The recent text by Li and Vitanyi (1993) is the best source for Kolmogorov complexity.

Computational learning theory in the modern sense, that is, the theory of PAC-learning, was
inaugurated by Leslie Valiant (1984), but also has roots in the subfield of statistics called uniform
convergence theory (Vapnik and Chervonenkis, 1971). Valiant's work brought computational
complexity issues into the picture, and emphasized the idea that the learner need find only
approximately correct hypotheses. With Michael Kearns (1990), Valiant showed that several
concept classes cannot be PAC-learned tractably even though sufficient information is available
in the examples. Some positive results have been obtained for classes such as decision lists (Rivest,
1987), although most PAC-learning results have been negative.

PAC-learning theory and uniform convergence theory were unified by the "four Germans"
(none of whom are actually German): Blumer, Ehrenfeucht, Haussler, and Warmuth (1989).
PAC learning is also related to other theoretical approaches through the notion of an Ockham
algorithm. Such algorithms are capable of finding a consistent hypothesis that achieves a
"significant" compression of the data it represents. The four Germans showed that if an Ockham
algorithm exists for a given class of concepts, then the class is PAC-learnable (Blumer et al.,
1990). Board and Pitt (1992) showed that the implication also goes the other way: if a concept
class is PAC-learnable, then there must exist an Ockham algorithm for it.

A large number of important papers on machine learning have been collected in Readings
in Machine Learning (Shavlik and Dietterich, 1990). The two volumes Machine Learning 1
(Michalski et al., 1983) and Machine Learning 2 (Michalski et al., 1986) also contain many
important papers as well as huge bibliographies. Weiss and Kulikowski (1991) provide a broad
introduction to function-learning methods from machine learning, statistics, and neural networks.
The STATLOG project (Michie et al., 1994) is by far the most exhaustive investigation into the
comparative performance of learning algorithms. Good current research in machine learning is
published in the annual proceedings of the International Conference on Machine Learning, in
the journal Machine Learning, and in mainstream Al journals. Work in computational learning
theory appears in the annual ACM Workshop on Computational Learning Theory (COLT), in
Machine Learning, and in several theoretical journals.

EXERCISES

18.1 Consider the problem faced by an infant learning to speak and understand a language.
Explain how this process fits into the general learning model, identifying each of the components
of the model as appropriate.



Section 18.7. Summary 561

18.2 Repeat Exercise 18.1 for the case of learning to play tennis (or some other competitive
sport with which you are familiar). Is this supervised learning or reinforcement learning?

18.3 Draw a decision tree for the problem of deciding whether or not to move forward at a road
intersection given that the light has just turned green.

18.4 We never test the same attribute twice along one path in a decision tree. Why not?

18.5 A good "straw man" learning algorithm is as follows: create a table out of all the training
examples. Determine which output occurs most often among the training examples; call it d.
Then when given an input that is not in the table, just return d. For inputs that are in the table,
return the output associated with it (or the most frequent output, if there is more than one). If
the input does not appear in the table, then return d. Implement this algorithm and see how well
it does in a sample domain. This should give you an idea of the baseline for the domain—the
minimal performance that any algorithm should be able to obtain (although many published
algorithms have managed to do worse).

18.6 Look back at Exercise 3.16, which asked you to predict from a sequence of numbers
(such as [1,4,9,16]) the function underlying the sequence. What techniques from this chapter are
applicable to this problem? How would they allow you to do better than the problem-solving
approach of Exercise 3.16?

18.7 In the recursive construction of decision trees, it sometimes occurs that a mixed set of
positive and negative examples remains at a leaf node, even after all the attributes have been used.
Suppose that we have/) positive examples and n negative examples.

a. Show that the solution used by DECISION-TREE-LEARNING, which picks the majority
classification, minimizes the absolute error over the set of examples at the leaf.

CLASS PROBABILITY b. Show that returning the class probability pl(p + n) minimizes the sum of squared errors.

18.8 Suppose that a learning algorithm is trying to find a consistent hypothesis when the
classifications of examples are actually being generated randomly. There are n Boolean attributes,
and examples are drawn uniformly from the set of 2" possible examples. Calculate the number of
examples required before the probability of finding a contradiction in the data reaches 0.5.

18.9 Suppose that an attribute splits the set of examples E into subsets £,, and that each subset
has pi positive examples and «, negative examples. Show that unless the ratio />//(/?,• + «,) is the
same for all /, the attribute has strictly positive information gain.

18.10 Modify DECISION-TREE-LEARNING to include x2-pruning. You may wish to consult
Quinlan (1986) for details.

18.11 The standard DECISION-TREE-LEARNING algorithm described in the chapter does not
handle cases in which some examples have missing attribute values.

a. First, we need to find a way to classify such examples, given a decision tree that includes
tests on the attributes for which values may be missing. Suppose an example X has a
missing value for attribute A, and that the decision tree tests for A at a node that X reaches.
One way to handle this case is to pretend that the example has all possible values for the



562 Chapter 18. Learning from Observations

attribute, but to weight each value according to its frequency among all of the examples that
reach that node in the decision tree. The classification algorithm should follow all branches
at any node for which a value is missing, and should multiply the weights along each path.
Write a modified classification algorithm for decision trees that has this behavior.

b. Now modify the information gain calculation so that in any given collection of examples C
at a given node in the tree during the construction process, the examples with missing values
for any of the remaining attributes are given "as-if" values according to the frequencies of
those values in the set C.

18.12 In the chapter, we noted that attributes with many different possible values can cause
problems with the gain measure. Such attributes tend to split the examples into many small classes
or even singleton classes, thereby appearing to be highly relevant according to the gain measure.
The gain ratio criterion selects attributes according to the ratio between their gain and their
intrinsic information content, that is, the amount of information contained in the answer to the
question, "What is the value of this attribute?" The gain ratio criterion therefore tries to measure
how efficiently an attribute provides information on the correct classification of an example.
Write a mathematical expression for the information content of an attribute, and implement the
gain ratio criterion in DECISION-TREE-LEARNING.

18.13 In this ^exercise, we will consider the expressiveness of decision lists, as defined in
Section 18.6.

a. Show that if the tests can be of any size, decision lists can represent any Boolean function.
b. Show that if the tests can contain at most k literals each, then decision lists can represent

any function that can be represented by a decision tree of depth k.

18.14 We have shown how a learning element can improve the performance element. What if
we wanted to improve the learning element (or the critic or the problem generator)? Give some
examples of this kind of improvement in the taxi domain. Is it possible to represent this kind of
learning with our general model of learning agents? How?



19 LEARNING IN NEURAL
AND BELIEF NETWORKS

In which we see how to train complex networks of simple computing elements, thereby
perhaps shedding some light on the workings of the brain.

This chapter can be viewed in two ways. From a computational viewpoint, it is about a method
of representing functions using networks of simple arithmetic computing elements, and about
methods for learning such representations from examples. These networks represent functions
in much the same way that circuits consisting of simple logic gates represent Boolean functions.
Such representations are particularly useful for complex functions with continuous-valued outputs
and large numbers of noisy inputs, where the logic-based techniques in Chapter 18 sometimes
have difficulty.

From a biological viewpoint, this chapter is about a mathematical model for the operation
of the brain. The simple arithmetic computing elements correspond to neurons—the cells that
perform information processing in the brain—and the network as a whole corresponds to a

NEURAL NETWORKS collection of interconnected neurons. For this reason, the networks are called neural networks.1
Besides their useful computational properties, neural networks may offer the best chance of
understanding many psychological phenomena that arise from the specific structure and operation
of the brain. We will therefore begin the chapter with a brief look at what is known about brains,
because this provides much of the motivation for the study of neural networks. In a sense, we
thereby depart from our intention, stated in Chapter 1, to concentrate on rational action rather than
on imitating humans. These conflicting goals have characterized the study of neural networks
ever since the very first paper on the topic by McCulloch and Pitts (1943). Methodologically
speaking, the goals can be reconciled by acknowledging the fact that humans (and other animals)
do think, and use their powers of thought to act quite successfully in complex domains where
current computer-based agents would be lost. It is instructive to try to see how they do it.

Section 19.2 then presents the idealized models that are the main subject of study. Simple,
single-layer networks called perceptrons are covered in Section 19.3, and general multilayer
networks in Section 19.4. Section 19.5 illustrates the various uses of neural networks.
1 Other names that have been used for the field include connectionism, parallel distributed processing, neural
computation, adaptive networks, and collective computation. It should be emphasized that these are artificial neural
networks; there is no attempt to build computing elements out of animal tissue.

563



564 Chapter 19. Learning in Neural and Belief Networks

The network theme is continued in Section 19.6, where we discuss methods for learning
belief networks from examples. The connection is deeper than the superficial similarity implied
by the word "network"—not only do the two fields share some learning methods, but in some
cases, it can be shown that neural networks are belief networks.

19.1 How THE BRAIN WORKS

NEURON

" SDMA

DENDRITES

AXON

SYNAPSE

ACTION POTENTIAL

EXCITATORY

INHIBITORY

PLASTICITY

The exact way in which the brain enables thought is one of the great mysteries of science. It has
been appreciated for thousands of years that strong blows to the head can lead to unconsciousness,
temporary loss of memory, or even permanent loss of mental capability. This suggests that the
brain is somehow involved in thought. It has also long been known that the human brain is
somehow different; in about 335 B.C. Aristotle wrote, "Of all the animals, man has the largest
brain in proportion to his size."2 Still, it was not until the middle of the eighteenth century
that the brain was widely recognized as the seat of consciousness, and it was not until the late
nineteenth century that the functional regions of animal brains began to be mapped out. Before
the nineteenth century, candidate locations for the seat of consciousness included the heart, the
spleen, and the pineal body, a small appendage of the brain present in all vertebrates.

We do know that the neuron, or nerve cell, is the fundamental functional unit of all nervous
system tissue, including the brain. Each neuron consists of a cell body, or soma, that contains
a cell nucleus. Branching out from the cell body are a number of fibers called dendrites and a
single long fiber called the axon. Dendrites branch into a bushy network around the cell, whereas
the axon stretches out for a long distance—usually about a centimeter (100 times the diameter
of the cell body), and as far as a meter in extreme cases. Eventually, the axon also branches
into strands and substrands that connect to the dendrites and cell bodies of other neurons. The
connecting junction is called a synapse. Each neuron forms synapses with anywhere from a
dozen to a hundred thousand other neurons. Figure 19.1 shows the parts of a neuron.

Signals are propagated from neuron to neuron by a complicated electrochemical reaction.
Chemical transmitter substances are released from the synapses and enter the dendrite, raising
or lowering the electrical potential of the cell body. When the potential reaches a threshold,
an electrical pulse or action potential is sent down the axon. The pulse spreads out along the
branches of the axon, eventually reaching synapses and releasing transmitters into the bodies of
other cells. Synapses that increase the potential are called excitatory, and those that decrease it
are called inhibitory. Perhaps the most significant finding is that synaptic connections exhibit
plasticity—long-term changes in the strength of connections in response to the pattern of stimu-
lation. Neurons also form new connections with other neurons, and sometimes entire collections
of neurons can migrate from one place to another. These mechanisms are thought to form the
basis for learning in the brain.

Most information processing goes on in the cerebral cortex, the outer layer of the brain.
The basic organizational unit appears to be a barrel-shaped module of tissue about 0.5 mm in
2 Since then, it has been discovered that some species of dolphins and whales have relatively larger brains. The large
size of human brains is now thought to be enabled in part by recent improvements in its cooling system.



Section 19.1. How the Brain Works 565

Axonal arborization

Axon from another cell

Synapses

Cell body or Soma

Figure 19.1 The parts of a nerve cell or neuron. In reality, the length of the axon should be
about 100 times the diameter of the cell body.

diameter, extending the full depth of the cortex, which is about 4 mm in humans. A module
l contains about 2000 neurons. It is known that certain areas of the brain have specific functions.

In 1861, Pierre Paul Broca was able to demonstrate that the third left frontal convolution of the
APHASIA cerebral cortex is important for speech and language by his studies of patients with aphasia—an

inability to speak, often brought on by brain damage. This soon led to surgical experiments on
animals that mapped out the connection between areas of the cortex and specific motor controls.
We now have some data on the mapping between areas of the brain and the parts of the body
that they control, or from which they receive sensory input. Such mappings seem to be able to
change radically over the course of a few weeks, and some animals seem to have multiple maps.
Moreover, we do not fully understand how other areas can take over functions when one area is
damaged. There is almost no theory about how an individual memory is stored.

• :, The truly amazing thing is that a collection of simple cells can lead to thought, action,
* " and consciousness. Neurobiology is a long way from a complete theory of consciousness, but

even if there are some important electrical or chemical processes that have been overlooked, the
amazing conclusion is the same: brains cause minds (Searle, 1992). The only real alternative
theory is mysticism: that there is some mystical realm in which minds operate that is beyond
physical science.

Comparing brains with digital computers
Brains and digital computers perform quite different tasks, and have different properties. Fig-
ure 19.2 shows that there are more neurons in the typical human brain than there are bits in a typical
high-end computer workstation. We can predict that this will not hold true for long, because the
human brain is evolving very slowly, whereas computer memories are growing rapidly. In any



566 Chapter 19. Learning in Neural and Belief Networks

Computational units
Storage units
Cycle time
Bandwidth
Neuron updates/sec

Computer

1 CPU, 105 gates
109 bits RAM, 10'° bits disk
10~8 sec
109 bits/sec
105

Human Brain

1011 neurons
1011 neurons, 10
10-3 sec
1014 bits/sec
1014

Figure 19.2 A crude comparison of the raw computational resources available to
(circa 1994) and brains.

14 synapses

computers

GRACEFUL
DEGRADATION

case, the difference in storage capacity is minor compared to the difference in switching speed
and in parallelism. Computer chips can execute an instruction in tens of nanoseconds, whereas
neurons require milliseconds to fire. Brains more than make up for this, however, because all
the neurons and synapses are active simultaneously, whereas most current computers have only
one or at most a few CPUs. A neural network running ori a serial computer requires hundreds
of cycles to decide if a single neuron-like unit will fire, whereas in a real brain, all the neurons
do this in a single step. Thus, even though a computer is a million times faster in raw switching
speed, the brain ends up being a billion times faster at what it does. One of the attractions of the
neural network approach is the hope that a device could be built that combines the parallelism of
the brain with the switching speed of the computer. Full-scale hardware development will depend
on finding a family of neural network algorithms that provides a basis for long-term investment.

A brain can perform a complex task—recognize a face, for example—in less than a second,
which is only enough time for a few hundred cycles. A serial computer requires billions of cycles
to perform the same task less well. Clearly, there is an opportunity for massive parallelism here.
Neural networks may provide a model for massively parallel computation that is more successful
than the approach of "parallelizing" traditional serial algorithms.

Brains are more fault-tolerant than computers. A hardware error that flips a single bit
can doom an entire computation, but brain cells die all the time with no ill effect to the overall
functioning of the brain. It is true that there are a variety of diseases and traumas that can affect
a brain, but for the most part, brains manage to muddle through for 70 or 80 years with no need
to replace a memory card, call the manufacturer's service line, or reboot. In addition, brains
are constantly faced with novel input, yet manage to do something with it. Computer programs
rarely work as well with novel input, unless the programmer has been exceptionally careful. The
third attraction of neural networks is graceful degradation: they tend to have a gradual rather
than sharp drop-off in performance as conditions worsen.

The final attraction of neural networks is that they are designed to be trained using an
inductive learning algorithm. (Contrary to the impression given by the popular media, of course,
neural networks are far from being the only AI systems capable of learning.) After the network
is initialized, it can be modified to improve its performance on input/output pairs. To the extent
that the learning algorithms can be made general and efficient, this increases the value of neural
networks as psychological models, and makes them useful tools for creating a wide variety of
high-performance applications.



Section 19.2. Neural Networks 567

19.2 NEURAL NETWORKS

UNITS

LINKS

WEIGHT

ACTIVATION LEVEL

A neural network is composed of a number of nodes, or units, connected by links. Each link
has a numeric weight associated with it. Weights are the primary means of long-term storage
in neural networks, and learning usually takes place by updating the weights. Some of the units
are connected to the external environment, and can be designated as input or output units. The
weights are modified so as to try to bring the network's input/output behavior more into line with
that of the environment providing the inputs.

Each unit has a set of input links from other units, a set of output links to other units, a
current activation level, and a means of computing the activation level at the next step in time,
given its inputs and weights. The idea is that each unit does a local computation based on inputs
from its neighbors, but without the need for any global control over the set of units as a whole.
In practice, most neural network implementations are in software and use synchronous control
to update all the units in a fixed sequence.

To build a neural network to perform some task, one must first decide how many units are
to be used, what kind of units are appropriate, and how the units are to be connected to form a
network. One then initializes the weights of the network, and trains the weights using a learning
algorithm applied to a set of training examples for the task.3 The use of examples also implies
that one must decide how to encode the examples in terms of inputs and outputs of the network.

Notation
Neural networks have lots of pieces, and to refer to them we will need to introduce a variety of
mathematical notations. For convenience, these are summarized in Figure 19.3.

INPUT FUNCTION

ACTIVATION
FUNCTION

Simple computing elements
Figure 19.4 shows a typical unit. Each unit performs a simple computation: it receives signals
from its input links and computes a new activation level that it sends along each of its output
links. The computation of the activation level is based on the values of each input signal received
from a neighboring node, and the weights on each input link. The computation is split into
two components. First is a linear component, called the input function, int, that computes the
weighted sum of the unit's input values. Second is a nonlinear component called the activation
function, g, that transforms the weighted sum into the final value that serves as the unit's activation
value, a,. Usually, all units in a network use the same activation function. Exercise 19.3 explains
why it is important to have a nonlinear component.

The total weighted input is the sum of the input activations times their respective weights:

3 In this chapter, we will assume that all examples are labelled with the correct outputs. In Chapter 20, we will see how
to relax this assumption.



568 Chapter 19. Learning in Neural and Belief Networks

Notation
at
a,

g
s'

Err-,
Erf

I,
I
r
in-,
N

O
Oi
O
t
T
T
T

W/,i
Wi
w,
w

Meaning

Activation value of unit i (also the output of the unit)
Vector of activation values for the inputs to unit i

Activation function1

Derivative of the activation function

Error (difference between output and target) for unit /
Error for example e

Activation of a unit / in the input layer
Vector of activations of all input units
Vector of inputs for example e

Weighted sum of inputs to unit ;'
Total number of units in the network

Activation of the single output unit of a perceptron
Activation of a unit ;' in the output layer
Vector of activations of all units in the output layer

Threshold for a step function

Target (desired) output for a perceptron
Target vector when there are several output units
Target vector for example e

Weight on the link from unity to unit i
Weight from unit r to the output in a perceptron
Vector of weights leading into unit i
Vector of all weights in the network

Figure 19.3 Neural network notation. Subscripts denote units; superscripts denote examples.

Input Activation „ .r, ' . ^ . Output/• unction r unction '

Output

Links

Figure 19.4 A unit.



Section 19.2. Neural Networks 569

where the final expression illustrates the use of vector notation. In this notation, the weights on
links into node i are denoted by W, the set of input values is called a,, and the dot product denotes
the sum of the pairwise products.

The elementary computation step in each unit computes the new activation value for the
unit by applying the activation function, g, to the result of the input function:

g(irii) = g

Different models are obtained by using different mathematical functions for g. Three common
choices are the step, sign, and sigmoid functions, illustrated in Figure 19.5. The step function
has a threshold t such that it outputs a 1 when the input is greater than its threshold, and outputs
a 0 otherwise. The biological motivation is that a 1 represents the firing of a pulse down the
axon, and a 0 represents no firing. The threshold represents the minimum total weighted input
necessary to cause the neuron to fire. Threshold versions of the sign and sigmoid functions can
also be defined.

In most cases, we will find it mathematically convenient to replace the threshold with an
extra input weight. This allows for a simpler learning element because it need only worry about
adjusting weights, rather than adjusting both weights and thresholds. Thus, instead of having a
threshold t for each unit, we add an extra input whose activation GO is fixed at -1 . The extra weight
WQ,, associated with OQ serves the function of a threshold at t, provided that WQJCIQ = —t. Then
all units can have a fixed threshold at 0. Mathematically, the two representations for thresholds
are entirely equivalent:

a, = step, = step0 where Wo,,- = t and OQ = - 1

+1 +1

in,

(a) Step function (b) Sign function (c) Sigmoid function

Figure 19.5 Three different activation functions for units.

. , ,l,ifx>t . . . (+l,ifx>0step,(jc) = ' - -.--'.*- i — . .., ^sigmoidW = 1 +e~*



570 Chapter 19. Learning in Neural and Belief Networks

We can get a feel for the operation of individual units by comparing them with logic gates.
One of the original motivations for the design of individual units (McCulloch and Pitts, 1943) was
their ability to represent basic Boolean functions. Figure 19.6 shows how the Boolean functions
AND, OR, and NOT can be represented by units with suitable weights and thresholds. This is
important because it means we can use these units to build a network to compute any Boolean
function of the inputs.

W= 1 W= 1

W= 1 W= 1

AND OR NOT

Figure 19.6 Units with a step function for the activation function can act as logic gates, given
appropriate thresholds and weights.

Network structures
There are a variety of kinds of network structure, each of which results in very different com-

FEED-FORWARD putational properties. The main distinction to be made is between feed-forward and recurrent
RECURRENT networks. In a feed-forward network, links are unidirectional, and there are no cycles. In a

recurrent network, the links can form arbitrary topologies. Technically speaking, a feed-forward
network is a directed acyclic graph (DAG). We will usually be dealing with networks that are
arranged in layers. In a layered feed-forward network, each unit is linked only to units in the next
layer; there are no links between units in the same layer, no links backward to a previous layer,
and no links that skip a layer. Figure 19.7 shows a very simple example of a layered feed-forward
network. This network has two layers; because the input units (square nodes) simply serve to
pass activation to the next layer, they are not counted (although some authors would describe this
as a three-layer network).

The significance of the lack of cycles is that computation can proceed uniformly from input
units to output units. The activation from the previous time step plays no part in the computation,
because it is not fed back to an earlier unit. Hence, a feed-forward network simply computes a
function of the input values that depends on the weight settings—it has no internal state other
than the weights themselves. Such networks can implement adaptive versions of simple reflex
agents or they can function as components of more complex agents. In this chapter, we will focus
on feed-forward networks because they are relatively well-understood.

Obviously, the brain cannot be a feed-forward network, else we would have no short-term
memory. Some regions of the brain are largely feed-forward and somewhat layered, but there
are rampant back-connections. In our terminology, the brain is a recurrent network. Because
activation is fed back to the units that caused it, recurrent networks have internal state stored in
the activation levels of the units. This also means that computation can be much less orderly



Section 19.2. Neural Networks 571

HOPFIELD
NETWORKS

ASSOCIATIVE
MEMORY

BOLTZMANN
MACHINES

INPUT UNITS

OUTPUT UNITS

HIDDEN UNITS

PERCEPTRONS

MULTILAYER
NETWORKS

than in feed-forward networks. Recurrent networks can become unstable, or oscillate, or exhibit
chaotic behavior. Given some input values, it can take a long time to compute a stable output,
and learning is made more difficult. On the other hand, recurrent networks can implement more
complex agent designs and can model systems with state. Because recurrent networks require
some quite advanced mathematical methods, we can only provide a few pointers here.

Hopfield networks are probably the best-understood class of recurrent networks. They
use bidirectional connections with symmetric weights (i.e., W/./ = W/,,-); all of the units are both
input and output units; the activation function g is the sign function; and the activation levels can
only be ± 1. A Hopfield network functions as an associative memory—after training on a set of
examples, a new stimulus will cause the network to settle into an activation pattern corresponding
to the example in the training set that most closely resembles the new stimulus. For example, if
the training set consists of a set of photographs, and the new stimulus is a small piece of one of
the photographs, then the network activation levels will reproduce the photograph from which the
piece was taken. Notice that the original photographs are not stored separately in the network;
each weight is a partial encoding of all the photographs. One of the most interesting theoretical
results is that Hopfield networks can reliably store up to 0.1387V training examples, where N is
the number of units in the network.

Boltzmann machines also use symmetric weights, but include units that are neither input
nor output units (cf. the units labelled HT, and H$ in Figure 19.7). They also use a stochastic
activation function, such that the probability of the output being 1 is some function of the total
weighted input. Boltzmann machines therefore undergo state transitions that resemble a simulated
annealing search for the configuration that best approximates the training set (see Chapter 4).
It turns out that Boltzmann machines are formally identical to a special case of belief networks
evaluated with a stochastic simulation algorithm (see Section 15.4).

Returning to feed-forward networks, there is one more important distinction to be made.
Examine Figure 19.7, which shows the topology of a very simple neural network. On the left are
the input units. The activation value of each of these units is determined by the environment. At
the right-hand end of the network are four output units. In between, the nodes labelled H^ and
//4 have no direct connection to the outside world. These are called hidden units, because they
cannot be directly observed by noting the input/output behavior of the network. Some networks,
called perceptrons, have no hidden units. This makes the learning problem much simpler, but
it means that perceptrons are very limited in what they can represent. Networks with one or
more layers of hidden units are called multilayer networks. With one (sufficiently large) layer
of hidden units, it is possible to represent any continuous function of the inputs; with two layers,
even discontinuous functions can be represented.

With a fixed structure and fixed activation functions g, the functions representable by a
feed-forward network are restricted to have a specific parameterized structure. The weights
chosen for the network determine which of these functions is actually represented. For example,
the network in Figure 19.7 calculates the following function:

(19.1)
where g is the activation function, and a, is the output of node i. Notice that because the activation
functions g are nonlinear, the whole network represents a complex nonlinear function. If you



572 Chapter 19. Learning in Neural and Belief Networks

NONLINEAR
REGRESSION

Figure 19.7 A very simple, two-layer, feed-forward network with two inputs, two hidden
nodes, and one output node.

think of the weights as parameters or coefficients of this function, then learning just becomes a
process of tuning the parameters to fit the data in the training set—a process that statisticians
call nonlinear regression. From the statistical viewpoint, this is what neural networks do.

NERFS

Optimal network structure
So far we have considered networks with a fixed structure, determined by some outside authority.
This is a potential weak point, because the wrong choice of network structure can lead to poor
performance. If we choose a network that is too small, then the model will be incapable of
representing the desired function. If we choose a network that is too big, it will be able to
memorize all the examples by forming a large lookup table, but will not generalize well to inputs
that have not been seen before. In other words, like all statistical models, neural networks are
subject to overfitting when there are too many parameters (i.e., weights) in the model. We saw
this in Figure 18.2 (page 530), where the high-parameter models (b) and (c) fit all the data, but
may not generalize as well as the low-parameter model (d).

It is known that a feed-forward network with one hidden layer can approximate any
continuous function of the inputs, and a network with two hidden layers can approximate any
function at all. However, the number of units in each layer may grow exponentially with the
number of inputs. As yet, we have no good theory to characterize NERFs, or Network Efficiently
Representable Functions—functions that can be approximated with a small number of units.

We can think of the problem of finding a good network structure as a search problem. One
approach that has been used is to use a genetic algorithm (Chapter 20) to search the space of
network structures. However, this is a very large space, and evaluating a state in the space means
running the whole neural network training protocol, so this approach is very CPU-intensive.
Therefore, it is more common to see hill-climbing searches that selectively modify an existing
network structure. There are two ways to do this: start with a big network and make it smaller,
or start with a small one and make it bigger.

The zip code reading network described on page 586 uses an approach called optimal
brain damage to remove weights from the initial fully-connected model. After the network is



Section 19.3. Perceptrons 573

initially trained, an information theoretic approach identifies an optimal selection of connections
that can be dropped (i.e., the weights are set to zero). The network is then retrained, and if it is
performing as well or better, the process is repeated. This process was able to eliminate 3/4 of
the weights, and improve overall performance on test data. In addition to removing connections,
it is also possible to remove units, that are not contributing much to the result.

Several algorithms have been proposed for growing a larger network from a smaller one.
The tiling algorithm (Mezard and Nadal, 1989) is interesting because it is similar to the decision
tree learning algorithm. The idea is to start with a single unit that does its best to produce the
correct output on as many of the training examples as possible. Subsequent units are added to
take care of the examples that the first unit got wrong. The algorithm adds only as many units as
are needed to cover all the examples.

The cross-validation techniques of Chapter 18 are useful for deciding when we have found
a network of the right size.

19.3 PERCEPTRONS

Layered feed-forward networks were first studied in the late 1950s under the name perceptrons.
Although networks of all sizes and topologies were considered, the only effective learning element
at the time was for single-layered networks, so that is where most of the effort was spent. Today,
the name perceptron is used as a synonym for a single-layer, feed-forward network. The left-hand
side of Figure 19.8 shows such a perceptron network. Notice that each output unit is independent
of the others — each weight only affects one of the outputs. That means that we can limit our
study to perceptrons with a single output unit, as in the right-hand side of Figure 19.8, and use
several of them to build up a multi-output perceptron. For convenience, we can drop subscripts,
denoting the output unit as O and the weight from input unity to O as Wj. The activation of input
unity is given by //. The activation of the output unit is therefore

O = Step0
 W^ = StePQ(Vi - I ) (19.2)

where, as discussed earlier, we have assumed an additional weight Wo to provide a threshold for
the step function, with IQ = — 1 .

What perceptrons can represent
We saw in Figure 19.6 that units can represent the simple Boolean functions AND, OR, and
NOT, and that therefore a feed-forward network of units can represent any Boolean function, if
we allow for enough layers and units. But what Boolean functions can be represented with a
single-layer perceptron?

Some complex Boolean functions can be represented. For example, the majority function,
which outputs a 1 only if more than half of its n inputs are 1, can be represented by a perceptron
with each W, = 1 and threshold / = «/2. This would require a decision tree with O(2") nodes.



574 Chapter 19. Learning in Neural and Belief Networks

Wj

Input
Units

Output
Units

Input
Units

O

Output
Unit

Perceptron Network Single Perceptron

Figure 19.8 Perceptrons.

LINEARLY
SEPARABLE

The perceptron, with 1 unit and n weights, gives a much more compact representation of this
function. In accordance with Ockham's razor, we would expect the perceptron to do a much
better job of learning a majority function, as we will soon see.

Unfortunately, it turns out that perceptrons are severely limited in the Boolean functions
they can represent. The problem is that any input lj can only influence the final output in one
direction, no matter what the other input values are. Consider some input vector a. Suppose that
this vector has a/ = 0 and that the vector produces a 0 as output. Furthermore, suppose that when
Oj is replaced with 1, the output changes to 1. This implies that Wj must be positive. It also
implies that there can be no input vector b for which the output is 1 when bj = 0, but the output is
0 when bj is replaced with 1. Because this limitation applies to each input, the result is a severe
limitation in the total number of functions that can be represented. For example, the perceptron
is unable to represent the function for deciding whether or not to wait for a table at a restaurant
(shown as a decision tree in Figure 18.4).

A little geometry helps make clear what is going on. Figure 19.9 shows three different
Boolean functions of two inputs, the AND, OR, and XOR functions. Each function is represented
as a two-dimensional plot, based on the values of the two inputs. Black dots indicate a point
in the input space where the value of the function is 1, and white dots indicate a point where
the value is 0. As we will explain shortly, a perceptron can represent a function only if there is
some line that separates all the white dots from the black dots. Such functions are called linearly
separable. Thus, a perceptron can represent AND and OR, but not XOR.



Section 19.3. Perceptrons 575

""h1 C ) \

A f\UCJ
0

(a) /,

Figure 19.9

7> IJ

• . H

i ' I

> • H

k ^ _-. r\ ^

> O

N ^ -

1 /2 '' 0 ''•-.. 1 / 2 0 1 / 2

and 72 (b) 7, or 72 (c) I\ xor 72

Linear separability in perceptrons.

The fact that a perceptron can only represent linearly separable functions follows directly
from Equation (19.2), which defines the function computed by a perceptron. A perceptron outputs
a 1 only if W • I > 0. This means that the entire input space is divided in two along a boundary
defined by W • I = 0, that is, a plane in the input space with coefficients given by the weights.
With n inputs, the input space is n-dimensional, and linear separability can be rather hard to
visualize if n is too large. It is easiest to understand for the case where n = 2. In Figure 19.9(a),
one possible separating "plane" is the dotted line defined by the equation

=-/2 or

The region above the line, where the output is 1 , is therefore given by

-1.5 +/, + / 2 > 0
or, in vector notation,

>0

With three inputs, the separating plane can still be visualized. Figure 19.10(a) shows an example
in three dimensions. The function we are trying to represent is true if and only if a minority of
its three inputs are true. The shaded separating plane is defined by the equation

/I +/2 + /3 = 1.5

This time the positive outputs lie below the plane, in the region

(-/,) + (-/2) + (-/3)>-1.5
Figure 19.10(b) shows a unit to implement the function.

Learning linearly separable functions
As with any performance element, the question of what perceptrons can represent is prior to
the question of what they can learn. We have just seen that a function can be represented by a
perceptron if and only if it is linearly separable. That is relatively bad news, because there are
not many linearly separable functions. The (relatively) good news is that there is a perceptron
algorithm that will learn any linearly separable function, given enough training examples.



576 Chapter 19. Learning in Neural and Belief Networks

sk--.o

(a) Separating plane (b) Weights and threshold

Figure 19.10 Linear separability in three dimensions—representing the "minority" function.

EPOCHS

LEARNING RATE
PERCEPTRON
LEARNING RULE

Most neural network learning algorithms, including the perceptron learning method, follow
the current-best-hypothesis (CBH) scheme described in Chapter 18. In this case, the hypothesis
is a network, defined by the current values of the weights. The initial network has randomly
assigned weights, usually from the range [-0.5,0.5]. The network is then updated to try to make
it consistent with the examples. This is done by making small adjustments in the weights to
reduce the difference between the observed and predicted values. The main difference from
the logical algorithms is the need to repeat the update phase several times for each example in
order to achieve convergence. Typically, the updating process is divided into epochs. Each
epoch involves updating all the weights for all the examples. The general scheme is shown as
NEURAL-NETWORK-LEARNING in Figure 19.11.

For perceptrons, the weight update rule is particularly simple. If the predicted output for
the single output unit is O, and the correct output should be T, then the error is given by

Err = T-O

If the error is positive, then we need to increase O; if it is negative, we need to decrease 0. Now
each input unit contributes Wjlj to the total input, so if// is positive, an increase in Wj will tend to
increase O, and if / / is negative, an increase in Wj will tend to decrease O. Thus, we can achieve
the effect we want with the following rule:

Wj <- Wj + a x lj x Err
where the term a is a constant called the learning rate. This rule is a slight variant of the
perceptron learning rule proposed by Frank Rosenblatt in 1960. Rosenblatt proved that a
learning system using the perceptron learning rule will converge to a set of weights that correctly
represents the examples, as long as the examples represent a linearly separable function.

The perceptron convergence theorem created a good deal of excitement when it was
announced. People were amazed that such a simple procedure could correctly learn any rep-
resentable function, and there were great hopes that intelligent machines could be built from



Section 19.3. Perceptrons 577

function NEURAL-NETWORK-LEARNiNG(e.ram/7fe,s) returns network

network <— a network with randomly assigned weights
repeat

for each e in examples do ,
O <— NEURAL-NETWORK-OUTPUT(«em>fc>rA:, e)
T *— the observed output values from e
update the weights in network based on e, O, and T

end
until all examples correctly predicted or stopping criterion is reached
return network

Figure 19.11 The generic neural network learning method: adjust the weights until predicted
output values O and true values T agree.

LOCAL ENCODING

DISTRIBUTED
ENCODING

perceptrons. It was not until 1969 that Minsky and Papert undertook what should have been the
first step: analyzing the class of representable functions. Their book Perceptrons (Minsky and
Papert, 1969) clearly demonstrated the limits of linearly separable functions.

In retrospect, the perceptron convergence theorem should not have been surprising. The
perceptron is doing a gradient descent search through weight space (see Chapter 4). It is fairly
easy to show that the weight space has no local minima. Provided the learning rate parameter is
not so large as to cause "overshooting," the search will converge on the correct weights. In short,
perceptron learning is easy because the space of representable functions is simple.

We can examine the learning behavior of perceptrons using the method of constructing
learning curves, as described in Chapter 18. There is a slight difference between the example
descriptions used for neural networks and those used for other attribute-based methods such as
decision trees. In a neural network, all inputs are real numbers in some fixed range, whereas
decision trees allow for multivalued attributes with a discrete set of values. For example, the
attribute for the number of patrons in the restaurant has values None, Some, and Full. There are
two ways to handle this. In a local encoding, we use a single input unit and pick an appropriate
number of distinct values to correspond to the discrete attribute values. For example, we can use
None = 0.0, Some = 0.5, and Full = 1.0. In a distributed encoding, we use one input unit for
each value of the attribute, turning on the unit that corresponds to the correct value.

Figure 19.12 shows the learning curve for a perceptron on two different problems. On
the left, we show the curve for learning the majority function with 11 Boolean inputs (i.e., the
function outputs a 1 if 6 or more inputs are 1). As we would expect, the perceptron learns the
function quite quickly because the majority function is linearly separable. On the other hand,
the decision tree learner makes no progress, because the majority function is very hard (although
not impossible) to represent as a decision tree. On the right of the figure, we have the opposite
situation. The WillWait problem is easily represented as a decision tree, but is not linearly
separable. The perceptron algorithm draws the best plane it can through the data, but can manage
no more than 65% accuracy.



578 Chapter 19. Learning in Neural and Belief Networks

1

0.9
'f.

83 °'8
C

£ 0.7
s
8 0.6

0.5

0.4
(

«.~*^°""°'~v

j
- _ , Perceptron •>

f Decision tree -----

10 20 30 40 50 60 70 80 90 1C

1

0.9
CJ

? 0.8
6

Z 0.7
a
8 0.6

0.5

0.4
)0 C

., " .'.-,',• — V.»AV"'*'*i""*~'Vi*

Perceptron »
L Decision tree ——

": '°\

- ^ ^^--"-- " ' V

10 20 30 40 50 60 70 80 90 100
Training set size Training set size

(a) (b)

Figure 19.12 Comparing the performance of perceptrons and decision trees, (a) Perceptrons
are better at learning the majority function of 1 1 inputs, (b) Decision trees are better at learning
the WiHWait predicate for the restaurant example.

19.4 MULTILAYER FEED-FORWARD NETWORKS

BACK-PROPAGATION

Rosenblatt and others described multilayer feed-forward networks in the late 1950s, but concen-
trated their research on single-layer perceptrons. This was mainly because of the difficulty of
finding a sensible way to update the weights between the inputs and the hidden units; whereas
an error signal can be calculated for the output units, it is harder to see what the error signal
should be for the hidden units. When the book Perceptrons was published, Minsky and Papert
(1969) stated that it was an "important research problem" to investigate multilayer networks more
thoroughly, although they speculated that "there is no reason to suppose that any of the virtues
[of perceptrons] carry over to the many-layered version." In a sense, they were right. Learning
algorithms for multilayer networks are neither efficient nor guaranteed to converge to a global
optimum. On the other hand, the results of computational learning theory tell us that learning
general functions from examples is an intractable problem in the worst case, regardless of the
method, so we should not be too dismayed.

The most popular method for learning in multilayer networks is called back-propagation.
It was first invented in 1969 by Bryson and Ho, but was more or less ignored until the mid-
1980s. The reasons for this may be sociological, but may also have to do with the computational
requirements of the algorithm on nontrivial problems.

Back-Propagation Learning
Suppose we want to construct a network for the restaurant problem. We have already seen
that a perceptron is inadequate, so we will try a two-layer network. We have ten attributes



Section 19.4. Multilayer Feed-Forward Networks 579

Output units

Hidden units

Input units /,

Figure 19.13 A two-layer feed-forward network for the restaurant problem.

describing each example, so we will need ten input units. How many hidden units are needed?
In Figure 19.13, we show a network with four hidden units. This turns out to be about right for
this problem. The problem of choosing the right number of hidden units in advance is still not
well-understood. We cover what is known on page 572.

Learning in such a network proceeds the same way as forperceptrons: example inputs are
presented to the network, and if the network computes an output vector that matches the target,
nothing is done. If there is an error (a difference between the output and target), then the weights
are adjusted to reduce this error. The trick is to assess the blame for an error and divide it among
the contributing weights. In perceptrons, this is easy, because there is only one weight between
each input and the output. But in multilayer networks, there are many weights connecting each
input to an output, and each of these weights contributes to more than one output.

The back-propagation algorithm is a sensible approach to dividing the contribution of each
weight. As in the perceptron learning algorithm, we try to minimize the error between each target
output and the output actually computed by the network.4 At the output layer, the weight update
rule is very similar to the rule for the perceptron. There are two differences: the activation of the
hidden unit a/ is used instead of the input value; and the rule contains a term for the gradient of
the activation function. If £rr, is the error (Tt - O{) at the output node, then the weight update
rule for the link from unity to unit i is

Wjj *— W,;, + a x dj x Erri x g'(ini)
where g' is the derivative of the activation function g. We will find it convenient to define a new
error term A,, which for output nodes is defined as A, = Err/g'O'/z,-). The update rule then becomes

Wj,t <- Wjj + a xqx Ai (19.3)
For updating the connections between the input units and the hidden units, we need to define
a quantity analogous to the error term for output nodes. Here is where we do the error back-
propagation. The idea is that hidden node j is "responsible" for some fraction of the error A, in

Actually, we minimize the square of the error; Section 19.4 explains why, but the result is almost the same.



580 Chapter 19. Learning in Neural and Belief Networks

TRAINING CURVE

each of the output nodes to which it connects. Thus, the A, values are divided according to the
strength of the connection between the hidden node and the output node, and propagated back to
provide the A, values for the hidden layer. The propagation rule for the A values is the following:

A/ = e' ( / '«,)> Wjj&j (19.4)j <>^.i' / j .'•' • '
i

Now the weight update rule for the weights between the inputs and the hidden layer is almost
identical to the update rule for the output layer:

WkJ — Wkj + Q x 7A- x A/

The detailed algorithm is shown in Figure 19.14. It can be summarized as follows:

• Compute the A values for the output units using the observed error.
• Starting with output layer, repeat the following for each layer in the network, until the

earliest hidden layer is reached:
- Propagate the A values back to the previous layer.
- Update the weights between the two layers.

Recall that in computing the observed error for a given example, NEURAL-NETWORK-LEARNING
first feeds the example to the network inputs in order to calculate the predicted output values.
During this computation, it is a good idea to save some of the intermediate values computed
in each unit. In particular, caching the activation gradient #'(w/) in each unit speeds up the
subsequent back-propagation phase enormously.

Now that we have a learning method for multilayer networks, we can test our claim that
adding a hidden layer makes the network more expressive. In Figure 19.15, we show two curves.
The first is a training curve, which shows the mean squared error on a given training set of 100
restaurant examples during the weight-updatingprocess. This demonstrates that the network does
indeed converge to a perfect fit to the training data. The second curve is the standard learning
curve for the restaurant data, with one minor exception: the y-axis is no longer the proportion
of correct answers on the test set, because sigmoid units do not give 0/1 outputs. Instead, we
use the mean squared error on the test set, which happens to coincide with the proportion of
correct answers in the 0/1 case. The curve clearly shows that the network is capable of learning
in the restaurant domain; indeed, the curve is very similar to that for decision-tree learning, albeit
somewhat shallower.

Back-propagation as gradient descent search
We have given some suggestive reasons why the back-propagation equations are reasonable.
It turns out that the equations also can be given a very simple interpretation as a method for

ERROR SURFACE performing gradient descent in weight space. In this case, the gradient is on the error surface:
the surface that describes the error on each example as a function of the all the weights in the
network. An example error surface is shown in Figure 19.16. The current set of weights defines
a point on this surface. At that point, we look at the slope of the surface along the axis formed
by each weight. This is known as the partial derivative of the surface with respect to each
weight—how much the error would change if we made a small change in weight. We then alter



Section 19.4. Multilayer Feed-Forward Networks 581

function BACK-PROP-UPDATE(«efH>6rfc, examples, a) returns a network with modified weights
inputs: network, a multilayer network

examples, a set of input/output pairs
a, the learning rate

repeat
for each e in examples do

/ * Compute the output for this example * I
O <— RuN-NETWORK(«efworA:, F)

/ * Compute the error and A for units in the output layer * /
Err"-I' - O

/ * Update the weights leading to the output layer * /
Wjj — W/.i + o x cij x Err'- x g'(in,)

for each subsequent layer in net\vork do
/ * Compute the error at each node * /

A ;^g'(^)£, Wj.,b
/ * Update the weights leading into the layer * I

Wt.j <- WLj + a x /<- x Ay
end

end
until network has converged
return network

Figure 19.14 The back-propagation algorithm for updating weights in a multilayer network.

To
ta

l e
rr

or
 o

n 
tr

ai
ni

ng
 s

et

o
r

o
-

p
^

o
o

c
o

f
^

-
f

*

50 100 150 200 250 300 350 4C
Number of epochs

(a)

0

%
 c

or
re

ct
 o

n 
te

st 
se

t
p

 
p

 
p

 
p

 
o

 
p

4^
 

Lf
t 

C^
 

'-~
t 

00
 

sO
 

—

*+ r-*7-'" ^ ' ^»y*^; '-•", *^*^^i^^-WS*'' .
f*

if*V»<# /**/f a*
f>-

<ri
-'! Multilayer network -^ —
"' ; Decision tree

) 1 0 20 30 40 50 60 70 80 90 1 00
Training set size

(b)

Figure 19.15 (a) Training curve showing the gradual reduction in error as weights are modified
over several epochs, for a given set of examples in the restaurant domain, (b) Comparative learning
curves for a back-propagation and decision-tree learning.



582 Chapter 19. Learning in Neural and Belief Networks

Figure 19.16 An error surface for gradient descent search in weight space. When w\ = a and
H>2 = b, the error on the training set is minimized.

the weights in an amount proportional to the slope in each direction. This moves the network as
a whole in the direction of steepest descent on the error surface.

Basically, this is the key: back-propagation provides a way of dividing the calculation
of the gradient among the units, so the change in each weight can be calculated by the unit to
which the weight is attached, using only local information. Like any gradient descent search,
back-propagation has problems with efficiency and convergence, as we will discuss shortly.
Nonetheless, the decomposition of the learning algorithm is a major step towards parallelizable
and biologically plausible learning mechanisms.

For the mathematically inclined, we will now derive the back-propagation equations from
first principles. We begin with the error function itself. Because of its convenient form, we use
the sum of squared errors over the output values:

The key insight, again, is that the output values 0, are a function of the weights (see Equa-
tion (19.1), for example). For a general two-layer network, we can write

(19.5)



Section 19.4. Multilayer Feed-Forward Networks 583

Notice that although the a, term in the first line represents a complex expression, it does not
depend on W,i(. Also, only one of the terms in the summation over / andy depends on a particular
Wjj, so all the other terms are treated as constants with respect to W/,, and will disappear when
differentiated. Hence, when we differentiate the first line with respect to Wjj, we obtain

with A, defined as before. The derivation of the gradient with respect to W^j is slightly more
complex, but has a similar result:

dE

To obtain the update rules for the weights, we have to remember that the object is to minimize
the error, so we need to take a small step in the direction opposite to the gradient.

There is one minor technical observation to make about these update rules. They require
the derivative of the activation function g, so we cannot use the sign or step functions. Back-
propagation networks usually use the sigmoid function, or some variant thereof. The sigmoid
also has the convenient property that the derivative g' = g(l — g), so that little extra calculation
is needed to find g'(inj).

Discussion
Let us stand back for a moment from the delightful mathematics and the fascinating biology,
and ask whether back-propagation learning in multilayer networks is a good method for machine
learning. We can examine the same set of issues that arose in Chapter 18:

<> Expressiveness: Neural networks are clearly an attribute-based representation, and do not
have the expressive power of general logical representations. They are well-suited for
continuous inputs and outputs, unlike most decision tree systems. The class of multilayer
networks as a whole can represent any desired function of a set of attributes, but any
particular network may have too few hidden units. It turns out that 2n/n hidden units are
needed to represent all Boolean functions of n inputs. This should not be too surprising.
Such a network has O(2") weights, and we need at least 2" bits to specify a Boolean
function. In practice, most problems can be solved with many fewer weights. Designing a
good topology is, however, a black art.

<> Computational efficiency: Computational efficiency depends on the amount of compu-
tation time required to train the network to fit a given set of examples. If there are m
examples, and |W| weights, each epoch takes O(m|W|) time. However, work in computa-
tional learning theory has shown that the worst-case number of epochs can be exponential
in n, the number of inputs. In practice, time to convergence is highly variable, and a vast
array of techniques have been developed to try to speed up the process using an assortment
of tunable parameters. Local minima in the error surface are also a problem. Networks
quite often converge to give a constant "yes" or "no" output, whichever is most common



584 Chapter 19. Learning in Neural and Belief Networks

in the training set. At the cost of some additional computation, the simulated annealing
method (Chapter 4) can be used to assure convergence to a global optimum.

0 Generalization: As we have seen in our experiments on the restaurant data, neural networks
can do a good job of generalization. One can say, somewhat circularly, that they will
generalize well on functions for which they are well-suited. These seem to be functions in
which the interactions between inputs are not too intricate, and for which the output varies
smoothly with the input. There is no theorem to be proved here, but it does seem that
neural networks have had reasonable success in a number of real-world problems.

<) Sensitivity to noise: Because neural networks are essentially doing nonlinear regression,
they are very tolerant of noise in the input data. They simply find the best fit given the
constraints of the network topology. On the other hand, it is often useful to have some idea
of the degree of certainty of the output values. Neural networks do not provide probability
distributions on the output values. For this purpose, belief networks seem more appropriate.

<) Transparency: Neural networks are essentially black boxes. Even if the network does a
good job of predicting new cases, many users will still be dissatisfied because they will
have no idea why a given output value is reasonable. If the output value represents, for
example, a decision to perform open heart surgery, then an explanation is clearly in order.
With decision trees and other logical representations, the output can be explained as a
logical derivation and by appeal to a specific set of cases that supports the decision. This
is not currently possible with neural networks.

<C> Prior knowledge: As we mentioned in Chapter 18, learning systems can often benefit
from prior knowledge that is available to the user or expert. Prior knowledge can mean the
difference between learning from a few well-chosen examples and failing to learn anything
at all. Unfortunately, because of the lack of transparency, it is quite hard to use one's
knowledge to "prime" a network to learn better. Some tailoring of the network topology
can be done—for example, when training on visual images it is common to connect only
small sets of nearby pixels to any given unit in the first hidden layer. On the other hand,
such "rules of thumb" do not constitute a mechanism by which previously accumulated
knowledge can be used to learn from subsequent experience. It is possible that learning
methods for belief networks can overcome this problem (see Section 19.6).

All these considerations suggest that simple feed-forward networks, although very promising
as construction tools for learning complex input/output mappings, do not fulfill our needs for a
comprehensive theory of learning in their present form. Researchers in AI, psychology, theoretical
computer science, statistics, physics, and biology are working hard to overcome the difficulties.

19.5 APPLICATIONS OF NEURAL NETWORKS

In this section, we give just a few examples of the many significant applications of neural
networks. In each case, the network design was the result of several months of trial-and-error
experimentation by researchers. From these examples, it can be seen that neural networks have



Section 19.5. Applications of Neural Networks 585

wide applicability, but that they cannot magically solve problems without any thought on the
part of the network designer. John Denker's remark that "neural networks are the second best
way of doing just about anything" may be an exaggeration, but it is true that neural networks
provide passable performance on many tasks that would be difficult to solve explicitly with other
programming techniques. We encourage the reader to experiment with neural network algorithms
to get a feel for what happens when data arrive at an unprepared network.

Pronunciation

Pronunciation of written English text by a computer is a fascinating problem in linguistics, as
well as a task with high commercial payoff. It is typically carried by first mapping the text
stream to phonemes—basic sound elements—and then passing the phonemes to an electronic
speech generator. The problem we are concerned with here is learning the mapping from text
to phonemes. This is a good task for neural networks because most of the "rules" are only
approximately correct. For example, although the letter "k" usually corresponds to the sound [k],
the letter "c" is pronounced [k] in cat and [s] in cent.

The NETtalk program (Sejnowski and Rosenberg, 1987) is a neural network that learns to
pronounce written text. The input is a sequence of characters presented in a window that slides
through the text. At any time, the input includes the character to be pronounced along with the
preceding and following three characters. Each character is actually 29 input units—one for each
of the 26 letters, and one each for blanks, periods, and other punctuation. There were 80 hidden
units in the version for which results are reported. The output layer consists of features of the
sound to be produced: whether it is high or low, voiced or unvoiced, and so on. Sometimes, it
takes two or more letters to produce a single sound; in this case, the correct output for the second
letter is nothing.

Training consisted of a 1024-word text that had been hand-transcribed into the proper
phonemic features. NETtalk learns to perform at 95% accuracy on the training set after 50 passes
through the training data. One might think that NETtalk should perform at 100% on the text it
has trained on. But any program that learns individual words rather than the entire text as a whole
will inevitably score less than 100%. The difficulty arises with words like lead, which in some
cases should be pronounced to rhyme with bead and sometimes like bed. A program that looks
at only a limited window will occasionally get such words wrong.

So much for the ability of the network to reproduce the training data. What about the gen-
eralization performance? This is somewhat disappointing. On the test data, NETtalk's accuracy
goes down to 78%, a level that is intelligible, but much worse than commercially available pro-
grams. Of course, the commercial systems required years of development, whereas NETtalk only
required a few dozen hours of training time plus a few months of experimentation with various
network designs. However, there are other techniques that require even less development and
perform just as well. For example, if we use the input to determine the probability of producing
a particular phoneme given the current and previous character and then use a Markov model to
find the sequence of phonemes with maximal probability, we do just as well as NETtalk.

NETtalk was perhaps the "flagship" demonstration that converted many scientists, partic-
ularly in cognitive psychology, to the cause of neural network research. A post hoc analysis



586 Chapter 19. Learning in Neural and Belief Networks

suggests that this was not because it was a particularly successful program, but rather because it
provided a good showpiece for the philosophy of neural networks. Its authors also had a flair for
the dramatic: they recorded a tape of NETtalk starting out with poor, babbling speech, and then
gradually improving to the point where the output is understandable. Unlike conventional speech
generators, which use a midrange tenor voice to generate the phonemes, they used a high-pitched
generator. The tape gives the unmistakable impression of a child learning to speak.

Handwritten character recognition
In one of the largest applications of neural networks to date, Le Cun et al. (1989) have imple-
mented a network designed to read zip codes on hand-addressed envelopes. The system uses a
preprocessor that locates and segments the individual digits in the zipcode; the network has to
identify the digits themselves. It uses a 16 x 16 array of pixels as input, three hidden layers, and a
distributed output encoding with 10 output units for digits 0-9. The hidden layers contained 768,
192, and 30 units, respectively. A fully connected network of this size would contain 200,000
weights, and would be impossible to train. Instead, the network was designed with connections

D!TECTORS intended to act as feature detectors. For example, each unit in the first hidden layer was con-
nected by 25 links to a 5 x 5 region in the input. Furthermore, the hidden layer was divided into
12 groups of 64 units; within each group of 64 units, each unit used the same set of 25 weights.
Hence the hidden layer can detect up to 12 distinct features, each of which can occur anywhere
in the input image. Overall, the complete network used only 9760 weights.

The network was trained on 7300 examples, and tested on 2000. One interesting property
of a network with distributed output encoding is that it can display confusion over the correct
answer by setting two or more output units to a high value. After rejecting about 12% of the test
set as marginal, using a confusion threshold, the performance on the remaining cases reached
99%, which was deemed adequate for an automated mail-sorting system. The final network has
been implemented in custom VLSI, enabling letters to be sorted at high speed.

Driving
ALVINN (Autonomous Land Vehicle In a Neural Network) (Pomerleau, 1993) is a neural network
that has performed quite well in a domain where some other approaches have failed. It learns to
steer a vehicle along a single lane on a highway by observing the performance of a human driver.
We described the system briefly on page 26, but here we take a look under the hood.

ALVINN is used to control the NavLab vehicles at Carnegie Mellon University. NavLab 1
is a Chevy van, and NavLab 2 is a U.S. Army HMMWV personnel carrier. Both vehicles are
specially outfitted with computer-controlled steering, acceleration, and braking. Sensors include
color stereo video, scanning laser range finders, radar, and inertial navigation. Researchers ride
along in the vehicle and monitor the progress of the computer and the vehicle itself. (Being inside
the vehicle is a big incentive to making sure the program does not "crash.")

The signal from the vehicle's video camera is preprocessed to yield an array of pixel values
that are connected to a 30 x 32 grid of input units in a neural network. The output is a layer of
30 units, each corresponding to a steering direction. The output unit with the highest activation



Section 19.5. Applications of Neural Networks 587

is the direction that the vehicle will steer. The network also has a layer of five hidden units that
are fully connected to the input and output layers.

ALVINN'S job is to compute a function that maps from a single video image of the road
in front of it to a steering direction. To learn this function, we need some training data—some
image/direction pairs with the correct direction. Fortunately, it is easy to collect this data just
by having a human drive the vehicle and recording the image/direction pairs. After collecting
about five minutes of training data (and applying the back-propagation algorithm for about ten
minutes), ALVINN is ready to drive on its own.

One fine point is worth mentioning. There is a potential problem with the methodology of
training based on a human driver: the human is too good. If the human never strays from the
proper course then there will be no training examples that show how to recover when you are off
course. ALVINN corrects this problem by rotating each video image to create additional views of
what the road would look like from a position a little to the right or left.

The results of the training are impressive. ALVINN has driven at speeds up to 70 mph for
distances up to 90 miles on public highways near Pittsburgh. It has also driven at normal speeds
on single lane dirt roads, paved bike paths, and two lane suburban streets.

ALVINN is unable to drive on a road type for which it has not been trained, and is also not
very robust with respect to changes in lighting conditions or the presence of other vehicles. A
more gerleral capability is exhibited by the MANIAC system (Jochem et al., 1993). MANIAC is a
neural network that has as subnets two or more ALVINN models that have each been trained for
a particular type of road. MANIAC takes the output from each subnet and combines them in a
second hidden layer. With suitable training, MANIAC can perform well on any of the road types
for which the component subnets have been trained.

Some previous autonomous vehicles employed traditional vision algorithms that used
various image-processing techniques on the entire scene in order to find the road and then follow
it. Such systems achieved top speeds of 3 or 4 mph.5 Why has ALVINN proven to be successful?
There are two reasons. First and foremost, a neural network of this size makes an efficient
performance element. Once it has been trained, ALVINN is able to compute a new steering
direction from a video image 10 times a second. This is important because it allows for some
slack in the system. Individual steering directions can be off by 10% from the ideal as long
as the system is able to make a correction in a few tenths of a second. Second, the use of a
learning algorithm is more appropriate for this domain than knowledge engineering or straight
programming. There is no good existing theory of driving, but it is easy to collect sample
input/output pairs of the desired functional mapping. This argues for a learning algorithm, but
not necessarily for neural nets. But driving is a continuous, noisy domain in which almost all
of the input features contribute some useful information; this means that neural nets are a better
choice than, say, decision trees. Of course, ALVINN and MANIAC are pure reflex agents, and
cannot execute maneuvers that are much more complex than lane-following, especially in the
presence of other traffic. Current research by Pomerleau and other members of the group is
aimed at combining ALVINN'S low-level expertise with higher-level symbolic knowledge. Hybrid
systems of this kind are becoming more common as AI moves into the real (physical) world.

5 A notable exception is the work by Dickmanns and Zapp (1987), whose autonomous vehicle drove several hundred
miles at 75 mph using traditional image processing and Kalman filtering to track the lane boundaries.



588 Chapter 19. Learning in Neural and Belief Networks

19.6 BAYESIAN METHODS FOR LEARNING BELIEF NETWORKS

Part V made the case for the importance of probabilistic representations of uncertain knowledge,
and presented belief networks as a general and useful performance element based on probability
theory. In this section, we discuss the general problem of learning probabilistic knowledge, and
the specific problem of learning belief networks. We will see that a Bayesian view of learning is
extremely powerful, providing general solutions to the problems of noise, overfilling, and optimal
prediction. We will also find striking parallels between belief networks and neural networks in
their amenability to local, gradient-descent learning methods. Most of this section is fairly
mathematical, although the general lessons can be understood without plunging into the details.
It may be helpful at this point to review the material in Chapters 14 and 15.

BAYESIAN LEARNING

MAXIMUM A
POSTERIORI

Bayesian learning
Bayesian learning views the problem of constructing hypotheses from data as a subproblem of the
more fundamental problem of making predictions. The idea is to use hypotheses as intermediaries
between data and predictions. First, the probability of each hypothesis is estimated, given the
data. Predictions are then made from the hypotheses, using the posterior probabilities of the
hypotheses to weight the predictions. As a simple example, consider the problem of predicting
tomorrow's weather. Suppose the available experts are divided into two camps: some propose
model A, and some propose model B. The Bayesian method, rather than choosing between A
and B, gives some weight to each based on their likelihood. The likelihood will depend on how
much the known data support each of the two models.

Suppose that we have data D and hypotheses H\,H2, ••• , and that we are interested in
making a prediction concerning an unknown quantity X. Furthermore, suppose that each //,•
specifies a complete distribution for X. Then we have

P(X|D) = V P(X\D,Hi)P(Hi\D) = P(X\Hi)P(Hi\D)

This equation describes full Bayesian learning, and may require a calculation of P(//,-|D) for all
Hi. In most cases, this is intractable; it can be shown, however, that there is no better way to
make predictions.

The most common approximation is to use a most probable hypothesis, that is, an Hi that
maximizes P(//,|D). This often called a maximum a posteriori or MAP hypothesis //MAP'

P(X|D) w P(X|//MAp)P(//MAp!£>)
The problem is now to find //MAP- By applying Bayes' rule, we can rewrite P(Hf\D) as follows:

P(D\Hi)P(Hi)P(H,\D) =
P(D)

Notice that in comparing hypotheses, P(D) remains fixed. Hence, to find //MAP, we need only
maximize the numerator of the fraction.

The first term, P(D|//,), represents the probability that this particular data set would have
been observed, given //, as the underlying model of the world. The second term represents the



Section 19.6. Bayesian Methods for Learning Belief Networks 589

MAXIMUM-
LIKELIHOOD

prior probability assigned to the given model. Arguments over the nature and significance of this
prior probability distribution, and its relation to preference for simpler hypotheses (Ockham's
razor), have raged unchecked in the statistics and learning communities for decades. The only
reasonable policy seems to be to assign prior probabilities based on some simplicity measure on
hypotheses, such that the prior of the entire hypothesis space adds up to 1. The more we bias
the priors towards simpler hypotheses, the more we will be immune to noise and overrating. Of
course, if the priors are too biased, then we get underfilling, where the data is largely ignored.
There is a careful trade-off lo make.

In some cases, a uniform prior over belief networks seems to be appropriate, as we shall
see. With a uniform prior, we need only choose an //, that maximizes P(D|//,). This is called a
maximum-likelihood (ML) hypothesis, //ML-

Belief network learning problems
The learning problem for belief networks comes in several varieties. The structure of the network
can be known or unknown, and the variables in the network can be observable or hidden.

0 Known structure, fully observable: In this case, the only learnable part is the set of
conditional probability tables. These can be estimated directly using the statistics of the set
of examples. Some belief network systems incorporate automatic updating of conditional
probability table entries to reflect the cases seen.

<> Unknown structure, fully observable: In this case, the problem is to reconstruct the
topology of the network. This problem can be cast as a search through the space of
structures, guided by the ability of each structure to model the data correctly. Fitting
the data to a given structure reduces to the fixed-structure problem, and the MAP or ML
probability value can be used as heuristic for hill-climbing or simulated annealing search.

0 Known structure, hidden variables: This case is analogous to neural network learning.
We discuss methods for this problem in the next section.

<C> Unknown structure, hidden variables: When some variables are sometimes or always
unobservable, the prior techniques for recovering structure become difficult to apply,
because they essentially require averaging over all possible combinations of values of the
unknown variables. At present, no good, general algorithms are known for this problem.

Learning networks with fixed structure
Experience in constructing belief networks for applications has shown that finding the topology
of the network is often the easy part. Humans find it easy to say what causes what, but hard to
put exact numbers on the links. This is particularly true when some of the variables cannot be
observed directly in actual cases. The "known structure, hidden variable" learning problem is
therefore of great importance.

One might ask why the problem cannot be reduced to the fully observable case by elimi-
nating the hidden variables using marginalization ("averaging out"). There are two reasons for
this. First, it is not necessarily the case that any particular variable is hidden in all the observed



590 Chapter 19. Learning in Neural and Belief Networks

ADAPTIVE
PROBABILISTIC
NETWORKS

cases (although we do not rule this out). Second, networks with hidden variables can be more
compact than the corresponding fully observable network. Figure 19.17 shows an example. If
the underlying domain has significant local structure, then with hidden variables it is possible to
take advantage of that structure to find a more concise representation for the joint distribution on
the observable variables. This, in turn, makes it possible to learn from fewer examples.

Figure 19.17 A network with a hidden variable (labelled H), and the corresponding fully
observable network. If the variables are Boolean, then the hidden-variable network requires 17
independent conditional probability values, whereas the fully observable network requires 27.

If we are to approach this problem in Bayesian terms, then the "hypotheses" Hj are the
different possible complete assignments to all the conditional probability table (CPT) entries.
We will assume that all possible assignments are equally likely a priori, which means that we are
looking for a maximum likelihood hypothesis. That is, we wish to find the set of CPT entries
that maximizes the probability of the data, P(D\Hi).

The method we will use to do this is quite similar to the gradient descent method for neural
networks. We will write the probability of the data as a function of the CPT entries, and then
calculate a gradient. As with neural networks, we will find that the gradient can be calculated
locally by each node using information that is available in the normal course of belief network
calculations. Thus, the CPT entries are analogous to the weights, and P(D\Ht) is (inversely)
analogous to the error E. Belief network systems equipped with this kind of learning scheme are
called adaptive probabilistic networks (APNs).

Suppose we have a training set D = {D\,... ,Dm}, where each case D; consists of an
assignment of values to some subset of the variables in the network. We assume that each case is
drawn independently from some underlying distribution that we are trying to model. The problem
is to adjust the conditional probabilities in the network in order to maximize the likelihood of
the data. We will write this likelihood as P(D). The reader should bear in mind that here P(-)
is really Pw(-), that is, the probability according to a joint distribution specified by w, the set
of all of the conditional probability values in the network. In order to construct a hill-climbing
algorithm to maximize the likelihood, we need to calculate the derivative of the likelihood with
respect to each of the conditional probability values w, in w.

It turns out to be easiest to compute the derivative of the logarithm of the likelihood.
Because the log-likelihood is monotonically related to the likelihood itself, a maximum on the



Section 19.6. Bayesian Methods for Learning Belief Networks 591

log-likelihood surface is also a maximum on the likelihood surface. We calculate the gradient
using partial derivatives, varying a single value w, while keeping the others constant:6

dlnP(D) ^ dlnYljP(Dj) ^^ d\nP(Dj) ^ ̂  dP(Dj)/dw,
dwi ~ dwi ~ ̂  dwi ~ 2-^ P(Dj)

Hence, we can calculate separately the gradient contribution of each case and sum the results.
Now the aim is to find an expression for the gradient contribution from a single case, such

that the contribution can be calculated using only information local to the node with which Wj is
associated. Let w, be a specific entry in the conditional probability table for a node X given its
parent variables U. We'll assume that it is the entry for the case X = xf given U = u,:

Wi = P(X = Xi | U = u/) = P(xi u,-)
In order to get an expression in terms of local information, we introduce X and U by averaging
over their possible values:

P(Dj) P(Dj)
x,u)P(x u)P(u))

For our purposes, the important property of this expression is that w, appears only in linear form.
In fact, Wj appears only in one term in the summation, namely the term for z, and u,. For this
term, P(x \ u) is just H>,, hence

dP(Dj)ldwi P(Dj Jc/,u,-)P(u,-)
P(Dj) P(Dj)

Further manipulation reveals that the gradient calculation can "piggyback" on the calculations of
posterior probabilities done in the normal course of belief network operation — thatis, calculations
of the probabilities of network variables given the observed data. To do this, we apply Bayes'
theorem to the above equation, yielding

P(Xi,Ui | Dj)P(Dj)P(Ui) = P(Xj,Uj \ Dj) = P(X,,UJ \ Df)
~~ ~P(Dj) ~ P(Xi,

In most implementations of belief network inference, the term P(x,, u, j £>,) is either
computed directly or is easily obtained by summing a small number of table entries. The
complete gradient vector is obtained by summing the above expression over the data cases to give
the gradient component with respect to each w-, for the likelihood of the entire training set. Thus,
the necessary information for calculating the gradient can be derived directly from the normal
computations done by belief networks as new evidence is obtained.

Once we have a locally computable expression for the gradient, we can apply the same
kinds of hill-climbing or simulated annealing methods as are used for neural networks. Learning
with belief networks has the advantage that a human expert can easily provide a structure for the
6 We also need to include the constraint that the conditional probability values for any given conditioning case must
remain normalized. A formal analysis shows that the derivative of the constrained system (where the columns sum to
one) is equal to the orthogonally projection of the unconstrained derivative onto the constraint surface.



592 Chapter 19. Learning in Neural and Belief Networks

network that reflects the causal structure of the domain. This prior knowledge should help the
network to learn much faster from a given set of examples. Moreover, the results of learning
are more easily understood, and, because probabilities are produced, the results can be used in
making rational decisions.

One can also use the gradient-descent method in association with an algorithm designed
to generate the structure of the network. Because such algorithms usually work by evaluating
candidate structures for their ability to model the data, one can simply use the gradient descent
to find the best fit between any candidate structure and the data.

A comparison of belief networks and neural networks

Given the close similarity between belief networks (particularly the adaptive variety) and neural
networks, a detailed comparison is in order. The two formalisms can be compared as represen-
tation systems, inference systems, and learning systems.

Both neural networks and belief networks are attribute-based representations. Both handle
discrete and continuous inputs, although algorithms for handling continuous variables in belief
networks are less developed. The principal difference is that belief networks are localized rep-
resentations, whereas neural networks are distributed representations. Nodes in belief networks
represent propositions with well-defined semantics and well-defined probabilistic relationships to
other propositions. Units in neural networks, on the other hand, typically do not represent specific
propositions. Even if they did, the calculations carried by the network do not treat propositions
in any semantically meaningful way. In practical terms, this means that humans can neither
construct nor understand neural network representations. The well-defined semantics of belief
networks also means that they can be constructed automatically by programs that manipulate
first-order representations.

Another representational difference is that belief network variables have two dimensions
of "activation"—the range of values for the proposition, and the probability assigned to each
of those values. The outputs of a neural network can be viewed as either the probability of a
Boolean variable, or an exact value for a continuous variable, but neural networks cannot handle
both probabilities and multivalued or continuous variables simultaneously.

As inference mechanisms—once they have been trained—feedforward neural networks
can execute in linear time, whereas general belief network inference is NP-hard. On closer
inspection, this is not as clear an advantage as it might seem, because a neural network would in
some cases have to be exponentially larger in order to represent the same input/output mapping as
a belief network (else we would be able to solve hard problems in polynomial time). Practically
speaking, any neural network that can be trained is small enough so that inference is fast, whereas
it is not hard to construct belief networks that take a long time to run. One other important aspect
of belief networks is their flexibility, in the sense that at any time any subset of the variables can
be treated as inputs, and any other subset as outputs, whereas feedforward neural networks have
fixed inputs and outputs.

With respect to learning, a comparison is difficult because adaptive probabilistic networks
(APNs) are a very recent development. One can expect the time per iteration of an APN to be
slower, because it involves an inference process. On the other hand, a human (or another part of



Section 19.7. Summary 593

the agent) can provide prior knowledge to the APN learning process in the form of the network
structure and/or conditional probability values. Since this reduces the hypothesis space, it should
allow the APN to learn from fewer examples. Also, the ability of belief networks to represent
propositions locally may mean that they converge faster to a correct representation of a domain
that has local structure—that is,, in which each proposition is directly affected by only a small
number of other propositions.

19.7 SUMMARY

Learning in complex network representations is currently one of the hottest topics in science. It
promises to have broad applications in computer science, neurobiology, psychology, and physics.
This chapter has presented some of the basic ideas and techniques, and given a flavor of the
mathematical underpinnings. The basic points are as follows:

• A neural network is a computational model that shares some of the properties of brains: it
consists of many simple units working in parallel with no central control. The connections
between units have numeric weights that can be modified by the learning element.

• The behavior of a neural network is determined by the connection topology and the nature
of the individual units. Feed-forward networks, in which the connections form an acyclic
graph, are the simplest to analyze. Feed-forward networks implement state-free functions.

• A perceptron is a feed-forward network with a single layer of units, and can only represent
linearly separable functions. If the data are linearly separable, the perceptron learning
rule can be used to modify the network's weights to fit the data exactly.

• Multilayer feed-forward networks can represent any function, given enough units.
• The back-propagation learning algorithm works on multilayer feed-forward networks,

using gradient descent in weight space to minimize the output error. It converges to a
locally optimal solution, and has been used with some success in a variety of applications.
As with all hill-climbing techniques, however, there is no guarantee that it will find a global
solution. Furthermore, its convergence is often very slow.

• Bayesian learning methods can be used to learn representations of probabilistic functions,
particularly belief networks. Bayesian learning methods must trade off the prior belief in
a hypothesis against its degree of agreement with the observed data.

• There are a variety of learning problems associated with belief networks, depending on
whether the structure is fixed or unknown, and whether variables are hidden or observable.

• With a fixed structure and hidden variables, belief network learning has a remarkable
similarity to neural network learning. Gradient descent methods can be used, but belief
networks also have the advantage of a well-understood semantics for individual nodes.
This allows the provision of prior knowledge in order to speed up the learning process.



594 Chapter 19. Learning in Neural and Belief Networks

BIBLIOGRAPHICAL AND HISTORICAL NOTES

McCulloch and Pitts (1943) introduced the fundamental idea of analyzing neural activity via
thresholds and weighted sums. Early cybernetics and control theory (Wiener, 1948), based on the
notion of negative feedback loops, played a role as a model for learning in neural networks. The
Organization of Behavior (Hebb, 1949) was influential in promoting the hypothesis that human
and animal long-term memory is mediated by permanent alterations in the synapses. Design
for a Brain (Ashby, 1952) put forth the idea that intelligence could be created by the use of
"homeostatic" devices which learn through a kind of exhaustive search.

Minsky and Papert (1988, pp. ix-x) mention a machine built by Marvin Minsky in 1951 that
may well be the first actual neural network learning system ever built. Minsky's (1954) doctoral
dissertation continued the exploration of neural networks. The aptly-named "Pandemonium"
system (Selfridge, 1959; SelfridgeandNeisser, 1960) involved a relatively fine-grained distributed
control regime reminiscent of neural networks. Cragg and Temperley (1954; 1955) drew parallels
between McCulloch-Pitts neural networks and "spin systems" in physics. Caianello (1961)
designed a statistical theory of learning in neural networks, drawing on classical statistical
mechanics. Von Neumann (1958) provides a comparison between the functioning of the brain
and the operation of digital computers. Frank Rosenblatt (1957) invented the modern "perceptron"
style of neural network, composed of trainable threshold units.

Similar devices called "adalines" (for "Adaptive Linear") were invented about the same
time (Widrow and Hoff, 1960; Widrow, 1962). Hawkins (1961) gives a detailed history of early
work in "self-organizing systems" or "neural cybernetics," as these approaches were then called.

Frank Rosenblatt (1960) found the first proof of the perceptron convergence theorem,
although it had been foreshadowed by purely mathematical work outside the context of neural
networks (Agmon, 1954; Motzkin and Schoenberg, 1954). Two good books on this period
of research are Neurodynamics (Rosenblatt, 1962) and Learning Machines (Nilsson, 1965).
Nilsson's book is especially comprehensive and detailed. It has recently been republished as The
Mathematical Foundations of Learning Machines (Nilsson, 1990) with a new introduction by
Terrence Sejnowski and Halbert White.

Most work in neural networks before 1970 focused on the one-layer perceptron type
of machine, but there were some exceptions. Widrow designed multilayer machines called
"madalines"(Widrow, 1962). Other early multilayer machines are described in (Palmieri and
Sanna, 1960; Gamba et al., 1961).

The publication of Perceptrons (Minsky and Papert, 1969) marked the end of an era. The
authors were severely critical of the unguided experimentation and lack of mathematical rigor
that characterized much of the early work on perceptrons. They established the linear separability
criterion for tasks that could be accomplished by one-layer perceptrons, thus explaining the failure
of the early efforts at solving problems that violated this criterion. Minsky and Papert also gave
some results on early multilayer systems. In the Epilogue to the expanded edition of Perceptrons
(Minsky and Papert, 1988), they forcefully rebut the charge that the publication of the first edition
was responsible for the long perceptron winter of the 1970s, arguing that perceptron research had
already lost its momentum and that the first edition merely explained this phenomenon. They
reaffirm the long-term promise of mathematically sound neural network research, while at the



Section 19.7. Summary 595

same time criticizing contemporary connectionism circa 1988 for the same lack of rigor that had
plagued the early perceptron work.

The papers in (Hinton and Anderson, 1981), based on a conference in San Diego in 1979,
can be regarded as marking the renaissance of connectionism. The two-volume "PDF" (Parallel
Distributed Processing) anthology (Rumelhart et al., 1986) really put neural networks on the
map for many AI researchers, as well as popularizing the back-propagation algorithm. Several
advances made this possible. Hopfield (1982) analyzed symmetric networks using statistical
mechanics and analogies from physics. The Boltzmann Machine (Hinton and Sejnowski, 1983;
Hinton and Sejnowski, 1986) and the analysis of neural networks using the physical theory of
magnetic spin glasses (Amit et al., 1985) tightened the links between statistical mechanics and
neural network theory—providing not only useful mathematical insights but also respectability.
The back-propagation technique had been invented quite early (Bryson and Ho, 1969) but it was
rediscovered several times (Werbos, 1974; Parker, 1985). Minsky and Papert (1988) criticize the
generalized delta rule as a straightforward variant of simple hill-climbing, just as the perceptron
learning algorithm had been.

The expressiveness of multilayer networks was investigated by Cybenko (1988; 1989),
who showed that two hidden layers are enough to represent any function and a single layer is
enough to represent any continuous function. These results, although reassuring, are not very
exciting when one realizes that they are achieved by allocating a separate collection of units to
represent the output value for each small region of the (exponentially large) input space.

The problem of finding a good structure for a multilayer network was addressed using
genetic algorithms by Harp et al. (1990) and by Miller et al. (1989). The "optimal brain damage"
method for removing useless connections is by LeCun et al. (1989), and Sietsma and Dow (1988)
show how to remove useless units. The tiling algorithm for growing larger structures is by Mezard
and Nadal (1989). Similar algorithms that grow slightly different topologies were proposed by
Marchand et al. (1990) and by Frean (1990).

The complexity of neural network learning has been investigated by researchers in compu-
tational learning theory. Some of the earliest results were obtained by Judd (1990), who showed
that the general problem of finding a set of weights consistent with a set of examples is NP-
complete, even under very restrictive assumptions. Avrim Blum and Ron Rivest (1992) proved
that training even a three-node network is NP-complete! These results suggest that weight space
can contain an exponential number of local minima, for otherwise a random-restart hill-climbing
algorithm would be able to find a global optimum in polynomial time.

One topic of great current interest in neural network research is the use of specialized
parallel hardware, including analog computation. Systems may use analog VLSI (Alspector et
al., 1987; Mead, 1989), optoelectronics (Farhatef al, 1985;Petersonera/., 1990), or exotic, fully
optical computing technologies such as spatial light modulation (Abu-Mostafa and Psaltis, 1987;
UsuetaL, 1988).

Neural networks constitute a large field of study with an abundance of resources available
for the inquirer. Probably the best available textbook is Introduction to the Theory of Neural
Computation (Hertz et al., 1991), which emphasizes the connections with statistical mechanics
(the authors are physicists). Self-Organization and Associative Memory (Kohonen, 1989) pro-
vides considerable mathematical background. For biological nervous systems, a very thorough
introduction is (Kandel et al., 1991). A good introduction to the detailed functioning of individual



596 Chapter 19. Learning in Neural and Belief Networks

neurons is (Miles, 1969). Articles by Cowan and Sharp (1988b; 1988a) present inclusive surveys
of the history of neural network research. A very comprehensive bibliography is available in
NeuralSource (Wasserman and Oetzel, 1990).

The most important conference in the field is the annual NIPS (Neural Information Process-
ing Conference) conference, whose proceedings are published as the series Advances in Neural
Information Processing Systems, starting with (Touretzky, 1989). Current research also appears
in the International Joint Conference on Neural Networks (IJCNN). Major journals for the field
include Neural Computation; Neural Networks; IEEE Transactions on Neural Networks; the
International Journal of 'Neural Systems; and Concepts in Neuroscience.

The topic of learning belief networks has received attention only very recently. For the
fixed-structure, fully observable case, Spiegelhalter, Dawid, Lauritzen, and Cowell (Spiegelhalter
et al., 1993) provide a thorough analysis of the statistical basis of belief network modification
using Dirichlet priors. They also give a heuristic approximation for the hidden-variable case.
Pearl (1988, Chapter 8) describes an algorithm for learning polytrees with unknown structure
and fully observable variables. Heckerman, Geiger, and Chickering (1994) describe an elegant
and effective heuristic algorithm for recovering the structure of general networks in the fully
observable case, building on the work of Cooper and Herskovits (1992). For the case of hidden
variables and unknown structure, see (Spirtes et al., 1993).

The general problem of recovering distributions from data with missing values and hidden
variables is addressed by the EM algorithm (Dempster et al., 1977). The algorithm in the
chapter (Russell et al., 1994) can be seen as a variant of EM in which the "maximize" phase is
carried out by a gradient-following method. Lauritzen (1991) also considers the application of
EM to belief networks. A gradient-following algorithm for learning sigmoid networks (belief
networks in which each CPT represents the same function as a standard neural-network unit) was
proposed by Radford Neal (1991), who went on to show that Boltzmann Machines are a special
case of belief networks. Neal was among the first to point out the extremely close connection
between neural and belief networks.

EXERCISES

19.1 Construct by hand a neural network that computes the XOR function of two inputs. Make
sure to specify what sort of units you are using.

19.2 We know that a simple perceptron cannot represent XOR (or, generally, the parity function
of its inputs). Describe what happens to the weights of a four-input, step-function perceptron,
beginning with all weights set to 0.1, as examples of the parity function arrive.

19.3 Suppose you had a neural network with linear activation functions. That is, for each unit
the output is some constant c times the weighted sum of the inputs.

a. Assume that the network has one hidden layer. For a given assignment to the weights W,
write down equations for the value of the units in the output layer as a function of W and



Section 19.7. Summary 597

the input layer I, without any explicit mention to the output of the hidden layer. Show that
there is a network with no hidden units that computes the same function.

b. Repeat the calculation in part (a), this time for a network with any number of hidden layers.
What can you conclude about linear activation functions?

19.4 Considerthe following set of examples. Each example has six inputs and one target output:

/I
h
h
h
Is
/6

T

1 1
0 0
1 1
0 1
0 0
0 0
1 1

1
0
1
0
1
0
1

1
1
0
0
1
1
1

1
1
1
1
0
0
1

1 1
0 0
0 0
0 0
1 1
1 0
1 0

0
1
1
1
0
1
1

0
1
1
0
1
1
0

0
0
0
1
1
0
0

0
1
0
1
0
1
0

0
0
0
1
0
1
0

0 0
1 1
1 1
0 1
1 0
1 0

0 0

a. Run the perceptron learning rule on this example set, and show the resulting set of weights.
b. Run the decision tree learning rule, and show the resulting decision tree.
c. Comment on your results.

19.5 Implement a data structure for layered, feed-forward neural networks, remembering to
provide the information needed for both forward evaluation and backward propagation. Using
this data structure, write a function NEURAL-NETWORK-OUTPUT that takes an example and a
network and computes the appropriate output values.

19.6 Suppose that a training set contains only a single example, repeated 100 times. In 80 of
the 100 cases, the single output value is 1; in the other 20, it is 0. What will a back-propagation
network predict for this example, assuming that it has been trained and reaches a global optimum?
(Hint: to find the global optimum, differentiate the error function and set to zero.)

19.7 The network in Figure 19.13 has four hidden nodes. This number was chosen somewhat
arbitrarily. Run systematic experiments to measure the learning curves for networks with different
numbers of hidden nodes. What is the optimal number? Would it be possible to use a cross-
validation method to find the best network before the fact?



20 REINFORCEMENT
LEARNING

In which we examine how an agent can learn from success and failure, reward and
punishment.

20.1 INTRODUCTION

In the previous two chapters, we have studied learning methods that learn from examples. That
is, the environment provides input/output pairs, and the task is to learn a function that could
have generated those pairs. These supervised learning methods are appropriate when a teacher
is providing correct values or when the function's output represents a prediction about the future
that can be checked by looking at the percepts in the next time step. In this chapter, we will study
how agents can learn in much less generous environments, where the agent receives no examples,
and starts with no model of the environment and no utility function.

For example, we know an agent can learn to play chess by supervised learning—by being
given examples of game situations along with the best move for that situation. But if there is
no friendly teacher providing examples, what can the agent do? By trying random moves, the
agent can eventually build a predictive model of its environment: what the board will be like after
it makes a given move, and even how the opponent is likely to reply in a given situation. But
without some feedback as to what is good and what is bad, the agent will have no grounds for
deciding which move to make. Fortunately, the chess-playing agent does receive some feedback,
even without a friendly teacher—at the end of the game, the agent perceives whether it has won

REWARD or lost. This kind of feedback is called a reward, or reinforcement. In games like chess, the
TERMINAL STATE reinforcement is received only at the end of the game. We call this a terminal state in the state

history sequence. In other environments, the rewards come more frequently—in ping-pong, each
point scored can be considered a reward. Sometimes rewards are given by a teacher who says
"nice move" or "uh-oh" (but does not say what the best move is).

The task of reinforcement learning is to use rewards to learn a successful agent function.
This is difficult because the agent is never told what the right actions are, nor which rewards are

598



Section 20.1. Introduction 599

PASSIVE LEARNER

ACTIVE LEARNER

ACTION-VALUE

Q-LEARNING

due to which actions. A game-playing agent may play flawlessly except for one blunder, and at
the end of the game get a single reinforcement that says "you lose." The agent must somehow
determine which move was the blunder.

Within our framework of agents as functions from percepts to actions, a reward can be
provided by a percept, but the agent must be "hardwired" to recognize that percept as a reward
rather than as just another sensory input. Thus, animals seem to be hardwired to recognize pain
and hunger as negative rewards, and pleasure and food as positive rewards. Training a dog is
made easier by the fact that humans and dogs happen to agree that a low-pitched sound (either
a growl or a "bad dog!") is a negative reinforcement. Reinforcement has been carefully studied
by animal psychologists for over 60 years.

In many complex domains, reinforcement learning is the only feasible way to train a
program to perform at high levels. For example, in game playing, it is very hard for a human
to provide accurate and consistent evaluations of large numbers of positions, which would be
needed to train an evaluation function directly from examples. Instead, the program can be told
when it has won or lost, and can use this information to learn an evaluation function that gives
reasonably accurate estimates of the probability of winning from any given position. Similarly,
it is extremely difficult to program a robot to juggle; yet given appropriate rewards every time a
ball is dropped or caught, the robot can learn to juggle by itself.

In a way, reinforcement learning is a restatement of the entire AI problem. An agent in
an environment gets percepts, maps some of them to positive or negative utilities, and then has
to decide what action to take. To avoid reconsidering all of AI and to get at the principles of
reinforcement learning, we need to consider how the learning task can vary:

• The environment can be accessible or inaccessible. In an accessible environment, states
can be identified with percepts, whereas in an inaccessible environment, the agent must
maintain some internal state to try to keep track of the environment.

• The agent can begin with knowledge of the environment and the effects of its actions; or it
will have to learn this model as well as utility information.

• Rewards can be received only in terminal states, or in any state.
• Rewards can be components of the actual utility (points for a ping-pong agent or dollars

for a betting agent) that the agent is trying to maximize, or they can be hints as to the actual
utility ("nice move" or "bad dog").

• The agent can be a passive learner or an active learner. A passive learner simply watches
the world going by, and tries to learn the utility of being in various states; an active learner
must also act using the learned information, and can use its problem generator to suggest
explorations of unknown portions of the environment.

Furthermore, as we saw in Chapter 2, there are several different basic designs for agents. Because
the agent will be receiving rewards that relate to utilities, there are two basic designs to consider:

• The agent learns a utility function on states (or state histories) and uses it to select actions
that maximize the expected utility of their outcomes.

• The agent learns an action-value function giving the expected utility of taking a given
action in a given state. This is called Q-learning.



600 Chapter 20. Reinforcement Learning

An agent that learns utility functions must also have a model of the environment in order to make
decisions, because it must know the states to which its actions will lead. For example, in order
to make use of a backgammon evaluation function, a backgammon program must know what
its legal moves are and how they affect the board position. Only in this way can it apply the
utility function to the outcome states. An agent that learns an action-value function, on the other
hand, need not have such a model. As long as it knows its legal moves, it can compare their
values directly without having to consider their outcomes. Action-value learners therefore can
be slightly simpler in design than utility learners. On the other hand, because they do not know
where their actions lead, they cannot look ahead; this can seriously restrict their ability to learn,
as we shall see.

We first address the problem of learning utility functions, which has been studied in AI
since the earliest days of the field. (See the discussion of Samuel's checker player in Chapter 5.)
We examine increasingly complex versions of the problem, while keeping initially to simple
state-based representations. Section 20.6 discusses the learning of action-value functions, and
Section 20.7 discusses how the learner can generalize across states. Throughout this chapter,
we will assume that the environment is nondeterministic. At this point the reader may wish to
review the basics of decision making in complex, nondeterministic environments, as covered in
Chapter 17.

20.2 PASSIVE LEARNING IN A KNOWN ENVIRONMENT

TRAINING
SEQUENCE

To keep things simple, we start with the case of a passive learning agent using a state-based
representation in a known, accessible environment. In passive learning, the environment generates
state transitions and the agent perceives them.1 Consider an agent trying to learn the utilities of
the states shown in Figure 20.1 (a). We assume, for now, that it is provided with a model My
giving the probability of a transition from state i to state j, as in Figure 20.1(b). In each training
sequence, the agent starts in state (1,1) and experiences a sequence of state transitions until it
reaches one of the terminal states (3,2) or (3,3), where it receives a reward.2 A typical set of
training sequences might look like this:

(1 ,1 )->(!, 2)—(1,3)->(2,3)-(2,2)->(2,3)->(3,3) ±1
(1,1)—(1,2)—(1, !)—(!, 2)-<l, 1)^(2,1)^(2,2)-<2,3)-+(3,3) ±1
(1? !)->.( 1,2)^(2,2)-Kl, 2)^(1,3)—(2,3)-*(l, 3)-<2,3)-K3,3) ±i
(1,1)—K2,1)^(2,2)^(2,1)—Kl, D—(1,2)—»(1.3)—»(2,3)—*-(2,2)—»(3,2) -1
(1,1)-K2,1)-K1,1)-<1,2)-K2,2)^(3,2)^1

The object is to use the information about rewards to learn the expected utility U(i) associated
with each nonterminal state i. We will make one big simplifying assumption: the utility of a
sequence is the sum of the rewards accumulated in the states of the sequence. That is, the utility
1 Another way to think of a passive learner is as an agent with a fixed policy trying to determine its benefits.
2 The period from initial state to terminal state is often called an epoch.



Section 20.2. Passive Learning in a Known Environment 601

=•!
START (XX)C

(b)

Figure 20.1 (a) A simple stochastic environment. State (1,1) is the start state, (b) Each state
transitions to a neighboring state with equal probability among all neighboring states. State (4,2)
is terminal with reward -1, and state (4,3) is terminal with reward +1. (c) The exact utility values.

REWARD-TO-GO function is additive in the sense defined on page 502. We define the reward-to-go of a state as
the sum of the rewards from that state until a terminal state is reached. Given this definition, it is

. ^..- .- easy to see that the expected utility of a state is the expected reward-to-go of that state.
' S: The generic agent design for passive reinforcement learning of utilities is shown in Fig-

ure 20.2. The agent keeps an estimate U of the utilities of the states, a table N of counts of
how many times each state was seen, and a table M of transition probabilities from state to state.
We assume that each percept e is enough to determine the STATE (i.e., the state is accessible),
the agent can determine the REWARD component of a percept, and the agent can tell if a percept
indicates a TERMINAL? state. In general, an agent can update its current estimated utilities after
each observed transition. The key to reinforcement learning lies in the algorithm for updating
the utility values given the training sequences. The following subsections discuss three possible
approaches to UPDATE.

ADAPTIVE CONTROL
THEORY

Naive updating
A simple method for updating utility estimates was invented in the late 1950s in the area of
adaptive control theory by Widrow and Hoff (1960). We will call it the LMS (least mean
squares) approach. In essence, it assumes that for each state in a training sequence, the observed
reward-to-go on that sequence provides direct evidence of the actual expected reward-to-go. Thus,
at the end of each sequence, the algorithm calculates the observed reward-to-go for each state and
updates the estimated utility for that state accordingly. It can easily be shown (Exercise 20.1) that
the LMS approach generates utility estimates that minimize the mean square error with respect
to the observed data. When the utility function is represented by a table of values for each state,
the update is simply done by maintaining a running average, as shown in Figure 20.3.

If we think of the utility function as a function, rather than just a table, then it is clear that
the LMS approach is simply learning the utility function directly from examples. Each example
has the state as input and the observed reward-to-go as output. This means that we have reduced
reinforcement learning to a standard inductive learning problem, as discussed in Chapter 18. As



602 Chapter 20. Reinforcement Learning

function PASSiVE-RL-AGENT(e) returns an action
static: U, a table of utility estimates

N, a table of frequencies for states
M, a table of transition probabilities from state to state
percepts, a percept sequence (initially empty)

add e to percepts
increment W[STATE[e]]
U<— UPDATE([/, e, percepts, M, N)
if TERMINAL?[e] then percepts^- the empty sequence
return the action Observe

Figure 20.2 Skeleton for a passive reinforcement learning agent that just observes the world
and tries to learn the utilities, U, of each state. The agent also keeps track of transition frequencies
and probabilities. The rest of this section is largely devoted to defining the UPDATE function.

function LMS-UPDATE((7, e, percepts, M, N) returns an updated U

if TERMINAL?[e] then reward-to-go — 0
for each e, in percepts (starting at end) do

reward-to-go <— reward-to-go + REWARD[e,]
C/[STATE[e,]] — RUNNING-AVERAGE([/[STATE[e,]], reward-to-go, ATSTATE[e,]])

end

Figure 20.3 The update function for least mean square (LMS) updating of utilities.

we will show, it is an easy matter to use more powerful kinds of representations for the utility
function, such as neural networks. Learning techniques for those representations can be applied
directly to the observed data.

One might think that the LMS approach more or less solves the reinforcement learning
problem—or at least, reduces it to one we already know a lot about. In fact, the LMS approach
misses a very important aspect of the reinforcement learning problem, namely, the fact that the
utilities of states are not independent! The structure of the transitions among the states in fact
imposes very strong additional constraints: The actual utility of a state is constrained to be the
probability-weighted average of its successors' utilities, plus its own reward. By ignoring these
constraints, LMS-UPDATE usually ends up converging very slowly on the correct utility values for
the problem. Figure 20.4 shows a typical run on the 4 x 3 environment in Figure 20.1, illustrating
both the convergence of the utility estimates and the gradual reduction in the root-mean-square
error with respect to the correct utility values. It takes the agent well over a thousand training
sequences to get close to the correct values.



Section 20.2. Passive Learning in a Known Environment 603

1
es

tim
at

es o
o

 
u.

;j3

3 -0.5

-1
(

. ——— ————— _ ———— ——— —— - -(4,3) -

' ; ,,.., . .....,---...-- (3,3)
;. 7\.-"7-- .7.7.. -777. - (2,3) -

-I - - • • - - - •---•--- -.----- - --- - ^ 1 ) -
. . . . . . . . . . ... . .. .. ... ( 4 > l )

:..:. .............. ......... ......... . . . . . . . . ^ ( 4 , 2 ) -
) 200 400 600 800 1000

Number of epochs

0.6

0.5

i 0.4

OJ

| °'2

0.1

0
(

i ;
!

.

- V' X^,/---^""---^"^---,.
) 200 400 600 800 1000

Number of epochs

(a) (b)

Figure 20.4 The LMS learning curves for the 4 x 3 world shown in Figure 20. 1 . (a) The utility
estimates of the states over time, (b) The RMS error compared to the correct values.

ADAPTIVE DYNAMIC
PROGRAMMING
ADP

Adaptive dynamic programming
Programs that use knowledge of the structure of the environment usually learn much faster. In the
example in Figure 20.5 (from (Sutton, 1988)), the agent already has a fair amount of experience
with the three states on the right, and has learned the values indicated. However, the path followed
from the new state reaches an unusually good terminal state. The LMS algorithm will assign a
utility estimate of+1 to the new state, whereas it is clear that the new state is much less promising,
because it has a transition to a state known to have utility & —0.8, and no other known transitions.

Fortunately, this drawback can be fixed. Consider again the point concerning the constraints
on neighboring utilities. Because, for now, we are assuming that the transition probabilities
are listed in the known table.Af/,-, the reinforcement learning problem becomes a well-defined
sequential decision problem (see Chapter 17) as soon as the agent has observed the rewards for all
the states. In our 4 x 3 environment, this usually happens after a handful of training sequences,
at which point the agent can compute the exact utility values for all states. The utilities are
computed by solving the set of equations

(20.1)

where R(i) is the reward associated with being in state i, and M// is the probability that a transition
will occur from state i to state j. This set of equations simply formalizes the basic point made in
the previous subsection. Notice that because the agent is passive, no maximization over actions
is involved (unlike Equation (17.3)). The process of solving the equations is therefore identical
to a single value determination phase in the policy iteration algorithm. The exact utilities for
the states in the 4 x 3 world are shown in Figure 20.1(c). Notice how the "safest" squares are
those along the top row, away from the negative reward state.

We will use the term adaptive dynamic programming (or ADP) to denote any reinforce-
ment learning method that works by solving the utility equations with a dynamic programming
algorithm. In terms of its ability to make good use of experience, ADP provides a standard



604 Chapter 20. Reinforcement Learning

Figure 20.5 An example where LMS does poorly. A new state is reached for the first time,
and then follows the path marked by the dashed lines, reaching a terminal state with reward +1.

against which to measure other reinforcement learning algorithms. It is, however, somewhat
intractable for large state spaces. In backgammon, for example, it would involve solving roughly
1050 equations in 105() unknowns.

TEMPORAL-
DIFFERENCE

Temporal difference learning
It is possible to have (almost) the best of both worlds—that is, one can approximate the constraint
equations shown earlier without solving them for all possible states. The key is to use the
observed transitions to adjust the values of the observed states so that they agree with the
constraint equations. Suppose that we observe a transition from state / to state j, where currently
U(i) = -0.5 and [/(/) = +0.5. This suggests that we should consider increasing U(i) to make it
agree better with its successor. This can be achieved using the following updating rule:

U(i) — U(i) + o (R(i) + U(j) - U(i)) (20.2)

where a is the learning rate parameter. Because this update rule uses the difference in utilities
between successive states, it is often called the temporal-difference, or TD, equation.

The basic idea of all temporal-difference methods is to first define the conditions that
hold locally when the utility estimates are correct; and then to write an update equation that
moves the estimates toward this ideal "equilibrium" equation. In the case of passive learning,
the equilibrium is given by Equation (20.1). Now Equation (20.2) does in fact cause the agent to
reach the equilibrium given by Equation (20.1), but there is some subtlety involved. First, notice
that the update only involves the actual successor, whereas the actual equilibrium conditions
involve all possible next states. One might think that this causes an improperly large change in
[7(0 when a very rare transition occurs; but, in fact, because rare transitions occur only rarely,
the average value of U(i) will converge to the correct value. Furthermore, if we change a from
a fixed parameter to a function that decreases as the number of times a state has been visited
increases, then U(i) itself will converge to the correct value (Dayan, 1992). This gives us the
algorithm TD-UPDATE, shown in Figure 20.6. Figure 20.7 shows atypical run of the TD learning
algorithm on the world in Figure 20.1. Although TD generates noisier values, the RMS error is
actually significantly less than that for LMS after 1000 iterations.



Section 20.3. Passive Learning in an Unknown Environment 605

function TD-UPDATE(C/, e, percepts, M, iV) returns the utility table U

if TERMINAL?[<?] then
C/[STATE[e]] <- RUNNING-AVERAGE([/[STATE[e]], REWARD[<?], W[STATE[>]])

else if percepts contains more than one element then
e' <— the penultimate element of percepts
/. j — STATE|e'], STATEH
f/[i] — U[i] + o'(#[i'l)(REWARD[e'] + U\j] - U[i])

Figure 20.6 An algorithm for updating utility estimates using temporal differences.

1

* 0.5
V
3
5
i£ 0

3 -0.5

_ ,

———————————————— - - —— (4,3) -

: M; ' • :. '" '•'' . ; • .' . •. ' (3,3)
; . • • : ; ••• : . • • • • / • . ' -. ' . (2,3)

' " : ,- > .• 'x '•';.'.:• • ' • . ; • ' . ' '

• • ' ; • > : . (1,0

• ; ' ' . : : ' ' ; - ' . - • . . -. . - . . - . - . -•- ( 3 ,o -
• ' • . . . . . - (4.1)

05
i1
~B 0.4
3
C

o 0.3

| 0.2

0.1

n

i

! i ' \
-* : i -

0 200 400 600 800 1000 0 200 400 600 800 1000
Number of epochs Number of epochs

(a) (b)

Figure 20.7 The TD learning curves for the 4 x 3 world, (a) The utility estimates of the states
over time, (b) The RMS error compared to the correct values.

20.3 PASSIVE LEARNING IN AN UNKNOWN ENVIRONMENT

The previous section dealt with the case in which the environment model M is already known.
Notice that of the three approaches, only the dynamic programming method used the model in full.
TD uses information about connectedness of states, but only from the current training sequence.
(As we mentioned before, all utility-learning methods will use the model during subsequent action
selection.) Hence LMS and TD will operate unchanged in an initially unknown environment.

The adaptive dynamic programming approach simply adds a step to PASSIVE-RL-AGENT
that updates an estimated model of the environment. Then the estimated model is used as the
basis for a dynamic programming phase to calculate the corresponding utility estimates after each
observation. As the environment model approaches the correct model, the utility estimates will,



606 Chapter 20. Reinforcement Learning

of course, converge to the correct utilities. Because the environment model usually changes only
slightly with each observation, the dynamic programming phase can use value iteration with the
previous utility estimates as initial values and usually converges quite quickly.

The environment model is learned by direct observation of transitions. In an accessi-
ble environment, each percept identifies the state, and hence each transition provides a direct
input/output example for the transition function represented by M. The transition function is
usually stochastic—that is, it specifies a probability for each possible successor rather than a
single state. A reinforcement learning agent can use any of the techniques for learning stochastic
functions from examples discussed in Chapters 18 and 19. We discuss their application further
in Section 20.7.

Continuing with our tabular representation for the environment, we can update the envi-
ronment model M simply by keeping track of the percentage of times each state transitions to
each of its neighbors. Using this simple technique in the 4 x 3 world from Figure 20.1, we obtain
the learning performance shown in Figure 20.8. Notice that the ADP method converges far faster
than either LMS or TD learning.

1

ty
 e

st
im

at
es o

O
 

in

S -0.5

-1

(

- ——— ———— ——— ——— (4,3)-

/" """ -" ".'""" '"".." "" ----- - - - - - (3,3)
, •' ' '" ' ' -- ' - - - - - - - (2,3)

(1,1)
- ..-..-..- — - - - - • - - • - - - - - • - • - - . - . _ - - - - . ( 3 > 1 )-

• ' . - • • • - - - - • - • ' - - - - - - - - - - - - - - - - - - - - (4,1)
----- ----- , , , , (4.2) 1

) 100 200 300 400 500
Number of epochs

0.6

0.5
>>

I 0.4

1 °-3

g 0.2
Oi

0.1

0
C

"i \
V ~X/~X----/ \-_— ..̂

) 100 200 300 400 500
Number of epochs

(a) (b)

Figure 20.8 The ADP learning curves for the 4 x 3 world.

The ADP approach and the TD approach are actually closely related. Both try to make local
adjustments to the utility estimates in order to make each state "agree" with its successors. One
minor difference is that TD adjusts a state to agree with its observed successor (Equation (20.2)),
whereas ADP adj usts the state to agree with all of the successors that might occur given an optimal
action choice, weighted by their probabilities (Equation (20.1)). This difference disappears
when the effects of TD adjustments are averaged over a large number of transitions, because
the frequency of each successor in the set of transitions is approximately proportional to its
probability. A more important difference is that whereas TD makes a single adjustment per
observed transition, ADP makes as many as it needs to restore consistency between the utility
estimates U and the environment model M. Although the observed transition only makes a local
change in M, its effects may need to be propagated throughout U. Thus, TD can be viewed as a
crude but efficient first approximation to ADP.



L

Section 20.4. Active Learning in an Unknown Environment 607

Each adjustment made by ADP could be viewed, from the TD point of view, as a result of
a "pseudo-experience" generated by simulating the current environment model. It is possible to
extend the TD approach to use an environment model to generate several pseudo-experiences—
transitions that the TD agent can imagine might happen given its current model. For each observed
transition, the TD agent can generate a large number of imaginary transitions. In this way, the
resulting utility estimates will approximate more and more closely those of ADP—of course, at
the expense of increased computation time.

In a similar vein, we can generate more efficient versions of ADP by directly approximating
the algorithms for value iteration or policy iteration. Recall that full value iteration can be
intractable when the number of states is large. Many of the adjustment steps, however, are
extremely tiny. One possible approach to generating reasonably good answers quickly is to
bound the number of adjustments made after each observed transition. One can also use a
heuristic to rank the possible adjustments so as to carry out only the most significant ones. The

PRIORITIZED- prioritized-sweeping heuristic prefers to make adjustments to states whose likely successors
have just undergone a large adjustment in their own utility estimates. Using heuristics like
this, approximate ADP algorithms usually can learn roughly as fast as full ADP, in terms of the
number of training sequences, but can be several orders of magnitude more efficient in terms of
computation (see Exercise 20.3). This enables them to handle state spaces that are far too large
for full ADP. Approximate ADP algorithms have an additional advantage: in the early stages of
learning a new environment, the environment model M often will be far from correct, so there is
little point in calculating an exact utility function to match it. An approximation algorithm can
use a minimum adjustment size that decreases as the environment model becomes more accurate.
This eliminates the very long value iterations that can occur early in learning due to large changes
in the model.

20.4 ACTIVE LEARNING IN AN UNKNOWN ENVIRONMENT

A passive learning agent can be viewed as having a fixed policy, and need not worry about which
actions to take. An active agent must consider what actions to take, what their outcomes may be,
and how they will affect the rewards received.

The PASSIVE-RL-AGENT model of page 602 needs only minor changes to accommodate
actions by the agent:

• The environment model must now incorporate the probabilities of transitions to other states
given a particular action. We will use Mfj to denote the probability of reaching state j if
the action a is taken in state /.

• The constraints on the utility of each state must now take into account the fact that the agent
has a choice of actions. A rational agent will maximize its expected utility, and instead of
Equation (20.1) we use Equation (17.3), which we repeat here:

U(i) = R(i) + max ̂  MfjU(j) (20.3)



608 Chapter 20. Reinforcement Learning

• The agent must now choose an action at each step, and will need a performance element
to do so. In the algorithm, this means calling PERFORMANCE-ELEMENT(e) and returning
the resulting action. We assume that the model M and the utilities U are shared by the
performance element; that is the whole point of learning them.

We now reexamine the dynamic programming and temporal-difference approaches in the light
of the first two changes. The question of how the agent should act is covered in Section 20.5.

Because the ADP approach uses the environment model, we will need to change the
algorithm for learning the model. Instead of learning the probability My of a transition, we will
need to learn the probability Af?• of a transition conditioned on taking an action a. In the explicit
tabular representation for M, this simply means accumulating statistics in a three-dimensional
table. With an implicit functional representation, as we will soon see, the input to the function
will include the action taken. We will assume that a procedure UPDATE-ACTIVE-MODEL takes
care of this. Once the model has been updated, then the utility function can be recalculated using
a dynamic programming algorithm and then the performance element chooses what to do next.
We show the overall design for ACTIVE-ADP-AGENT in Figure 20.9.

An active temporal-difference learning agent that learns utility functions also will need
to learn a model in order to use its utility function to make decisions. The model acquisition
problem for the TD agent is identical to that for the ADP agent. What of the TD update rule
itself? Perhaps surprisingly, the update rule (20.2) remains unchanged. This might seem odd, for
the following reason. Suppose the agent takes a step that normally leads to a good destination,
but because of nondeterminism in the environment the agent ends up in a catastrophic state. The
TD update rule will take this as seriously as if the outcome had been the normal result of the

function ACTIVE-ADP-AGENT(<?) returns an action
static: U, a table of utility estimates

M, a table of transition probabilities from state to state for each action
R, a table of rewards for states
percepts, a percept sequence (initially empty)
last-action, the action just executed

add e to percepts
fl[STATE[e]] — REWARDfe]
M — UPDATE- ACTIVE-MODEL(M, percepts, last-action)
U — VALUE-lTERATION(£/, M, R)
if TERMiNAL?[e] then

percepts — the empty sequence
last-action <— PERFORMANCE-EEEMENT(e)
return last-action

Figure 20.9 Design for an active ADP agent. The agent learns an environment model M
by observing the results of its actions, and uses the model to calculate the utility function
U using a dynamic programming algorithm (here POLICY-ITERATION could be substituted for
VALUE-ITERATION).



Section 20.5. Exploration 609

action, whereas one might suppose that because the outcome was a fluke, the agent should not
worry about it too much. In fact, of course, the unlikely outcome will only occur infrequently in
a large set of training sequences; hence in the long run its effects will be weighted proportionally
to its probability, as we would hope. Once again, it can be shown that the TD algorithm will
converge to the same values as ADP as the number of training sequences tends to infinity.

20.5 EXPLORATION____________________________

The only remaining issue to address for active reinforcement learning is the question of what
actions the agent should take—that is, what PERFORMANCE-ELEMENT should return. This turns
out to be harder than one might imagine.

One might suppose that the correct way for the agent to behave is to choose whichever
action has the highest expected utility given the current utility estimates—after all, that is all the
agent has to go on. But this overlooks the contribution of action to learning. In essence, an action
has two kinds of outcome:3

• It gains rewards on the current sequence.
• It affects the percepts received, and hence the ability of the agent to learn—and receive

rewards in future sequences.
An agent therefore must make a trade-off between its immediate good—as reflected in its current
utility estimates—and its long-term well-being. An agent that simply chooses to maximize its
rewards on the current sequence can easily get stuck in a rut. At the other extreme, continually
acting to improve one's knowledge is of no use if one never puts that knowledge into practice. In
the real world, one constantly has to decide between continuing in a comfortable existence and
striking out into the unknown in the hopes of discovering a new and better life.

In order to illustrate the dangers of the two extremes, we will need a suitable environment.
We will use the stochastic version of the 4 x 3 world shown in Figure 17.1. In this world, the
agent can attempt to move North, South, East, or West; each action achieves the intended effect
with probability 0.8, but the rest of the time, the action moves the agent at right angles to the
intended direction. As before, we assume a reward of —0.04 (i.e., a cost of 0.04) for each action
that doesn't reach a terminal state. The optimal policy and utility values for this world are shown
in Figure 17.2, and the object of the learning agent is to converge towards these.

Let us consider two possible approaches that the learning agent might use for choosing
what to do. The "wacky" approach acts randomly, in the hope that it will eventually explore
the entire environment; and the "greedy" approach acts to maximize its utility using current
estimates. As we see from Figure 20.10, the wacky approach succeeds in learning good utility
estimates for all the states (top left). Unfortunately, its wacky policy means that it never actually
gets better at reaching the positive reward (top right). The greedy agent, on the other hand, often
finds a path to the+1 reward along the lower route via (2,1), (3,1), (3,2), and (3,3). Unfortunately,
it then sticks to that path, never learning the utilities of the other states (bottom left). This means

Notice the direct analogy to the theory of information value in Chapter 16.



610 Chapter 20. Reinforcement Learning

0.6

.?
1 0.5

rt 0.4

•2 0.3

'E "•-
| 0.1

0

_ 0-6
S
g. 0.5

I °'4

1 0.3

•- 0.2

1 0-1
S
* 0

) 50 100 150 200 250 300 350 400 450 5
Number of epochs

2.5

rj 2

B.
|T 1.5
3

I 1

1 0.5

0
X) (

2.5

t"
1 '

) 50 100 150 200 250 300 350 400 450 5
Number of epochs

*:
X) <

.

-

50 100 150 200 250 300 350 400 450 500
Number of epochs

50 100 150 200 250 300 350 400 450 500
Number of epochs

Figure 20.10 Curves showing the RMS error in utility estimates (left) and the total loss asso-
ciated with the corresponding policy (right), for the wacky (top) and greedy (bottom) approaches
to exploration.

that it too fails to achieve perfection (bottom right) because it does not find the optimal route via
(1,2), (1,3), and (2,3).

Obviously, we need an approach somewhere between wackiness and greediness. The agent
should be more wacky when it has little idea of the environment, and more greedy when it has a
model that is close to being correct. Can we be a little more precise than this? Is there an optimal
exploration policy? It turns out that this question has been studied in depth in the subfield of

BANDIT PROBLEMS statistical decision theory that deals with so-called bandit problems (see sidebar).
Although bandit problems are extremely difficult to solve exactly to obtain an optimal

exploration policy, it is nonetheless possible to come up with a reasonable policy that seems to
have the desired properties. In a given state, the agent should give some weight to actions that
it has not tried very often, while being inclined to avoid actions that are believed to be of low
utility. This can be implemented by altering the constraint equation (20.3) so that it assigns a
higher utility estimate to relatively unexplored action-state pairs. Essentially, this amounts to
an optimistic prior over the possible environments, and causes the agent to behave initially as
if there were wonderful rewards scattered all over the place. Let us use U+(i) to denote the
optimistic estimate of the utility (i.e., the expected reward-to-go) of the state i, and let N(a, f)
be the number of times action a has been tried in state i. Suppose we are using value iteration



Section 20.5. Exploration 611

EXPLORATION AND BANDITS

In Las Vegas, a one-armed bandit is a slot machine. A gambler can insert a coin, pull
the lever, and collect the winnings (if any). An n-armed bandit has n levers. The
gambler must choose which lever to play on each successive coin—the one that has
paid off best, or maybe one that has not been tried?

The tt-armed bandit problem is a formal model for real problems in many vi-
tally important areas, such as deciding on the annual budget for AI research and
development. Each arm corresponds to an action (such as allocating $20 million for
development of new AI textbooks) and the payoff from pulling the arm corresponds
to the benefits obtained from taking the action (immense). Exploration, whether it is
exploration of a new research field or exploration of a new shopping mall, is risky,
expensive, and has uncertain payoffs; on the other hand, failure to explore at all means
that one never discovers any actions that are worthwhile.

To formulate a bandit problem properly, one must define exactly what is meant by
optima] behavior. Most definitions in the literature assume that the aim is to maximize
the expected total reward obtained over the agent's lifetime. These definitions require
that the expectation be taken over the possible worlds that the agent could be in, as well
as over the possible results of each action sequence in any given world. Here, a "world"
is defined by the transition model M(". Thus, in order to act optimally, the agent needs
a prior distribution over the possible models. The resulting optimization problems
are usually wildly intractable. In some cases, however, appropriate independence
assumptions enable the problem to be solved in closed form. With a row of real slot
machines, for example, the rewards in successive time steps and on different machines
can be assumed to be independent. It turns out that the fraction of one's coins invested
in a given machine should drop off proportionally to the probability that the machine
is in fact the best, given the observed distributions of rewards.

The formal results that have been obtained for optimal exploration policies apply
only to the case in which the agent represents the transition model as an explicit table
and is not able to generalize across states and actions. For more realistic problems,
it is possible to prove only convergence to a correct model and optimal behavior in
the limit of infinite experience. This is easily obtained by acting randomly on some
fraction of steps, where that fraction decreases appropriately over time.

One can use the theory of «-armed bandits to argue for the reasonableness of the
selection strategy in genetic algorithms (see Section 20.8). If you consider each arm
in an n-armed bandit problem to be a possible string of genes, and the investment of a
coin in one arm to be the reproduction of those genes, then genetic algorithms allocate
coins optimally, given an appropriate set of independence assumptions.

L



612 Chapter 20. Reinforcement Learning

EXPLORATION
FUNCTION

in an ADP learning agent; then we need to rewrite the update equation (i.e.. Equation (17.4)) to
incorporate the optimistic estimate. The following equation does this:

max j\ N(a, i) (20.4)

where f(u,n) is called the exploration function. It determines how greed (preference for high
values of u) is traded off against curiosity (preference for low values of n, i.e., actions that have not
been tried often). The function/(w,«) should be increasing in u, and decreasing in n. Obviously,
there are many possible functions that fit these conditions. One particularly simple definition is
the following:

/(«,«) =
R+ ifn<Ne
u otherwise

where R+ is an optimistic estimate of the best possible reward obtainable in any state, and Ne is a
fixed parameter. This will have the effect of making the agent try each action-state pair at least
Ne times.

The fact that U+ rather than U appears on the right-hand side of Equation (20.4) is very
important. As exploration proceeds, the states and actions near the start state may well be tried
a large number of times. If we used U, the nonoptimistic utility estimate, then the agent would
soon become disinclined to explore further afield. The use of U+ means that the benefits of
exploration are propagated back from the edges of unexplored regions, so that actions that lead
toward unexplored regions are weighted more highly, rather than just actions that are themselves
unfamiliar. The effect of this exploration policy can be seen clearly in Figure 20.11, which
shows a rapid convergence toward optimal performance, unlike that of the wacky or the greedy
approaches. A very nearly optimal policy is found after just 18 trials. Notice that the utility
estimates themselves do not converge as quickly. This is because the agent stops exploring the
unrewarding parts of the state space fairly soon, visiting them only "by accident" thereafter.
However, it makes perfect sense for the agent not to care about the exact utilities of states that it
knows are undesirable and can be avoided.

20.6 LEARNING AN ACTION-VALUE FUNCTION

An action-value function assigns an expected utility to taking a given action in a given state;
as mentioned earlier, such values are also called Q-values. We will use the notation Q(a,i) to i
denote the value of doing action a in state i. Q-values are directly related to utility values by the ,
following equation:

U(i) = max Q(a, i) (20.5);
a

Q-values play an important role in reinforcement learning for two reasons: first, like condition- j
action rules, they suffice for decision making withoutthe use of a model; second, unlike condition- j
action rules, they can be learned directly from reward feedback.



Section 20.6. Learning an Action-Value Function 613

L

2

1.5

S 1rt

1 0.5
_>!

i o
D

-0.5

-1
(

\
\t

- (4,3) - - . . . . . - - - - - - - - - - - . . . . . . . -
(3.3) -----

- (2,3)
(1,1)
(3.1) - —

" (4,1) --- 1
(4,2)

) 20 40 60 80 100
Number of iterations

(a)

I 1.4
>,

1.2

' . 1

" 0.8

">, 0.6

"! 0.4

t 0.2
OJ

c/3
5 0
* (

x i RMS error — —
L \ i Policy loss

;• ' ' ————

) 20 40 60 80 100
Number of epochs

(b)

Figure 20.11 Performance of the exploratory ADP agent, using R+ = 2 and Ne = 5. (a) Utility
estimates for selected states over time. After the initial exploratory phase in which the states get
an exploration bonus, the high-valued states quickly reach their correct values. The low-valued
states converge slowly because they are seldom visited, (b) The RMS error in utility values and
the associated policy loss.

As with utilities, we can write a constraint equation that must hold at equilibrium when the
Q-values are correct:

Q(a, i) = R(i) + f max Q(a< J) (20.6)

As in the ADP learning agent, we can use this equation directly as an update equation for an
iteration process that calculates exact Q-values given an estimated model. This does, however,
require that a model be learned as well because the equation uses Mfj. The temporal-difference
approach, on the other hand, requires no model. The update equation for TD Q-learning is

Q(a, i) *- Q(a, i) + a (R(i) + max Q(a',j) - Q(a, /)) (20.7)
a1

which is calculated after each transition from state / to state j.
The complete agent design for an exploratory Q-learning agent using TD is shown in

Figure 20.12. Notice that it uses exactly the same exploration function/ as used by the exploratory
ADP agent, hence the need to keep statistics on actions taken (the table N). If a simpler exploration
policy is used—say, acting randomly on some fraction of steps, where the fraction decreases over
time—then we can dispense with the statistics.

Figure 20.13 shows the performance of the Q-learning agent in our 4 x 3 world. Notice that
the utility estimates (derived from the Q-values using Equation (20.5)) take much longer to settle
down than they did with the ADP agent. This is because TD does not enforce consistency among
values via the model. Although a good policy is found after only 26 trials, it is considerably
further from optimality than that found by the ADP agent (Figure 20.11).

Although these experimental results are for just one set of trials on one specific environment,
they do raise a general question: is it better to learn a model and a utility function or to learn
an action-value function with no model? In other words, what is the best way to represent the



614 Chapter 20. Reinforcement Learning

function Q-LEARNiNG-AGENT(e) returns an action
static: Q, a table of action values

N, a table of state-action frequencies
a, the last action taken
(', the previous state visited
r, the reward received in state i

j <— STATE[e]
if (' is non-null then

Q[a,i}-Q\a,i]+a(r
if TERMlNAL?[e] then

i — null
else

r — REWARD[e]
a — arg max,,, f(Q[a' ,j\, N[a',j\)
return a

max,,, Q[a' J] - Q\a,i])

Figure 20.12 An exploratory Q-learning agent. It is an active learner that learns the value
Q(a, i) of each action in each situation. It uses the same exploration function/ as the exploratory
ADP agent, but avoids having to learn the transition model M|j because the Q-value of s state can
be related directly to those of its neighbors.

- - - - - - - • " --"- '- " - •---; • - - • - • : - - • - . , , - • - - - . : - . . -., .-•.., ------ .:-..-.
•\

* 0,5 - . - . -
OJ
^
£

B o
s
3 -0,5

-1

- - . (4,3) - - •• -
(3,3) - -
(2,3)
(1,1) ,
(3,1) •— 1

(4,1) - - -
(4,2)

ou

I 1-415
•r 1.2
O1

D i
H '

1 0.8

.j? 0.6

^ 0 4
Q

S 0.2<y:
^ A

.

RMS error - —
Policy loss - - - -

-

--_'

'
_ _ _ — _ _ _ - - _ — ' " " ' — v .... __.-_^_-" — --• — - — "

"" r~" "" "" , "" "
0 20 40 60 80 100 " " 0 20 40 60 80 100

Number of iterations Number of epochs

(a) (b)

Figure 20.13 Performance of the exploratory TD Q-learning agent, using R+ = 2 and Ne = 5.
(a) Utility estimates for selected states over time, (b) The RMS error in utility values and the
associated policy loss.



Section 20.7. Generalization in Reinforcement Learning 615

agent function? This is an issue at the foundations of artificial intelligence. As we stated in
Chapter 1, one of the key historical characteristics of much of AI research is its (often unstated)
adherence to the knowledge-based approach. This amounts to an assumption that the best way
to represent the agent function is to construct an explicit representation of at least some aspects
of the environment in which the^agent is situated.

Some researchers, both inside and outside AI, have claimed that the availability of model-
free methods such as Q-learning means that the knowledge-based approach is unnecessary. There
is, however, little to go on but intuition. Our intuition, for what it's worth, is that as the environment
becomes more complex, the advantages of a knowledge-based approach become more apparent.
This is borne out even in games such as chess, checkers (draughts), and backgammon (see next
section), where efforts to learn an evaluation function using a model have met with more success
than Q-learning methods. Perhaps one day there will be a deeper theoretical understanding of
the advantages of explicit knowledge; but as yet we do not even have a formal definition of
the difference between model-based and model-free systems. All we have are some purported
examples of each.

20.7 GENERALIZATION IN REINFORCEMENT LEARNING

EXPLICIT
REPRESENTATION

IMPLICIT
REPRESENTATION

INPUT
GENERALIZATION

So far we have assumed that all the functions learned by the agents (U, M, R, Q) are represented in
tabular form —that is, an explicit representation of one output value for each input tuple. Such
an approach works reasonably well for small state spaces, but the time to convergence and (for
ADP) the time per iteration increase rapidly as the space gets larger. With carefully controlled,
approximate ADP methods, it may be possible to handle 10,000 states or more. This suffices
for two-dimensional, maze-like environments, but more realistic worlds are out of the question.
Chess and backgammon are tiny subsets of the real world, yet their state spaces contain on the
order of 1050 to 1012() states. It would be absurd to suppose that one must visit all these states in
order to learn how to play the game!

The only way to handle such problems is to use an implicit representation of the function—
a form that allows one to calculate the output for any input, but that is usually much more
compact than the tabular form. For example, an estimated utility function for game playing can
be represented as a weighted linear function of a set of board features f\ ,...,/„:

U(i) - Wi/i(0 + W>2/2(0 + • • • + W,,fn(i)

Thus, instead of, say, 10120 values, the utility function is characterized by the n weights. A
typical chess evaluation function might only have about 10 weights, so this is an enormous
compression. The compression achieved by an implicit representation allows the learning agent
to generalize from states it has visited to states it has not visited. That is, the most important
aspect of an implicit representation is not that it takes up less space, but that it allows for inductive
generalization over input states. For this reason, methods that learn such representations are said
to perform input generalization. To give you some idea of the power of input generalization:
by examining only one in 1044 of the possible backgammon states, it is possible to learn a utility
function that allows a program to play as well as any human (Tesauro, 1992).



616 Chapter 20. Reinforcement Learning

On the flip side, of course, there is the problem that there may be no function in the chosen
space of implicit representations that faithfully approximates the true utility function. As in all
inductive learning, there is a trade-off between the size of the hypothesis space and the time
it takes to learn the function. A larger hypothesis space increases the likelihood that a good
approximation can be found, but^also means that convergence is likely to be delayed.

Let us now consider exactly how the inductive learning problem should be formulated.
We begin by considering how to learn utility and action-value functions, and then move on to
learning the transition function for the environment.

In the LMS (least mean squares) approach, the formulation is straightforward. At the end
of each training sequence, the LMS algorithm associates a reward-to-go with each state visited
along the way. The (state, reward] pair can be used directly as a labelled example for any desired
inductive learning algorithm. This yields a utility function [/(;').

It is also possible for a TD (temporal-difference) approach to apply inductive learning
directly, once the U and/or Q tables have been replaced by implicit representations. The values
that would be inserted into the tables by the update rules (20.2 and 20.7) can be used instead as
labelled examples for a learning algorithm. The agent has to use the learned function on the next
update, so the learning algorithm must be incremental.

One can also take advantage of the fact that the TD update rules provide small changes in
the value of a given state. This is especially true if the function to be learned is characterized by
a vector of weights w (as in linear weighted functions and neural networks). Rather than update
a single tabulated value of f/, as in Equation (20.2), we simply adjust the weights to try to reduce
the temporal difference in U between successive states. Suppose that the parameterized utility
function is Uw(i). Then after a transition / — j , we apply the following update rule:

w - w + a[r + - t/w(01 Vwt/w(i) (20.8)

This form of updating performs gradient descent in weight space, trying to minimize the observed
local error in the utility estimates. A similar update rule can be used for Q-learning (Exercise 20.9).
Because the utility and action-value functions have real-valued outputs, neural networks and
other continuous function representations are obvious candidates for the performance element.
Decision-tree learning algorithms that provide real-valued output can also be used (see for

MODEL TREES example Quinlan's (1993) model trees), but cannot use the gradient descent method.
The formulation of the inductive learning problem for constructing a model of the envi-

ronment is also very straightforward. Each transition provides the agent with the next state (at
least in an accessible environment), so that labelled examples consist of a state-action pair as
input and a state as output. It is not so easy, however, to find a suitable implicit representation
for the model. In order to be useful for value and policy iteration and for the generation of
pseudo-experiences in TD learning, the output state description must be sufficiently detailed
to allow prediction of outcomes several steps ahead. Simple parametric forms cannot usually
sustain this kind of reasoning. Instead, it may be necessary to learn general action models in
the logical form used in Chapters 7 and 11. In a nondeterministic environment, one can use the
conditional-probability-table representation of state evolution typical of dynamic belief networks
(Section 17.5), in which generalization is achieved by describing the state in terms of a large set of
features and using only sparse connections. Although model-based approaches have advantages
in terms of their ability to learn value functions quickly, they are currently hampered by a lack



Section 20.7. Generalization in Reinforcement Learning 617

of suitable inductive generalization methods for learning the model. It is also not obvious how
methods such as value and policy iteration can be applied with a generalized model.

We now turn to examples of large-scale applications of reinforcement learning. We will
see that in cases where a utility function (and hence a model) is used, the model is usually taken as
given. For example, in learning an< evaluation function for backgammon, it is normally assumed
that the legal moves, and their effects, are known in advance.

CART-POLE
INVERTEDPENDULUM

Applications to game-playing
The first significant application of reinforcement learning was also the first significant learning
program of any kind—the checker-playing program written by Arthur Samuel (1959; 1967).
Samuel first used a weighted linear function for the evaluation of positions, using up to 16 terms
at any one time. He applied a version of Equation (20.8) to update the weights. There were some
significant differences, however, between his program and current methods. First, he updated
the weights using the difference between the current state and the backed-up value generated by
full lookahead in the search tree. This works fine, because it amounts to viewing the state space
at a different granularity. A second difference was that the program did not use any observed
rewards! That is, the values of terminal states were ignored. This means that it is quite possible
for Samuel's program not to converge, or to converge on a strategy designed to lose rather than
win. He managed to avoid this fate by insisting that the weight for material advantage should
always be positive. Remarkably, this was sufficient to direct the program into areas of weight
space corresponding to good checker play (see Chapter 5).

The TD-gammon system (Tesauro, 1992) forcefully illustrates the potential of reinforce-
ment learning techniques. In earlier work (Tesauro and Sejnowski, 1989), Tesauro tried learning
a neural network representation of Q(a, i) directly from examples of moves labelled with relative
values by a human expert. This approach proved extremely tedious for the expert. It resulted in a
program, called Neurogammon, that was strong by computer standards but not competitive with
human grandmasters. The TD-gammon project was an attempt to learn from self-play alone. The
only reward signal was given at the end of each game. The evaluation function was represented
by a fully connected neural network with a single hidden layer containing 40 nodes. Simply by
repeated application of Equation (20.8), TD-gammon learned to play considerably better than
Neurogammon, even though the input representation contained just the raw board position with
no computed features. This took about 200,000 training games and two weeks of computer time.
Although this may seem like a lot of games, it is only a vanishingly small fraction of the state
space. When precomputed features were added to the input representation, a network with 80
hidden units was able, after 300,000 training games, to reach a standard of play comparable with
the top three human players worldwide.

Application to robot control
The setup for the famous cart-pole balancing problem, also known as the inverted pendulum,
is shown in Figure 20.14. The problem is to control the position x of the cart so that the pole
stays roughly upright (6 K it 12), while staying within the limits of the cart track as shown.
This problem has been used as a test bed for research in control theory as well as reinforcement



618 Chapter 20. Reinforcement Learning

Figure 20.14 Setup for the problem of balancing a long pole on top of a moving cart. The cart
can be jerked left or right by a controller that observes x, 6, x, and 6.

BANG-BANG
CONTROL

learning, and over 200 papers have been published on it. The cart-pole problem differs from the
problems described earlier in that the state variables x, 9, x, and 0 are continuous. The actions
are usually discrete—jerk left or jerk right, the so-called bang-bang control regime.

The earliest work on learning for this problem was carried out by Michie and Cham-
bers (1968). Their BOXES algorithm was able to balance the pole for over an hour after only
about 30 trials. Moreover, unlike many subsequent systems, BOXES was implemented using a
real cart and pole, not a simulation. The algorithm first discretized the four-dimensional state
space into boxes, hence the name. It then ran trials until the pole fell over or the cart hit the end of
the track. Negative reinforcement was associated with the final action in the final box, and then
propagated back through the sequence. It was found that the discretization causes some problems
when the apparatus was initialized in a different position from those used in training, suggesting
that generalization was not perfect. Improved generalization and faster learning can be obtained
using an algorithm that adoptively partitions the state space according to the observed variation
in the reward.

More recently, neural networks have been used to provide a continuous mapping from
the state space to the actions, with slightly better results. The most impressive performance,
however, belongs to the control algorithm derived using classical control theory for the triple
inverted pendulum, in which three poles are balanced one on top of another with torque controls
at the joints (Furuta et al., 1984). (One is disappointed, but not surprised, that this algorithm was
implemented only in simulation.)



Section 20.8. Genetic Algorithms and Evolutionary Programming 619

20.8 GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING

FITNESS FUNCTION

GENE

Nature has a robust way of evolving successful organisms. The organisms that are ill-suited for an
environment die off, whereas the ones that are fit live to reproduce. Offspring are similar to their
parents, so each new generation has organisms that are similar to the fit members of the previous
generation. If the environment changes slowly, the species can gradually evolve along with it,
but a sudden change in the environment is likely to wipe out a species. Occasionally, random
mutations occur, and although most of these mean a quick death for the mutated individual, some
mutations lead to new successful species. The publication of Darwin's The Origin of Species on
the Basis of Natural Selection was a major turning point in the history of science.

It turns out that what's good for nature is also good for artificial systems. Figure 20.15
shows the GENETIC-ALGORITHM, which starts with a set of one or more individuals and applies
selection and reproduction operators to "evolve" an individual that is successful, as measured by
a fitness function. There are several choices for what the individuals are. They can be entire
agent functions, in which case the fitness function is a performance measure or reward function,
and the analogy to natural selection is greatest. They can be component functions of an agent, in
which case the fitness function is the critic. Or they can be anything at all that can be framed as
an optimization problem.

Since the evolutionary process learns an agent function based on occasional rewards (off-
spring) as supplied by the selection function, it can be seen as a form of reinforcement learning.
Unlike the algorithms described in the previous sections, however, no attempt is made to learn
the relationship between the rewards and the actions taken by the agent or the states of the
environment. GENETIC-ALGORITHM simply searches directly in the space of individuals, with
the goal of finding one that maximizes the fitness function. The search is parallel because each
individual in the population can be seen as a separate search. It is hill climbing because we are
making small genetic changes to the individuals and using the best resulting offspring. The key
question is how to allocate the searching resources: clearly, we should spend most of our time on
the most promising individuals, but if we ignore the low-scoring ones, we risk getting stuck on a
local maximum. It can be shown that, under certain assumptions, the genetic algorithm allocates
resources in an optimal way (see the discussion of /i-armed bandits in, e.g., Goldberg (1989)).

Before we can apply GENETIC-ALGORITHM to a problem, we need to answer the following
four questions:

• What is the fitness function?
• How is an individual represented?
• How are individuals selected?
• How do individuals reproduce?

The fitness function depends on the problem, but in any case, it is a function that takes an
individual as input and returns a real number as output.

In the "classic" genetic algorithm approach, an individual is represented as a string over a
finite alphabet. Each element of the string is called a gene. In real DNA, the alphabet is AGTC
(adenine, guanine, thymine, cytosine), but in genetic algorithms, we usually use the binary alpha-
bet (0,1). Some authors reserve the term "genetic algorithm" for cases where the representation



620 Chapter 20. Reinforcement Learning

EVOLUTIONARY
PROGRAMMING

CROSS-OVER

MUTATION

function GENETIC-ALGOKITHM( population, FITNESS-FN) returns an individual
inputs: population, a set of individuals

FiTNESS-FN, a function that measures the fitness of an individual

repeat
parents <— SELECTION population, FiTNESS-FN)
population <— REPRODUCTION( parents)

until some individual is fit enough
return the best individual in population, according to FITNESS-FN

Figure 20.15 The genetic algorithm finds a fit individual using simulated evolution.

is a bit string, and use the term evolutionary programming when the representation is more
complicated. Other authors make no distinction, or make a slightly different one.

The selection strategy is usually randomized, with the probability of selection proportional
to fitness. That is, if individual X scores twice as high as Y on the fitness function, then X is twice
as likely to be selected for reproduction than is Y. Usually, selection is done with replacement,
so that a very fit individual will get to reproduce several times.

Reproduction is accomplished by cross-over and mutation. First, all the individuals that
have been selected for reproduction are randomly paired. Then for each pair, a cross-over point
is randomly chosen. Think of the genes of each parent as being numbered from 1 to N. The
cross-over point is a number in that range; let us say it is 10. That means that one offspring
will get genes 1 through 10 from the first parent, and the rest from the second parent. The
second offspring will get genes 1 through 10 from the second parent, and the rest from the
first. However, each gene can be altered by random mutation to a different value, with small
independent probability. Figure 20.16 diagrams the process.

For example, suppose we are trying to learn a decision list representation for the restaurant
waiting problem (see page 556). The fitness function in this case is simply the number of
examples that an individual is consistent with. The representation is the tricky part. There are
ten attributes in the problem, but not all of them are binary. It turns out that we need 5 bits to
represent each distinct attribute/value pair:

00000 : Alternate^)
00001 : -iAlternate(x)

10111 : WaitEstimate(x,Q-W)
11000 : WaitEstimate(x, 10-30)
11001 : WaitEstimate(x, 30-60)
11010 : WaitEstimate(x,>60)

We also need one bit for each test to say if the outcome is Yes or No. Thus, if we want to represent
a k-DL with a length of up to t tests, we need a representation with t(5k +1) bits. We can use
the standard selection and reproduction approaches. Mutation can flip an outcome or change an
attribute. Cross-over combines the head of one decision list with the tail of another.



Section 20.9. Summary 621

(a) (b) (c)
Initial Population Fitness Function Selection

(d)
Cross-Over

(e)
Mutation

Figure 20.16 The genetic algorithm. In (a), we have an initial population of 4 individuals.
They are scored by the fitness function in (b); the top individual scores an 8 and the bottom scores
a 5. It works out that the top individual has a 32% chance of being chosen on each selection. In
(c), selection has given us two pairs of mates, and the cross-over points (dotted lines) have been
chosen. Notice that one individual mates twice; one not at all. In (d), we see the new offspring,
generated by cross-over of their parents' genes. Finally, in (e), mutation has changed the two bits
surrounded by boxes. This gives us the population for the next generation.

Like neural networks, genetic algorithms are easy to apply to a wide range of problems. The
results can be very good on some problems, and rather poor on others. In fact, Denker's remark
that "neural networks are the second best way of doing just about anything" has been extended
with "and genetic algorithms are the third." But don't be afraid to try a quick implementation of
a genetic algorithm on a new problem—just to see if it does work—before investing more time
thinking about another approach.

20.9 SUMMARY

This chapter has examined the reinforcement learning problem—how an agent can become profi-
cient in an unknown environment given only its percepts and occasional rewards. Reinforcement
learning can be viewed as a microcosm for the entire AI problem, but is studied in a number of
simplified settings to facilitate progress. The following major points were made:

• The overall agent design dictates the kind of information that must be learned. The two
main designs studied are the model-based design, using a model M and a utility function
U, and the model-free approach, using an action-value function Q.

• The utility of a state is the expected sum of rewards received between now and termination
of the sequence.

• Utilities can be learned using three approaches.
1. The LMS (least-mean-square) approach uses the total observed reward-to-go for a

given state as direct evidence for learning its utility. LMS uses the model only for the
purposes of selecting actions.



622 Chapter 20. Reinforcement Learning

2. The ADP (adaptive dynamic programming) approach uses the value or policy iteration
algorithm to calculate exact utilities of states given an estimated model. ADP makes
optimal use of the local constraints on utilities of states imposed by the neighborhood
structure of the environment.

3. The TD (temporal-difference) approach updates utility estimates to match those of
successor states, and can be viewed as a simple approximation to the ADP approach
that requires no model for the learning process. Using the model to generate pseudo-
experiences can, however, result in faster learning.

• Action-value functions, or Q-functions, can be learned by an ADP approach or a TD
approach. With TD, Q-learning requires no model in either the learning or action-selection
phases. This simplifies the learning problem but potentially restricts the ability to learn in
complex environments.

• When the learning agent is responsible for selecting actions while it learns, it must trade
off the estimated value of those actions against the potential for learning useful new
information. Exact solution of the exploration problem is infeasible, but some simple
heuristics do a reasonable job.

• In large state spaces, reinforcement learning algorithms must use an implicit functional
representation in order to perform input generalization over states. The temporal-difference
signal can be used directly to direct weight changes in parametric representations such as
neural networks.

• Combining input generalization with an explicit model has resulted in excellent perfor-
mance in complex domains.

• Genetic algorithms achieve reinforcement learning by using the reinforcement to increase
the proportion of successful functions in a population of programs. They achieve the effect
of generalization by mutating and cross-breeding programs with each other.

Because of its potential for eliminating hand coding of control strategies, reinforcement learning
continues to be one of the most active areas of machine learning research. Applications in
robotics promise to be particularly valuable. As yet, however, there is little understanding of how
to extend these methods to the more powerful performance elements described in earlier chapters.
Reinforcement learning in inaccessible environments is also a topic of current research.

BIBLIOGRAPHICAL AND HISTORICAL NOTLS
Arthur Samuel's work (1959) was probably the earliest successful machine learning research.
Although this work was informal and had a number of flaws, it contained most of the modern ideas
in reinforcement learning, including temporal differencing and input generalization. Around the
same time, researchers in adaptive control theory (Widrow and Hoff, 1960), building on work by
Hebb (1949), were training simple networks using the LMS rule. (This early connection between
neural networks and reinforcement learning may have led to the persistent misperception that the
latter is a subfield of the former.) The cart-pole work of Michie and Chambers (1968) can also
be seen as a reinforcement learning method with input generalization.



Section 20.9. Summary 623

A more recent tradition springs from work at the University of Massachusetts in the early
1980s (Barto et al., 1981). The paper by Sutton (1988) reinvigorated reinforcement learning
research in AI, and provides a good historical overview. The Ph.D. theses by Watkins (1989)
and Kaelbling (1990) and the survey by Barto et al. (1991) also contain good reviews of the
field. Watkin's thesis originated Q-learning, and proved its convergence in the limit. Some
recent work appears in a special issue of Machine Learning (Vol. 8, Nos. 3/4, 1992), with
an excellent introduction by Sutton. The presentation in this chapter is heavily influenced
by Moore and Atkeson (1993), who make a clear connection between temporal differencing
and classical dynamic programming techniques. The latter paper also introduced the idea of
prioritized sweeping. An almost identical method was developed independently by Peng and
Williams (1993). Bandit problems, which model the problem of exploration, are analyzed in
depth by Berry and Fristedt (1985).

Reinforcement learning in games has also undergone a renaissance in recent years. In addi-
tion to Tesauro's work, a world-class Othello system was developed by Lee and Mahajan (1988).
Reinforcement learning papers are published frequently in the journal Machine Learning, and in
the International Conferences on Machine Learning.

Genetic algorithms originated in the work of Friedberg (1958), who attempted to produce
learning by mutating small FORTRAN programs. Since most mutations to the programs produced
inoperative code, little progress was made. John Holland (1975) reinvigorated the field by using
bit-string representations of agents such that any possible string represented a functioning agent.
John Koza (1992) has championed more complex representations of agents coupled with mutation
and mating techniques that pay careful attention to the syntax of the representation language.
Current research appears in the annual Conference on Evolutionary Programming.

EXERCISES

20.1 Show that the estimates developed by the LMS-UPDATE algorithm do indeed minimize the
mean square error on the training data.

20.2 Implement a passive learning agent in a simple environment, such as that shown in
Figure 20.1. For the case of an initially unknown environment model, compare the learning
performance of the LMS, TD, and ADP algorithms.

20.3 Starting with the passive ADP agent, modify it to use an approximate ADP algorithm as
discussed in the text. Do this in two steps:

a. Implement a priority queue for adjustments to the utility estimates. Whenever a state is
adjusted, all of its predecessors also become candidates for adjustment, and should be
added to the queue. The queue is initialized using the state from which the most recent
transition took place. Change ADP-UPDATE to allow only a fixed number of adjustments.

b. Experiment with various heuristics for ordering the priority queue, examining their effect
on learning rates and computation time.



624 Chapter 20. Reinforcement Learning

20.4 The environments used in the chapter all assume that training sequences are finite. In
environments with no clear termination point, the unlimited accumulation of rewards can lead
to problems with infinite utilities. To avoid this, a discount factor 7 is often used, where 7 < 1.
A reward k steps in the future is discounted by a factor of -/. For each constraint and update
equation in the chapter, explain how to incorporate the discount factor.

20.5 The description of reinforcement learning agents in Section 20.1 uses distinguished ter-
minal states to indicate the end of a training sequence. Explain how this additional complication
could be eliminated by modelling the "reset" as a transition like any other. How will this affect
the definition of utility?

20.6 Prove formally that Equations (20.1) and (20.3) are consistent with the definition of utility
as the expected reward-to-go of a state.

20.7 How can the value determination algorithm be used to calculate the expected loss experi-
enced by an agent using a given set of utility estimates U and an estimated model M, compared
to an agent using correct values?

20.8 Adapt the vacuum world (Chapter 2) for reinforcement learning by including rewards for
picking up each piece of dirt and for getting home and switching off. Make the world accessible
by providing suitable percepts. Now experiment with different reinforcement learning agents. Is
input generalization necessary for success?

20.9 Write down the update equation for Q-learning with a parameterized implicit representa-
tion. That is, write the counterpart to Equation (20.8).

20.10 Extend the standard game-playing environment (Chapter 5) to incorporate a reward
signal. Put two reinforcement learning agents into the environment (they may of course share
the agent program) and have them play against each other. Apply the generalized TD update rule
(Equation (20.8)) to update the evaluation function. You may wish to start with a simple linear
weighted evaluation function, and a simple game such as tic-tac-toe.

20.11 (Discussion topic.) Is reinforcement learning an appropriate abstract model for human
learning? For evolution?



21 KNOWLEDGE IN
LEARNING

In which we examine the problem of learning when you already know something.

In all of the approaches to learning described in the previous three chapters, the idea is to construct
a program that has the input/output behavior observed in the data. We have seen how this general
problem can be solved for simple logical representations, for neural networks, and for belief
networks. In each case, the learning methods can be understood as searching a hypothesis space
to find a suitable program. The learning methods also made few assumptions, if any, concerning
the nature of the correct program. In this chapter, we go beyond these approaches to study

PRIOR KNOWLEDGE learning methods that can take advantage of prior knowledge about the environment. We also
examine learning algorithms that can learn general first-order logical theories. These are essential
steps toward a truly autonomous intelligent agent.

21.1 KNOWLEDGE IN LEARNING

We begin by examining the ways in which prior knowledge can get into the act. In order to
do this, it will help to have a general logical formulation of the learning problem, as opposed
to the function-learning characterization of pure inductive inference given in Section 18.2. The
reason that a logical characterization is helpful is that it provides a very natural way to specify
partial information about the function to be learned. This is analogous to the distinction between
problem solving (which uses a "black-box" functional view of states and goals) and planning
(which opens up the black boxes and uses logical descriptions of states and actions).

Recall from Section 18.5 that examples are composed of descriptions and classifications.
The object of inductive learning in the logical setting is to find a hypothesis that explains the
classifications of the examples, given their descriptions. We can make this logically precise as
follows. If we use Descriptions to denote the conjunction of all the example descriptions, and
Classifications to denote the conjunction of all the example classifications, then the Hypothesis
must satisfy the following property:

Hypothesis A Descriptions (= Classifications (21.1)

625



626 Chapter 21. Knowledge in Learning

ENTAILMENT
CONSTRAINT We call this kind of relationship an entailment constraint, in which Hypothesis is the "unknown."

Pure inductive learning means solving this constraint, where Hypothesis is drawn from some
predefined hypothesis space. For example, if we consider a decision tree as a logical formula (see
page 532), then a decision tree that is consistent with all the examples will satisfy Equation (21.1).
If we place no restrictions on the logical form of the hypothesis, of course, then Hypothesis =
Classifications also satisfies the constraint. Normally, Ockham's razor tells us to prefer small,
consistent hypotheses, so we try to do better than simply memorizing the examples.

This simple picture of inductive learning persisted until the early 1980s. The modern
approach is to design agents that already know something and are trying to learn some more.
This may not sound like a terrifically deep insight, but it makes quite a difference to the way in
which we write programs. It might also have some relevance to our theories about how science
itself works. The general idea is shown schematically in Figure 21.1.

Observations Knowledge-based
inductive learning Predictions

Figure 21.1 A cumulative learning process uses, and adds to, its stock of background knowl-
edge over time.

If we want to build an autonomous learning agent that uses background knowledge, the
agent must have some method for obtaining the background knowledge in the first place, in order
for it to be used in the new learning episodes. This method must itself be a learning process. The
agent's life history will therefore be characterized by cumulative, or incremental, development.
Presumably, the agent could start out with nothing, performing inductions in vacua like a good
little pure induction program. But once it has eaten from the Tree of Knowledge, it can no longer
pursue such naive speculations, and should use its background knowledge to learn more and more
effectively. The question is then how to actually do this.

Some simple examples
Let us consider some commonsense examples of learning with background knowledge. Many
apparently rational cases of inferential behavior in the face of observations clearly do not follow
the simple principles of pure induction.

• Sometimes one leaps to general conclusions after only one observation. Gary Larson once
drew a cartoon in which a bespectacled caveman, Thag, is roasting his lizard on the end of
a pointed stick. He is watched by an amazed crowd of his less intellectual contemporaries,
who have been using their bare hands to hold their victuals over the fire. This enlightening
experience is enough to convince the watchers of a general principle of painless cooking.



Section 21.1. Knowledge in Learning 627

• Or consider the case of the traveller to Brazil meeting her first Brazilian. On hearing
him speak Portuguese, she immediately concludes that Brazilians speak Portuguese, yet
on discovering that his name is Fernando, she does not conclude that all Brazilians are
called Fernando. Similar examples appear in science. For example, when a freshman
physics student measures the density and conductance of a sample of copper at a particular
temperature, she is quite confident in generalizing those values to all pieces of copper. Yet
when she measures its mass, she does not even consider the hypothesis that all pieces of
copper have that mass. On the other hand, it would be quite reasonable to make such a
generalization over all pennies.

• Finally, consider the case of a pharmacologically ignorant but diagnostically sophisticated
medical student observing a consulting session between a patient and an expert internist.
After a series of questions and answers, the expert tells the patient to take a course of
a particular antibiotic. The medical student infers the general rule that that particular
antibiotic is effective for a particular type of infection.

These are all cases in which the use of background knowledge allows much faster learning than
one might expect from a pure induction program.

EXPLANATION-
BASED
LEARNING

Some general schemes
In each of the preceding examples, one can appeal to prior knowledge to try to justify the
generalizations chosen. We will now look at what kinds of entailment constraints are operating
in each of these cases. The constraints will involve the Background knowledge, in addition to the
Hypothesis and the observed Descriptions and Classifications.

In the case of lizard toasting, the cavemen generalize by explaining the success of the
pointed stick: it supports the lizard while keeping the hand intact. From this explanation, they
can infer a general rule: that any long, thin, rigid, sharp object can be used to toast small, soft-
bodied edibles. This kind of generalization process has been called explanation-based learning,
or EBL. Notice that the general rule follows logically from the background knowledge possessed
by the cavemen. Hence, the entailment constraints satisfied by EBL are the following:

Hypothesis A Descriptions |= Classifications
Background \= Hypothesis

The first constraint looks the same as Equation (21.1), so EBL was initially thought to be a
better way to learn from examples. But because it requires that the background knowledge be
sufficient to explain the Hypothesis, which in turn explains the observations, the agent does
not actually learn anything factually new from the instance. The agent could have derived the
example from what it already knew, although that might have required an unreasonable amount
of computation. EBL is now viewed as a method for converting first-principles theories into
useful, special-purpose knowledge. We describe algorithms for EBL in Section 21.2.

The situation of our traveller in Brazil is quite different. For she cannot necessarily
explain why Fernando speaks the way he does, unless she knows her Papal bulls. But the same
generalization would be forthcoming from a traveller entirely ignorant of colonial history. The
relevant prior knowledge in this case is that, within any given country, most people tend to speak



628 Chapter 21. Knowledge in Learning

RELEVANCE

RELEVANCE-BASED
LEARNING

KNOWLEDGE-BASED
INDUCTIVE
LEARNING

INDUCTIVE LOGIC
PROGRAMMING

the same language; on the other hand, Fernando is not assumed to be the name of all Brazilians
because this kind of regularity does not hold for names. Similarly, the freshman physics student
also would be hard put to explain the particular values that she discovers for the conductance and
density of copper. She does know, however, that the material of which an object is composed and
its temperature together determine its conductance. In each case, the prior knowledge Background
concerns the relevance of a set of features to the goal predicate. This knowledge, together with
the observations, allows the agent to infer a new, general rule that explains the observations:

(21.2)
Hypothesis A Descriptions j= Classifications
Background A Descriptions A Classifications |= Hypothesis

We call this kind of generalization relevance-based learning, or RBL (although the name is not
standard). Notice that whereas RBL does make use of the content of the observations, it does
not produce hypotheses that go beyond the logical content of the background knowledge and the
observations. It is a deductive form of learning, and cannot by itself account for the creation of
new knowledge starting from scratch. We discuss applications of RBL in Section 21.3.

In the case of the medical student watching the expert, we assume that the student's prior
knowledge is sufficient to infer the patient's disease D from the symptoms. This is not, however,
enough to explain the fact that the doctor prescribes a particular medicine M. The student needs
to propose another rule, namely, that M generally is effective against D. Given this rule, and
the student's prior knowledge, the student can now explain why the expert prescribes M in this
particular case. We can generalize this example to come up with the entailment constraint:

Background A Hypothesis A Descriptions \= Classifications (21.3)

That is, the background knowledge and the new hypothesis combine to explain the examples. As
with pure inductive learning, the learning algorithm should propose hypotheses that are as simple
as possible, consistent with this constraint. Algorithms that satisfy constraint 21.3 are called
knowledge-based inductive learning, or KBIL, algorithms.

KBIL algorithms, which are described in detail in Section 21.4, have been studied mainly
in the field of inductive logic programming or ILP. In ILP systems, prior knowledge plays two
key roles in reducing the complexity of learning:

1. Because any hypothesis generated must be consistent with the prior knowledge as well as
with the new observations, the effective hypothesis space size is reduced to include only
those theories that are consistent with what is already known.

2. For any given set of observations, the size of the hypothesis required to construct an
explanation for the observations can be much reduced, because the prior knowledge will
be available to help out the new rules in explaining the observations. The smaller the
hypothesis, the easier it is to find.

In addition to allowing the use of prior knowledge in induction, ILP systems can formulate
hypotheses in general first-order logic, rather than the restricted languages used in Chapter 18.
This means that they can learn in environments that cannot be understood by simpler systems.



Section 21.2. Explanation-Based Learning 629

21.2 EXPLANATION-BASED LEARNING__________________

As we explained in the introduction to this chapter, explanation-based learning is a method for
extracting general rules from individual observations. As an example, consider the problem
of differentiating and simplifying algebraic expressions (Exercise 10.4). If we differentiate an
expression such as X2 with respect to X, we obtain 2X. (Notice that we use a capital letter for
the arithmetic unknown X, to distinguish it from the logical variable x.) In a logical reasoning
system, the goal might be expressed as ASK(Derivative(X2 ,X) = d, KB), with solution d = 2X.

We can see this solution "by inspection" because we have many years of practice in
solving such problems. A student encountering such problems for the first time, or a program
with no experience, will have a much more difficult job. Application of the standard rules of
differentiation eventually yields the expression 1 x (2 x (X(2~ '*)), and eventually this simplifies
to 2X. In the authors' logic programming implementation, this takes 136 proof steps, of which
99 are on dead-end branches in the proof. After such an experience, we would like the program
to solve the same problem much more quickly the next time.

MEMOIZATION The technique of memoization has long been used in computer science to speed up
programs by saving the results of computation. The basic idea of memo functions is to accumulate
a database of input/output pairs; when the function is called, it first checks the database to see if
it can avoid solving the problem from scratch. Explanation-based learning takes this a good deal
further, by creating general rules that cover an entire class of cases. In the case of differentiation,
memoization would remember that the derivative of X2 with respect to X is 2X, but would leave
the agent to calculate the derivative of Z2 with respect to Z from scratch. We would like to be able
to extract the general rule1 that for any arithmetic unknown u, the derivative of u2 with respect to
u is 2u. In logical terms, this is expressed by the rule

ArithmeticUnknown(u) =>• Derivative(u",u) = 2u

If the knowledge base contains such a rule, then any new case that is an instance of this rule can
be solved immediately.

This is, of course, merely a trivial example of a very general phenomenon. Once something
is understood, it can be generalized and reused in other circumstances. It becomes an "obvious"
step, and can then be used as a building block in solving still more complex problems. Alfred
North Whitehead (1911), co-author with Bertrand Russell of Principia Mathematica, wrote that

I i|i;~ "Civilization advances by extending the number of important operations that we can do without
' LB' thinking about them," perhaps himself applying EBL to his understanding of events such as

Thag's discovery. If you have understood the basic idea of the differentiation example, then your
brain is already busily trying to extract the general principles of explanation-based learning from
it. Notice that unless you are a good deal smarter than the authors, you hadn't already invented
EBL before we showed you an example of it. Like the cavemen watching Thag, you (and we)
needed an example before we could generate the basic principles. This is because explaining
why something is a good idea is much easier than coming up with the idea in the first place.

Of course, a general rule for u" can also be produced, but the current example suffices to make the point.



630 Chapter 21. Knowledge in Learning

Extracting general rules from examples
The basic idea behind EBL is first to construct an explanation of the observation using prior
knowledge, and then to establish a definition of the class of cases for which the same explanation
structure can be used. This definition provides the basis for a rule covering all of the cases in
the class. The "explanation" can be a logical proof, but more generally it can be any reasoning
or problem-solving process whose steps are well-defined. The key is to be able to identify the
necessary conditions for those same steps to apply to another case.

We will use for our reasoning system the simple backward-chaining theorem prover de-
scribed in Chapter 9. The proof tree for Derivative(X2,X) = d is too large to use as an example,
so we will use a somewhat simpler problem to illustrate the generalization method. Suppose our
problem is to simplify 1 x (0 + X). The knowledge base includes the following rules:

Rewrite(u, v) A Simplify(v, w) =>• Simplify(u, w)
Primitive(u) =>• Simplify(u, u)
ArithmeticUnknown(u) => Primitive(u)
Number(u) => Primitive(u)
Rewrite(\ x u,u)
Rewrite(0 + u, u)

The proof that the answer isX is shown in the top half of Figure 21.2. The EBL method actually
constructs two proof trees simultaneously. The second proof tree uses a variabilized goal in which
the constants from the original goal are replaced by variables. As the original proof proceeds, the
variabilized proof proceeds using exactly the same rule applications. This may cause some of
the variables to become instantiated. For example, in order to use the rule Rewrite(\ x u, u), the
variables in the subgoal Rewrite(x x (y + z), v) must be bound to 1. Similarly, y must be bound
to 0 in the subgoal Rewrite(y + z, v') in order to use the rule Rewrite(0 + u, it).

Once we have the generalized proof tree, we take the leaves (with the necessary bindings)
and form a general rule for the goal predicate:

Rewrite(l x (0 + z), 0 + z) A Rewrite(0 + z, z) A ArithmeticUnknown(z)
=> Simplify^ x (0 + z),z)

Notice that the first two conditions on the left-hand side are true regardless of the value ofz. We
can therefore drop them from the rule, yielding

ArithmeticUnknown(z) => Simplify(\ x (0 + z),z)
In general, conditions can be dropped from the final rule if they impose no constraints on the
variables on the right-hand side of the rule, because the resulting rule will still be true and will
be more efficient. Notice that we cannot drop the condition ArithmeticUnknown(z), because
not all possible values of z are arithmetic unknowns. Values other than arithmetic unknowns
might require different forms of simplification— for example, if z were 2 x 3 , then the correct
simplification of 1 x (0 + (2 x 3)) would be 6 and not 2 x 3 .

To recap, the basic EBL process works as follows:
1. Given an example, construct a proof that the goal predicate applies to the example using

the available background knowledge.



Section 21.2. Explanation-Based Learning 631

Yes, /v/O+X/

Rewrite(0+X,v')
Yes, {v'/XJ

SimplifyfX, w)
fw/Xj

Yes, I j

Figure 21.2 Proof trees for the simplification problem. The first tree shows the proof for the
original problem instance. The second shows the proof for a problem instance with all constants
replaced by variables.

2. In parallel, construct a generalized proof tree for the variabilized goal using the same
inference steps as in the original proof.

3. Construct a new rule whose left-hand side consists of the leaves of the proof tree, and
whose right-hand side is the variabilized goal (after applying the necessary bindings from
the generalized proof).

4. Drop any conditions that are true regardless of the values of the variables in the goal.

Improving efficiency
Examining the generalized proof tree in Figure 21.2, we see that there is more than one generalized
rule that can be extracted from the tree. For example, if we terminate, or prune, the growth of
the right-hand branch in the proof tree when it reaches the Primitive step, we get the rule

Primitive(z) => Simplify(\ x (0 + z),z)
This rule is equally valid, but also more general than the rule usmgArithmeticUnknown, because
it covers cases where z is a number. We can extract a still more general rule by pruning after the



632 Chapter 21. Knowledge in Learning

step Simplify(y + z, w), yielding the rule
Simplify(y + z,w) => Simplify(l x (y + z),w)

In general, a rule can be extracted from any partial subtree of the generalized proof tree. Now
we have a problem: which of these rules do we choose?

The choice of which rule'to generate comes down to the question of efficiency. There are
three factors involved in the analysis of efficiency gains from EBL:

1. Adding large numbers of rules to a knowledge base can slow down the reasoning process,
because the inference mechanism must still check those rules even in cases where they do
not yield a solution. In other words, it increases the branching factor in the search space.

2. To compensate for this, the derived rules must offer significant increases in speed for the
cases that they do cover. This mainly comes about because the derived rules avoid dead
ends that would otherwise be taken, as well as shortening the proof itself.

3. Derived rules should also be as general as possible, so that they apply to the largest possible
set of cases.

OPERATIONALITY A common approach to ensuring that derived rules are efficient is to insist on the operationality
of each subgoal in the rule. A subgoal is operational, roughly speaking, if it is "easy" to solve.
For example, the subgoal Primitive(z) is easy to solve, requiring at most two steps, whereas
the subgoal Simplify(y + z, w) could lead to an arbitrary amount of inference, depending on the
values of y and z. If a test for operationality is carried out at each step in the construction of the
generalized proof, then we can prune the rest of a branch as soon as an operational subgoal is
found, keeping just the operational subgoal as a conjunct of the new rule.

Unfortunately, there is usually a trade-off between operationality and generality. More
specific subgoals are usually easier to solve but cover fewer cases. Also, operationality is a
matter of degree; one or two steps is definitely operational, but what about 10, or 100? Finally,
the cost of solving a given subgoal depends on what other rules are available in the knowledge
base. It can go up or down as more rules are added. Thus, EBL systems really face a very
complex optimization problem in trying to maximize the efficiency of a given initial knowledge
base. It is sometimes possible to derive a mathematical model of the effect on overall efficiency
of adding a given rule, and to use this model to select the best rule to add. The analysis can
become very complicated, however, especially when recursive rules are involved. One promising
approach is to address the problem of efficiency empirically, simply by adding several rales and
seeing which ones are useful and actually speed things up.

The idea of empirical analysis of efficiency is actually at the heart of EBL. What we have
been calling loosely the "efficiency of a given knowledge base" is actually the average-case
complexity on a population of problems that the agent will have to solve. By generalizing from
past example problems, EBL makes the knowledge base more efficient for the kind of problems
that it is reasonable to expect. This works as long as the distribution of past examples is roughly
the same as for future examples—the same assumption used for PAC-learning in Section 18.6.
If the EBL system is carefully engineered, it is possible to obtain very significant improvements
on future problems. In a very large Prolog-based natural language system designed for real-
time speech-to-speech translation between Swedish and English, Samuelsson and Rayner (1991)
report that EBL made the system more than 1200 times faster.



Section 21.3. Learning Using Relevance Information 633

21.3 LEARNING USING RELEVANCE INFORMATION_____________

Our traveller in Brazil seems to be able to make a confident generalization concerning the
language spoken by other Brazilians. The inference is sanctioned by her background knowledge,
namely, that people in a given country (usually) speak the same language. We can express this in
first-order logic as follows:2

\/x,y,n,l Nationality (yi, ri) A Nationality^, n) A Language(x, I) => Language(y, I) (2 1 .4)

(Literal translation: "If x and y have a common nationality n and x speaks language /, then y also
speaks it.") It is not difficult to show that, given this sentence and the observation

Nationality(Femando, Brazil) A Language(Fernando, Portuguese)

the conclusion

V* Nationality(x, Brazil) => Language(x, Portuguese)
follows logically (see Exercise 21.1).

Sentences such as (21 .4) express a strict form of relevance: given nationality, language is
fully determined. Put another way: language is a function of nationality. These sentences are

DEPENDENCIES called functional dependencies or determinations. They occur so commonly in certain kinds
DETERMINATIONS of applications (e.g., defining database designs) that a special syntax is used to write them. We

adopt the notation used by Davies (1985):
Nationality (x, n) >- Language(x, I)

As usual, this is simply a syntactic sugaring, but it makes it clear that the determination is really
a relationship between the predicates: nationality determines language. The relevant properties
determining conductance and density can be expressed similarly:

Material(x, m) A Temperature(x, t) >- Conductance(x, p)
Material(x, m) A Tempemture(x, t) >- Density(x, d)

The corresponding generalizations follow logically from the determinations and observations.

Determining the hypothesis space
Although the determinations sanction general conclusions concerning all Brazilians, or all pieces
of copper at a given temperature, they cannot, of course, yield a general predictive theory for all
nationalities, or for all temperatures and materials, from a single example. Their main effect can
be seen as limiting the space of hypotheses that the learning agent need consider. In predicting
conductance, for example, one has only to consider material and temperature and can ignore
mass, ownership, day of the week, the current president, and so on. Hypotheses can certainly
include terms that are in turn determined by material and temperature, such as molecular structure,

I ^ljjpi" thermal energy, or free-electron density. Determinations specify a sufficient basis vocabulary
2 We assume for the sake of simplicity that a person speaks only one language. Clearly, the rule also would have to be
amended for countries such as Switzerland or India.



634 Chapter 21. Knowledge in Learning

from which to construct hypotheses concerning the target predicate. This statement can be
proved by showing that a given determination is logically equivalent to a statement that the
correct definition of the target predicate is one of the set of all definitions expressible using the
predicates in the left-hand side of the determination.

Intuitively, it is clear that a reduction in the hypothesis space size should make it easier to
learn the target predicate. Using the basic results of computational learning theory (Section 18.6),
we can quantify the possible gains. First, recall that for Boolean functions, log(|H|) examples
are required to converge to a reasonable hypothesis, where |H| is the size of the hypothesis space.
If the learner has n Boolean features with which to construct hypotheses, then, in the absence
of further restrictions, H = O(22"), so the number of examples is O(2"). If the determination
contains d predicates in the left-hand side, the learner will require only 0(2'') examples, a
reduction of O(2n~d). For biased hypothesis spaces, such as a conjunctively biased space, the
reduction will be less dramatic but still significant.

Learning and using relevance information
As we stated in the introduction to this chapter, prior knowledge is useful in learning, but it
also has to be learned. In order to provide a complete story of relevance-based learning, we
must therefore provide a learning algorithm for determinations. The learning algorithm we now
present is based on a straightforward attempt to find the simplest determination consistent with
the observations. A determination P >- Q says that if any examples match on P, then they must
also match on Q. A determination is therefore consistent with a set of examples if every pair that
matches on the predicates on the left-hand side also matches on the target predicate, that is, has
the same classification. For example, suppose we have the following examples of conductance
measurements on material samples:

Sample

SI
SI
S2
S3
S3
S4

Mass

12
12
24
12
12
24

Temperature

26
100
26
26
100
26

Material

Copper
Copper
Copper
Lead
Lead
Lead

Size

3
3
6
2
2
4

Conductance

0.59
0.57
0.59
0.05
0.04
0.05

The minimal consistent determination is Material A Temperature >- Conductance. There is a
nonminimal but consistent determination, namely, Mass A Size A Temperature >- Conductance.
This is consistent with the examples because mass and size determine density, and in our data
set, we do not have two different materials with the same density. As usual, we would need a
larger sample set in order to eliminate a nearly correct hypothesis.

There are several possible algorithms for rinding minimal consistent determinations. The
most obvious approach is to conduct a search through the space of determinations, checking all
determinations with one predicate, two predicates, and so on, until a consistent determination is
found. We will assume a simple attribute-based representation, like that used for decision-tree



Section 21.3. Learning Using Relevance Information 635

learning in Chapter 18. A determination d will be represented by the set of attributes on the
left-hand side, because the target predicate is assumed fixed. The basic algorithm is outlined in
Figure 21.3.

function MINIMAL-CONSISTENT-DET(£, A) returns a determination
inputs: E, a set of examples

A, a set of attributes, of size n

for / <— 0, . . . , n do
for each subset A, of A of size /' do

if CONSISTENT-DET?(A,,F) then return A,
end

end

function CONSISTENT-DET?(A, E) returns a truth-value
inputs: A, a set of attributes

E, a set of examples
local variables: H, a hash table

for each example e in E do
if some example in H has the same values as e for the attributes A

but a different classification then return False
store the class of e in H, indexed by the values for attributes A of the example e

end
return True

Figure 21.3 An algorithm for finding a minimal consistent determination.

The time complexity of this algorithm depends on the size of the smallest consistent
determination. Suppose this determination hasp attributes out of the n total attributes. Then the
algorithm will not find it until searching the subsets of A of size p. There are (") = O(np) such
subsets, hence the algorithm is exponential in the size of the minimal determination. It turns
out that the problem is NP-complete, so we cannot expect to do better in the general case. In
most domains, however, there will be sufficient local structure (see Chapter 15 for a definition of
locally structured domains) such that/7 will be small.

Given an algorithm for learning determinations, a learning agent has a way to con-
struct a minimal hypothesis within which to learn the target predicate. We can combine
MINIMAL-CONSISTENT-DET with the DECISION-TREE-LEARNING algorithm, for example, in order
to create a relevance-based decision-tree learning algorithm RBDTL:

function RBDTL(£,A,v) returns a decision tree

returnDECISION-TREE-LEARNING(E,MlNIMAL-CONSISTENT-DET(£,A),v)



636 Chapter 21. Knowledge in Learning

Unlike DECISION-TREE-LEARNING, RBDTL simultaneously learns and uses relevance informa-
tion in order to minimize its hypothesis space. We expect that RBDTL's learning curve will show
some improvement over the learning curve achieved by DECISION-TREE-LEARNING, and this is
in fact the case. Figure 21.4 shows the learning performance for the two algorithms on randomly
generated data for a function that depends on only 5 of 16 attributes. Obviously, in cases where
all the available attributes are relevant, RBDTL will show no advantage.

Figure 21.4
generated data

1

0.9
p
t? 0.8

I 0.7o

8 0.6

0.5

0.4
(

/"^
**̂  RBDTL o
T DTL — - f -

;
 % I ^ J~^'^¥J " :

*
) 20 40 60 80 100 120 140

Training set size

A performance comparison RBDTL and DECISION-TREE-LEARNING on randomly
for a target function that depends on only 5 of 1 6 attributes.

DECLARATIVE BIAS This section has only scratched the surface of the field of declarative bias, which aims to
understand how prior knowledge can be used to identify the appropriate hypothesis space within
which to search for the correct target definition. There are many unanswered questions:

• How can the algorithms be extended to handle noise?
• How can other kinds of prior knowledge be used, besides determinations?
• How can the algorithms be generalized to cover any first-order theory, rather than just an

attribute-based representation?

Some of these are addressed in the next section.

21.4 INDUCTIVE LOGIC PROGRAMMING

Inductive logic programming (ILP) is one of the newest subfields in AI. It combines inductive
methods with the power of first-order representations, concentrating in particular on the repre-
sentation of theories as logic programs. Over the last five years, it has become a major part of



Section 21.4. Inductive Logic Programming 637

the research agenda in machine learning. This has happened for two reasons. First, it offers a
rigorous approach to the general KBIL problem mentioned in the introduction. Second, it offers
complete algorithms for inducing general, first-order theories from examples, which can therefore
learn successfully in domains where attribute-based algorithms fail completely. ILP is a highly
technical field, relying on some fairly advanced material from the study of computational logic.
We therefore cover only the basic principles of the two major approaches, referring the reader to
the literature for more details.3

An example
Recall from Equation (21.3) that the general knowledge-based induction problem is to "solve"
the entailment constraint

Background A Hypothesis A Descriptions \= Classifications

for the unknown Hypothesis, given the Background knowledge and examples described by
Descriptions and Classifications. To illustrate this, we will use the problem of learning family
relationships from examples. The observations will consist of an extended family tree, described
in terms of Mother, Father, and Married relations, and Male and Female properties. The target
predicates will be such things as Grandparent, BrotherlnLaw, and Ancestor. We will use the
family tree from Exercise 7.6, shown here in Figure 21.5. The example Descriptions include
facts such as

Father(Philip, Charles) Father(Philip,Anne)
Mother(Mum, Margaret) Mother(Mum, Elizabeth)
Married(Diana,Charles) Married(Elizabeth,Philip) ...
Male(Philip) Male(Charles)
Female(Beatrice) Female(Margaret)

The sentences in Classifications depend on the target concept being learned. If Q is Grandparent,
say, then the sentences in Classifications might include the following:

Grandparent(Mum, Charles) Grandparent(Elizabeth, Beatrice) ...
^Grandparent(Mum, Harry) -^Grandparent(Spencer, Peter)

The object of an inductive learning program is to come up with a set of sentences for
the Hypothesis such that the entailment constraint is satisfied. Suppose, for the moment, that
the agent has no background knowledge: Background is empty. Then one possible solution for
Hypothesis is the following:

Grandparent(x, >•) <=> [3 z Mother(x, z) A Mother(z,}')]
V [3 z Mother(x, z) A Father(z, y)]
V [3z Father(x,z)f\Mother(z,y)]
V [3z Father(x,z)f\Father(z,y)}

3 We suggest that it might be appropriate at this point for the reader to refer back to Chapter 9 for some of the underlying
concepts, including Horn clauses, conjunctive normal form, unification, and resolution.



638 Chapter 21. Knowledge in Learning

George = Mum

Spencer = Kydd Elizabeth = Philip Margaret

Diana = Charles Anne = Mark Andrew = Sarah Edward

William Harry Peter Zara Beatrice Eugenie

Figure 21.5 A typical family tree.

CONSTRUCTIVE
INDUCTION

Notice that an attribute-based learning algorithm such as DECISION-TREE-LEARNING will get
nowhere in solving this problem. In order to express Grandparent as an attribute (i.e., a unary
predicate), we would need to make pairs of people into objects:

Grandparent((Mum, Charles})...

Then we get stuck in trying to represent the example descriptions. The only possible attributes
are horrible things such as

FirstElementIsMotherOfElizabeth( (Mum, Charles))

The definition of Grandparent in terms of these attributes simply becomes a large disjunction of
specific cases that does not generalize to new examples at all. Attribute-based learning algorithms
are incapable of learning relational predicates. Thus, one of the principal advantages of ILP
algorithms is their applicability to a much wider range of problems.

The reader will certainly have noticed that a little bit of background knowledge would help
in the representation of the Grandparent definition. For example, if Background included the
sentence

Parent(x, y) O [Mother(x, y) V Father(x, >•)]

then the definition of Grandparent would be reduced to

Grandparent(x, y) -O- [3 z Parent(x, z) A Parent(z, >')]

This shows how background knowledge can dramatically reduce the size of hypothesis required
to explain the observations.

It is also possible for ILP algorithms to create new predicates in order to facilitate the
expression of explanatory hypotheses. Given the example data shown earlier, it is entirely
reasonable to propose an additional predicate, which we would call "Parent," in order to simplify
the definitions of the target predicates. Algorithms that can generate new predicates are called
constructive induction algorithms. Clearly, constructive induction is a necessary part of the
picture of cumulative learning sketched in the introduction. It has been one of the hardest problems
in machine learning, but some ILP techniques provide effective mechanisms for achieving it.



Section 21.4. Inductive Logic Programming 639

In the rest of this chapter, we will study the two principal approaches to ILP. The first
uses techniques based on inverting a resolution proof, and the second uses a generalization of
decision-tree methods.

INVERSE
RESOLUTION

Inverse resolution
Inverse resolution is based on the observation that if the example Classifications follow from
Background A Hypothesis A Descriptions, then one must be able to prove this fact by resolution
(because resolution is complete). If we can "run the proof backwards," then we can find a
Hypothesis such that the proof goes through. The key, then, is to find a way to invert the
resolution process so that we can run the proof backwards.

Generating inverse proofs

The backward proof process consists of individual backward steps. An ordinary resolution step
takes two clauses C\ and C2 and resolves them to produce the resolvent C. An inverse resolution
step takes a resolvent C and produces two clauses C\ and €2, such that C is the result of resolving
C\ and Ci\ or it takes C and C\ and produces a suitable €2-

The early steps in an inverse resolution process are shown in Figure 21.6, where we
focus on the positive example Grandparent(George,Anne). The process begins at the end of
the proof, that is, at the contradiction, and works backwards. The negated goal clause is
^Grandparent(George,Anne), which is Grandparent(George,Anne) => False in implicative
normal form. The first inverse step takes this and the contradictory clause True =>• False, and
generates Grandparent(George,Anne). The next step takes this clause and the known clause
Parent(Elizabeth,Anne), and generates the clause

Parent(Elizabeth, y) => Grandparent(George, y)

With one further step, the inverse resolution process will generate the correct hypothesis.
Clearly, inverse resolution involves a search. Each inverse resolution step is nondeter-

ministic, because for any C and C\, there can be several or even an infinite number of clauses
C2 that satisfy the requirement that when resolved with C\ it generates C. For example, in-

True => Parent(Elizabeth,Anne)

^~~~~— •— -^^ ly/Annej ̂  ~~~"^

Grandparent(George,An^^^^•^

True ^ False

ie) => False

Figure 21.6 Early steps in an inverse resolution process. The shaded clauses are generated by
inverse resolution steps.



640 Chapter 21. Knowledge in Learning ^

stead of Parent(Elizabeth, y) => Grandparent(George, y), the inverse resolution step might have
generated the following sentences:

Parent(Elizabeth,Anne) => Grandparent(George,Anne)
Parent(z,Anne) => Grandparent(George,Anne)
Parent(z,y) =?• Grandparent(George,y)

(See Exercises 2 1 .4 and 2 1 .5.) Furthermore, the clauses Ci (and perhaps also C2) that participate
in each step can be chosen from the Background knowledge, from the example Descriptions,
from the negated Classifications, or from hypothesized clauses that have already been generated
in the inverse resolution tree.

An exhaustive search process for inverse resolution would be extremely inefficient. ILP
systems use a number of restrictions to make the process more manageable, including the
elimination of function symbols, generating only the most specific hypotheses possible, and the
use of Horn clauses. One can also consider inverting the restricted resolution strategies that
were introduced in Chapter 9. With a restricted but complete strategy, such as linear resolution,
the inverse resolution process will be more efficient because certain clauses will be ruled out
as candidates for C\ and €2- Other useful constraints include the fact that all the hypothesized
clauses must be consistent with each other, and that each hypothesized clause must agree with the
observations. This last criterion would rule out the clause Parent(z,y) => Grandparent(George,y)
listed before.

Discovering new predicates and new knowledge

An inverse resolution procedure that inverts a complete resolution strategy is, in principle, a
complete algorithm for learning first-order theories. That is, if some unknown Hypothesis
generates a set of examples, then an inverse resolution procedure can generate Hypothesis from
the examples. This observation suggests an interesting possibility. Suppose, for example, that
the available examples include a variety of trajectories of falling bodies. Would an inverse
resolution program be theoretically capable of inferring the law of gravity? The answer is clearly
yes, because the law of gravity allows one to explain the examples, given suitable background
mathematics. Similarly, one can imagine that electromagnetism, quantum mechanics, and the
theory of relativity are also within the scope of ILP programs. However, such imaginings are on
a par with the proverbial monkey with a typewriter, at least until we find ways to overcome the
very large branching factors and the lack of structure in the search space that characterize current
systems.

One thing that inverse resolution systems will do for you is invent new predicates. This
ability is often seen as somewhat magical, because computers are often thought of as "merely
working with what they are given." In fact, new predicates fall directly out of the inverse
resolution step. The simplest case arises when hypothesizing two new clauses C\ and €2, given
a clause C. The resolution of C\ and C2 eliminates a literal that the two clauses share, hence
it is quite possible that the eliminated literal contained a predicate that does not appear in C.
Thus, when working backwards, one possibility is to generate a new predicate from which to
reconstruct the missing literal.



Section 21.4. Inductive Logic Programming 641

Figure 21.7 shows an example in which the new predicate P is generated in the process
of learning a definition for Ancestor. Once generated, P can be used in later inverse resolution
steps. For example, a later step might hypothesize that Mother(x, >•) =>• P(x,y). Thus, the new
predicate P has its meaning constrained by the generation of hypotheses that involve it. Another
example might lead to the constraint Father(x, y) => P(x,y). In other words, the predicate P is
what we usually think of as the Parent relationship. As we mentioned earlier, the invention of
new predicates can significantly reduce the size of the definition of the goal predicate. Hence, by
including the ability to invent new predicates, inverse resolution systems can often solve learning
problems that are infeasible with other techniques.

Father(George,y) =*• Ancestor(George,y)

Figure 21.7 An inverse resolution step that generates a new predicate P.

Some of the deepest revolutions in science come from the invention of new predicates
and functions—for example, Galileo's invention of acceleration or Joule's invention of thermal
energy. Once these terms are available, the discovery of new laws becomes (relatively) easy. The
difficult part lies in realizing that some new entity, with a specific relationship to existing entities,
will allow an entire body of observations to be explained with a much simpler and more elegant
theory than previously existed.

As yet, ILP systems have not been applied to such difficult tasks. It does appear, however,
that the ability to use background knowledge provides significant advantages. In several appli-
cations, ILP techniques have outperformed knowledge-free methods. For example, in molecular
biology, it is useful to have background knowledge about typical molecular bonding patterns,
valences of atoms, bond strengths, and so on. Using such knowledge, Stephen Muggleton's
GOLEM system has been able to generate high-quality predictions of both protein structure from
sequence information (Muggleton et al, 1992) and the therapeutic efficacy of various drugs
based on their molecular structures (King et al., 1992). These results, like Meta-DENDRAL's,
were considered sufficiently interesting in their own right to be published in leading scientific
journals. The differences between GOLEM'S and Meta-DENDRAL's performance are that (1) the
new domains are much more difficult, and (2) GOLEM is a completely general-purpose program
that is able to make use of background knowledge about any domain whatsoever.

Top-down learning methods
The second approach to ILP is essentially a generalization of the techniques of decision-tree
learning to the first-order case. Rather than starting from the observations and working backwards,
we start with a very general rule and gradually specialize it so that it fits the data. This is
essentially what happens in decision-tree learning, where a decision tree is gradually grown until



642 Chapter 21. Knowledge in Learning

it is consistent with the observations. In the first-order case, we use first-order literals instead of
attributes, and the hypothesis is a set of clauses instead of a decision tree. This section describes
FOIL (Quinlan, 1990), one of the first programs to use this approach.

Suppose we are trying to learn a definition of the Grandfather(x, y) predicate, using the
same family data as before. As with decision-tree learning, we can divide the examples into
positive and negative examples. Positive examples are

(George,Anne], (Philip,Peter], (Spencer,flurry], ...

and negative examples are

(George,Elizabeth], (Harry,Zara], (Charles,Philip], ...

Notice that each example is a pair of objects, because Grandfather is a binary predicate. In all,
there are 12 positive examples in the family tree, and 388 negative examples (all the other pairs
of people).

FOIL constructs a set of Horn clauses with Grandfather(x,y) as the head, such that the 12
positive examples are classified as instances of the Grandfather(x,y) relationship, whereas the
other 388 examples are ruled out because no clause succeeds with those bindings for x and y. We
begin with a clause with an empty body:

=> Grandfather(x, y)

This classifies every example as positive, so it needs to be specialized. This is done by adding
literals one at a time to the left-hand side. Here are three potential additions:

Father(x, y)
Parent(x,z)
Father(x, z)

Grandfather(x, y)
Grandfather(x, y)
Grandfather(x, y)

(Notice that we are assuming that a clause defining Parent is already present as part of the';
background knowledge.) The first of these three incorrectly classifies all of the 12 positive \
examples as negative, and therefore can be ruled out. The second and third agree with all of t
positive examples, but the second is incorrect on a larger fraction of the negative examples—twice 1
as many, in fact, because it allows mothers as well as fathers. Hence, we prefer the third clause.

Now we need to specialize this clause further, to rule out the cases in which x is the father|
of some z but z is not a parent of y. Adding the single literal Parent(z,y) gives the clause

Father(x, z) A Parent(z, y) => Grandfather(x, y)

which correctly classifies all the examples. FOIL will find and choose this literal, thereby solving|
the learning task.

The preceding example is a very simple illustration of how FOIL operates. A sketch oil
the complete algorithm is shown in Figure 21.8. Essentially, the algorithm repeatedly constructs!
a clause, literal by literal, until it agrees with some subset of the positive examples and noneJ
of the negative examples. Then the positive examples covered by the clause are removed frornl
the training set, and the process continues until no positive examples remain. The two main!
components to be explained are NEW-LITERALS, which constructs all possible new literals to add]
to the clause, and CHOOSE-LiTERAL, which selects a literal to add.



Section 21.4. Inductive Logic Programming 643

function FoiL(examples,target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty

while examples contains positive examples do
clause — NEW-CLAUSE(examples)
remove examples covered by clause from examples
clauses^- {clause\clauses}

return clauses

function NEW-CLAUSE(examples, target) returns a Horn clause
local variables: clause, a clause with target as head and an empty body

/, a literal to be added to the clause
extended-examples, a set of examples with values for new variables

extended-examples — examples
while extended-examples contains negative examples do

/ <— CHOOSE-LnERAL(NEW-LnERALS(clause),extended-examples)
append / to the body of clause
extended-examples <— set of examples created by applying EXTEND-ExAMPLE

to each example in extended-examples
return clause

function ExTEND-ExAMPLE(example,literal) returns
if example satisfies literal

then return the set of examples created by extending example with
each possible constant value for each new variable in literal

else return the empty set

Figure 21.8 Sketch of the FOIL algorithm for learning sets of first-order Horn clauses from
examples. NEW-EITERAL and CHOOSE-EITERAL are explained in the text.

NEW-LITERALS takes a clause and constructs all possible "useful" literals that could be
added to the clause. Let us use as an example the clause

Father(x,z) => Grandfather(x,y)
There are three kinds of literals that can be added.

1. Literals using predicates: the literal can be negated or unnegated, any existing predicate
(including the goal predicate) can be used, and the arguments must all be variables. Any
variables can be used for any argument of the predicate, with one restriction: each literal
must include at least one variable from an earlier literal or from the head of the clause.
Literals such as Mother(z, u), Married(z, z), ->Male(y), and Grandfather(v, x) are allowed,
whereas Married(u, v) is not. Notice that the use of the predicate from the head of the
clause allows FOIL to learn recursive definitions.



644 Chapter 21. Knowledge in Learning

2. Equality and inequality literals: these relate variables already appearing in the clause. For
example, we might add zfa. These literals can also include user-specified constants. In the
family domain, there will not usually be any such "special" constants, whereas in learning
arithmetic, we might use 0 and 1, and in list functions, the empty list [ ].

3. Arithmetic comparisons: when dealing with functions of continuous variables, literals such
as x > y and y < z can be added. As in decision-tree learning, one can also use constant
threshold values that are chosen to maximize the discriminatory power of the test.

All this adds up to a very large branching factor in the search space (see Exercise 21.6). Imple-
mentations of FOIL may also use type information to restrict the hypothesis space. For example,
if the domain included numbers as well as people, type restrictions would prevent NEW-LITERALS
from generating literals such as Parent(x, n), where x is a person and n is a number.

CHOOSE-LlTERAL uses a heuristic somewhat similar to information gain (see page 541) to
decide which literal to add. The exact details are not so important here, particularly as a number
of different variations are currently being tried out. One interesting additional feature of FOIL is
the use of Ockham's razor to eliminate some hypotheses. If a clause becomes longer (according
to some metric) than the total length of the positive examples that the clause explains, that clause
is not considered as a potential hypothesis. This technique provides a way to avoid overcomplex
clauses that fit noise in the data. For an explanation of the connection between noise and clause
length, see Section 19.6.

FOIL and its relatives have been used to learn a wide variety of definitions. One of the
most impressive demonstrations (Quinlan and Cameron-Jones, 1993) involved solving a long
sequences of exercises on list-processing functions from Bratko's (1986) Prolog textbook. In
each case, the program was able to learn a correct definition of the function from a small set of
examples, using the previously learned functions as background knowledge.

21.5 SUMMARY

This chapter has investigated various ways in which prior knowledge can help an agent to learn
from new experiences.

• The use of prior knowledge in learning leads to a picture of cumulative learning, in which
learning agents improve their learning ability as they acquire more knowledge.

• Prior knowledge helps learning by eliminating otherwise consistent hypotheses and by
"filling in" the explanation of examples, thereby allowing for shorter hypotheses. These
contributions improve both the sample complexity and computation complexity of learning.

• Understanding the different logical roles played by prior knowledge, as expressed by
entailment constraints, helps to define a variety of learning techniques.

• Explanation-based learning (EBL) extracts general rules from single examples by ex-
plaining the examples and generalizing the explanation. It provides a deductive method to
turn first-principles knowledge into useful, efficient, special-purpose expertise.



Section 21.5. Summary 645

• Relevance-based learning (RBL) uses prior knowledge in the form of determinations to
identify the relevant attributes, thereby generating a reduced hypothesis space and speeding
up learning. RBL also allows deductive generalizations from single examples.

• Knowledge-based inductive learning (KBIL) finds inductive hypotheses that explain sets
of observations with the hejp of background knowledge.

• Inductive logic programming (ILP) techniques perform KBIL using knowledge expressed
in first-order logic. ILP methods can learn relational knowledge that is not expressible in
attribute-based systems.

• ILP methods naturally generate new predicates with which concise new theories can be
expressed, and show promise as general-purpose scientific theory formation systems.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The use of prior knowledge in learning from experience has had a surprisingly brief period
of intensive study. Fact, Fiction, and Forecast, by the philosopher Nelson Goodman (1954),
refuted the earlier supposition that induction was simply a matter of seeing enough examples
of some universally quantified proposition and then adopting it as a hypothesis. Consider, for

GRUE example, the hypothesis "All emeralds are grue," where grue means "green if observed before
time t, but blue if observed thereafter." At any time up to t, we might have observed millions
of instances confirming the rule that emeralds are grue, and no disconfirming instances, and yet
we are unwilling to adopt the rule. This can only be explained by appeal to the role of relevant
prior knowledge in the induction process. Goodman proposes a variety of different kinds of prior
knowledge that might be useful, including a version of determinations called overhypotheses.
Unfortunately, Goodman's work was never taken up in early studies of machine learning.

EBL had its roots in the techniques used by the STRIPS planner (Fikes et ai, 1972).
When a plan was constructed, a generalized version of it was saved in a plan library and
used in later planning as a macro-operator. Similar ideas appeared in Anderson's ACT*
architecture, under the heading of knowledge compilation (Anderson, 1983); and in the SOAR
architecture as chunking (Laird et al, 1986). Schema acquisition (DeJong, 1981), analytical
generalization (Mitchell, 1982), and constraint-based generalization (Minton, 1984) were
immediate precursors of the rapid growth of interest in EBL stimulated by the publication
of (Mitchell etal, 1986; DeJong and Mooney, 1986). Hirsh (1987) introduced the EBL algorithm
described in the text, showing how it could be incorporated directly into a logic programming
system. Van Harmelen and Bundy (1988) explain EBL as a variant of the partial evaluation
method used in program analysis systems (Jones et al., 1993).

More recently, rigorous analysis and experimental work has led to a better understanding
of the potential costs and benefits of EBL in terms of problem-solving speed. Minton (1988)
showed that without extensive extra work, EBL could easily slow down a program significantly.
Tambe et al. (1990) found a similar problem with chunking, and proposed a reduction in the
expressive power of the rule language in order to minimize the cost of matching rules against
working memory. This work bears strong parallels with recent results on the complexity of



646 Chapter 21. Knowledge in Learning

ANALOGICAL
REASONING

DISCOVERY
SYSTEMS

inference in restricted versions of first-order logic (see Chapter 10). Formal probabilistic analysis
ofthe expected payoff of EBLcan be found in (Greiner, 1989; Subramanian and Feldman, 1990).
An excellent survey appears in (Dietterich, 1990).

Instead of using examples as foci for generalization, one can use them directly to solve
new problems in a process known as analogical reasoning. This form of reasoning ranges from
a form of plausible reasoning based on degree of similarity (Gentner, 1983), through a form
of deductive inference based on determinations (Davies and Russell, 1987) but requiring the
participation of the example, to a form of "lazy" EBL that tailors the direction of generalization
of the old example to fit the needs of the new problem. This latter form of analogy reasoning
is found most commonly in case-based reasoning (Kolodner, 1993) arid derivational analogy
(Veloso and Carbonell, 1993).

Relevance information in the form of functional dependencies was first developed in the
database community, where it is used to structure large sets of attributes into manageable subsets.
Functional dependencies were used for analogical reasoning by Carbonell and Collins (1973),
and given a more logical flavor by Bobrow and Raphael (1974). Dependencies were indepen-
dently rediscovered, and given a full logical analysis, by Davies (1985) and Russell (1986a),
for the problem of analogical inference (see also (Davies and Russell, 1987)). They were used
for declarative bias by Russell and Grosof (1987). The equivalence of determinations to a
restricted-vocabulary hypothesis space was proved in (Russell, 1988). Learning algorithms for
determinations, and the improved performance obtained by RBDTL, were first shown in the
FOCUS algorithm in (Almuallim and Dietterich, 1991). Tadepalli (1993) describes an ingenious
algorithm for learning with determinations that shows large improvements in learning speed.

The study of methods for learning first-order logical sentences began with the remarkable
Ph.D. thesis by Gordon Plotkin (1971) at Edinburgh. Although Plotkin developed many of the
theorems and methods that are in current use in ILP, he was discouraged by some undecidability
results for certain subproblems in induction. MIS (Shapiro, 1981) reintroduced the problem
of learning logic programs, but was mainly seen as a contribution to the theory of automated
debugging. The field was reinvigoratedby Muggleton and Buntine (1988), whose CiGOL program
incorporated a slightly incomplete version of inverse resolution and was capable of generating new
predicates.4 More recent systems include GOLEM (Muggleton and Cao, 1990), ITOU (Rouveirol
and Puget, 1989) and CUNT (De Raedt, 1992). A second thread of ILP research began with
Quinlan's FOIL system, described in this chapter (Quinlan, 1990). A formal analysis of ILP
methods appears in (Muggleton, 1991), and a large collection of papers in (Muggleton, 1992).

Early complexity results by Haussler (1989) suggested that learning first-order sentences
was hopelessly complex. However, with better understanding of the importance of various kinds
of syntactic restrictions on clauses, positive results have been obtained even for clauses with
recursion (Dzeroski et al, 1992). A recent paper by Kietz and Dzeroski (1994) provides an
excellent survey of complexity results in ILP.

Although ILP now seems to be the dominant approach to constructive induction, it has
not been the only approach taken. So-called discovery systems aim to model the process of
scientific discovery of new concepts, usually by a direct search in the space of concept definitions.
Doug Lenat's AM (Automated Mathematician) (Davis and Lenat, 1982) used discovery heuristics

The inverse resolution method also appears in (Russell. 1986b), where a complete algorithm is mentioned in a footnote.



Section 21.5. Summary 647

expressed as expert system rules to guide its search for concepts and conjectures in elementary
number theory. In sharp contrast with most systems designed for mathematical reasoning,
AM lacked a concept of proof and could only make conjectures. It rediscovered Goldbach's
Conjecture and the Unique Prime Factorization Theorem. AM's architecture was generalized
in the EURTSKO system (Lenat, 1983) by adding a mechanism capable of rewriting the system's
own discovery heuristics. EURISKO was applied in a number of areas other than mathematical
discovery, although with less success than AM. The methodology of AM and EURISKO has been
controversial (Ritchie and Hanna, 1984; Lenat and Brown, 1984).

Another class of discovery systems aims to operate with real scientific data to find new
laws. The systems DALTON, GLAUBER, and STAHL (Langley et al, 1987) are rule-based systems
that look for quantitative relationships in experimental data from physical systems; in each
case, the system has been able to recapitulate a well-known discovery from the history of
science. AUTOCLASS (Cheeseman et al, 1988) takes a more theoretically grounded approach to
concept discovery: it uses Bayesian probabilistic reasoning to partition given data into the "most
likely" collection of classes. AUTOCLASS has been applied to a number of real-world scientific
classification tasks, including the discovery of new types of stars from spectral data and the
analysis of protein structure (Hunter and States, 1992).

EXERCISES

21.1 Show, by translating into conjunctive normal form and applying resolution, that the con-
clusion drawn on page 633 concerning Brazilians is sound.

21.2 For each of the following determinations, write down the logical representation and explain
why the determination is true (if it is):

a. Zip code determines the state (U.S.).
b. Design and denomination determine the mass of a coin.
c. For a given program, input determines output.
d. Climate, food intake, exercise, and metabolism determine weight gain/loss.
e. Baldness is determined by the baldness (or lack thereof) of one's maternal grandfather.

21.3 Would a probabilistic version of determinations be useful? Suggest a definition.

21.4 Fill in the missing values for the clauses C\ and/or €2 in the following sets of clauses,
given that C is the resolvent of C\ and €2-

a. C= True => P(A,B}, C\ = P(x,y) =^ Q(x,y), C2 =??.
b. C = True => P(A,B), C, =11, C2 =??.
c. C = P(x,y) => P(x,f(y)), C{ =11, C2 =11.

If there is more than one possible solution, provide one example of each different kind.



648 Chapter 21. Knowledge in Learning

21.5 Suppose one writes a logic program that carries out a resolution inference step. That is,
let Resolve(c\, t*2,c) succeed if c is the result of resolving c\ and ci. Normally, Resolve would
be used as part of a theorem prover by calling it with c\ and ci instantiated to particular clauses,
thereby generating the resolvent c. Now suppose instead that we call it with c instantiated and
c\ and €2 uninstantiated. Will this succeed in generating the appropriate results of an inverse
resolution step? Would you need any special modifications to the logic programming system for
this to work?

21.6 Suppose that FOIL is considering adding a literal to a clause using a binary predicate P,
and that previous literals (including the head of the clause) contain five different variables.

a. How many functionally different literals can be generated? Notice that two literals are
functionally identical if they differ only in the names of the new variables that they contain.

b. Can you find a general formula for the number of different literals with a predicate of arity
r when there are n variables previously used?

c. Why does FOIL not allow literals that contain no previously used variables?

21.7 Using the data from the family tree in Figure 21.5, or a subset thereof, apply the FOIL
algorithm to learn a definition for the Ancestor predicate.



I
Part VII

COMMUNICATING, PERCEIVING,
AND ACTING

So far we have been concerned with what happens inside an agent—from the
time it receives a percept to the time it decides on an action. In this part, we
concentrate on the interface between the agent and the environment. On one end,
we have perception: vision, hearing, touch, and possibly other senses. On the
other end, we have action: the movement of a robot arm, for example.

Also covered in this part is communication. A group of agents can be more
successful—individually and collectively—if they communicate their beliefs and
goals to each other. We look most closely at human language and how it can be
used as a communication tool.



r\ r\ AGENTS THAT
LL COMMUNICATE

In which we see why agents might want to exchange information-carrying messages
with each other, and how they can do so.

It is dusk in the savanna woodlands of Amboseli National Park near the base of Kilimanjaro. A
group of vervet monkeys are foraging for food. One vervet lets out a loud barking call and the
group responds by scrambling for the trees, neatly avoiding the leopard that the first vervet had
seen hiding in the bush. The vervet has successfully communicated with the group.

Communication is such a widespread phenomenon that it is hard to pin down an exact
. - definition. In general, communication is the intentional exchange of information brought about
I ?: by the production and perception of signs drawn from a shared system of conventional signs.

Most animals employ a fixed set of signs to represent messages that are important to their survival:
food here, predator nearby, approach, withdraw, let's mate. The vervet is unusual in having a
variety of calls for different predators: a loud bark for leopards, a short cough for eagles, and
a chutter for snakes. They use one kind of grunt in exchanges with dominant members of their
own social group, another kind with subordinate members, and yet another with vervets in other
social groups.

The leopard alarm (the loud bark) is a conventional sign that both alerts others that there is
danger in the bush nearby, and signals the action of escaping to the trees. But consider a vervet
that is too far away to hear the call, but can see the others heading for the trees. He too may climb
the nearest tree, but he has not participated in communication because he did not perceive any
intentionally conveyed signs, but rather used his general powers of perception and reasoning.

Humans use a limited number of conventional signs (smiling, shaking hands) to communi-
cate in much the same way as other animals. Humans have also developed a complex, structured

LANGUAGE system of signs known as language that enables them to communicate most of what they know
about the world. Although chimpanzees, dolphins, and other mammals have shown vocabularies
of hundreds of signs and some aptitude for stringing them together, humans are the only species
that can reliably communicate an unbounded number of qualitatively different messages.1

1 The bee's tail-wagging dance specifies the distance and angle from the sun at which food can be found, so in one sense
the bee can convey an infinite number of messages, but we do not count this as unbounded variation.

651



652 Chapter 22. Agents that Communicate

Of course, there are other attributes that are uniquely human: no other species wears
clothes, creates representational art, or watches four hours of television a day. But when Turing
proposed his test (see Section 1.1), he based it on language because language is intimately tied to
thinking in a way that, say, clothing is not. In this chapter, we will explain how a communicating
agent works and present a simplified version of English that is sufficient to illustrate the workings
of the agent's major components.

22.1 COMMUNICATION AS ACTION

SPEECH ACT

INDIRECT SPEECH
ACT

One of the actions that is available to an agent is to produce language. This is called a speech
act. "Speech" is used in the same sense as in "free speech," not "talking," so typing, skywriting,
and using sign language all count as speech acts. English has no neutral word for an agent that
produces language, either by speaking or writing or anything else. We will use speaker, hearer,
and utterance as generic terms referring to any mode of communication. We will also use the
term words to refer to any kind of conventional communicative sign.

Why would an agent bother to perform a speech act when it could be doing a "regular"
action? Imagine a group of agents are exploring the wumpus world together. The group gains an
advantage (collectively and individually) by being able to do the following:

• Inform each other about the part of the world each has explored, so that each agent has
less exploring to do. This is done by making statements: There's a breeze here in 3 4.

• Query other agents about particular aspects of the world. This is typically done by asking
questions: Have you smelled the wumpus anywhere?

• Answer questions. This is a kind of informing. Yes, I smelled the wumpus in 2 5.
• Request or command other agents to perform actions: Please help me carry the gold. It

can be seen as impolite to make a direct requests, so often an indirect speech act (a request
in the form of a statement or question) is used instead: / could use some help carrying this
or Could you help me cany this?

• Promise to do things or offer deals: /'// shoot the wumpus if you let me share the gold.
• Acknowledge requests and offers: OK.
• Share feelings and experiences with each other: You know, old chap, when I get in a spot

like that, I usually go back to the start and head out in another direction, or Man, that
wumpus sure needs some deodorant!

These examples show that speech acts can be quite useful and versatile. Some kinds of speech
acts (informing, answering, acknowledging, sharing) have the intended effect of transferring
information to the hearer. Others (requesting, commanding, querying, leopard alarm) have the
intended effect of making the hearer take some action. A dual purpose of communication is to
establish trust and build social ties (just as primates groom each other both to remove fleas and
to build relationships). This helps to explain what is communicated in exchanges such as "Hello,
how are you? Fine, how are you? Not bad."



Section 22.1. Communication as Action 653

THE EVOLUTION OF LANGUAGE

In 1866, the Societe de Linguistique de Paris passed a by-law banning all debate
on the origin of language. Outside the halls of that body, the debate goes on. One
proposal (Chomsky, 1980; Fodor, 1983) is that there is a language module that exists
only in the brain of humans. There is now considerable evidence (Dingwell, 1988)
that language use is made possible by a large repertoire of different skills that did not
develop in isolation of general cognitive capabilities, and that many of the precursors
of human language use can be seen in the other primates and in the fossil record.

At least seven researchers claim to have taught primates over 100 words. Koko
the gorilla is the vocabulary queen with over a thousand. Although some argue that
the researchers become too attached to the animals and attribute abilities to them that
are not really there, it seems safe to say that primates can learn words spontaneously
(from human trainers or from each other) and can use them to inform others of what
they know and what they want. They can produce and understand sentences involving
abstract concepts in a limited way, such as referring to objects that are not present. For
example, chimpanzees can correctly respond to "get the ball that is outside" or "bring
the red ball over to the blue ball." They can even tell lies: a vervet who is losing a fight
may give the leopard alarm, causing the fight to be called off while everyone heads
for the trees. Some have claimed that such behavior is evidence that animals form
models of the world, including models of how other agents act. Unfortunately, present
psychological methodologies do not allow us to distinguish between behaviors that
are mediated by internal models and those that are merely stimulus-response patterns.
Also, although primates clearly learn some rules for ordering words, there appear to be
limitations in the way they use syntax to produce unbounded sequences. Despite some
impressive accomplishments, no primate has duplicated the explosion of language use
that all normal human children accomplish by age four.

Language and thought reinforce each other, but it is not known if humans evolved
to use language well because they are smart, or if they are smart because they use
language well. One theory (Jerison, 1991) is that human language stems primarily
from a need for better cognitive maps of the territory. Canines and other social
carnivores rely heavily on scent marking and their olfactory system to decide both
where they are and what other animals have been there—just as the wumpus world
agents use the presence of a smell or breeze to help map out that world. But the early
hominids (monkeys and apes of 30 million years ago) did not have a well enough
developed olfactory system to map out the world this way, so they substituted vocal
sounds for scent marking. Thus, the rest of this chapter, in Jerison's view, is devoted
to the way we humans compensate for our inadequate noses.



654 Chapter 22. Agents that Communicate

The hard part for an agent is to decide when a speech act of some kind is called for,
and to decide which speech act, out of all the possibilities, is the right one. At one level,
this is just the familiar planning problem—an agent has a set of possible actions to choose
from, and must somehow try to choose actions that achieve the goal of communicating some

...A:-•-.<• information to another agent. All the difficulties that make planning hard (see Chapter 12)
•sfsS$ apply to planning speech acts. It would be impossibly complex to plan English conversations

at the level of individual movements of the mouth and tongue, so we need to plan with several
levels of hierarchical abstraction—words, phrases and sentences, at least. Another problem is
nondeterminism. Whereas most actions in the wumpus world are deterministic, speech acts are
not. Consider the action Speak("Turn Right!"). If another agent perceives the words, and if the
agent interprets it as a command to turn right, then that agent may do so. Or then again, the agent
may ignore the command and choose another action. The nondeterminism means that we will
need conditional plans. Instead of planning a conversation from beginning to end, the best we
can do is construct a general plan or policy for the conversation, generate the first sentence, stop
to perceive the reply, and react to it.

UNDERSTANDING The problem of understanding speech acts is much like other understanding problems,
such as image understanding or medical diagnosis. We are given a set of ambiguous inputs,
and from them we have to work backwards to decide what state of the world could have created
the inputs. Part of the speech act understanding problem is specific to language. We need . j
to know something about the syntax and semantics of a language to determine why another
agent performed a given speech act. The understanding problem also includes the more general

PLAN RECOGNITION problem of plan recognition. If we observe an agent turning and moving toward the gold, we
can understand the actions by forming a model of the agent's beliefs that says the agent has the
goal of getting the gold. A similar kind of mental model building is required to understand the
agent who turns toward the gold and says, "I'm going to grab it." Even though there may be other
objects nearby, it is fairly clear that "it" refers to the gold.

Part of the understanding problem can be handled by logical reasoning. We will see that
logical implications are a good way of describing the ways that words and phrases combine to
form larger phrases. Another part of the understanding problem can only be handled by uncertain
reasoning techniques. Usually, there will be several states of the world that could all lead to the
same speech act, so the understander has to decide which one is more probable.

Now that we have seen how communication fits into our general agent design, we can turn |
our attention to language itself. As we focus more and more on the way language actually is,
rather than on the general properties of communication methods, we will find ourselves moving |
into the realm of natural science—that is, science that works by finding out things about the real
world rather than about programs or other artifacts. Natural language understanding is one of the
few areas of AI that has this property.

FORMAL LANGUAGES
NATURAL
LANGUAGES

Fundamentals of language
We distinguish between formal languages—the ones like Lisp and first-order logic that are
invented and rigidly defined—and natural languages—the ones like Chinese, Danish, and
English that humans use to talk to one another. Although we are primarily interested in natural



Section 22.1. Communication as Action

STRINGS

TERMINAL SYMBOLS

languages, we will make use of all the tools of formal language theory, starting with the Backus-
Naur form (BNF) notation, which is described in Appendix B on page 854.

A formal language is defined as a set of strings, where each string is a sequence of symbols
taken from a finite set called the terminal symbols. For English, the terminal symbols include
words like a, aardvark, aback, abacus, and about 400,000 more.

One of the confusing things in working with both formal and natural languages is that
there are so many different formalisms and notations for writing grammars (see the Historical
Notes section for this chapter). However, most of them are similar in that they are based on
the idea of phrase structure—that strings are composed of substrings called phrases, which
come in different categories. For example, the phrases "the wumpus," "the king," and "the agent
in the corner" are all examples of the category noun phrase (or NP for short). There are two
reasons for identifying phrases in this way. First, phrases are convenient handles on which we can
attach semantics. Second, categorizing phrases helps us to describe the allowable strings of the
language. We can say that any of the noun phrases can combine with a verb phrase (or VP) such
as "is dead" to form a phrase of category sentence (or 5). Without the intermediate notions of noun
phrase and verb phrase, it would be difficult to explain why "the wumpus is dead" is a sentence
whereas "wumpus the dead is" is not. Grammatical categories are essentially posited as part of a
scientific theory of language that attempts to account for the difference between grammatical and
ungrammatical categories. It is theoretically possible, although perhaps unlikely, that in some
future theory of the English language, the NP and VP categories may not exist.

Categories such as NP, VP, and S are called nonterminal symbols. In the BNF notation,
rewrite rules consist of a single nonterminal symbol on the left-hand side, and a sequence of
terminals or nonterminals on the right-hand side. The meaning of a rule such as

PHRASE STRUCTURE

NOUN PHRASE

VERB PHRASE

SENTENCE

NONTERMINAL
SYMBOLS
REWRITE RULES

5" — NP VP
is that we can take any phrase categorized as a NP, append to it any phrase categorized as a VP,
and the result will be a phrase categorized as an S.

The component steps of communication
A typical communication episode, in which speaker S wants to convey proposition P to hearer H
using words W, is composed of seven processes. Three take place in the speaker:

Intention: S wants H to believe P (where S typically believes P)
Generation: S chooses the words W (because they express the meaning P)
Synthesis: 5 utters the words W (usually addressing them to H)

Four take place in the hearer:
Perception: H perceives W (ideally W' = W, but misperception is possible)
Analysis: H infers that W has possible meanings P\,..., P,, (words and

phrases can have several meanings)
Disambiguation: H infers that S intended to convey P, (where ideally Pj = P,

but misinterpretation is possible)
Incorporation: H decides to believe P, (or rejects it if it is out of line with

what H already believes)



656 Chapter 22. Agents that Communicate

GENERATIVE CAPACITY

Grammatical formalisms can be classified by their generative capacity: the set of
languages they can represent. Chomsky (1957) describes four classes of grammatical
formalisms that differ only in the form of the rewrite rules. The classes can be arranged
in a hierarchy, where each class can be used to describe all the languages that can be
described by a less powerful class, as well as some additional languages. Here we list
the hierarchy, most powerful class first:

Recursively enumerable grammars use unrestricted rules: both sides of the
rewrite rules can have any number of terminal and nonterminal symbols. These
grammars are equivalent to Turing machines in their expressive power.

Context-sensitive grammars are restricted only in that the right-hand hand side
must contain at least as many symbols as the left-hand side. The name context-
sensitive comes from the fact that a rule such as ASB — AXB says that an S can be
rewritten as an X in the context of a preceding A and a following B.

In context-free grammars (or CFGs), the left-hand side consists of a single
nonterminal symbol. Thus, each rule licenses rewriting the nonterminal as the right-
hand side in any context. CFGs are popular for natural language grammars, although
it is now widely accepted that at least some natural languages are not context-free
(Pullum, 1991).

Regular grammars are the most restricted class. Every rule has a single nontermi-
nal on the left-hand side, and a terminal symbol optionally followed by a nonterminal
on the right-hand side. Regular grammars are equivalent in power to finite-state
machines. They are poorly suited for programming languages because, for example,
they cannot represent constructs such as balanced opening and closing parentheses.

To give you an idea of which languages can be handled by which classes, the
language a"b" (a sequence of n copies of a followed by the same number of b) can
be generated by a context-free grammar, but not a regular grammar. The language
a"b"c" requires a context-sensitive grammar, whereas the language a*b* (a sequence
of any number of a followed by any number of b) can be described by any of the four
classes. A summary of the four classes follows.

Class Sample Rule Sample Lan;

Recursively enumerable
Context-sensitive
Context-free
Regular

A B — C any
A B -+ B A a"b"c"
S^aSb a"b"
S^aS a'b*



Section 22.1. Communication as Action 657

INTENTION

GENERATION

SYNTHESIS

PERCEPTION

Let us look at these seven processes in the context of the example shown in Figure 22.1.
Intention. Somehow, the speaker decides that there is something that is worth saying to

the hearer. This often involves reasoning about the beliefs and goals of the hearer, so that the
utterance will have the desired effect. For our example, the speaker has the intention of having
the hearer know that the wumpus is no longer alive.

Generation. The speaker uses knowledge about language to decide what to say. In many
ways, this is harder than the inverse problem of understanding (i.e., analysis and disambiguation).
Generation has not been stressed as much as understanding in AI, mainly because we humans
are anxious to talk to machines, but are not as excited about them talking back. For now, we just
assume the hearer is able to choose the words "The wumpus is dead."

Synthesis. Most language-based AI systems synthesize typed output on a screen or paper,
which is a trivial task. Speech synthesis has been growing in popularity, and some systems are
beginning to sound human. In Figure 22.1, we show the agent synthesizing a string of sounds
written in the phonetic alphabet defined on page 758: "[thaxwahmpahsihzdeyd]." The details of
this notation are unimportant; the point is that the sounds that get synthesized are different from
the words that the agent generates. Also note that the words are run together; this is typical of
quickly spoken speech.

Perception. When the medium is speech, the perception step is called speech recognition;
when it is printing, it is called optical character recognition. Both have moved from being

Intention:

Know(H,-> Alive(Wumpus,S3»

Generation:

"The wumpus is dead"

SPEAKER

Synthesis:

[thaxwahmpahsihzdeyd]

Perception:

"The wumpus is dead"

Analysis:
(Parsing):

NP VP

Article

The

(Semantic Interpretation):

Noun Verb Adjective
I I I

wumpus is dead

AIive( Wumpus,Now)
Tired( Wumpus, Now)

(Pragmatic Interpretation): -, Alive(Wumpus,S3)
Tired( Wumpus, S3)

Disambiguation:

~~i Alive(Wumpus,S3)

Incorporation:

TELL( KB,
~~i Alive(Wumpus,S3)

Figure 22.1 Seven processes involved in communication, using the example sentence "The
wumpus is dead."



658 Chapter 22. Agents that Communicate

ANALYSIS

PARSING

PARSE TREE

SEMANTIC
INTERPRETATION

PRAGMATIC
INTERPRETATION

DISAMBIGUATION

INCORPORATION

esoteric to being commonplace within the last five years. For the example, let us assume that the
hearer perceives the sounds and recovers the spoken words perfectly. (In Chapter 24 we see how
this might be done.)

Analysis. We divide analysis into two main parts: syntactic interpretation (or parsing) and
semantic interpretation. Semantic interpretation includes both understanding the meanings of
words and incorporating knowledge of the current situation (also called pragmatic interpretation).

The word parsing is derived from the the Latin phrase pars orationis, or "part of speech,"
and refers to the process of assigning a part of speech (noun, verb, and so on) to each word in a
sentence and grouping the words into phrases. One way of displaying the result of a syntactic
analysis is with a parse tree, as shown in Figure 22.1. A parse tree is a tree in which interior
nodes represents phrases, links represent applications of grammar rules, and leaf nodes represent
words. We define the yield of a node as the list of all the leaves below the node, in left-to-right
order, then we can say that the meaning of a parse tree is that each node with label X asserts that
the yield of the node is a phrase of category X.

Semantic interpretation is the process of extracting the meaning of an utterance as an
expression in some representation language. In Figure 22.1 we show two possible semantic
interpretations: that the wumpus is not alive, and that it is tired (a colloquial meaning of dead).
Utterances with several possible interpretations are said to be ambiguous. We use logic as the
representation language, but other representations could be used. Pragmatic interpretation is
the part of semantic interpretation that takes the current situation into account.2 In the example,
all that pragmatics does is replace the constant Now with the constant 83, which stands for the
current situation.

Disambiguation. Most speakers are not intentionally ambiguous, but most utterances have
several legal interpretations. Communication works because the hearer does the work of figuring
out which interpretation is the one the speaker probably meant to convey. Notice that this is the
first time we have used the word probably, and disambiguation is the first process that depends
heavily on uncertain reasoning. Analysis generates possible interpretations; if more than one
interpretation is found, then disambiguation chooses the one that is best.

Incorporation. A totally naive agent might believe everything it hears, but a sophisticated
agent treats the words W and the derived interpretation P, as additional pieces of evidence that
get considered along with all other evidence for and against P,.

Note that it only makes sense to use language when there are agents to communicate
with who (a) understand a common language, (b) have a shared context on which to base the
conversation, and (c) are at least somewhat rational. Communication does not work when agents
are completely irrational, because there is no way to predict how an irrational agent will react to a
speech act. Interestingly, communication can work when agents are uncooperative. Even if you
believe that another wumpus world explorer would lead you astray in order to get the gold all for
itself, you can still communicate to help each other kill the wumpus or perform some other task
that is helpful to both agents. Returning to Africa for another example, when an antelope sees a

2 Thus,us, pragmatic interpretation associates meanings with utterances made i
semantic interpretation associates meanings with strings in isolation. This is controversial, anu ouier auinoi^ uiaw mt
line between semantics and pragmatics in different places, or just group them together. Also, some authors use the term
parsing to encompass all of what we call analysis.

•ranees made in specific contexts, whereas the rest of
controversial, and other authors draw the



Section 22.2. Types of Communicating Agents 659

predator at a safe distance, it will stot, or leap high into the air. This not only communicates to
other antelopes that danger is near, but also communicates to the predator "I see you, and I am
healthy enough to run away, so don't even bother chasing me." So even though the two animals
are enemies with no common goal, the communication saves both of them from wasting time and
energy on a fruitless chase.

Two models of communication
Our study of communication centers on the way that an agent's beliefs are turned into words and
back into beliefs in another agent's knowledge base (or head). There are two ways of looking at

ENCODED MESSAGE the process. The encoded message model says that the speaker has a definite proposition P in
mind, and encodes the proposition into the words (or signs) W. The hearer then tries to decode
the message W to retrieve the original proposition P (cf. Morse code). Under this model, the
meaning in the speaker's head, the message that gets transmitted, and the interpretation that the
hearer arrives at all ideally carry the same content. When they differ, it is because of noise in the
communication channel or an error in encoding or decoding.

SITUATED LANGUAGE Limitations of the encoded message model led to the situated language model, which says
that the meaning of a message depends on both the words and the situation in which the words
are uttered. In this model, just as in situation calculus, the encoding and decoding functions take
an extra argument representing the current situation. This accounts for the fact that the same
words can have very different meanings in different situations. "I am here now" represents one
fact when spoken by Peter in Boston on Monday, and quite another fact when spoken by Stuart in
Berkeley on Tuesday. More subtly, "You must read this book" is a suggestion when written by a
critic in the newspaper, and an assignment when spoken by an instructor to the class. "Diamond"
means one thing when the subject is jewelry, and another when the subject is baseball.

The situated language model points out a possible source of communication failure: if the
speaker and hearer have different ideas of what the current situation is, then the message may
not get through as intended. For example, suppose agents X, Y, and Z are exploring the wumpus
world together. X and Y secretly meet and agree that when they smell the wumpus they will both
shoot it, and if they see the gold, they will grab it and run, and try to keep Z from sharing it. Now
suppose X smells the wumpus, while Y in the adjacent square smells nothing, but sees the gold.
X yells "Now!," intending it to mean that now is the time to shoot the wumpus, but Y interprets
it as meaning now is the time to grab the gold and run.

22.2 TYPES OF COMMUNICATING AGENTS

In this chapter, we consider agents that communicate in two different ways. First are agents who
share a common internal representation language; they can communicate without any external
language at all. Then come agents that make no assumptions about each other's internal language,
but share a communication language that is a subset of English.



660

TELEPATHIC
COMMUNICATION

Chapter 22. Agents that Communicate

Communicating using Tell and Ask
In this section, we study a form of communication in which agents share the same internal repre-
sentation language and have direct access to each other's knowledge bases through the TELL and
ASK interface. That is, agent A can communicate proposition P to agent B with TELL(KBg, "P"),
just as A would add P to its own-knowledge base with TELL(KBA, "P"). Similarly, agent A can find
out if B knows Q with AsK(KBB, "Q"). We will call this telepathic communication. Figure 22.2
shows a schematic diagram in which each agent is modified to have an input/output port to its
knowledge base, in addition to the perception and action ports.

Humans are lacking in telepathy powers, so they cannot make use of this kind of commu-
nication, but it is feasible to program a group of robots with a common internal representation
language and equip them with radio or infrared links to transmit internal representations directly
to each other's knowledge bases. Then if agent A wanted to tell agent B that there is a pit in
location [2,3], all A would have to do is execute:

TELL(KBv, "Pit(PAi) A At(PAi, [2,3],5A9)")
where 5^9 is the current situation, and PM is A's symbol for the pit. For this to work, the
agents have to agree not just on the format of the internal representation language, but also on a
great many symbols. Some of the symbols are static: they have a fixed denotation that can be
easily agreed on ahead of time. Examples are the predicates At and Pit, the constants A and B
representing the agents, and the numbering scheme for locations.

Other symbols are dynamic: they are created after the agents start exploring the world.
Examples include the constant PA\ representing a pit, and 5/19 representing the current situation.
The hard part is synchronizing the use of these dynamic symbols. There are three difficulties:

1. There has to be a naming policy so that A and B do not simultaneously introduce the same
symbol to mean different things. We have adopted the policy that each agent includes its
own name as part of the subscript to each symbol it introduces.

2. There has to be some way of relating symbols introduced by different agents, so that an
agent can tell whether PA \ and, say, PB2 denote the same pit or not. In part, this is the same
problem that a single agent faces. An agent that detects a breeze in two different squares

I

Communication with Tell and Ask

Figure 22.2 Two agents with a shared internal language communicating directly with each
other's knowledge bases through TELL and ASK.



Section 22.2. Types of Communicating Agents 661

might introduce the symbols P\ and PI to denote the two pits that caused the breezes, and
must then do some reasoning to decide if PI = PI. But the problem is harder for multiple
agents because they share fewer symbols to begin with, and thus have less common ground
to reason with. In particular, agent B has the problem of deciding how the situation S^g
relates to its own situation symbols. This problem can be lessened by minimizing the
number of new symbols. For example, A could tell B that there is a pit in [2,3] without
introducing any new dynamic symbols with the following action:

TELL(KBB, "3/7, s Pit(p) A At(p, [2,3], j)")

This sentence is weaker than the one containing P&\ and 5^9 because it does not say which
pit is in [2,3], nor when it was there, but it turns out that these facts do not really matter for
the wumpus world. Note that this sentence is similar to the English sentence "There is a
pit in 2,3," which also fails to uniquely identify the pit and the time.

3. The final difficulty is in reconciling the differences between different agents' knowledge
bases. If communication is free and instantaneous, then all agents can adopt the policy of
broadcasting each new fact to everyone else as soon as they learn it. That way everyone
will have all the same knowledge. But in most applications, the bandwidth between agents
is limited, and they are often completely out of touch with each other for periods of time.
When they come back into contact, they have the problem of deciding what new information
is worth communicating, and of discovering what interesting facts the other agent knows.

Another problem with telepathic agents as we have described them is that they are vulnerable to
sabotage. Another agent could TELL lies directly into the knowledge base and make our naive
telepathic agent believe anything.

Communicating using formal language
Because of the sabotage problem, and because it is infeasible for everyone to have the same
internal language, most agents communicate through language rather than through direct access
to knowledge bases. Figure 22.3 shows a diagram of this type of communication. Agents
can perform actions that produce language, which other agents can perceive. The external
communication language can be different from the internal representation language, and the
agents can each have different internal languages. They need not agree on any internal symbols
at all as long as each one can map reliably from the external language to its own internal symbols.

An external communication language brings with it the problems of generation and analysis,
and much of the effort in natural language processing (NLP) has gone into devising algorithms
for these two processes. But the hardest part of communication with language is still problem
(3) from the previous section: reconciling the differences between different agents' knowledge
bases. What agent A says, and how agent B interprets A's statement depends crucially on what A
and B already believe (including what they believe about each other's beliefs). This means that
agents that have the same internal and external language would have an easy time with generation
and analysis, but they would still find it challenging to decide what to say to each other.



662 Chapter 22. Agents that Communicate

Language

Figure 22.3 Two agents communicating with language.

An agent that communicates
We will now look at an example of communication, in the form of a wumpus world agent that
acts as a robot slave that can be commanded by a master. On each turn, the slave describes its
percepts in English (actually in a restricted subset), waits for a command from the master, and
then interprets the command and executes it. Here is a fragment of a typical dialogue:

ROBOT SLAVE MASTER
I feel a breeze. Go to 1 2.
Nothing is here. Go north.
I feel a breeze and I smell a stench
and I see a glitter. Grab it.

The agent program is shown in Figure 22.4. The rest of this chapter fills in the missing routines
in the agent program. First, Section 22.3 defines the subset of English in which the agents
communicate. Then, Section 22.4 shows how to implement the PARSE function to syntactically
analyze strings of the language. Section 22.7 shows how to recover the meaning of a string
(the function SEMANTICS), and Section 22.8 shows what to do when there are several possible
meanings (the function DISAMBIGUATE). The function GENERATE-DESCRIPTION is not covered in
depth, but in general much the same knowledge that is used for understanding can also be used
for producing language.

22.3 A FORMAL GRAMMAR FOR A SUBSET OF ENGLISH

In this section, we define a formal grammar for a small subset of English that is suitable for
making statements about the wumpus world. We will call this language £Q. In defining the
language this way, we are implicitly claiming that formal language techniques are appropriate for
dealing with natural language. In many ways, they are appropriate: natural languages make use



Section 22.3. A Formal Grammar for a Subset of English 663

function SIMPLE-COMMUNICATING-AGENT(perc<?/70 returns action
static: KB, a knowledge base

/, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(/fB, t))
words <— SPEECH-PART( percept)
semantics <— DlSAMBIGUATE(SEMANTICS(PARSE(word.s)))
if T\PE[semantics] = Command then

action <— CONTENTS [semantics]
else if 1\PE[semantics] = Statement then

TELL(AT5, CONTENTS|,semanri«])
action <- ASK(KB, MAKE-ACTlON-QUERY(percept, t))

else if T\PE[semantics] = None then
action — ASK(KB, MAKE-AcnON-QuERY(perce/rt, t))

description ̂ - GENERATE-DESCRIPTION(perrepr)
return COMPOUND-ACT:iON(SAY(description), Do(action))

Figure 22.4 A communicating agent that accepts commands and statements, and returns a
compound action that both describes its percepts and does something else.

of a fixed set of letters (for written language) or sounds (for spoken language) that combine into
a relatively fixed set of words. Either level can be considered the symbols of a formal language.
The symbols are formed into strings, and it is clear that strings such as "This is a sentence" are
part of the English language, and strings such as "A is sentence this" are not. We can come up
with a set of grammar rules that cover at least part of English, and compose phrases to form
arbitrarily complex sentences.

However, there are ways in which natural languages differ from formal ones. It is hard to
characterize a natural language as a set of strings for four reasons. First, not all speakers agree on
what is in the language. Some Canadians end sentences with "eh?," some U.S. southerners use
"y'all," and one can start arguments in some circles by asking whether "This ain't a sentence" is.
Second, the language changes over time—the English of Shakespeare's day is quite different from
what we speak today. Third, some utterances that are clearly ungrammatical are nevertheless
understandable. Fourth, grammaticality judgments are often graded rather than absolute. That
means that there are some sentences that do not sound quite right, but are not clearly wrong,
either. The following sentences (for most speakers) range from good to bad:

To whom did you send the letter?
Next to whom did you stand?
Of whom did you meet a friend?
Of whom did you see the dealer that bought the picture that Vincent painted?

Even if we could agree on exactly which sentences are English and which are not, that would be
only a small part of natural language processing. The really hard parts are semantic interpretation
and disambiguation. Speech act interpretation (which takes place across the syntactic, semantic,
and pragmatic levels) also complicates the picture. In programming languages, every statement



664 Chapter 22. Agents that Communicate

is a command, but in natural language the hearer has to determine if an utterance is a command,
question, statement, promise, or whatever. Formal language theory provides a framework within
which we can address these more difficult problems, but it does not answer them on its own. In
the remainder of this section, we define a formal language for our English subset, £Q-

The Lexicon of £0

LEXICON The first step in defining a grammar is to define a lexicon, or list of allowable vocabulary words.
The words are grouped into the categories or parts of speech familiar to dictionary users: nouns,
pronouns, and names to denote things, verbs to denote events, adjectives to modify nouns, and

ARTICLES adverbs to modify verbs. Categories that may be less familiar to some readers are articles (such
PREPOSITIONS as the), prepositions (in), and conjunctions (and)? Figure 22.5 shows a small lexicon.
CONJUNCTIONS Each of the categories ends in ... to indicate that there are other words in the category.

However, it should be noted that there are two distinct reasons for the missing words. For nouns,
verbs, adjectives, and adverbs, it is in principle infeasible to list them all. Not only are there
thousands or tens of thousands of members in each class, but new ones are constantly being
added. For example, "fax" is now a very common noun and verb, but it was coined only a few

OPEN CLASSES years ago. These four categories are called open classes. The other categories (pronoun, article,
CLOSED CLASSES preposition, and conjunction) are called closed classes. They have a small number of words (a

few to a few dozen) that could in principle be enumerated. Closed classes change over the course
of centuries, not months. For example, "thee" and "thou" were commonly used pronouns in the
seventeenth century, on the decline in the nineteenth, and are seen only in poetry and regional
dialects today.

The Grammar of £0

The next step is to combine the words into phrases. We will use five nonterminal symbols to define
the different kinds of phrases: sentence (S), noun phrase (NP), verb phrase (VP), prepositional
phrase (PP), and relative clause (RelClause).4 Figure 22.6 shows a grammar for £Q with an

example for each rewrite rule.

22.4 SYNTACTIC ANALYSIS (PARSING)

PARSE FOREST

There are many algorithms for parsing—recovering the phrase structure of an utterance, given a
grammar. In Figure 22.7, we give a very simple algorithm that nondeterministically chooses one
possible parse tree, if one exists. It treats the list of words as a parse forest: an ordered list of
parse trees. On each step through the main loop, it finds some subsequence of elements in the

3 The term conjunction here means something that joins two phrases together. It addition to and, it includes but, since,
while, or, and because. Do not be confused by the fact that or is logically a disjunction but syntactically a conjunction.
4 A relative clause follows and modifies a noun phrase. It consists of a relative pronoun (such as "who" or "that")
followed by a verb phrase (and sometimes a whole sentence). An example of a relative clause is that gave me the gold in
"The agent that gave me the gold is in 2,2."



Section 22.4. Syntactic Analysis (Parsing) 665

Noun — stench \ breeze \ glitter \ nothing
| wumpus | pit | pits \ gold \ east \ . . .

Verb —- is \ see \ smell \ shoot \ feel \ stinks
\ go | grab | carry \ kill \ turn \ ...

Adjective —» right \ left \ east \ south \ back \ smelly
Adverb —*• here \ there \ nearby \ ahead

right | left \ east \ south \ back \ ...
Pronoun —+ me \ you \ I \ it \ ...

Name —>• John \ Mary \ Boston \ Aristotle ...
Article —> the \ a \ an \ ...

Preposition —> to \ in \ on \ near \ ...
Conjunction —> and \ or \ but \ ...

Digit - > 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 22.5 The lexicon for £o-

NP —

VP ->

PP
RelClause

NPVP
S Conjunction S

Pronoun
Noun
Article Noun
Digit Digit
NPPP
NP RelClause

Verb
VPNP
VP Adjective
VP PP
VP Adverb

Preposition NP
that VP

I + feel a breeze
I feel a breeze + and +1 smell a wumpus

I
pits
the + wumpus
34
the wumpus + to the east
the wumpus + that is smelly

stinks
feel + a breeze
is + smelly
turn + to the east
go + ahead

to + the east
that + is smelly

Figure 22.6 The grammar for £Q, with example phrases for each rule.



666 Chapter 22. Agents that Communicate

forest that match the right-hand side of one of the grammar rules. It then replaces the subsequence
with a single parse tree whose category is the left-hand side of the rule, and whose children are
the nodes in the original subsequence. In Figure 22.8, we show a trace of the execution in parsing
the string "the wumpus is dead." Every choice is a good one, so there is no backtracking.

There are many possible parsing algorithms. Some operate top-down, starting with an S
and expanding it according to the grammar rules to match the words in the string. Some use
a combination of top-down and bottom-up, and some use dynamic programming techniques to
avoid the inefficiencies of backtracking. We cover one efficient algorithm for parsing context-free
grammars in Section 23.2. But first, we will show how the parsing problem can be interpreted as
a logical inference problem, and thus can be handled by general inference algorithms.

function BOTTOM-UP-PARSE( words, grammar) returns a parse tree

forest — words
loop do

if LENGTH(/bretf) = 1 and CATEGORY(fcraf[ 1 ]) = START(grammar) then
return forest\ 1 )

else
;' — choose from {1.. .LENGTH(/ore.5/)}
rule <— choose from RULES(grammar)
n — LENGTH(RUEE-RHS(rw/e))
subsequence <— SUBSEQUENCE(/c>re.sr, /', i+n-\)
if MATCH(subsequence, RUEE-RHSOw/e)) then

forest[i...i+n-l] —
else fail

end

Figure 22.7 Nondeterministic bottom-up parsing algorithm for context-free grammars. It
picks one parse to return. Each node in a parse tree has two fields: CATEGORY and CHILDREN.

forest

The wumpus is dead
Article wumpus is dead
Article Noun is dead
NP is dead
NP Verb dead
NP Verb Adjective
NP VP Adjective
NPVP
S

subsequence

The
wumpus
Article No/in
is
dead
Verb
VP Adjective
NPVP

Figure 22.8 Trace of BOTTOM-UP-PARSE on the string

rule
Article — the
Noun — wumpus
NP — Article Noun
Verb — is
Adjective — > dead
VP — Verb
VP — VP Adjective
S — NPVP

"The wumpus is dead."



Section 22.5. Definite Clause Grammar (DCG) 667

22.5 DEFINITE CLAUSE GRAMMAR (DCG)

LOGIC GRAMMAR

DEFINITE CLAUSE
GRAMMAR

DCG

There are two problems with BNF. First, we are interested in using language for communication,
so we need some way of associating a meaning with each string, and BNF only talks about strings,
not meanings. Second, we will want to describe grammars that are context-sensitive, whereas
BNF is strictly context-free. In this section, we introduce a formalism that can handle both of
these problems.

The idea is to use the full power of first-order logic to talk about strings and their meanings.
Each nonterminal symbol becomes a one-place predicate that is true of strings that are phrases
of that category. For example, Noun(" stench") is a true logical sentence, whereas Noun("the") is
false. It is easy to write BNF rules as logical implication sentences in first-order logic:

BNF First-Order Logic
S — NPVP NP(si) A VP(s2) => S(Append(s],s2))
Noun —stench ... (s = "stench" V ...) =>• Noun(s)

The first of these rules says that if there is a string s\ that is a noun phrase and a string s2 that is
a verb phrase, then the string formed by appending them together is a sentence. The second rule
says that if s is the string "stench" (or one of the other words not shown), then the string s is a
noun. A grammar written with logical sentences is called a logic grammar. Since unrestricted
logical inference is computationally expensive, most logic grammars insist on a restricted format.
The most common is definite clause grammar or DCG, in which every sentence must be a
definite clause.5

The DCG formalism is attractive because it allows us to describe grammars in terms of
something we understand well: first-order logic. Unfortunately, it has the disadvantage of being
more verbose than BNF notation. We can have the best of both by defining a special DCG
notation that is an extension of BNF, but retains the well-founded DCG semantics. From now
on, when we say "definite clause grammar," we mean a grammar written in this special notation,
which is defined as follows:

• The notationX — Y Z ... translates as Y(s\) A Z(s2) A ...
• The notation X — word translates as X(["word"]).
• The notation X — Y Z

X(Append(s\, S2,.. .)•

. . . translates as Y'(s) V Z'(s) V . . . => X(s), where Y' is the
translation into logic of the DCG expression Y.

These three rules allow us to translate BNF into definite clauses. We now see how to extend the
notation to incorporate grammars that can not be expressed in BNF.

• Nonterminal symbols can be augmented with extra arguments. In simple BNF notation, a
nonterminal such as NP gets translated as a one-place predicates where the single argument
represents a string: NP(s). In the augmented DCG notation, we can write NP(sem), for
example, to express "an NP with semantics sem." This gets translated into logic as the
two-place predicate NP(sem, s).

5 A definite clause is a type of Horn clause that, when written as an implication, has exactly one atom in its consequent,
and a conjunction of zero or more atoms in its antecedent, for example, ^41 A ^2 A . . . => C\.



668 Chapter 22. Agents that Communicate

• A variable can appear on the right-hand side of a DCG rule. The variable represents a
single symbol in the input string, without saying what it is. We can use this to define the
nonterminal category Double as the set of strings consisting of a word repeated twice. Here
is the definition in both DCG notation and normal first-order logic notation:

DCG , First-Order Logic
Double — w w (s\ = [w] A. $2 = [w]) =>• Double(Append(s\,S2))

• An arbitrary logical test can appear on the right-hand side of a rule. Such tests are enclosed
in curly braces in DCG notation.

As an example using all three extensions, here are rules for Digit and Number in the grammar
of arithmetic (see Appendix B). The nonterminals take an extra argument representing their
semantic interpretation:

DCG First-Order Logic
Digit(sem) — sent {0 < sem < 9} (s = [sem\) =>• Digit(sem,s)
Number(sem) —^ Digit(sem) Digit(sem, s) =3- Number(sem, s)
Number(sem) — Number(sem\) Digit(semi) Number(sem,s\) A Digit(sem,ST)

{sem= 10 x semi + sem^} f\sem= 10 x sem\ + semi =>
Number(sem,Append(s\, 53))

The first rule can be read as "a phrase of category Digit and semantic value sem can be formed
from a symbol sem between 0 and 9." The second rule says that a number can consist of a single
digit, and has the same semantics as that digit. The third can be read as saying "a number with
semantic value sem can be formed from a number with semantic value sem\ followed by a digit
with semantic value sem-i, where sem= 10 x sem\ + sem^"

There are now five things that can appear on the right-hand side of a rule in DCG nota-
tion: an un-augmented nonterminal (Digit), an augmented nonterminal (Digit(sem)), a variable
representing a terminal (sem), a constant terminal (word), or a logical test ({0 < sem < 9}). The
left-hand side must consist of a single nonterminal, with or without augmentation.

22.6 AUGMENTING A GRAMMAR

OVERGENERATES

CASES

AGREEMENT

The simple grammar for £$ generates many sentences of English, but it also overgenerates—
generates sentences that are not grammatical—such as "Me smells a stench." There are two
problems with this string: it should be "I," not "me," and it should be "smell," not "smells." To
fix these problems, we will first determine what the facts of English are, and then see how we
can get the grammar to reflect the facts.

Many languages divide their nouns into different cases, depending on their role in the
sentence. Those who have taken Latin are familiar with this, but in English there is no notion
of case on regular nouns, only on pronouns. We say that pronouns like "I" are in the subjective
(or nominative) case, and pronouns like "me" are in the objective (or accusative) case. Many
languages have a dative case for words in the indirect object position. Many languages also
require agreement between the subject and main verb of a sentence. Here, too, the distinctions



Section 22.6. Augmenting a Grammar 669

are minimal in English compared to most languages; all verbs except "be" have only two forms.
One form (e.g., "smells") goes with third person singular subjects such as "he" or "the wumpus."
The other form (e.g., "smell") goes with all other subjects, such as "I" or "you" or "wumpuses."

Now we are ready to fix our grammar. We will consider noun cases first. The problem is
that with the distinctions we have,made so far (i.e., the nonterminals we have defined), English
is not context-free. It is not the case that any NP can combine with a VP to form a sentence, for
example, the NP "I" can, but "me" cannot. If we want to stick with a context-free grammar we will
have to introduce new categories such as NPS and NP0, to stand for noun phrases in the subjective
and objective case, respectively. We would also need to split the category Pronoun into the two
categories Pronouns (which includes "I") and Pronouno (which includes "me"). The necessary
changes to the grammar are outlined in Figure 22.9. Notice that all the NP rules are duplicated,

S -> NPS VP | . . .
NPs —»• Pronouns \ Noun \ Article Noun
NPo — Pronouno \ Noun \ Article Noun

VP — VPNPo
PP — Preposition NPO

Pronouns — I \ you \ he \ she
Pronouno — me \ you \ him \ her

Figure 22.9 The changes needed in £o to handle subjective and objective cases.

once for NPs and once for NPo- It would not be too bad if the number of rules doubled once,
but it would double again when we changed the grammar to account for subject/verb agreement,
and again for the next distinction. Thus, the size of the grammar can grow exponentially with the
number of distinctions we need to make.

AUGMENT An alternative approach is to augment the existing rules of the grammar instead of intro-
ducing new rules. The result is a concise, compact grammar. We start by parameterizing the
categories NP and Pronoun so that they take a parameter indicating their case. In the rule for 5,
the NP must be in the subjective case, whereas in the rules for VP and PP, the NP must be in
the objective case. The rule for NP takes a variable as its argument. This use of a variable—
avoiding a decision where the distinction is not important—is what keeps the size of the rule set
manageable. Figure 22.10 shows the augmented grammar, which defines a language we call £\.

The problem of subject/verb agreement could also be handled with augmentations, but we
delay showing this until the next chapter. Instead, we address a slightly harder problem: verb
subcategorization.

Verb Subcategorization
The £\ language is an improvement over £Q, but it still allows ungrammatical sentences. One
problem is in the way verb phrases are put together. We want to accept verb phrases like "give
me the gold" and "go to 1,2." All these are in £\, but unfortunately so are "go me the gold"



670 Chapter 22. Agents that Communicate

S
NP(case)

VP
PP

Pronoun(Subjective)
Pmnoun(Objective)

— NP(Subjective) VP
Pronoun(case)
VP NP(Objective)
Preposition NP(Objective)
I | you | he \ she
me | you \ him \ her \

Noun I Article Noun

Figure 22.10 The grammar of £\ using augmentations to represent noun cases.

SUBCATEGORIZATION

COMPLEMENTS

SUBCATEGORIZATION
LIST

and "give to 1,2." To eliminate these, the grammar must state which verbs can be followed by
which other categories. We call this the subcategorization information for the verb. Each verb
has a list of complements—obligatory phrases that follow the verb within the verb phrase. So in
"Give the gold to me," the NP "the gold" and the PP "to me" are complements of "give."6

A subcategorization list is a list of complement categories that the verb accepts, so "give"
has the subcategorization list [NP, PP] in this example. It is possible for a verb to have more
than one subcategorization list, just as it is possible for a word to have more than one category,
or for a pronoun to have more than one case.7 In fact, "give" also has the subcategorization list
[NP, NP], as in "Give me the gold." We can treat this like any other kind of ambiguity. It is also
important to know what subcategorization lists a verb does not take. The fact that "give" does
not take the list [PP] means that "give to me" is not by itself a valid verb phrase. Figure 22.11
gives some examples of verbs and their subcategorization lists, or subcats for short.

Verb

give

smell

is

died
believe

Subcats
[NP, PP]
[NP,NP]

[NP]
[Adjective]
[PP]

[Adjective]
[PP]
[NP)

[]
[S]

Example Verb Phrase

give the gold in 3 3 to me
give me the gold

smell a wumpus
smell awful
smell like a wumpus

is smelly
is in 2 2
is a pit

died
believe the smelly wumpus in 2 2 is dead

Figure 22.11 Examples of verbs with their subcategorization frames.

6 This is one definition of complement, but other authors have different terminology. Some say that the subject of the
verb is also a complement. Others say that only the prepositional phrase is a complement, and the noun phrase should be
called an argument.
7 For example, "you" can be used in either subjective or objective case.



Section 22.6. Augmenting a Grammar 671

ADJUNCTS

To integrate verb subcategorization into the grammar, we do three things. The first step is
to augment the category VP to take a subcategorization argument that indicates the complements
that are needed to form a complete VP. For example, "give" can be made into a complete VP by
adding [NP,PP], "give the gold" can be made complete by adding [PP], and "give the gold to
me" is already complete; its subcategorization list is []. That gives us these rules:

VP(subcat) — VP([\'P\subcat]) NP(Objective)
VP([Adjective\subcai]) Adjective
VP([PP\subcat]) PP
Verb(subcat)

The first line can be read as "A VP with a given subcat list, subcat, can be formed by a VP
followed by a NP in the objective case, as long as that VP has a subcat list that starts with the
symbol NP and is followed by the elements of the list subcatr

The second step is to change the rule for S to say that it requires a verb phrase that has all
its complements, and thus has a subcat list of []. This means that "He died" is a legal sentence,
but "You give" is not. The new rule,

5 — NP(Subjective) VP([])

can be read as "A sentence can be composed of a NP in the subjective case, followed by a VP
which has a null subcat list." Figure 22.12 shows a parse tree using this grammar.

The third step is to remember that in addition to complements, verb phrases (and other
phrases) can also take adjuncts, which are phrases that are not licensed by the individual verb but
rather may appear in any verb phrase. Phrases representing time and place are adjuncts, because
almost any action or event can have a time or place. For example, the adverb "now" in "I smell
a wumpus now" and the PP "on Tuesday" in "give me the gold on Tuesday" are adjuncts. Here
are two rules to allow adjuncts:

VP(subcat) — VP(subcat)PP
| VP(subcat) Adverb

Notice that we now have two rules with VP PP on the right-hand side, one as an adjunct and
one as a complement. This can lead to ambiguities. For example, "I walked Sunday" is usually
interpreted as an intransitive VP followed by a time adjunct meaning "I moved myself with my
feet on Sunday." But if Sunday is the name of a dog, then Sunday is an NP complement, and the
meaning is that I took the dog for a walk at some unspecified time.

RULE SCHEMA

Generative Capacity of Augmented Grammars
The generative capacity of augmented grammars depends on the number of values for the
augmentations. If there is a finite number, then the augmented grammar is equivalent to a
context-free grammar. To see this, consider each augmented rule as a rule schema, which stands
for a set of rules, one for each possible combination of values forthe augmented constituents. If we
replace each rule schema with the complete set of rules, we end up with a finite (although perhaps
exponentially large) set of context-free rules. But in the general case, augmented grammars go



672 Chapter 22. Agents that Communicate

VP(J])

VP([NP])
^~^

VP([NP,NP]) NP NP

Pronoun Verb([NP,NP]) Pronoun Article Noun

You give me the gold

Figure 22.12 Parse tree for "You give me the gold" showing subcategorization of the verb and
verb phrase.

beyond context-free. For example, the context-sensitive language anbnc" can be represented with
the following augmented grammar (where e represents the empty string):

S(n) — A(n) B(n) C(n)
A(0)^e A(n+l ) ->aA(n)
5(0) — e B(n+l)—bB(n)

— e C(«+ l ) — c C(n)

22.7 SEMANTIC INTERPRETATION

COMPOSITIONAL
SEMANTICS

Throughout Part III, we gained experience in translating between English and first-order logic.
There it was done informally, to get a feeling for what statements of first-order logic mean. Here
we will do the same thing in a more carefully controlled way, to define what statements of Si
mean. Later on we will investigate the meaning of other types of speech acts besides sentences.

Before moving on to natural languages, we will consider the semantics of formal languages.
It is easy to deal with meanings of expressions like "X + K" in arithmetic or X A Y in logic because
they have a compositional semantics. This means that the semantics of any phrase is a function
of the semantics of its subphrases; it does not depend on any other phrase before, after, or
encompassing the given phrase. So if we know the meaning of X and Y (and +), then we know
the meaning of the whole phrase.

Things get more complicated when we go beyond the simple language of arithmetic. For
example, the programming language expression "10+10" might have the semantic interpretation
4 when it appears in the larger string "BASE(2); x <— 10+10." However, we can still salvage a
compositional semantics out of this if we say that the semantic function associated with "x+y" is
to add x and y in the current base. The great advantage of compositional semantics is the same as
the advantage of context-free grammars: it lets us handle an infinite grammar with a finite (and
often small) set of rules.



Section 22.7. Semantic Interpretation 673

At first glance, natural languages appear to have a noncompositional semantics. In "The
batter hit the ball," we expect the semantic interpretation of "batter" to be one who swings a bat
and of "ball" to be spherical sporting equipment. But in "The chef mixed the batter to be served
at the ball," we expect the two words to have different meanings. This suggests that the meaning
of "batter" and "ball" depends noncompositionally on the surrounding context. However, these
semantic interpretations are only the expected, preferred ones, not the only possible ones. It
is possible that "The batter hit the ball" refers to a cake mixture making a grand appearance at
a formal dance. If you work hard enough, you can invent a story where that is the preferred
reading. In short, semantic interpretation alone cannot be certain of the right interpretation
of a phrase or sentence. So we divide the work—semantic interpretation is responsible for
combining meanings compositionally to get a set of possible interpretations, and disambiguation
is responsible for choosing the best one.

There are other constructions in natural language that pose problems for the composi-
tional approach. The problem of quantifier scope (page 678) is one example. But overall, the
compositional approach is the one most favored by modern natural language systems.

Semantics as DCG Augmentations
On page 668 we saw how augmentations could be used to specify the semantics of numbers and
digits. In fact, it is not difficult to use the same idea to specify the semantics of the complete
language of arithmetic, as we do in Figure 22.13. Figure 22.14 shows the parse tree for 3 + (4 -=- 2)
according to this grammar, with the semantic augmentations. The string is analyzed as Exp(5),
an expression whose semantic interpretation is 5.

Exp(sem) — Exp(sem\) Operator(op) Exp(sem2) {sem = Apply(op,sem\,sem2)}
Exp(sem) —> ( Exp(sem) )
Exp(sem) —* Number(sem)
Digit(sem) —> sem {0 < sem < 9}
Number(sem) —>• Digit(sem)
Number(sem) —> Number(sem\) Digit(sem2) {sem= 10 x sem\
Operator(sem) —> sem {sem G {+, —,-;-, x }}

Figure 22.13 A grammar for arithmetic expressions, with semantics.

The semantics of "John loves Mary"
We are now ready to write a grammar with semantics for a very small subset of English. As
usual, the first step is to determine what the facts are—what semantic representations we want
to associate with what phrases. We will look at the simple sentence "John loves Mary" and
associate with it the semantic interpretation Loves(John,Mary). It is trivial to see which parts
of the semantic interpretation come from which words in the sentence. The complicated part is



674 Chapter 22. Agents that Communicate

Exp(5)

Digit(4) Operator^) Digit(2)

Figure 22.14 Parse tree with semantic interpretations for the string "3 + (4 -H 2)"

deciding how the parts fit together, particularly for intermediate phrases such as the VP "loves
Mary." Note that the semantic interpretation of this phrase is neither a logical term nor a
complete logical sentence. Intuitively, "loves Mary" is a description that may or may not apply to
a particular person (in this case, it applies to John). This means that "loves Mary" is a predicate
that, when combined with a term that represents a person (the person doing the loving), yields a
complete logical sentence. Using the A-notation (see page 195), we can represent "loves Mary"
as the predicate

\x Loves(x, Mary)

The NP "Mary" can be represented by the logical constant Mary. That sets us up to define a rule
that says "an NP with semantics obj followed by a VP with semantics rel yields a sentence whose
semantics is the result of applying the relation rel to the object obj:"

S(rel(obj)) — NP(obj) VP(rel)

The rule tells us that the semantic interpretation of "John loves Mary" is

(\x Loves(x, Mary))(John)

which is equivalent to Loves(John, Mary).
The rest of the semantics follows in a straightforward way from the choices we have made

so far. Because VPs are represented as predicates, it is a good idea to be consistent and represent
verbs as predicates as well. The verb "loves" is represented as \y \x Loves(x,y), the predicate
that, when given an argument such as Mary, returns the predicate \x Loves(x,Mary).

The VP —> Verb NP rule applies the predicate that is the semantic interpretation of the
verb to the object that is the semantic interpretation of the NP to get the semantic interpretation
of the whole VP. We end up with the grammar shown in Figure 22.15 and the parse tree shown
in Figure 22.16.



Section 22.7. Semantic Interpretation 675

S(rel(obj)) — NP(obj) VP(rel)
VP(rd(obj}) — Verb(rel) NP(obj)
NP(obj) — Name(obj)

Name(John) — John
Name(Mary) —*• Mary
Verb(\x \y Loves(x, y)) —• loves

Figure 22.15 A grammar that can derive a parse tree and semantic interpretation for "John
loves Mary" (and three other sentences).

S(Loves(John,Mary))

es(x,Mary)
/~

NP(John) / NP(Mary)

Name(John) Verb(hyXx Loves(x,y)) Name(Mary)

John loves Mary

Figure 22.16 A parse tree with semantic interpretations for the string "John loves Mary"

The semantics of £\
We had no problem with "John loves Mary," but things get more complicated when we consider all
of £\. Immediately we are faced with all the choices of Chapter 8 for our semantic representation;
for example, how do we represent time, events, and substances? Our first choice will be to use
the event calculus notation of Section 8.4. In this notation, the sentence "Every agent smells a
wumpus" can be expressed as:

Va Agent(a) => 3w Wumpus(w) A 3 e e £ Perceive(a, w,Nose) A During(Now, e)
We could have used a Smell predicate instead of Perceive, but we wanted to be able to emphasize
the similarities between smelling, hearing, feeling, touching, and seeing.

Our task is to build up our desired representation from the constituents of the sentence. We
first break the sentence into NP and VP phrases, to which we can assign the following semantics:

Every agent NP(Va Agent(a) =3- ...)
smells a wumpus VP(3 w Wumpus(w) A

Be (e e Perceive(... , w,Nose) ADuring(Now,e))
Right away there are two problems. First, the semantics of the entire sentence appears to be the
semantics of the NP with the semantics of the VP filling in the ... part. That means that we cannot
form the semantics of the sentence with rel(obj). We could do it with obj(rel), which seems a



676 Chapter 22. Agents that Communicate

INTERMEDIATE FORM

QUASI-LOGICAL
FORM

QUANTIFIED TERM

little odd (at least at first glance). The second problem is that we need to get the variable a as
an argument to the relation Perceive. In other words, the semantics of the sentence is formed by
plugging the semantics of the VP into the right argument slot of the NP, while also plugging the
variable a from the NP into the right argument slot of the semantics of the VP. It looks as if we
need two functional compositions, and promises to be rather confusing. The complexity stems
from the fact that the semantic structure is very different from the syntactic structure.

To avoid this confusion, many modern grammars take a different tack. They define an
intermediate form to mediate between syntax and semantics. The intermediate form has two
key properties. First, it is structurally similar to the syntax of the sentence, and thus can be easily
constructed through compositional means. Second, it contains enough information so that it can
be translated into a regular first-order logical sentence. Because it sits between the syntactic
and logical forms, it is sometimes called a quasi-logical form.8 In this chapter, we will use a
quasi-logical form that includes all of first-order logic and is augmented by lambda expressions
and one new construction, which we will call a quantified term. The quantified term that is the
semantic interpretation of "every agent" is written

[V a Agent(a)]
This looks like a logical sentence, but it is used in the same way that a logical term is used.
In the following example, we see quantified terms as arguments to the relation Perceive in the
interpretation of "Every agent smells a wumpus":

3 e (e 6 Perceive^ a Agent(a)], [3 w Wumpus(w)], Nose) A During(Now, e))
We will write our grammar so that it generates this quasi-logical form. In Section 22.7 we will
see how to translate this into regular first-order logic.

It can be difficult to write a complex grammar that always comes up with the right se-
mantic interpretation, and everyone has their own way of attacking the problem. We suggest a
methodology based on these steps:

1. Decide on the logical or quasi-logical form you want to generate. Write down some
example sentences and their corresponding logical forms. One such example sentence is
at the top of Figure 22.17.

2. Make one-word-at-a-time modifications to your example sentences, and study the corre-
sponding logical forms. For example, the semantics of "Every agent smelled a wum-
pus" is the same as our example sentence, except that During(Now, e) is replaced with
After(Now, e). This suggests that During is part of the semantics of "smells" and After is
part of the semantics of "smelled." Similarly, changing the word "every" to "an" might
result in a change of V to 3 in the logical form. This gives you a hint about the semantic
interpretation of "an" and "every."

3. Eventually you should be able to write down the basic logical type of each lexical category
(noun, verb, and so on), along with some word/logical form pairs. This is motivated in
part by example sentences and in part by your intuitions. For example, it seems clear
enough that the pronoun "I" should denote the object Speaker (which happens to be a
fluent, dependent on the situation). Once we decide that one word in a category is of a

8 Some quasi-logical forms have the third property that they can succinctly represent ambiguities that could only be
represented in logical form by a long disjunction.



Section 22.7. Semantic Interpretation 677

certain semantic type, then we know that everything in the category is of the same type.
Otherwise, the compositionality would not work out right. See the middle of Figure 22.17
for types and examples of all the lexical categories.

4. Now consider phrase-at-a-time modifications to your example sentences (e.g., substituting
"every stinking wumpus" for "I"). You should be able to determine examples and types for
constituent phrases, as in the bottom of Figure 22.17. In Figure 22.18, we see the complete
parse tree for a sentence.

5. Once you know the type of each category, it is not too hard to attach semantic interpretation
augmentations to the grammar rules. Some of the rules have only one right-hand side
constituent and only need to copy up the semantics of that constituent:

NP(sem) —> Pronoun(sem)
6. Other times, the right-hand side of a rule will contain a semantic interpretation that is a

predicate (or function), and one or more that are objects. To get the semantics of the whole
phrase, just apply the relation (or function) to the object(s):

S(rel(obj)) -+ NP(obj) VP(rel)
1. Sometimes the semantics is built up by concatenating the semantics of the constituents,

possibly with some connectors wrapped around them:

NP([sem\,seni2\) —> Digit(sem\) Digit(semi)
8. Finally, sometimes you need to take apart one of the constituents before putting the

semantics of the whole phrase back together. Here is a complex example:
VP(Xx reli(x) A AE/2(EVENT-VAR(rc?/i))) -^ VP(rel\) Adverb(rel2)

The intent here is that the function EVENT-VAR picks out the event variable from the
intermediate form expression rel\. The end result is that a verb phrase such as "saw me
yesterday" gets the interpretation:

\x 3 e e£ Sees(x, Speaker) A After(Now, e) A During(e, Yesterday)
By following these steps, we arrive at the grammar in Figure 22.19. To actually use this grammar,
we would augment it further with the case and subcategorization information that we worked out
previously. There is no difficulty in combining such things with semantics, but the grammar is
easier to understand when we look at one type of augmentation at a time.

Converting quasi-logical form to logical form
The final step of semantic interpretation is to convert the quasi-logical form into real first-order
logic. For our quasi-logical form, that means turning quantified terms into real terms. This is
done by a simple rule: For each quantified term [qx P(x)] within a quasi-logical form QLF,
replace the quantified term with x, and replace QLF with qx P(x) op QLF, where op is =>
when q is V, and is A when q is 3 or 3!. For example, the sentence "Every dog has a day" has the
quasi-logical form:

3e e£ Has([V d Dog(d)}, [3 a Day(a)], Now)



678 Chapter 22. Agents that Communicate

Category

S

Adjective
Adverb
Article
Conjunction
Digit
Noun
Preposition
Pronoun
Verb

NP
PP
RelClause

VP

Type

Sentence

object — -> sentence
event — > sentence
Quantifier
sentence2 — <• sentence
Number
object — > sentence
object2 — sentence
Object
object" — * sentence

Object
object — <• sentence
object — * sentence

object11 — > sentence

Example
I sleep.

smelly
today
the
and
7
wumpus
in
I
eats

a dog
in [2,2]
that sees me

sees me

Quasi -Logical Form

3 e e£ (Sleep, Speaker)
A During(Now, e)

\x Smelly(x)
Xe During(e, Today)
3!
X p , q ( p f \ q)
1
\x Wumpus(x)
\x \y In(x, y)
Speaker
Xy Xx 3 e e£ Eats(x, y)

A During(Now, e)

[3dDog(d)]
\x In(x, [2, 2])
Xx 3 e e £ Sees(x, Speaker)

A During(Now, e)
Xx 3 e e G Sees(x, Speaker)

A During(Now, e)

Figure 22.17 Table showing the type of quasi-logical form expression for each syntactic
category. The notation t — * r denotes a function that takes an argument of type t and returns a
result of type r.

We did not specify which of the two quantified terms gets pulled out first, so there are actually
two possible interpretations:

Md Dog(d) => 3 a Day(a)f\3e e£Has(d,a,Now)
3a Day(a)/\Md Dog(d) => 3e e&Has(d,a,Now)

The first one says that each dog has his own day, while the second says there is a special day that
all dogs share. Choosing between them is a job for disambiguation. Often the left-to-right order
of the quantified terms matches the left-to-right order of the quantifiers, but other factors come
into play. The advantage of quasi-logical form is that it succinctly represents all the possibilities.
The disadvantage is that it doesn't help you choose between them; for that we need the full power
of disambiguation using all sources of evidence.

Pragmatic Interpretation
We have shown how an agent can perceive a string of words and use a grammar to derive a set of
possible semantic interpretations. Now we address the problem of completing the interpretation
by adding information about the current situation, information that is noncompositional and
context-dependent.



Section 22.7. Semantic Interpretation 679

S( 3e e6 Perceive([Va Agent(a)], [3w Wumpus(w)], Nose))
r\During(Now,e)

VP( hx 3e e£ Perceive(x, [3w Wumpus(w)], Nose))
/\During(Now,e)

NP([Ma Agent(a)]) NP([3w Wumpus(w)])

Article(^i) Noun(Agent)

Verb(hy\ x 3e ee Perceive(x, y, Nose))
f\During(Now,e)

Every agent smells

Article(3) Noun(Wumpus)

wumpus

Figure 22.18 Parse tree for the sentence "Every agent smells a wumpus," showing both
syntactic structure and semantic interpretations.

INDEXICALS The most obvious need for pragmatic information is in resolving the meaning of indexicals,
which are phrases that refer directly to the current situation. For example, in the sentence "I
am in Boston today," the interpretation of the indexicals "I" and "today" depend on who uttered
the sentence when. We represent indexicals by Skolem constants (such as Speaker), which are
interpreted as fluents. The hearer who perceives a speech act should also perceive who the
speaker is, and use this information to resolve the indexical. For example, the hearer might know
T((Speaker = Agents), Now).

ANAPHORA Another important concern is anaphora, the occurrence of phrases referring to objects that
have been mentioned previously. Consider the passage:

"John was hungry. He entered a restaurant."
To understand that "he" in the second sentence refers to John, we need to have processed the
first sentence and used it as part of the situational knowledge in interpreting the second sentence.
Anaphoric reference can also be made with definite noun phrases like "the man." In fact,
the pattern of reference can be rather complicated, requiring a thorough understanding of the
discourse. Consider the following sentence:

"After John proposed to Marsha, they found a preacher and got married. For the
honeymoon, they went to Hawaii."

Here the definite noun phrase "the honeymoon" refers to something that was only implicitly
alluded to by the verb "married." The pronoun "they" refers to a group that was not explicitly
mentioned before: John and Marsha (but not the preacher).

When pronouns are used to refer to things within the same sentence, we at least get some
help from syntax. For example, in "He saw him in the mirror" the two pronouns must refer to



680 Chapter 22. Agents that Communicate

S(rel(obj)) -> NP(obj) VP(rel)
S(conj(semi, sem2)) — > S(sem\) Conjunction(conj) S(sem2)

NP(sem) — ^ Pronoun(sem)
NP(sem) — > Name(sem)
NP([q x sem(x)]) -^ Article(q) Noun(sem)
NP([qx obj A rel(x)]) ->• NP([qx obj]) PP(rel)
NP([qx obj A rel(x)}) -> NP([qx obj}) RelClause(rel)
NP([sem\,sem2}) —>• Digit(sem\) Digit(sem2)

/* VP rules for subcategorization: * I
VP(sem) —> Verb(sem)
VP(rel(obj)) — VP(rel) NP(obj)
VP(sem\(sem2) -^ VP(sem\) Adjective(sem2)
VP(semi(sem2)) — VP(seml) PP(sem2)
I * VP rules for adjuncts: * I
VP(\x sem\(x) A sem2 (EVENT- V/&(sem\))) —> VP(sem\) PP(sem2)
VP(\x sem\(x) A seni2(EVEN'T-VA.R(sem\))) — VP(sem\ ) Adverb(sem2)

RelClause(sem) — that VP(sem)

PP(Xx rel(x, obj)) — > Preposition(rel) NP(obj)

Figure 22.19 A grammar for £2 with semantics.

different people, whereas in "He saw himself," they refer to the same person. But most of the
time, there are no strict rules on on anaphoric reference. So deciding which reference is the right
one is a part of disambiguation, although the disambiguation is certainly guided by pragmatic
(i.e., context-dependent) information.

22.8 AMBIGUITY AND DISAMBIGUATION

In the ideal communicative exchange, the speaker has a proposition P in mind and performs a
speech act that may have several interpretations, but which in the current situation can best be
interpreted as communicating P. The hearer realizes this, and so arrives at P as the interpretation.
We say that the hearer has disambiguated or resolved the ambiguity. Occasionally, the hearer
may be confused and need to ask for clarification, but it would be tiresome if this happened too
often, or if the hearer asked for clarification on the clarification. Unfortunately, there are many
ways in which communication can break down. A speaker who does not speak loudly enough



Section 22.8. Ambiguity and Disambiguation 681

LEXICAL AMBIGUITY

SYNTACTIC
AMBIGUITY

SEMANTIC
AMBIGUITY

REFERENTIAL
AMBIGUITY

PRAGMATIC
AMBIGUITY

LOCAL AMBIGUITY

VAGUE

will not be heard. But the biggest problem is that most utterances are ambiguous. Here are some
examples taken from newspaper headlines:

Squad helps dog bite victim.
Red-hot star to wed astronomer.
Helicopter powered by human flies.
Once-sagging cloth diaper industry saved by full dumps.

and the World War II favorite:
American pushes bottle up Germans.

The simplest type of ambiguity is lexical ambiguity, where a word has more than one meaning.
For example, the adjective "hot" can mean warm or spicy or electrified or radioactive or vehement
or sexy or popular or stolen. Lexical ambiguity can cut across categories: "back" is an adverb in
"go back," an adjective in "back door," a noun in "the back of the room," and a verb in "back up
your files."

Syntactic ambiguity (also known as structural ambiguity) can occur with or without
lexical ambiguity. For example, the string "I smelled a wumpus in 2,2" has two parses: one
where the propositional phrase modifies the noun, and one where it modifies the verb. The
syntactic ambiguity leads to a semantic ambiguity, because one parse means the wumpus is in
2,2 and the other means that a stench is in 2,2. In this case, getting the wrong interpretation could
be a deadly mistake. The lexical ambiguities of the previous paragraph also lead to semantic
ambiguities. On the other hand, semantic ambiguity can occur even in phrases with no lexical
or syntactic ambiguity. For example, the noun phrase "cat person" can be someone who likes
felines or the lead of the movie Attack of the Cat People. A "coast road" can be a road that
follows the coast, or a road that leads to the coast.

One pervasive form of semantic ambiguity is referential ambiguity. Anaphoric expres-
sions such as "it" can refer to almost anything. Referential ambiguity occurs because natural
languages consist almost entirely of words for categories, not for individual objects. There is no
word for the-apple-I-had-for-lunch-today,]\\si categories like apple.

One type of pragmatic ambiguity occurs when the speaker and hearer disagree on what
the current situation is. If the speaker says "I'll meet you next Friday" thinking that they're
talking about the 17th, and the hearer thinks that they are talking about the 24th, then there is
miscommunication. The example on page 659 about "Now!" also involves pragmatic ambiguity.

Sometimes a phrase or sentence has local ambiguity, where a substring can be parsed
several ways, but only one of those ways fits into the larger context of the whole string. For
example, in the C programming language, the string *c means "pointer to c" when it appears in
the declaration char *c; but it means "multiply by c" when it appears in the expression 2 *c.
In English, "the radio broadcasts" is a noun phrase in "the radio broadcasts inform" and a noun
phrase followed by a verb in "the radio broadcasts information." It is possible for a phrase or
sentence to be syntactically ambiguous but semantically unambiguous. For example, "S\ and £2
and ^3" has two different parses. But they both have the same meaning (at least in £2), because
conjunction is associative.

Natural languages are also vague. When we say, "It's hot outside," it says something about
the temperature, but it is open to a wide range of interpretation because "hot" is a vague term. To
some it might mean the temperature is above 75°F, and to others it might mean 90°F.



682 Chapter 22. Agents that Communicate

Finally, there can be ambiguity about what speech act has been performed. A hearer who
says, "yes" when asked, "Do you know what time it is?" has successfully interpreted the sentence
as if it were question, but most likely it was actually intended as a request for information.

Disambiguation
As we said before, disambiguation is a question of diagnosis. The hearer maintains a model of
the world and, upon hearing a new speech act, adds the possible interpretations of the speech act
to the model as hypotheses. The uncertain reasoning techniques of Part V can then be used to
decide which interpretation is best. To do this well, the model must include a lot of information
about the world. For example, to correctly resolve the syntactic ambiguity in "Chris saw the
Grand Canyon flying to New York," one needs to know that it is more likely that Chris is doing
the flying than that the Grand Canyon is. Similarly, to understand "Donald keeps his money in the
bank," it helps to know that money is kept in savings institutions more often than in snowbanks.

One also needs a good model of the beliefs of speaker and hearer, in order to decide
what the speaker will bother to say. For example, the normal interpretation of the statement "I
am not a crook" is that the speaker is not a criminal. This is true even though an alternative
interpretation—that the speaker is not a hooked shepherd's staff—has a higher probability of
being true. Similarly, "Howard doesn't keep his money in the bank" probably refers to saving
institutions, because it would not be worth remarking that he did not keep his money in a
snowbank. In general, disambiguation requires the combination of four models:

1. The world model: the probability that a fact occurs in the world.
2. The mental model: the probability that the speaker forms the intention of communicating

this fact to the hearer, given that it occurs.9 (This combines models of what the speaker
believes, what the speaker believes the hearer believes, and so on.)

3. The language model: the probability that a certain string of words will be chosen, given
that the speaker has the intention of communicating a certain fact.

4. The acoustic model: the probability that a particular sequence of sounds will be generated,
given that the speaker has chosen a given string of words. This will be taken up when we
consider perception in Chapter 24.

The final reason why it is hard to pick the right interpretation is that there may be several right
ones. Jokes rely on the fact that the hearer will entertain two interpretations simultaneously. In
"She criticized his apartment so he knocked her flat," we have three lexical and one syntactic
ambiguity. But the joke would be lost on a hearer who simply accepted the best interpretation
and ignored the other. Poetry, advertising, political rhetoric, and murder mysteries are other
genres that make use of deliberate ambiguity. Most language understanding programs ignore this
possibility, just as many diagnosis systems ignore the possibility of multiple causes.

Context-free grammars do not provide a very useful language model (even when augmenta-
tions are included). The problem is that the grammar does not say which strings are more probable
than others—it simply divides the strings into two classes: grammatical and agrammatical.
9 We should also consider the possibility that the speaker intends to convey some information given that it did not occur,
that is, that the speaker is mistaken or lying.



Section 22.9. A Communicating Agent 683

The simplest way to provide a probability distribution is to use a probabilistic context-free
CONTEXTLFREE grammar or PCFG.' ° In the PCFG language model, each rewrite rule has a probability associated
GRA with it, such that the sum for all rules with the same left-hand side is 1—for example,

S^NPVP (0.9)
5 — 5 Conjunction S '(0.1)

In the PCFG model, the probability of a string, P(words), is just the sum of the probabilities of
its parse trees—one such tree for an unambiguous string, no trees for an ungrammatical string,
and several trees for an ambiguous string. The probability of a given tree is the product of the
probabilities of all the rules that make up the nodes of the tree.

The problem with PCFGs is that they are context-free. That means that the difference
between P("I ate a banana") and P("I ate a bandana") depends only on P("banana") versus
Pf'bandana"), and not on the relation between "ate" and the respective nouns. To get at that
kind of relationship, we will need some kind of context-sensitive model. Other probabilistic
language models that include context sensitivity have been proposed (see the Historical Notes
section). The problem of combining the four models into one is taken up when we discuss speech
recognition in Section 24.7.

22.9 A COMMUNICATING AGENT

We have now seen how to go all the way from strings to meanings using syntactic and semantic
analysis and disambiguation. The final step is to show how this fits in to an agent that can
communicate. We start with the simple wumpus world robot slave described on page 662.

The first step in building the communicating agent is to extend the grammar to accept
commands such as "Go east." So far, the language £2 has only one type of speech act: the
statement. We will extend it with commands and acknowledgments to yield the language £3.

The new words and grammar rules are not complicated. A command can be formed from
a VP, where the subject is implicitly the hearer. For example, "Go to 2 2" is a command, and
it already is a VP according to the £2 grammar. The semantics of the command is derived by
applying the semantics of the VP to the object Hearer. Now that we have several kinds of speech
acts, we will identify the kind (i.e, command or statement) as part of the quasi-logical form. Here
are the rules for commands and statements:

S(Command(rel(Hearer)) — VP(rel)
S(Statement(rel(obj)} -> NP(obj) VP(rel)

So the quasi-logical form for "Go to 2 2" is:''

Command(3 e e G Go(Hearer, [2, 2]))

10 PCFGs are also known as stochastic context-free grammars or SCFGs.
11 Note that the quasi-logical form for a command does not include the time of the event (e.g., During(Now,e)). That
is because commands are tenseless. We can't tell that by looking at commands with "go," but consider that the correct
form of a command is "[you] be good," (using the untensed form "be") not "[you] are good."



684 Chapter 22. Agents that Communicate

Acknowledgments are even simpler—they consist of a single word: "yes" or "OK" to positively
acknowledge, and "no" to negatively acknowledge. Here are the rules:

S(Acknowledge(sem)) —> Ack(sem)
Ack(True) —> yes
Ack(True) -> OK
Ack(False) —>• no

It is up to the master (or whoever hears an acknowledgment) to do pragmatic interpretation to
realize that "OK," which gets the interpretation Ack(True), means that the agent has agreed to
follow out a command (usually the most recent command). The agent program for the robot
slave was shown in Figure 22.4 (page 663). But in a sense we do not need a new agent program;
all we need to do is use an existing agent (such as a logical planning agent) and give it the goals
of understanding the input and responding to it properly.

22.10 SUMMARY

We have seen why it is useful to communicate, and how language can be interpreted by agents in
a situation. Natural language processing is difficult for three reasons. First, one has to have a lot
of specific knowledge about the words and grammar rules of the language. Second, one must be
able to integrate this knowledge with other knowledge about the world. Third, language involves
an additional complication that we have not dealt with so far: that there are other agents in the
world who have their own beliefs, goals, and plans. This chapter makes the following points in
addressing these difficulties:

• Agents send signals to each other to achieve certain purposes: to inform, to warn, to elicit
help, to share knowledge, or to promise something. Sending a signal in this way is called
a speech act. Ultimately, all speech acts are an attempt to get another agent to believe
something or do something.

• All animals use some conventional signs to communicate, but humans use language in a
more sophisticated way that enables them to communicate much more.

• Formal language theory and phrase structure grammars (and in particular, context-free
grammar) are useful tools for dealing with some aspects of natural language.

• Communication involves three steps by the speaker: the intention to convey an idea, the
mental generation of words, and their physical synthesis. The hearer then has four steps:
perception, analysis, disambiguation, and incorporation of the meaning.

• The encoded message model of communication states that a speaker encodes a represen-
tation of a proposition into language, and the hearer then decodes the message to uncover
the proposition. The situated language model states that the meaning of a message is a
function of both the message and the situation in which it occurs.

• It is convenient to augment a grammar to handle such problems as subject/verb agreement,
pronoun case, and semantics. Definite Clause Grammar (DCG) is an extension of BNF
that allows for augmentations.



Section 22.10. Summary 685

• There are many algorithms for parsing strings. We showed a simple one. It is also possible
to feed DCG rules directly to a logic programming system or theorem prover.

• Pragmatic interpretation takes the current situation into account to determine the effect of
an utterance in context.

• Disambiguation is the process of deciding which of the possible interpretations is the one
that the speaker intended to convey.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The idea of language as action stems from twentieth-century linguistically oriented philosophy
(Wittgenstein, 1953; Grice, 1957; Austin, 1962) and particularly from the book Speech Acts
(Searle, 1969). A precursor to the idea of speech acts was Protagoras's distinction of four types
of sentence: prayer, question, answer, and injunction. Hobbs et al. (1987) describe a more
practical application of the situated model.

Like semantic networks, context-free grammars (also known as phrase structure grammars)
are a reinvention of a technique first used by the ancient Indian grammarians (especially Panini,
c. 350 B.C.) studying Shastric Sanskrit (Ingerman, 1967). In modern times, they were reinvented
by Noam Chomsky for the analysis of English syntax (Chomsky, 1956) and independently by
John Backus for the analysis of Algol-60 syntax. Naur (Naur, 1963) extended Backus's notation,
and is now credited with the "N" in BNF, which originally stood for "Backus Normal Form."

GTRTARMMUAR Knuth (1968) denned a kind of augmented grammar called attribute grammar.
There have been many attempts to write formal grammars of natural languages, both in

"pure" linguistics and in computational linguistics. The Linguistic String Project at New York
University (Sager, 1981) produced a large grammar for the machine parsing of English, using
essentially context-free rewrite rules with some restrictions based on subcategorization. A good
example of a modern system using unification grammar is the Core Language Engine (Alshawi,
1992). There are several comprehensive but informal grammars of English (Quirk et al., 1985;
Huddleston, 1988). Good textbooks on linguistics include Baker (1989) and Chierchia and
McConnell-Ginet (1990). McCawley's (1993) text concentrates on logic for linguists. Definite
clause grammars were introduced by Colmerauer (1975) and developed and popularized by
Pereira and Warren (1980).

Formal semantic interpretation of natural languages originates within philosophy and for-
mal logic and is especially closely related to Alfred Tarski's (1935) work on the semantics of
formal languages. Bar-Hillel was the first to consider the problems of pragmatics and propose
that they could be handled by formal logic. For example, he introduced C.S. Peirce's (1902) term
indexical into linguistics (Bar-Hillel, 1954). Richard Montague's essay "English as a formal lan-
guage" (1970) is a kind of manifesto for the logical analysis of language, but the book by Dowty,
Wall, and Peters (1991) and the article by Lewis (1972) are more readable. A complete collection
of Montague's contributions has been edited by Thomason (1974). In artificial intelligence, the
work of McAllester and Givan (1992) continues the Montagovian tradition, adding many new
technical insights.



686 Chapter 22. Agents that Communicate

TRANSFORMATIONAL
GRAMMAR

DEEP STRUCTURE

SURFACE
STRUCTURE

AUGMENTED
TRANSITION
NETWORK

The idea of an intermediate or quasi-logical form to handle problems such as quantifier
scoping goes back to Woods (1978), and is present in many recent systems (Alshawi, 1992;
Hwang and Schubert, 1993). Van Lehn (1978) gives a survey of human preferences for quantifier
scope disambiguation.

Linguists have dozens of different formalisms; hundreds if you count all the minor modi-
fications and notational variants. We have stuck to a single approach—definite clause grammar
with BNF-style notation—but the history of the others is interesting. Sells (1985) offers a good
comparison of some current formalisms, but Gerald Gazdar's (1989) analysis is more succinct:

Here is the history of linguistics in one sentence: once upon a time linguists (i.e., syntacticians)
used augmented phrase structure grammars, then they went over to transformational grammars,
and then some of them started using augmented phrase structure grammars again, <space
for moml>. Whilst we are in this careful scholarly mode, let us do the same service for
computational linguistics: once upon a time computational linguistics (i.e., builders of parsers)
used augmented phrase structure grammars, then they went over to augmented transition
networks, and then many of them started using augmented phrase structure grammars again,
<spacefor moral>.

We can characterize the different formalisms according to four dichotomies: transformational
versus monostratal, unification versus assignment, lexical versus grammatical, and syntactic
categories versus semantic categories.

The dominant formalism for the quarter century starting in 1956 was transformational
grammar (Chomsky, 1957; Chomsky, 1965). In this approach, the commonality in meaning
between sentences like "Man bites dog" and "Dog is bitten by man" is captured by a context-
free grammar that generates proto-sentences in a canonical form called the deep structure.
"Man bites dog" and "Dog is bitten by man" would have the same deep structure, but different
surface structure. A separate set of rules called transformations map between deep and
surface structure. The fact that there are two distinct levels of analysis and two sets of rules
makes transformational grammar a multistratal theory. Computational linguists have turned
away from transformational grammar, because it is difficult to write parsers that can invert the
transformations to recover the deep structure.

The augmented transition network (ATN) grammars mentioned in the Gazdar quote were
invented as a way to go beyond context-free grammar while maintaining a monostratal approach
that is computationally tractable. They were invented by Thorne (1968) but are mostly associated
with the work of Woods (1970). The rules in an ATN grammar are represented as a directed
graph, but one can easily transliterate between transition networks and context-free grammars,
so choosing one over the other is mostly a matter of taste. The other big difference is that DCGs
are augmented with unification assertions, whereas ATNs are augmented with assignment
statements. This makes DCGs closer to standard first-order logic, but more importantly, it allows
a DCG grammar to be processed by a variety of algorithms. Any order of application of the rules
will arrive at the same answer, because unification is commutative. Assignment, of course, is not
commutative. GPSG or Generalized Phrase Structure Grammar (Gazdar et al, 1985) and HPSG
or Head-driven Phrase Structure Grammar (Pollard and Sag, 1994) are two important examples
of unification-based grammars. Shieber (1986) surveys them and others.

Since the mid-1980s, there has also been a trend toward putting more information in the
lexicon and less in the grammar. For example, rather than having a grammar rule to transform



Section 22.10. Summary 687

active sentences into passive, many modern grammars place the burden of passives on the lexicon.
The grammar would have one or more rules saying a verb phrase can be a verb optionally preceded
by an auxiliary verb and followed by complements. The lexical entry for "bitten" would say that
it is preceded by a form of the auxiliary verb "be" and followed by a prepositional phrase with
the preposition "by."

In the 1970s it was felt that putting this kind of information in the lexicon would be missing
an important generality—that most transitive verbs have passive forms.12 The current view is
that if we can account for the way the passives of new verbs are learned, then we have not lost
any generalities. Putting the information in the lexicon rather than the grammar is just a kind of
compilation—it can make the parser's job easier at run time. LFG or lexical-functional grammar
(Bresnan, 1982) was the first major grammar of English and formalism to be highly lexicalized.
If we carry lexicalization to an extreme, we end up with categorial grammar, in which there
can be as few as two grammar rules, or dependency grammar (Melcuk and Polguere, 1988), in
which there are no phrases, only words. TAG or Tree-Adjoining Grammar (Joshi, 1985) is not
strictly lexical, but it is gaining popularity in its lexicalized form (Schabes et al, 1988).

A major barrier to the widespread use of natural language processing is the difficulty of
tuning an NLP system to perform well in a new domain, and the amount of specialized training (in
linguistics and computer science) needed to do the tuning. One way to lower this barrier is to throw
out the specialized terminology and methodology of linguistics and base the system's grammar
more directly on the problem domain. This is achieved by replacing abstract syntactic categories

GRAMMAR w'tn domain-specific semantic categories. Such a grammar is called a semantic grammar. For
example, an interface to an airline reservation system could have categories like Location and
Fly-To instead of NP and VP. See Birnbaum and Selfridge (1981) for an implementation of a
system based on semantic grammars.

There are two main drawbacks to semantic grammars. First, they are specific to a particular
domain. Very little of the work that goes into building a system can be transferred to a different
domain. Second, they make it hard to add syntactic generalizations. Handling constructions
such as passive sentences means adding not just one new rule, but one rule for each verb-like
category. Getting it right is time-consuming and error-prone. Semantic grammars can be used to
get a small application working quickly in a limited domain, but they do not scale up well.

The other approach to knowledge acquisition for NLP is to use machine learning. Gold
(1967) set the groundwork for this field, and Fu and Booth (1986a; 1986b) give a tutorial of
recent work. Stolcke (1993) gives an algorithm for learning probabilistic context-free grammars,
and Black et al. (1992) and Magerman (1993) show how to learn more complex grammars.

Research on language learning by humans is surveyed by Wanner and Gleitman (1982)
and by Bloom (1994). Pinker (1989) gives his take on the field. A variety of machine learning
experiments have tried to duplicate human language learning (Clark, 1992; Siskind, 1994).

Disambiguation has always been one of the hardest parts of NLP. In part, this is because
of a lack of help from other fields. Linguistics considers disambiguation to be largely outside
its domain, and literary criticism (Empson, 1953; Hobbs, 1990) is ambiguous about whether

12 It is now known that passivity is a feature of sentences, not verbs. For example, "This bed was slept in by George
Washington" is a good sentence, but "The stars were slept under by Fred" is not (even though the two corresponding
active sentences are perfectly good).



688 Chapter 22. Agents that Communicate

ambiguity is something to be resolved or to be cherished. Some of the earliest work on disam-
biguation was Wilks' (1975) theory of preference semantics, which tried to find interpretations
that minimize the number of semantic anomalies. Hirst (1987) describes a system with similar
aims that is closer to the compositional semantics described in this chapter. Some problems with
multiple interpretations are addressed by Norvig (1988).

Probabilistic techniques for disambiguation have been predominant in recent years, partly
because of the availability of large corpora of text from which to gather statistics, and partly
because the field is evolving towards a more scientific methodology. Research involving large
corpora of text is described in the special issue of Computational Linguistics (Volume 19,
Numbers 1 and 2, 1993) and the book by Garside et al. (1987). The statistical approach to
language is covered in a book by Charniak (1993). This subfield started when NLP researchers
noticed the success of probabilistic models in information retrieval (Salton, 1989) and speech
recognition (Rabiner, 1990). This lead to the development of probabilistic models for word
sense disambiguation (Yarowsky, 1992; Resnik, 1993) and eventually to the full parsing task,
as in the work by Church (1988) and by Chitrao and Grishman (1990). Some recent work
casts the disambiguation problem as belief network evaluation (Charniak and Goldman, 1992;
Goldman and Charniak, 1992; Wu, 1993).

The Association for Computational Linguistics (ACL) holds regular conferences; much
current research on natural language processing is published in their proceedings, and in the
ACL's journal Computational Linguistics. Readings in Natural Language Processing (Groszet
al., 1986) is an anthology containing many important papers in the field. The leading textbook
is Natural Language Understanding (Alien, 1995). Pereira and Sheiber (1987) and Covington
(1994) offer concise overviews based on implementations in Prolog. The Encyclopedia of Al
has many useful articles on the field; see especially "Computational Linguistics" and "Natural
Language Understanding."

EXERCISES

22.1 Outline the major differences between Pascal (or any other computer language with which
you are familiar) and English, and the "understanding" problem in each case. Think about such
things as grammar, syntax, semantics, pragmatics, compositionality, context-dependence, lexical
ambiguity, syntactic ambiguity, reference-finding (including pronouns), background knowledge,
and what it means to "understand" in the first place.

22.2 Which of the following are reasons for introducing a quasi-logical form?

a. To make it easier to write simple compositional grammar rules.
b. To extend the expressiveness of the semantic representation language.
c. To be able to represent quantifier scoping ambiguities (among others) in a succinct form.
d. To make it easier to do semantic disambiguation.



Section 22.10. Summary 689

22.3 Determine what semantic interpretation would be given to the following sentences by the
grammar in this chapter:

a. It is a wumpus.
b. The wumpus is dead.
c. The wumpus is in 2,2.

Would it be a good idea to have the semantic interpretation for "It is a wumpus" be simply
3x Wumpus(x)r! Consider alternative sentences such as "It was a wumpus."

22.4 Augment the grammar from this chapter so that it handles the following:

a. Pronoun case.
b. Subject/verb agreement.
c. Article/noun agreement: "agents" is an NP but "agent" is not. In general, only plural nouns

can appear without an article.

22.5 This exercise concerns grammars for very simple languages.

a. Write a context-free grammar for the language a"b".
b. Write a context-free grammar for the palindrome language: the set of all strings whose

second half is the reverse of the first half.
c. Write a context-sensitive grammar for the language a"b"c".
d. Write a context-sensitive grammar for the duplicate language: the set of all strings whose

second half is the same as the first half.

? 22.6 This exercise continues the example of Section 22.9 by making the slave more intelligent.
On each turn, the slave describes its percepts as before, but it also says where it is (e.g., "I am in
1,1") and reports any relevant facts it has deduced about the neighboring squares (e.g., "There is
a pit in 1,2" or "2,1 is safe"). You need not do any fancy language generation, but you do have
to address the intention problem: deciding which facts are worth mentioning. In addition, you
should give your slave a sense of self-preservation. If it is commanded to enter a deadly square,
it should politely refuse. If commanded to enter an unsafe square, it can ask for confirmation,
but if commanded again, it should obey. Run this slave in the wumpus environment a few times.
How mush easier is it to work with this slave than the simple one from Section 22.9?

22.7 Consider the sentence "Someone walked slowly to the supermarket" and the following set
of context-free rewrite rules which give the grammatical categories of the words of the sentence:

Pronoun -^someone V -^walked
Adv -^slowly Prep —>to
Det -^the Noun -^supermarket

Which of the following three sets of rewrite rules, when added to the preceding rules, yield
context-free grammars that can generate the above sentence?



690 Chapter 22. Agents that Communicate

(A):
S —NP VP
NP —Pronoun
NP --Del Noun
VP—VPPP
VP—VPAdvAdv
VP—V
PP —Prep NP
NP —Noun

(B): (C):
S —NP VP S —NP VP
NP —Pronoun NP —Pronoun
NP —Noun NP —Det NP
NP -^Det NP VP —VAdv
VP—V Vmod Adv —Adv Adv
Vmod —Adv Vmod Adv —PP
Vmod —Adv PP —Prep NP
Adv —PP NP —Noun
PP -,prep NP

Write down at least one other English sentence generated by Grammar (B). It should be signifi-
cantly different from the above sentence, and should be at least six words long. Do not use any of
the words from the preceding sentence; instead, add grammatical rules of your own, for instance,
Noun —» bottle. Show the parse tree for your sentence.

22.8 This exercise concerns a language we call Buffalo", which is very much like English except
the only word in its lexicon is buffalo. (The language is due to Barton, Berwick, and Ristad.)
Here are two sentences from the language:

• Buffalo buffalo buffalo Buffalo buffalo.
• Buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo.

In case you don't believe these are sentences, here are two English sentences with corresponding
syntactic structure:

• Dallas cattle bewilder Denver cattle.
• Chefs London critics admire cook French food.

Write a grammar for Buffalo". The lexical categories are adjective, noun, and (transitive) verb,
and there should be one grammar rule for sentence, one for verb phrase, and three rules for noun
phrase: raw noun, adjective modifier, and reduced relative clause (i.e., a relative clause without
the word "that"). Tabulate the number of possible parses for Buffalo" for n up to 10.



PRACTICAL NATURAL
LANGUAGE PROCESSING

In which we see how to scale up from toy domains like the wumpus world to practical
systems that perform useful tasks with language.

In Chapter 22, we saw that agents can gain by communicating with each other. We also saw some
techniques for interpreting sentences from simple subsets of English. In this chapter, we show
how far beyond the wumpus world one can go by elaborating on those techniques. The topics
covered are as follows:

0 Practical applications: tasks where natural language has proved useful.
<> Discourse processing: the problem of handling more than one sentence.
0 Efficient parsing: algorithms for parsing and interpreting sentences quickly.
0 Scaling up the lexicon: dealing with unusual and even unknown words.
<J> Scaling up the grammar: dealing with complicated syntax.
<> Semantic interpretation: some problems that make semantic interpretation more than

just a matter of composing simple functions.
0 Disambiguation: how to choose the right interpretation.

23.1 PRACTICAL APPLICATIONS

We start by surveying successful systems that put natural language to practical use. The successful
systems share two properties: they are focused on a particular domain rather than allowing
discussion of any topic, and they are focused on a particular task rather than attempting to
understand language completely. We will look at five tasks.

Machine translation
In the early 1960s, there was great hope that computers would be able to translate from one
natural language to another, just as Turing's project "translated" coded messages into intelligible

691



692 Chapter 23. Practical Natural Language Processing

German. But by 1966, it became clear that translation requires an understanding of the meaning
of the message (and hence detailed knowledge about the world), whereas code breaking depends
only on the syntactic properties of the messages.

Although there has been no fundamental breakthrough in machine translation, there has
been real progress, to the point that there are now dozens of machine translation systems in
everyday use that save money over fully manual techniques. One of the most successful is the
TAUM-METEO system, developed by the University of Montreal, which translates weather reports
from English to French. It works because the language used in these government weather reports
is highly stylized and regular.

In more open domains, the results are less impressive. A representative system is SPANAM
(Vasconcellos and Leon, 1985), which can translate a Spanish passage into English of this quality:

The extension of the coverage of the health services to the underserved or not served population
of the countries of the region was the central goal of the Ten-Year Plan and probably that of
greater scope and transcendence. Almost all the countries formulated the purpose of extending
the coverage although could be appreciated a diversity of approaches for its attack, which is
understandable in view of the different national policies that had acted in the configuration of
the health systems of each one of the countries.

This is mostly understandable, but not always grammatical and rarely fluent. Standing on its
own, unrestricted machine translation is still inadequate. But when a human translator is given a
text like this as an initial guideline, the human is able to work two to four times faster. Sometimes
a monolingual human can post-edit the output without having to read the original. This saves
money because such editors can be paid less than bilingual translators.

Another possibility is to invest the human effort on pre-editing the original document. If
the original document can be made to conform to a restricted subset of English (or whatever the
original language is), then it can sometimes be translated without the need for post-editing. This
approach is particularly cost-effective when there is a need to translate one document into many
languages, as is the case for legal documents in the European Community, or for companies that
sell the same product internationally. Restricted languages are sometimes called "Caterpillar
English," because Caterpillar was the first firm to try writing their manuals in this form. The
first really successful use of this approach was made by Xerox. They defined a language for
their maintenance manuals that was simple enough that it could be translated by the SYSTRAN
system into all the languages Xerox deals with. As an added benefit, the original English manuals
became clearer as well.

There is a substantial start-up cost to any machine translation effort. To achieve broad
coverage, translation systems have lexicons of 20,000 to 100,000 words and grammars of 100 to
10,000 rules, the numbers varying greatly depending on the choice of formalism.

Translation is difficult because, in the general case, it requires in-depth understanding of
the text, and that requires in-depth understanding of the situation that is being communicated.
This is true even for very simple texts—even "texts" of one word. Consider the word "Open"
on the door of a store.' It communicates the idea that the store is accepting customers at the
moment. Now consider the same word "Open" on a large banner outside a newly constructed
store. It means that the store is now in daily operation, but readers of this sign would not feel
1 This example is due to Martin Kay.



Section 23.1. Practical Applications 693

misled if the store closed at night without removing the banner. The two signs use the identical
word to convey different meanings. In some other languages, the same word or phrase would be
used in both cases, but in German, the sign on the door would be "Offen" while the banner would
read "Neu Eroffnet."

The problem is that different languages categorize the world differently. A majority of the
situations that are covered by the English word "open" are also covered by the German word
"offen," but the boundaries of the category differ across languages. In English, we extend the
basic meaning of "open" to cover open markets, open questions, and open job offerings. In
German, the extensions are different. Job offerings are "freie," not open, but the concepts of
loose ice, private firms, and blank checks all use a form of "offen."

To do translation well, a translator (human or machine) must read the original text, under-
stand the situation to which it is referring, and find a corresponding text in the target language that
does a good job of describing the same or a similar situation. Often this involves a choice. For
example, the English word "you" can be translated into French as either the formal "vous" or the
informal "tu." There is just no way that one can refer to the concept of "you" in French without
also making a choice of formal or informal. Translators (both machine and human) sometimes
find it difficult to make this choice.

Database access
The first major success for natural language processing (NLP) was in the area of database access.
Circa 1970, there were many databases on mainframe computers, but they could be accessed
only by writing complicated programs in obscure programming languages. The staff in charge
of the mainframes could not keep up with all the requests of users who needed to get at this data,
and the users understandably did not want to learn how to program their own requests. Natural
language interfaces provided a solution to this dilemma.

The first such interface was the LUNAR system, a prototype built by William Woods (1973)
and his team for the NASA Manned Spacecraft Center. It enabled a geologist to ask questions
about the chemical analysis data of lunar rock and soil samples brought back by the Apollo
missions. The system was not put into real operational use, but in one test it successfully
answered 78% of queries such as

What is the average modal plagioclase concentration for lunar samples that contain
rubidium?

Fernando Pereira's CHAT system (Pereira, 1983) is at a similar level of complexity. It generates
the following answers to questions about a geographical database:

Q: Which countries are bordered by two seas?
A: Egypt, Iran, Israel, Saudi Arabia and Turkey
Q: What are the countries from which a river flows into the Black sea?
A: Romania, Soviet Union
Q: What is the total area of countries south of the equator and not in Australasia?
A: 10,228,000 square miles
Q: What is the ocean that borders African countries and that borders Asian countries?
A: Indian Ocean



694 Chapter 23. Practical Natural Language Processing

The advantages of systems like this are obvious. The disadvantage is that the user never knows
which wordings of a query will succeed and which are outside the system's competence. For
example, CHAT handles "south of the equator" and "with latitude less than zero," but not "in the
southern hemisphere." There is no principled reason why this last paraphrase should not work; it
just happens that "hemisphere'' is not in the dictionary (nor is this sense of "in"). Similarly, the
final sample question could not be phrased as "What ocean borders both African countries and
Asian?" because the grammar does not allow that kind of conjunction.

Over the last decade, some commercial systems have built up large enough grammars and
lexicons to handle a fairly wide variety of inputs. The main challenge for current systems is to
follow the context of an interaction. The user should be able to ask a series of questions where
some of them implicitly refer to earlier questions or answers:

What countries are north of the equator?
How about south?
Show only the ones outside Australasia.
What is their total area?

Some systems (e.g., TEAM (Grosz et al., 1987)) handle problems like this to a limited degree,
We return to the problem in Section 23.6.

In the 1990s, companies such as Natural Language Inc. and Symantec are still selling
database access tools that use natural language, but customers are less likely to make their buying
decisions based on the strength of the natural language component than on the graphical user
interface or the degree of integration of the database with spreadsheets and word processing.
Natural language is not always the most natural way to communicate: sometimes it is easier to
point and click with a mouse to express an idea (e.g., "sum that column of the spreadsheet").

The emphasis in practical NLP has now shifted away from database access to the broad
INTERPRETATION ^e'^ °^ ^ex^ interpretation. In part, this is a reflection of a change in the computer industry.

In the early 1980s, most online information was stored in databases or spreadsheets. Now the
majority of online information is text: email, news, journal articles, reports, books, encyclopedias.
Most computer users find there is too much information available, and not enough time to sort
through it. Text interpretation programs help to retrieve, categorize, filter, and extract information
from text. Text interpretation systems can be split into three types: information retrieval, text
categorization, and data extraction.

Information retrieval
In information retrieval (IR), the task is to choose from a set of documents the ones that are
relevant to a query. Sometimes a document is represented by a surrogate, such as the title and a
list of keywords and/or an abstract. Now that so much text is online, it is more common to use
the full text, possibly subdivided into sections that each serve as a separate document for retrieval
purposes. The query is normally a list of words typed by the user. In early information retrieval
systems, the query was a Boolean combination of keywords. For example, the query "(natural
and language) or (computational and linguistics)" would be a reasonable query to find documents
related to this chapter. However, users found it difficult to get good results with Boolean queries.
When a query finds no documents, for example, it is not clear how to relax the query to find



Section 23.1. Practical Applications 695

some. Changing an "and" to an "or" is one possibility; adding another disjunction is another, but
users found there were too many possibilities and not enough guidance.

VECTOR-SPACE Most modern IR systems have switched from the Boolean model to a vector-space model,
in which every list of words (both document and query) is treated as a vector in n-dimensional
space, where n is the number of ̂ istinct tokens in the document collection. In this model, the
query would simply be "natural language computational linguistics," which would be treated as
a vector with the value 1 for these four words (or terms, as they are called in IR) and the value
0 for all the other terms. Finding documents is then a matter of comparing this vector against
a collection of other vectors and reporting the ones that are close. The vector model is more
flexible than the Boolean model because the documents can be ranked by their distance to the
query, and the closest ones can be reported first.

There are many variations on this model. Some systems are equipped with morphological
analyzers that match "linguistic computation" with "computational linguistics." Some allow the
query to state that two words must appear near each other to count as a match, and others use a
thesaurus to automatically augment the words in the query with their synonyms. Only the most
naive systems count all the terms in the vectors equally. Most systems ignore common words like
"the" and "a," and many systems weight each term differently. A good way to do this is to give
a term a larger weight if it is a good discriminator: if it appears in a small number of documents
rather than in many of them.

This model of information retrieval is almost entirely at the word level. It admits a
minuscule amount of syntax in that words can be required to be near each other, and allows
a similarly tiny role for semantic classes in the form of synonym lists. You might think that
IR would perform much better if it used some more sophisticated natural language processing
techniques. Many people have thought just that, but surprisingly, none has been able to show a
significant improvement on a wide range of IR tasks. It is possible to tune NLP techniques to a
particular subject domain, but nobody has been able to successfully apply NLP to an unrestricted
range of texts.

The moral is that most of the information in a text is contained in the words. The IR
approach does a good job of applying statistical techniques to capture most of this information.
It is as if we took all the words in a document, sorted them alphabetically, and then very
carefully compared that list to another sorted list. While the sort loses a lot of information about
the original document, it often maintains enough to decide if two sorted lists are on similar
topics. In contrast, the NLP technology we have today can sometimes pick out additional
information—disambiguating words and determining the relations between phrases—but it often
fails to recover anything at all. We are just beginning to see hybrid IR/NLP systems that combine
the two approaches.

Text categorization
NLP techniques have proven successful in a related task: sorting text into fixed topic categories.
There are several commercial services that provide access to news wire stories in this manner.
A subscriber can ask for all the news on a particular industry, company, or geographic area,
for example. The providers of these services have traditionally used human experts to assign



694 Chapter 23. Practical Natural Language Processing

The advantages of systems like this are obvious. The disadvantage is that the user never knows
which wordings of a query will succeed and which are outside the system's competence. For
example, CHAT handles "south of the equator" and "with latitude less than zero," but not "in the
southern hemisphere." There is no principled reason why this last paraphrase should not work; it
just happens that "hemisphere",is not in the dictionary (nor is this sense of "in"). Similarly, the
final sample question could not be phrased as "What ocean borders both African countries and
Asian?" because the grammar does not allow that kind of conjunction.

Over the last decade, some commercial systems have built up large enough grammars and
lexicons to handle a fairly wide variety of inputs. The main challenge for current systems is to
follow the context of an interaction. The user should be able to ask a series of questions where
some of them implicitly refer to earlier questions or answers:

What countries are north of the equator?
How about south?
Show only the ones outside Australasia.
What is their total area?

Some systems (e.g., TEAM (Grosz et ai, 1987)) handle problems like this to a limited degree.
We return to the problem in Section 23.6.

In the 1990s, companies such as Natural Language Inc. and Symantec are still selling
database access tools that use natural language, but customers are less likely to make their buying
decisions based on the strength of the natural language component than on the graphical user
interface or the degree of integration of the database with spreadsheets and word processing.
Natural language is not always the most natural way to communicate: sometimes it is easier to
point and click with a mouse to express an idea (e.g., "sum that column of the spreadsheet").

The emphasis in practical NLP has now shifted away from database access to the broad
field of text interpretation. In part, this is a reflection of a change in the computer industry.
In the early 1980s, most online information was stored in databases or spreadsheets. Now the
majority of online information is text: email, news, journal articles, reports, books, encyclopedias.
Most computer users find there is too much information available, and not enough time to sort
through it. Text interpretation programs help to retrieve, categorize, filter, and extract information
from text. Text interpretation systems can be split into three types: information retrieval, text
categorization, and data extraction.

Information retrieval
In information retrieval (IR), the task is to choose from a set of documents the ones that are
relevant to a query. Sometimes a document is represented by a surrogate, such as the title and a
list of keywords and/or an abstract. Now that so much text is online, it is more common to use
the full text, possibly subdivided into sections that each serve as a separate document for retrieval
purposes. The query is normally a list of words typed by the user. In early information retrieval
systems, the query was a Boolean combination of keywords. For example, the query "(natural
and language) or (computational and linguistics)" would be a reasonable query to find documents
related to this chapter. However, users found it difficult to get good results with Boolean queries.
When a query finds no documents, for example, it is not clear how to relax the query to find



Section 23.1. Practical Applications 695

some. Changing an "and" to an "or" is one possibility; adding another disjunction is another, but
users found there were too many possibilities and not enough guidance.

VECTOR-SPACE Most modern IR systems have switched from the Boolean model to a vector-space model,
in which every list of words (both document and query) is treated as a vector in ^-dimensional
space, where n is the number of distinct tokens in the document collection. In this model, the
query would simply be "natural language computational linguistics," which would be treated as
a vector with the value 1 for these four words (or terms, as they are called in IR) and the value
0 for all the other terms. Finding documents is then a matter of comparing this vector against
a collection of other vectors and reporting the ones that are close. The vector model is more
flexible than the Boolean model because the documents can be ranked by their distance to the
query, and the closest ones can be reported first.

There are many variations on this model. Some systems are equipped with morphological
analyzers that match "linguistic computation" with "computational linguistics." Some allow the
query to state that two words must appear near each other to count as a match, and others use a
thesaurus to automatically augment the words in the query with their synonyms. Only the most
naive systems count all the terms in the vectors equally. Most systems ignore common words like
"the" and "a," and many systems weight each term differently. A good way to do this is to give
a term a larger weight if it is a good discriminator: if it appears in a small number of documents
rather than in many of them.

This model of information retrieval is almost entirely at the word level. It admits a
minuscule amount of syntax in that words can be required to be near each other, and allows
a similarly tiny role for semantic classes in the form of synonym lists. You might think that
IR would perform much better if it used some more sophisticated natural language processing
techniques. Many people have thought just that, but surprisingly, none has been able to show a
significant improvement on a wide range of IR tasks. It is possible to tune NLP techniques to a
particular subject domain, but nobody has been able to successfully apply NLP to an unrestricted
range of texts.

The moral is that most of the information in a text is contained in the words. The IR
approach does a good job of applying statistical techniques to capture most of this information.
It is as if we took all the words in a document, sorted them alphabetically, and then very
carefully compared that list to another sorted list. While the sort loses a lot of information about
the original document, it often maintains enough to decide if two sorted lists are on similar
topics. In contrast, the NLP technology we have today can sometimes pick out additional
information—disambiguating words and determining the relations between phrases—but it often
fails to recover anything at all. We are just beginning to see hybrid IR/NLP systems that combine
the two approaches.

Text categorization

NLP techniques have proven successful in a related task: sorting text into fixed topic categories.
There are several commercial services that provide access to news wire stories in this manner.
A subscriber can ask for all the news on a particular industry, company, or geographic area,
for example. The providers of these services have traditionally used human experts to assign



696 Chapter 23. Practical Natural Language Processing

the categories. In the last few years, NLP systems have proven to be just as accurate, correctly
categorizing over 90% of the news stories. They are also far faster and more consistent, so there
has been a switch from humans to automated systems.

Text categorization is amenable to NLP techniques where IR is not because the categories
are fixed, and thus the system builders can spend the time tuning their program to the problem.
For example, in a dictionary, the primary definition of the word "crude" is vulgar, but in a large
sample of the Wall Street Journal, "crude" refers to oil 100% of the time.

Extracting data from text
The task of data extraction is to take on-line text and derive from it some assertions that can be
put into a structured database. For example, the SciSOR system (Jacobs and Rau, 1990) is able to
take the following Dow Jones News Service story:

PILLSBURY SURGED 3 3-4 TO 62 IN BIG BOARD COMPOSITE TRADING OF 3.1 MIL-
LION SHARES AFTER BRITAIN'S GRAND METROPOLITAN RAISED ITS HOSTILE
TENDER OFFER BY $3 A SHARE TO $63. THE COMPANY PROMPTLY REJECTED
THE SWEETENED BID, WHICH CAME AFTER THE TWO SIDES COULDN'T AGREE
TO A HIGHER OFFER ON FRIENDLY TERMS OVER THE WEEKEND.

and generate this template to add to a database:

Corp-Takeover-Core:
Subevent: Increased Offer, Rejected Offer
Type: Hostile
Target: Pillsbury
Suitor: Grand Metropolitan
Share-Price: 63
Stock-Exchange: NYSE
Volume: 3.1M
Effect-On-Stock: (Up Increment: 3 3-4, To: 62)

23.2 EFFICIENT PARSING

Consider the following two sentences:
Have the students in section 2 of Computer Science 101 take the exam.
Have the students in section 2 of Computer Science 101 taken the exam?

Even though they share the first ten words, these sentences have very different parses, because
the first is a command and the second is a question. A left-to-right parsing algorithm like the one
in Section 22.4 that nondeterministically tries to build the right structure would have to guess if
the first word is part of a command or a question, and will not be able to tell if the guess is correct
until at least the eleventh word, "take/taken." If the algorithm guessed wrong, it will have to



Section 23.2. Efficient Parsing 697

CHART

PACKED FOREST

VERTICES

EDGES

backtrack all the way to the first word. This kind of backtracking is inevitable, but if our parsing
algorithm is to be efficient, it must avoid reanalyzing "the students in section 2 of Computer
Science 101" as an NP each time it backtracks.

In this section, we look at efficient parsing algorithms. At the broadest level, there are
three main things we can do improve efficiency:

1. Don't do twice what you can do once.
2. Don't do once what you can avoid altogether.
3. Don't represent distinctions that you don't need.

To be more specific, we will design a parsing algorithm that does the following:

1. Once we discover that "the students in section 2 of Computer Science 101" is an NP, it is a
good idea to record that result in a data structure known as a chart. Algorithms that do this
are called chart parsers. Because we are dealing with context-free grammars, any phrase
that was found in the context of one branch of the search space can work just as well in
any other branch of the search space. Recording results in the chart is a form of dynamic
programming that avoids duplicate work.

2. We will see that our chart-parsing algorithm uses a combination of top-down and bottom-up
processing in a way that means it never has to consider certain constituents that could not
lead to a complete parse. (This also means it can handle grammars with both left-recursive
rules and rules with empty right-hand sides without going into an infinite loop.)

3. The result of our algorithm is a packed forest of parse tree constituents rather than an
enumeration of all possible trees. We will see later why this is important.

The chart is a data structure for representing partial results of the parsing process in such a way
that they can be reused later on. The chart for an n-word sentence consists of n + 1 vertices and
a number of edges that connect vertices. Figure 23.1 shows a chart with 6 vertices (circles), and
3 edges (lines). For example, the edge labelled

[0,5, S^NPVP»]
means that an NP followed by a VP combine to make an S that spans the string from 0 to 5. The
symbol • in an edge separates what has been found so far from what remains to be found.2 Edges
with the • at the end are called complete edges. The edge

[0,2, S -> NP • VP]
says that an NP spans the string from 0 to 2, and if we could find a VP to follow it, then we would
have an S. Edges like this with the dot before the end are called incomplete edges,3 and we say
that the edge is looking for a VP. We have already seen two ways to look at the parsing process.
In BOTTOM-UP-PARSE on page 666, we described parsing as a process of building words into
trees, backtracking when necessary. With Definite Clause Grammar, we described parsing as a
form of logical inference on strings. Backtracking was used when several rules could derive the
2 It is because of the • that edges are often called dotted rules. We think this term is a little confusing, because there
can be many dotted rules corresponding to the same grammar rule.
3 Some authors call these active edges. In some papers (Earley, 1970), edges are called states; the idea is that an
incomplete edge marks an intermediate state in the process of finding a complete constituent.



698 Chapter 23. Practical Natural Language Processing

(
Figure
shown,

/ [0, 2 S

A The ^o) — — (j

-»• NP • VP]

>. agent

[0, 5 S -» NP

^. feels
\t)

VP

[2,

<7

•7

5V/3-* Verb NP •] 1

. a ^^ breeze }L
) ———— ©—— ̂  ———— ©

23.1 Part of the chart for the sentence "The agent feels a breeze." All 6 vertices are
but only three of the edges that would make up a complete parse.

INITIALIZER

PREDICTOR

COMPLETER

SCANNER

same predicate. Now we will see a third approach, chart-parsing. Under this view, the process
of parsing an n- word sentence consists of forming a chart with n + 1 vertices and adding edges to
the chart one at a time, trying to produce a complete edge that spans from vertex 0 to n and is of
category S. There is no backtracking; everything that is put in the chart stays there.

There are four ways to add an edge to the chart, and we can give each one a name: The
initializer adds an edge to indicate that we are looking for the start symbol of the grammar, S,
starting at position 0, but that we have not found anything yet. The predictor takes an incomplete
edge that is looking for an X and adds new incomplete edges that, if completed, would build an
X in the right place. The completer takes an incomplete edge that is looking for an X and ends at
vertex j and a complete edge that begins at 7 and has X as the left-hand side, and combines them
to make a new edge where the X has been found. Finally, the scanner is similar to the completer,
except that it uses the input words rather than existing complete edges to generate the X. That is,
if there is an edge ending at vertex j that is looking for a Noun, and if the yth word in the input
string has a Noun entry in the lexicon, then the scanner will add a new edge that incorporates the
word, and goes to vertex j + 1.

We will show two versions of chart-parsing algorithms. Figure 23.2 treats the chart as a set
of edges and at each step adds one new edge to the set, nondeterministically choosing between
the possible additions. This algorithm uses the operator pick rather than choose to indicate that it
has no backtrack points. Any order of choices leads to the same result in the end. The algorithm
terminates when none of the four methods can add a new edge. We use a slight trick to start: we
add the edge [0,0, S' —> »S] to the chart, where S is the grammar's start symbol, and S' is a new
symbol that we just invented. This edge makes the PREDICTOR add an edge for each grammar
rule with S on the left-hand side, which is just what we need to start.

Figures 23.3 and 23.4 show a chart and trace of the algorithm parsing the sentence "I feel
it." Thirteen edges (labelled a-m) are recorded in the chart, including five complete edges (shown
above the vertices of the chart) and eight incomplete ones (below the vertices). Note the cycle
of predictor, scanner, and completer actions. For example, the predictor uses the fact that edge
(a) is looking for an S to license the prediction of an NP (edge b) and a Pronoun (edge c). Then
the scanner recognizes that there is a Pronoun in the right place (edge d), and the completer
combines the incomplete edge b with the complete edge d to yield a new edge, e. Note that the
name COMPLETER is misleading in that the edges it produces (like e) are not necessarily complete.
We use the name because it has a long history, but a better name might have been EXTENDER.



Section 23.2. Efficient Parsing 699

function NoNDETERMlNlSTlC-CHART-PARSE(sfrmg, grammar) returns chart

INITIALIZER:
chart*-[0,0, S' — • S]

while new edges can still be added do
edge <— choose [i,j, A —> a » S /?] in c/iarf
choose one of the three methods that will succeed:

PREDICTOR:
choose (B -^ ~i) in R\JLES[grammar]
add \j,j, B -^ • 7] to chart

COMPLETER:
choose \j,k, B —> F •] in c/iart
add [/, k, A — a B • /?] to c/wrt

SCANNER:
if string\j + 1 ] is of category B then

add \j,j + 1, A —> a S • /?] to c/iart
end
return c/wrt

Figure 23.2 Nondeterministic chart parsing algorithm. 5 is the start symbol and S' is a new
nonterminal symbol. The Greek letters match a string of zero or more symbols. The variable edge
is an edge looking for a B. The predictor adds an edge that will form a B, the completer chooses
a complete edge with B on the left-hand side and adds a new edge that is just like edge except the
dot is advanced past B. The scanner advances the dot if the next word is of category B.

An important feature of our chart-parsing algorithm is that it avoids building some edges
that could not possibly be part of an S spanning the whole string. Consider the sentence "The
ride the horse gave was wild." Some algorithms would parse "ride the horse" as a VP, and then
discard it when it is found not to fit into a larger S. But if we assume that the grammar does
not allow a VP to follow "the," then the chart-parsing algorithm will never predict a VP at that
point, and thus will avoid wasting time building the VP constituent there. Algorithms that have

LEFT-CORNER this property are called left-corner parsers, because they build up a parse tree that starts with the
grammar's start symbol and extends down to the left-most word in the sentence (the left corner).
An edge is added to the chart only if it can serve to extend this parse tree. See Figure 23.5 for an
example of this.

Our algorithm has the constraint that the edges are added in left-to-right order. That is, if
edge [i,j, A —> B] is added before [ i ' , f , C —> D], then it must be that) < /. Figure 23.6 shows
a deterministic implementation that obeys this constraint. To get efficiency, we index edges in
the chart by their ending vertex number. The notation chart\j] means the set of edges that end at
vertex j. Additional indexing of edges may lead to further efficiency: the loop in SCANNER could
be eliminated if we indexed edges at a vertex by the terminal symbol they are looking for, and
the loop in COMPLETER could be eliminated if we indexed the complete edges at a vertex by their
left-hand side. The algorithm also indexes rules so that REWRiTES-FOR(Ar,G) returns all rules in
G whose left-hand side is X.



700 Chapter 23. Practical Natural Language Processing

m:S

a:SVS
b:S/NP VP
c:NP/Pronoun

f:VP/Verb
g:VP/VPNP

j:NP/Pronoun

Figure 23.3 Chart for a parse of "o I i feel 2 it 3." The notation m:S means that edge m has an
S on the left-hand side, while the notation/ VP/Verb means that edge/ has a VP on the left-hand
side, but it is looking for a Verb. There are 5 complete edges above the vertices, and 8 incomplete
edges below.

Edge

a
b
c
d
e
f
g
h
i
j
k
1

m

Procedure
INITIALIZER
PREDICTOR(a)
PREDlCTOR(b)
SCANNER(C)
COMPLETER(b,d)
PREDICTOR(e)
PREDICTOR(e)
SCANNER(f)
COMPLETER(g,h)
PREDICTOR(g)
SCANNER (j)
COMPLETER(i,k)
COMPLETER(eJ)

Derivation

[0,0, 5' — »S]
[0, 0, S — »NP VP]
[0, 0, NP -+ •Pronoun]
[0, 1, NP — Pronoun*]
[0,1, S — NP* VP]
[1 ,1 , VP^*Verb]
[1,1, VP -> *VP NP]
[1,2, VP— Verb*]
[1,2, VP— VP»NP]
[2, 2, NP — •Pronoun]
[2, 3, NP —? Pronoun*]
[1,3, VP -» VPMPM
[0, 3, 5 — W W»]

Figure 23.4 Trace of a parse of "o I i feel 2 it 3." For each edge a-m, we show the procedure
used to derive the edge from other edges already in the chart.



Section 23.2. Efficient Parsing 701

The ride the horse gave was wild

Figure 23.5 A left-corner parsing algorithm avoids predicting a VP starting with "ride," but
does predict a VP starting with "was," because the grammar expects a VP following an NP.
The triangle over "the horse gave" means that the words have a parse as a RelClause, but with
additional intermediate constituents that are not shown.

Extracting parses from the chart: Packing
When the chart-parsing algorithm finishes, it returns the entire chart, but what we really want is a
parse tree (or trees). Depending on how the parser is used, we may want to pick out one or all the
parse trees that span the entire input, or we may want to look at some subtrees that do not span
the whole input. If we have an augmented grammar, we may only want to look at the semantic
augmentation, ignoring the syntactic structure. In any case, we need to be able to extract parses
from the chart.

The easiest way to do that is to modify COMPLETER so that when it combines two child
edges to produce a parent edge, it stores in the parent edge the list of children that comprise it.
Then, when we are done with the parse, we need only look in chart[n] for an edge that starts
at 0, and recursively look at the children lists to reproduce a complete parse tree. The only
complication is deciding what to do about ambiguous parses. To see why this is a problem, let
us look at an example. The sentence

Fall leaves fall and spring leaves spring

is highly ambiguous because each word (except "and") can be either a noun or a verb, and "fall"
and "spring" can be adjectives as well. Altogether the sentence has four parses:4

[S [S [NP Fall leaves] fall] and [S [NP spring leaves] spring]
[S [S [NP Fall leaves] fall] and [S spring [VP leaves spring]]
[S [S Fall [VP leaves fall]] and [S [NP spring leaves] spring]
[S [S Fall [VP leaves fall]] and [S spring [VP leaves spring]]

4 The parse [S Fall [VP leaves fall]] is equivalent to "Autumn abandons autumn."



702 Chapter 23. Practical Natural Language Processing

function CHART-PARSE(i?n'«g, grammar) returns chart

chart[Q]^{[0,0,S' — • S]}
for v — from 1 to LENGTH(srrmg) do

SCANNER(v, string[v])
end
return chart
procedure ADD-EDGE(edge)

if edge in c/iarf[END(edge)] then do nothing
else

push edge on chart[END(edge)]
if COMPLETE?(edge) then COMPLETER(edge)
else PREDlCTOR(edge)

procedure SCANNER(/, word)
for each [ i , j , A — a • B /?] in chart\j] do

if word is of category B then
ADD-EDGE([/,;+I, A -- o B • /?])

end
procedure PREDiCTOR([i'J, A -^ a • B /?])

for each (B — -y) in REWR1TES-FOR(B, grammar) do
ADD-EDGE([/,,/, B -> • -/])

end
procedure COMPLETER([/, k, B —> 7 •])

for each [/,_/, /I —> a • B' /3] in chart\j] do
if B = S' then

ADD-EDGE([;, k, A -> «B' • /^])
end

Figure 23.6 Deterministic version of the chart-parsing algorithm. S is the start symbol and
S' is a new nonterminal symbol. The function ADD-EDGE adds an edge to the chart, and either
completes it or predicts from it.

The ambiguity can be divided into two independent parts: each of the two subsentences is
ambiguous in two ways. If we had a sentence with n such subsentences joined by conjunctions,
then we would get one big sentence with 2" parses. (There also would be ambiguity in the way
the subsentences conjoin with each other, but that is another story, one that is told quite well by
Church and Patil (1982).) An exponential number of parses is a bad thing, and one way to avoid
the problem is to represent the parses implicitly. Consider the following representation:

[S[S [NP Fall leaves] [VP fallj
[NP Fall] [VP leaves fall] ]and [S [NP spring leaves] [VP spring]

[NP spring] [VP leaves spring]

Instead of multiplying out the ambiguity to yield 2" separate parse trees, we have one big "tree"
with ambiguous subparts represented by curly braces. Of course, when n = 2, there is not much



Section 23.3. Scaling Up the Lexicon 703

difference between 2" and 2n, but for large n, this representation offers considerable saving. The
representation is called a packed forest, because it is the equivalent to a set of trees (a forest),
but they are efficiently packed into one structure.

To implement the packed forest representation, we modify COMPLETER to keep track of
lists of possible children, and we modify ADD-EDGE so that when we go to add an edge that is
already in the chart, we merge its list of possible children with the list that is already there.

We end up with a parsing algorithm that is O(«3) in the worst case (where n is the number
of words in the input). This is the best that can be achieved for a context-free grammar. Note
that without the packed forest, the algorithm would be exponential in the worst case, because it
is possible for a sentence to have 0(2") different parse trees. In practice, one can expect a good
implementation of the algorithm to parse on the order of 100 words per second, with variation
depending on the complexity of the grammar and the input.

23.3 SCALING UP THE LEXICON

TOKENIZATION

MORPHOLOGICAL
ANALYSIS

INFLECTIONAL
MORPHOLOGY

DERIVATIONAL
MORPHOLOGY

COMPOUNDING

In Chapter 22, the input was a sequence of words. In real text-understanding systems, the input
is a sequence of characters from which the words must be extracted. Most systems follow a
four-step process of tokenization, morphological analysis, dictionary lookup, and error recovery.

Tokenization is the process of dividing the input into distinct tokens—words and punctu-
ation marks. In Japanese, this is difficult because there are no spaces between words. Languages
like English are easier, but not trivial. A hyphen at the end of the line may be an inter- or intraword
dash. In some types of text, font changes, underlines, superscripts, and other control sequences
must be accounted for. Tokenization routines are designed to be fast, with the idea that as long as
they are consistent in breaking up the input text into tokens, any problems can always be handled
at some later stage of processing.

Morphological analysis is the process of describing a word in terms of the prefixes,
suffixes, and root forms that comprise it. There are three ways that words can be composed:

0 Inflectional morphology reflects the changes to a word that are needed in a particular
grammatical context. For example, most nouns take the suffix "s" when they are plural.

0 Derivational morphology derives a new word from another word that is usually of a
different category. For example, the noun "shortness" is derived from the adjective "short"
together with the suffix "ness."

<) Compounding takes two words and puts them together. For example, "bookkeeper" is a
compound of "book" and "keeper." (The noun "keeper" is in turn derived from the verb
"keep" by derivational morphology.)

Even in a morphologically simple language like English, there can be morphological am-
biguities. "Walks" can be either a plural noun or a third-person singular verb. "Unionizable"
can be analyzed as "un-ion-izable" or "union-izable," and "untieable" can be "un-(tie-able)" or
"(un-tie)-able." Many languages make more use of morphology than English. In German, it
is not uncommon to see words like "Lebensversicherungsgesellschaftsangestellter" (life insur-



704 Chapter 23. Practical Natural Language Processing

ance company employee). Languages such as Finish, Turkish, Inuit, and Yupik have recursive
morphological rales that can generate an infinite number of infinitely long words.

DICTIONARY LOOKUP Dictionary lookup is performed on every token (except for special ones such as punctu-
ation). It may be more efficient to store morphologically complex words like "walked" in the
dictionary, or it may be better to do morphological analysis first: a morphological rule applies
to the input and says that we strip off the "ed" and look up "walk." If we find that it is a verb
that is not marked as being irregular, then the rule says that "walked" is the past tense of the root
verb. Either way, the task of dictionary lookup is to find a word in the dictionary and return its
definition. Thus, any implementation of the table abstract data type can serve as a dictionary.
Good choices include hash tables, binary trees, b-trees, and tries. The choice depends in part on
if there is room to fit the dictionary in primary storage, or if it resides in a file.

ERROR RECOVERY Error recovery is undertaken when a word is not found in the dictionary. There are at
least four types of error recovery. First, morphological rules can guess at the word's syntactic
class: "smarply" is not in the dictionary, but it is probably an adverb. Second, capitalization is a
clue that a word (or sequence of words) is a proper name. Third, other specialized formats denote
dates, times, social security numbers, and so forth. These are often domain-dependent.

Finally, spelling correction routines can be used to find a word in the dictionary that is
close to the input word. There are two popular models of "closeness" between words. In the
letter-based model, an error consists of inserting or deleting a single letter, transposing two
adjacent letters, or replacing one letter with another. Thus, a 10-letter word is one error away
from 555 other words: 10 deletions, 9 swaps, 10 x 25 replacements, and 11 x 26 insertions.
Exercise 23.11 discusses the implications of this for dictionary implementation. This model is
good for correcting slips of the finger, where one key on the keyboard is hit instead of another.

In the sound-based model, words are translated into a canonical form that preserves most of
information needed to pronounce the word, but abstracts away some of the details. For example,
the word "attention" might be translated into the sequence [a,T,a,N,SH,a,N], where "a" stands
for any vowel. The idea is that words such as "attension" and "atennshun" translate to the
same sequence. If no other word in the dictionary translates to the same sequence, then we can
unambiguously correct the spelling error. Note that the letter-based approach would work just as
well for "attension," but not for "atennshun," which is 5 errors away from "attention."

Practical NLP systems have lexicons with from 10,000 to 100,000 root word forms. Build-
ing a lexicon of this size is a big investment in time and money, and one that dictionary publishers
and companies with NLP programs have not been willing to share. An exception is Wordnet, a
freely available dictionary of roughly 100,000 words produced by a group at Princeton led by
George Miller. Figure 23.7 gives some of the information on the word "ride" in Wordnet.

As useful as dictionaries like Wordnet are, they do not provide all the lexical information
you would like. The two missing pieces are frequency information and semantic restrictions.
Frequency information tells us that the teasing sense of ride is unusual, while the other senses are
common, or that the female swan sense of "pen" is very rare, while the other senses are common.
Semantic restrictions tell us that the direct object of the first sense of ride is a horse, camel, or
similar animal, while the direct object of the second kind is a means of conveyance such as a
car, bus, skateboard, or airplane. Some frequency information and semantic restrictions can be
captured with the help of a large corpus of text.



Section 23.4. Scaling Up the Grammar 705

Noun: ride
=> mechanical device (device based on mechanical principles)

Noun: drive, ride
=> journey (the act of traveling)

Verb: ride, ride an animal (of animals)
=> travel, go, move, change location, locomote
*> Somebody rides
*> Somebody rides something

Verb: ride, travel in a conveyance
=> travel, go, move, change location, locomote
OP walk, go on foot, foot, leg it, hoof, hoof it
*> Somebody rides
*> Somebody rides something

Verb: tease, cod, tantalize, bait, taunt, twit, rally, ride
=> mock, bemock, treat with contempt
*> Somebody rides somebody

Other words containing "ride":
rider, joyride, ride piggyback, ride the bench,
phencyclidine hydrochloride ...

Figure 23.7 Part of Wordnet's information for "ride." Wordnet distinguishes two noun and
three verb senses, and lists the superclass of each sense. (The user has the option of following
superclass links all the way up or down the tree.) There is also one opposite listed (OP), many
superclass relations (=>), and for each verb, a list of subcategorization frames (*>). Finally, a
few of the other entries with "ride" are listed to give an idea of the breadth of coverage. Note
that expressions like "ride piggyback" are included in addition to individual words. You can get
Wordnet by anonymous ftp from clarity .princeton . edu.

23.4 SCALING UP THE GRAMMAR

Figure 23.8 shows two examples of real-life language. These examples contrast with our simple £2
language in many ways. In tokenization, we have to deal with hyphenation (e.g., smal- lest),
unusual punctuation conventions (e.g., fnctl ( ) ) , and formatting (the unindented DESCRIP-
TION indicating a section header). Lexically, we have novel words like cmd and FD_CLOEXEC.
Syntactically, we have an odd sort of conjunction (read/write); apposition of two noun phrases
(the argument fd); the "greater than or equal to" construction, which can be treated either as
an idiom or an unusual disjunction of post-nominal modifiers; and the fact that "the same file
pointer" is the object of "shares," even though there are a dozen words between them. And then
there is the 67-word alleged sentence, which is actually a convoluted subordinate clause at best.

To make any sense at all out of these real-life examples requires much more sophistication
at every step of the language interpretation process. In this section, we extend £2 to yield £3, a
language that covers much more, but still has a long way to go.



706 Chapter 23. Practical Natural Language Processing

DESCRIPTION
fcntl() performs a variety of functions on open descriptors.
The argument fd is an open descriptor used by cmd as fol-
lows :
F_DUPFD Returns a new descriptor, which has the smal-

lest value greater than or equal to arg. It
refers to the same object as the original
descriptor, and has the same access mode
(read, write or read/write). The new
descriptor shares descriptor status flags
with fd, and if the object was a file, the
same file pointer. It is also associated
with a FD_CLOEXEC (close-on-exec) flag set to
remain open across execve(2V) system calls.

"And since I was not informed—as a matter of fact, since I did not know that there were
excess funds until we, ourselves, in that checkup after the whole thing blew up, and that
was, if you'll remember, that was the incident in which the attorney general came to me and
told me that he had seen a memo that indicated that there were no more funds."

Figure 23.8 Two examples of real-life language: one from the UNIX manual entry for f cntl,
and one from a statement made by Ronald Reagan, printed in the May 4, 1987, Roll Call.

Nominal compounds and apposition
Technical text is full of nominal compounds: strings of nouns such as "POSTSCRIPT language
code input file." The first thing we have to do to handle nominal compounds is realize that we
are dealing with nouns, not NPs. It is not the case that "the input" and "the file" combine to form
"the input the file." Rather, we have two nouns combining to form a larger unit that still can
combine with an article to form a NP. We will call the larger unit a noun5 and thus will need a
rule of the form:

Noun —+ Noun Noun
For our example compound, the parse that leads to a semantically sensible interpretation is

[Noun [NOUH [NOUH POSTSCRIPT language] code] [Noun input file]]
The hardest part about nominal compounds is specifying the semantics. Our example can be
paraphrased as "a file that is used for input and that consists of code written in a language
named POSTSCRIPT." Clearly, there is a wide variety in the meaning associated with a nominal
compound. We will use the generic relation NN to stand for any of the semantic relations that

Some grammars introduce intermediate categories between noun and NP.



Section 23.4. Scaling Up the Grammar 707

APPOSITION

Example Nominal Compound

input file
code file
language code
POSTSCRIPT language

basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes

Relation

UsedFor
ConsistsOf
Writtenln
Named

UsedFor
UsedBy
MadeOf
MadeBy
PartOf

Semantic Rule

Vx,y UsedFor(y,x) ^ NN(x,y)
Vx,y ConsistsOf(y,x) => NN(x,y)
\/x,y Writtenln(y,x) => NN(x,y)
\/x,y Named(y,x) => NN(x,y)

Vx,y UsedFor(y,x) => NN(x,y)
Vx,y UsedBy(y,x) => NN(x,y)
Vx,y MadeOf (y\x) => NN(x,y}
Vx,y MadeBy(y,x) => NN(x,y)
\/x,y PartOf (y,x) =>• NN(x,y)

Figure 23.9 Nominal compounds and the corresponding semantic relationships.

can hold between two nouns in a nominal compound. We can then write logical rules that say,
for example, that when a UsedFor relation holds between two objects, we can infer that a NN
relation holds. Some examples are shown in Figure 23.9.

We would like a noun phrase like "every file input" to get the semantic interpretation:
[V/ 3 z Input(i) A File(f) A AW(z,/)]

Given what we have already decided about representing the semantics of NPs and articles, we
can get this if we arrange for the semantics of the nominal compound "file input" to be

A/ 3 z Inputii) A File(f) A NN(i,f)
And we can get that with the rule

Noun(\y 3x sem\(x) A seni2(y) A NN(x,y)) —' Noun(sem\) Noun(sem-i)
Another complication is that two noun phrases (not two Nouns) can be concatenated together
in a construction called apposition, in which both noun phrases refer to the same thing. Two
examples are "[NP the argument] [NP fd]" and "[NP the language] [NP POSTSCRIPT]." In these
examples, the second NP is a name, but it need not always be. In "[NP David McDonald] [NP the
CMU grad] wrote about nominal compounds" we are using "the CMU grad" to distinguish this
David McDonald from the other one.6 A simplified rule for apposition is

NP([qx sem\ A sem2]) —> NP([qx sem\]) NP([qxsem2])

Adjective Phrases
In £2, adjectives were only allowed as complements to a verb, as in "the wumpus is smelly"
But of course adjectives also appear as modifiers before a noun, as in "a smelly wumpus." The
semantics of a phrase like this can be formed by a conjunction of the semantics contributed by
the adjective and by the noun:

3 w Smelly(w) A Wumpus(w)
6 This is called a restrictive apposition because it restricts the set of possible references. Nonrestrictive appositions just
add new information. They are often set off by commas or dashes, as in "Tarzan, lord of the jungle."



708 Chapter 23. Practical Natural Language Processing

This is called intersective semantics, because the meaning of "smelly wumpus" is the intersection
of smelly things and things that are wumpuses. Both nouns and adjectives are represented by
predicates that define categories; this was the first scheme for representing categories shown in
Section 8.4. If all adjectives had intersective semantics, it would be easy to handle them. We
would add a rule for Noun, saying it can be composed of an Adjective and another Noun:

Noun(Xx sem\(x) A seni2(x)) —> Adjective(sem\) Noun(sem-i)
Unfortunately, the semantic relation between adjective and noun is often more complicated than
just intersection. For example:

• A "red book" has a red cover, but not red pages or lettering. A "red pen" has red ink or a
red body. In general, color adjectives refer to a major, salient, visible part of the object.

• "Red hair" is orangish, not red. This implies that the modification is dependent on both
the noun and the adjective.

• A "red herring" is an irrelevant distraction, not a fish nor something red. In this case, the
phrase has an idiomatic meaning that is completely independent of its parts.

• A "small moon" is bigger than a "large molecule" and is clearly not the intersection of
small things and things that are moons.

• A "mere child" is the same as a child: you cannot take a group of children and separate
them into the children and the mere children. The adjective "mere" refers to the speaker's
attitude about the noun, and not to actual properties of the noun at all.

• In "alleged murderer," the adjective again says something about the attitude of some
person (not necessarily the speaker), but the phrase makes no commitment as to whether
the referent actually is a murderer.

• "Real leather" is no different from "leather," but the adjective is used when the listener
might expect artificial leather.

• A "fake gun" is not a gun at all. Its appearance is similar to a gun's, but it lacks the
functional properties.

These kinds of semantic relations can be handled by reifying the categories that were formerly
represented as predicates. This is the second scheme for representing categories in Section 8.4.
For example, instead of the predicate Gun, we will use the object Guns to represent the class of all
guns. Then "a gun" is represented by 3 g (g 6 Guns) and "a fake gun" is 3 g (g G Fake(Guns).

Determiners
In Chapter 22, we showed how articles such as "a" and "the" can be part of noun phrases.

DETERMINER Articles are just one type of the more general class of determiner, which we abbreviate as Det.
Determiners can become quite complicated, as in "[Det my brother's neighbor's] dog" and "[oet
all but three of her many] good friends." For our £3 language, we allow only one new kind of
determiner, a number, as in "three dogs." We will use the quasi-logical form [3* Dog(x)] to
represent this. This gives us the following grammar rules:

Det(q) —> Article(q)
Det(q) —<• Number(q)
NP([qx noun(x)]) —*• Det(q) Noun(noun)



Section 23.4. Scaling Up the Grammar 709

So far, the rules are simple, and the mapping from strings to quasi-logical form is easy. The hard
part is translating from quasi-logical form to logical form. Here are two examples of the logical
form we would like to end up with:

Three women carried a piano.
3 s Cardinality(s) = 3 A V,w ((w £ s =>• Woman(w))

A 3/7 Piano(p)/\3e (e £ Carry\(s,p,Past)))
(There is a set of 3 women; this set carried the piano.)

Three women carried a baby.
3 s Cardinality(s) = 3 A V w ((w G s =>• Woman(w))

A 3£ Baby(b) A 3e (e <E Carry2(w,p,Past)))
(There is a set of 3 women; each woman in the set carried a baby.)

These examples are ambiguous. In the most likely interpretations, it is the set of women, s,
who are carrying the piano together in the first example, whereas in the second example, each
woman is separately carrying a different baby. The subscripts on Carry indicate different senses.
To account for these two different interpretations, we will have to make the rule for translating
[3 w Woman(w)] capable of equating either the variable denoting the set (s) or the variable
denoting the elements of the set (w) with the variable representing the subject of the verb phrase.

Noun phrases revisited
Now we look at the rules for noun phrases. The rule for pronouns is unchanged from Chapter 22,
and the old rule for Article plus Noun could be updated simply by changing Article to Del and
including case information and agreement in person and number, yielding the following rule:

NP(case, Person(3), number, [qx sem(x)]) —> Det(number, q) Noun(number, sem)
We stick to the convention that the semantics is always the last argument. The case variable
is unbound, indicating that the NP can be used in either the subjective or objective case. The
number variable can take on the values Singular or Plural, and the rule says that the Del and Noun
must have the same number. For example, "a dog" and "those dogs" are grammatical because
they agree in number, but "a dogs" and "those dog" are ungrammatical because they disagree.
Note that some determiners (like "the") and some nouns (like "sheep") can be either singular or
plural.

Besides playing a role inside the noun phrase, the number variable is also important
externally: in the S —* NP VP rule, the subject noun phrase must agree with the verb phrase
in number and person. All nouns are in the third person, which we have denoted Person(3).
Pronouns have more variety; the pronoun "you," for example, is in the second person and "I" is in
the third. Verbs are also marked for person and number. For example, the verb "am" is Singular
and Person(l), and therefore "I am" is grammatical, while "you am" is not. Here is a rule that
enforces subject/verb agreement:

S(rel(obj)) —> NP(Subject, person, number, obj) VP(person, number, rel)
It is also possible to form a noun phrase from a noun with no determiner. There are several ways
to do this. One is with a name, such as "John" or "Berkeley." There are several choices for the



710 Chapter 23. Practical Natural Language Processing

semantics of names. The simplest choice is to represent "John" with the constant John. Then
the representation of "John slept" is 3 e e £ Sleep(John,Past). But this simple approach does
not work in a world with more than one thing called John. A better representation is therefore
3 e,x e e Sleep([3! x Name(x) = John], Past). Here are rules that derive that representation:

NP(case,Person($), number, [ 3 l x Name(x) = name]) — Name(number,name)
Name(Singular, John) — John

A noun also needs no determiner if it is a mass noun (e.g., "water") or a generic plural (e.g.,
"Dogs like bones"). We leave these rules as exercises.

Clausal complements
In £2, all the verbs took only noun phrases and prepositional phrases as complements. But
some verbs accept clauses (i.e., sentences or certain types of verb phrases) as complements. For
example, in "I believe [he has left]," the object of "believe" is a sentence, and in "I want [to
go there]," the object of want is an infinitive verb phrase. We can handle this with the same
subcategorization mechanism we have been using (here shown without the other augmentations):

VP(subcat) -> VP([S\subcat}) S
VP(subcat) -^ VP([VP\subcat]) VP
Verb([S]) -+ believe
Verb([VP]) — want

GAP

FILLER

LONG-DISTANCE
DEPENDENCY

Relative clauses
The grammar of £2 allows relative clauses such as "the person [that saw me]," in which the
relative clause consists of the word "that" followed by a VP, and the interpretation is that the
head noun phrase (the person) is the subject of the embedded VP. In English, it is also possible
to have relative clauses such as "the person [that I saw u]," in which a sentence follows the word
"that," but the sentence is missing an object. The u symbol, which we call a gap7 indicates the
place where the head noun phrase (the person) logically would appear to complete the sentence.
We say that the head noun phrase is the filler of the gap. In this example, the gap is in the direct
object position, but it could be nested farther into the relative clause. For example, it could be
the object of a preposition (e.g., "the person [that I looked [PP at u]]") or the object of a deeply
nested clause:

the person [that [5 you said [5 you thought [s I gave the book to u]]]]
So far, all the syntactic relationships we have seen have been at a single level in the parse tree.
The filler-gap relationship is called a long-distance dependency because it reaches down a
potentially unbounded number of nodes into the parse tree. The subscripts (i) on parse nodes are
used to show that there is an identity relationship—that the recipient of the book giving is the
same as "the person" that is the head noun phrase:

[the person], [that [s you said [s you thought [s I gave the book to u,]]]]
7 The gap is called a trace in some theories.



Section 23.4. Scaling Up the Grammar 711

To represent filler-gap relationships, we augment most of the category predicates with a gap
argument. This argument says what is missing from the phrase. For example, the sentence "I
saw him" has no gaps, which we represent as S(Gap(None)). The phrases "usaw him" and "I
saw u" are both represented as S(Gap(NP)).

To define relative clauses, all we have to do is say that an NP can be modified by following
it with a relative clause, and that a relative clause consists of a relative pronoun followed by a
sentence that contains an NP gap. This allows us to handle both "the person that I saw u" and
"the person that usaw him." Here are the rules with all other augmentations removed:

NP(gap) -> NP(gap) RelClause
RelClause -> Pronoun(Relative) S(Gap(NP))}

We also have to say that the empty string, e, comprises an NP with an NP gap in it:
NP(Gap(NP)) — 6

The rest of the grammar has to cooperate by passing the gap argument along; for example:
S(Gap(Concat(g\,g2))) — NP(Gap(g{)) VP(Gap(g2))

Here Concat(g\,g2) means g\ and §2 together. If g\ and g2 are both Gap(None), then the S as a
whole has no gap. But if, say, gi is Gap(NP) and g2 is Gap(None}, then the S has an NP gap.

Questions
In English, there are two main types of questions:

0 Yes/No: Did you see that?
<> Wh (gapped): What did you see u ?

A yes/no question, as the name implies, expects a yes or no as answer. It is just like a declarative
sentence, except that it has an auxiliary verb that appears before the subject NP. We call this

PNUvBERsioNUX subject-aux inversion and use the category Sinv to denote a sentence that has it. If there are
several auxiliary verbs, only the first one comes before the subject: "Should you have been seeing
that?" Thus, the grammar rules covering simple yes/no sentences are as follows:

S —* Question
Question —> Sinv
Sinv — Aux NP VP

Wh questions (pronounced "double-U H") expect a noun phrase as an answer. In the simplest
case, they start with an interrogative pronoun (who, what, when, where, why, how), which is
followed by a gapped Sinv:

Question — Pronoun(Interrogative) Sinv(Gap(NP))
There are also some less common question constructions, as these examples show:

0 Echo: You saw what!
0 Raising intonation: You see something?
<C> Yes/No with "be": Is it safe?
0 Wh subject: What is the frequency, Kenneth?



712 Chapter 23. Practical Natural Language Processing

0 Wh NP: [What book] did you read u ?
0 Wh PP: [With what] did you see it u ?
<C> Wh PP: [Whence] did he come u ?

Echo questions can also be answered with a noun phrase, but they are normally used rhetorically
to express the speaker's amazement at what was just said. For example, "I saw a 30-foot-high
purple cow" is answered by "You saw whatT Sentences with normal declarative structure can
be made into questions with the use of raising intonation at the end of the sentence. This is
uncommon in written text. The verb "to be" is the only verb that can stand by itself (without
another verb) in an inverted yes/no question. That is, we can say "Is it safe?" but not "Seems it
safe?" or "Did they it?" In some dialects, "have" can be used, as in "Have you the time?" or
"Have you any wool?" Finally, it is possible to have an Sinv with a prepositional phrase gap by
prefacing it with a prepositional wh phrase like "from where" or "whence."

Handling agrammatical strings
No matter how thorough the grammar, there will always be strings that fall outside it. It doesn't
much matter if this happens because the string is a mistake or because the grammar is missing
something. Either way, the speaker is trying to communicate something and the system must
process it in some way. Thus, it is the hearer's job to interpret a string somehow, even if it is
not completely grammatical. For example, if a character in a mystery novel suddenly keels over
but manages to gasp "Poison—Butler—Martini," most people would be able to come up with
a good interpretation of these dying words: the butler is the agent of the poisoning action of
which the speaker is the victim and the martini is the instrument. We arrive at this interpretation
by considering the possible semantic relations that could link each component together, and
choosing the best one. It would not do to say "I'm sorry, that's not a grammatical sentence; could
you please rephrase it?"

23.5 AMBIGUITY

In this chapter, we have extended the range of syntactic constructions and semantic representations
that we can handle. This helps us cover a wider range of language, but it also makes the job
of disambiguation harder, because there are more possibilities to choose from. Finding the
right interpretation involves reasoning with uncertainty using the evidence provided by lexical,
syntactic, semantic, and pragmatic sources.

Historically, most approaches to the disambiguation problem have been based on logical
inference with no quantitative measures of certainty. In the last few years, the trend has been
toward quantitative probabilistic models such as belief networks and hidden Markov models.

Belief networks provide an answer to one hard part of the problem—how to combine
evidence from different sources. But we are still left with two more problems: deciding what
evidence to put into the network, and deciding what to do with the answers that come back. We



Section 23.5. Ambiguity 713

• -ftig''' start by looking at several sources of evidence. It is important to distinguish between sources of
' 1S* evidence and sources of ambiguity. It is quite possible that a syntactic ambiguity is resolved by

semantic evidence. For example, in "I ate spaghetti and meatballs and salad," there is a syntactic
ambiguity (is it [NP spaghetti and meatballs] or [NP meatballs and salad]?) that is resolved by
nonsyntactic evidence: that spaghetti and meatballs is a common dish, whereas meatballs and
salad is not.

Syntactic evidence
Modifiers such as adverbs and prepositional phrases cause a lot of ambiguity, because they can
attach to several different heads. For example, in

Lee asked Kim to tell Toby to leave on Saturday.
the adverb "Saturday" can modify the asking, the telling, or the leaving. Psychological studies
show that in the absence of other evidence, there is a preference to attach such modifiers to the
most recent constituent (in this case, the leaving). So this is a syntactic ambiguity that can be
resolved by syntactic evidence.

Lexical evidence
Many words are ambiguous, but not all senses of a word are equally likely. When asked what
the word "pen" means, most people will say first that it is a writing instrument. However, it has
two other fairly common senses meaning an enclosure for animals and a penitentiary. The senses
meaning a female swan and the internal shell of a squid are more obscure, known mostly to
specialists in biology (or specialists in ambiguity). As another example, consider the following:

Lee positioned the dress on the rack.
Kim wanted the dress on the rack.

Here "on the rack" is best interpreted as modifying the verb in the first sentence and the dress in
the second. That is, Lee is putting the dress on the rack (not moving a dress that is on the rack),
and Kim wants to have a dress that is on the rack (and does not want the dress to be on the rack).
In both cases, either interpretation is semantically plausible. So this is a syntactic ambiguity that
is resolved by lexical evidence—by the preference of the verb for one subcategorization.

Semantic evidence
The a priori probability of a word sense is usually less important than the conditional probability
in a given context. Consider the following:

ball, diamond, bat, base
Even without any syntactic structure to speak of, it is easy to pick out the baseball senses of
each of these words as being the intended interpretation. This is true even though the a priori
probability for "diamond" favors the jewel interpretation. So this is a case of lexical ambiguity
resolved by semantic evidence.



714 Chapter 23. Practical Natural Language Processing

As another example, here are five sentences, along with the most likely interpretation of the
relation represented by the word "with." Each of the sentences has a lexical ambiguity ("with"
has several senses) and a syntactic ambiguity (the PP can attach to either "spaghetti" or "ate"),
but each is resolved by semantic evidence.

Sentence
I ate spaghetti with meatballs.
I ate spaghetti with salad.
I ate spaghetti with abandon.
I ate spaghetti with a fork.
I ate spaghetti with a friend.

Relation
(ingredient of spaghetti)
(side dish of spaghetti)
(manner of eating)
(instrument of eating)
(accompanier of eating)

It is certainly possible to use meatballs as a utensil with which to eat spaghetti, but it is unlikely
(not to mention messy), so we prefer interpretations that refer to more likely events. Of course,
likeliness of events or situations is not the only factor. In Chapter 22, we saw that the right
interpretation of "I am not a crook" is not the most likely situation. It is perfectly coherent to
use language to talk about unlikely or even impossible situations: "I ran a mile in one minute" or
"This square is a triangle."

Metonymy
METONYMY A metonymy is a figure of speech in which one object is used to stand for another. When we

hear "Chrysler announced a new model," we do not interpret it as saying that companies can talk;
rather we understand that a spokesperson representing the company made the announcement.
Metonymy is common in many kinds of text, and often goes unnoticed by human readers.
Unfortunately, our grammar as it is written is not so facile. To handle the semantics of metonymy
properly, we need to introduce a whole new level of ambiguity. We do this by providing two
objects for the semantic interpretation of every phrase in the sentence: one for the object that
the phrase literally refers to (Chrysler), and one for the metonymic reference (the spokesperson).
We then have to say that there is a relation between the two. In our current grammar, "Chrysler
announced" gets interpreted as

3 x, e Chrysler(x) A e € Announce(x, Past)

We need to change that to

3m,x,e Chrysler(x) A Metonymy(m, x) A e E Announce(m, Past)

This gives a representation for the problem, but not a solution. The next step is to define what
kinds of metonymy can occur, that is, to define constraints on the Metonymy relation. The
simplest case is when there is no metonymy at all—the literal object x and the metonymic object
m are identical:

V m, x (m = x) =^ Metonymy(m, x)

For the Chrysler example, a reasonable generalization is that an organization can be used to stand
for a spokesperson of that organization:

V m, x Organization(x) A Spokesperson(m, x) => Metonymy(m, x)



Section 23.6. Discourse Understanding 715

Other metonymies include the author for the works (I read Shakespeare) or more generally the
producer for the product (I drive a Honda) and the part for the whole (The Red Sox need a strong
arm). Other examples of metonymy, such as "The ham sandwich on Table 4 wants another beer,"
are somewhat harder to classify.

Metaphor
METAPHOR A metaphor is a figure of speech in which a phrase with one literal meaning is used to suggest

a different meaning by way of an analogy. Most people think of metaphor as a tool used by
poets that does not play a large role in everyday text. However, there are a number of basic
metaphors that are so common that we do not even recognize them as such. One such metaphor
is the idea that more is up. This metaphor allows us to say that prices have risen, climbed, or
skyrocketed, that the temperature has dipped or fallen, that one's confidence has plummeted, or
that a celebrity's popularity has jumped or soared.

There are two ways to approach metaphors like this. One is to compile all knowledge of
the metaphor into the lexicon—to add new senses of the words rise, fall, climb, and so on, that
describe them as dealing with quantities on any scale rather than just altitude. This approach
suffices for many applications, but it does not capture the generative character of the metaphor
that allows humans to use new instances such as "nose-dive" without fear of misunderstanding.
The second approach is to include explicit knowledge of common metaphors and use them to
interpret new uses as they are read. For example, suppose the system knows the "more is up"
metaphor. That is, it knows that logical expressions that refer to a point on a vertical scale can be
interpreted as being about corresponding points on a quantity scale. Then the expression "sales
are high" would get a literal interpretation along the lines of Altitude(Sales, High), which could
be interpreted metaphorically as Quantity(Sales,Much).

23.6 DISCOURSE UNDERSTANDING

DISCOURSE In the technical sense, a discourse or text is any string of language, usually one that is more than
TEXT one sentence long. Novels, weather reports, textbooks, conversations, and almost all nontrivial

uses of language are discourses. So far we have largely ignored the problems of discourse,
preferring to dissect language into individual sentences that can be studied in vitro. In this
section, we study sentences in their native habitat.

To produce discourse, a speaker must go through the standard steps of intention, genera-
tion, and synthesis. Discourse understanding includes perception, analysis (and thus syntactic,
semantic, and pragmatic interpretation), disambiguation, and incorporation. The hearer's state of
knowledge plays a crucial part in arriving at an understanding—two agents with different knowl-
edge may well understand the same text differently. Discourse understanding can be modelled
crudely by the following equation:

KB' = DlSCOURSE-UNDERSTANDING^etf,/^)



716 Chapter 23. Practical Natural Language Processing

where KB is the hearer's knowledge base, and KB' is the hearer's knowledge base after incorpo-
rating the text. The difference between KB and KB' is the hearer's understanding of the text. At
least six types of knowledge come into play in arriving at an understanding:

1. General knowledge about the world.
2. General knowledge about the structure of coherent discourse.
3. General knowledge about syntax and semantics.
4. Specific knowledge about the situation being discussed.
5. Specific knowledge about the beliefs of the characters.
6. Specific knowledge about the beliefs of the speaker.

Let us look at an example discourse:

John went to a fancy restaurant.
He was pleased and gave the waiter a big tip.
He spent $50.

A proper understanding of this discourse would include the fact that John ate a fancy meal at the
restaurant, that the waiter was employed by the restaurant, and that John paid some of the $50 to
the waiter and most of it to the restaurant. We'll call this understanding (a). All the inferences
seem obvious, but to get them right we need to know a lot and apply the knowledge in just the
right way. To understand why this is hard, we give an alternative understanding (b):

John ducked into a fancy restaurant to ask directions. He was pleased that they were
able to help him. Back on the street, John bumped into a man that he had met at
a party the other night. All John could remember was that the man was a waiter at
another restaurant and that he was interested in getting a new radio. John gave the
man a tip that there was a great sale going on at the stereo store down the block. The
man spent $50 on a radio.

This is a situation that could conceivably be described by our three-sentence discourse. It is
far-fetched for two reasons: First, the situation in (a) has a higher a priori probability—people
go to restaurants to eat more often than to ask for directions. Second, the situation in (a) is more
probable given the text. A rational speaker would not expect a hearer to extract understanding
(b) from the discourse. To see why (a) is better, let us look at it piece by piece:

• John ate a fancy meal at the restaurant.
To get this requires going beyond disambiguation and into incorporation. There is certainly
no part of the discourse that mentions the eating explicitly, but it still should be part of
the updated knowledge base that the hearer comes away with. To get it, the hearer has to
know that restaurants serve meals, and thus that a reason for going to a restaurant is to eat.
The hearer also knows that fancy restaurants serve fancy meals, and that $50 is a typical
price for such a meal, and that paying and leaving a tip are typically done after eating a
restaurant meal. Besides this general knowledge about the world, it also helps if the hearer
knows that discourses are commonly structured so that they describe some steps of a plan
for a character, but leave out steps that can be easily inferred from the other steps. From
this, the hearer can infer from the first sentence that John has adopted the eat-at-restaurant
plan, and that the eat-meal step probably occurred even if it was not mentioned.



Section 23.6. Discourse Understanding 717

The waiter was employed by the restaurant.
Again, thi s is a mixture of general world knowledge—that restaurants employ waiters—and
knowledge about discourse conventions—that the definite article "the" is used for objects
that have been mentioned before, or at least have been implicitly alluded to; in this case,
by the eat-at-restaurant plan.
John paid some of the $50 to the waiter and most of it to the restaurant.
This is another example of identifying a step in a currently active plan that matches a
sentence in the text, and unifying them to arrive at the interpretation that "He" is John, and
that the recipients of the deal are the restaurant and waiter.

The structure of coherent discourse
In logic, conjunction is commutative, so there is no difference between P A Q A R and R A P A Q.
But this is certainly not true of natural languages. Consider the following two discourses, which
contain the same sentences in different order:

SEGMENTS

COHERENCE
RELATION

Discourse (A)
I visited Paris.
I bought you some expensive cologne.
Then I flew home.
I went to Kmart.
I bought some underwear.

Discourse (B)
I visited Paris.
Then I flew home.
I went to Kmart.
I bought you some expensive cologne.
I bought some underwear.

In (A), the preferred interpretation is that the cologne comes from Paris, whereas in (B) it comes
from Kmart. Both discourses have a sequential structure in which the sentences that come later in
the discourse also occur later in time. But there is more to the understanding of these discourses
than just temporal ordering. In (A), we understand that a (or the) reason for going to Kmart was
to buy the underwear. Similarly, we understand that visiting Paris enabled the speaker to buy
cologne there, but that was not necessarily the purpose of the trip.

We need a theory of how discourses are put together. We will say that discourses are
composed of segments, where a segment can be a clause, a complete sentence, or a group of
several consecutive sentences. There are several theories built on the idea that each segment of
the discourse is related to the previous one by a coherence relation that determines the role that
each segment plays in the unfolding discourse. For example, the coherence relation between the
first two sentences of (A) is one of enablement. Coherence relations serve to bind the discourse
together. A speaker knows that she can extend a discourse by adding a sentence that stands in a
coherence relation to the existing text, and the hearer knows that in addition to interpreting and
disambiguating each sentence, he is supposed to recover the coherence relations that bind the
segments together. This means that the hearer of a discourse is doing more work than the hearer
in Chapter 22, who only had to worry about interpreting and disambiguating a single sentence.
But it also means that the hearer of a discourse has some help, because the coherence relations
constrain the possible meanings of each sentence. So even though the individual sentences may
have many possible meanings, the discourse as a whole will have few meanings (preferably one).



718 Chapter 23. Practical Natural Language Processing

We present the theory by Hobbs (1990), which starts with the observation that the speaker
does four things in putting together a discourse:

• The speaker wants to convey a message.
• The speaker has a motivation or goal in doing this.
• The speaker wants to make it easy for the hearer to understand.
• The speaker must link the new information to what the hearer already knows.

A sentence is a coherent extension of a discourse if it can be interpreted by the hearer as being
in service of one of these four points. Let us look at some examples of each of the four as they
appear in the following discourse:

(1) A funny thing happened yesterday.
(2) John went to a fancy restaurant.
(3) He ordered the duck.
(4) The bill came to $50.
(5) John got a shock when the waiter came to collect the bill.
(6) He realized he didn't have a cent on him.
(7) He had left his wallet at home.
(8) The waiter said it was all right to pay later.
(9) He was very embarrassed by his forgetfulness.

Sentence (1) describes what the speaker wants to talk about—a funny thing. It is a meta-comment,
an evaluation by the speaker of what the coming message holds. Once the speaker has made it
clear that she has the goal of describing this, it is coherent to add (2), which starts to describe
the funny thing. The coherence relation between ( 1 ) and (2) is that uttering (2) is part of the
speaker's plan that was implicitly alluded to by (1). More formally, we can say that two adjacent
discourse segments 5, and S/ stand in the evaluation coherence relation, if from S1, we can infer
that Sj is a step in the speaker's plan for achieving some discourse goal.

Sentences (3) and (4) are coherent because they can be interpreted as steps in John's plan
of eating a meal. Sentences (2) and (3) stand in the enablement coherence relation, and (3)
and (4) are in the causal relation. Both relations arise from the speaker's goal of conveying a
message about the world. Thus, we see that understanding discourse involves two levels of plan
recognition—recognizing the speaker's plans and the characters' plans.

Sentences (5) and (6) overlap in their content: the shock is the realization, but it is described
in a different way. We say that (5) and (6) stand in the elaboration relation. This is an example
of the speaker making it easier for the hearer by lessening the amount of inference the hearer
has to make. Sentence (6) could well have been left out of the discourse, but then the jump from
(5) to (7) would have been a little harder to make. Note that once we recognize that (6) is an
elaboration of (5), we can infer that "he" in (6) refers to John. Without the coherence relation,
we might be tempted to assume that "he" refers to the waiter, who was mentioned more recently.

The relation between (6) and (7) is one of explanation: the reason John didn't have a cent
on him is because he left his wallet at home. This is one case where a sentence that appears
later in the discourse actually occurs earlier in the real world. This is an example of the speaker
linking a new explanation to the hearer's existing knowledge.

Sentence (9) stands in a causal relation with the discourse segment comprised of (5) and
(6). Recognizing this allows us to interpret "he" in (9) as John, not the waiter.



Section 23.7. Summary 719

There have been several catalogs of coherence relations. Mann and Thompson (1983)
give a more elaborate one that includes solutionhood, evidence, justification, motivation, reason,
sequence, enablement, elaboration, restatement, condition, circumstance, cause, concession,
background, and thesis-antithesis.

The theory of Grosz and Sidner (1986) also accounts for where the speaker and hearer's
ATTENTION attention is focused during the discourse. Their theory includes a pushdown stack of focus

spaces. Certain utterances cause the focus to shift by pushing or popping elements off the stack.
For example, in Discourse (A), the sentence "I visited Paris" causes a new focus to be pushed
on the stack. Within that focus, the speaker can use definite descriptions to refer to, say, "the
museums" or "the cafes." The sentence "Then I flew home" would cause the focus on Paris to be
popped from the stack; from that point on, the speaker would need to use an indefinite description
such as "the cafe I went to in Paris" rather than a simple definite description. There is also a more
specific notion of local focus that affects the interpretation of pronouns.

23.7 SUMMARY

In this chapter, we have seen what can be done with state-of-the-art natural language processing,
and what is involved in getting there. The main points were as follows:

• Natural language processing techniques make it practical to develop programs that make
queries to a database, extract information from texts, retrieve relevant documents from a
collection, translate from one language to another, or recognize spoken words. In all these
areas, there exist programs that are useful, but there are no programs that do a thorough
job in an open-ended domain.

• It is possible to parse sentences efficiently using an algorithm that is careful to save its
work, avoid unnecessary work, and pack the results into a forest rather than an exhaustive
list of trees.

• In recent years, there has been a shift of emphasis from the grammar to the lexicon.
Building a lexicon is a difficult task.

• Natural languages have a huge variety of syntactic forms. Nobody has yet captured them
all, but we can extend the simple grammar of the last chapter to give more complete
coverage of English sentences.

• Choosing the right interpretation of a sentence in the situation in which it was uttered
requires evidence from many sources, including syntactic, lexical, and semantic.

• Most of the interesting language comes in connected discourse rather than in isolated
sentences. Coherence relations constrain how a discourse is put together, and thus constrain
the possible interpretations it has.



720 Chapter 23. Practical Natural Language Processing

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Locke and Booth (1955) present the very early protohistory of machine translation, and capture the
enthusiasm of the early days. Later disillusionment with machine translation is described by Bar-
Hillel (1960); Lindsay (1963) also points out some of the obstacles to machine translation having
to do with the interaction between syntax and semantics, and the need for world knowledge.
Quinlan and O'Brien (1992) describe TAUM-METEO. Voorhees (1993) reports some recent
applications based on Wordnet.

One problem with the prototype natural language interfaces we describe—LUNAR (Woods,
1972), CHAT (Pereira, 1983), and TEAM (Grosz et al, 1987), is that they are necessarily incom-
plete. In the mid-1980s, several companies invested the effort to build serious natural language
database access programs. Artificial Intelligence Corporation's INTELLECT (Harris, 1984) is one
of the best known. With a decade of tuning it performs better than a prototype, but still has
the difficult problem of revealing to the user its range of competence. The NL-MENU system
(Tennant et al., 1983) mitigates this problem by using a mode of interaction in which the user
builds a query by selecting words and phrases from a series of on-screen menus instead of typing.
In other words, the system reveals what it is capable of accepting rather than attempting to handle
anything the user throws at it.

The fundamental advances in efficient, general parsing methods were made in the late
1960s, with a few twists since then (Kasami, 1965; Younger, 1967; Barley, 1970; Graham et al.,
1980). Maxwell and Kaplan (1993) show how chart parsing with non-context-free grammars can
be made efficient in the average case. Church and Patil (1982) introduce some refinements in the
resolution of syntactic ambiguity. A number of researchers have attempted to use quantitative
measures of the goodness of syntactic and semantic fit in parsing and semantic interpretation.
This can either be done within a basically deductive framework (Hobbs et al., 1993) or within
the framework of Bayesian belief network reasoning (Charniak and Goldman, 1992; Wu, 1993).

Nunberg (1979) gives an outline of a computational model of metonymy. Lakoff and John-
son (1980) give an engaging analysis and catalog of common metaphors in English. Ortony (1979)
presents a collection of articles on metaphor; Helman (1988) focuses on analogical reasoning, but
also contains a number of articles about the phenomenon of metaphor. Martin (1990) presents a
computational approach to metaphor interpretation.

Kukich (1992) surveys the literature on spelling correction.
Hobbs (1990) outlines the theory of discourse coherence on which this chapter's exposition

is based. Mann and Thompson (1983) give a similar catalog of coherence relations. Grimes
(1975) lays the groundwork for much of this work. Grosz and Sidner (1986) present a theory of
discourse coherence based on shifting focus of attention. Joshi, Webber, and Sag (1981) collect
important early work in the field. Webber presents a model of the interacting constraints of
syntax and discourse on what can be said at any point in the discourse (1983) and of the way verb
tense interacts with discourse (1988). The idea of tracking the characters' goals and plans as a
means of understanding stories was first studied by Wilensky (Wilensky, 1983). A plan-based
model of speech acts was suggested first by Cohen and Perrault (1979). Cohen, Morgan, and
Pollack (1990) collect more recent work in this area.



Section 23.7. Summary 721

EXERCISES

23.1 Read the following text once for understanding and remember as much of it as you can.
There will be a test later.

The procedure is actually quite simple. First you arrange things into different groups. Of
course, one pile may be sufficient depending on how much there is to do. If you have to go
somewhere else due to lack of facilities that is the next step, otherwise you are pretty well
set. It is important not to overdo things. That is, it is better to do too few things at once
than too many. In the short run this may not seem important but complications can easily
arise. A mistake is expensive as well. At first the whole procedure will seem complicated.
Soon, however, it will become just another facet of life. It is difficult to foresee any end to the
necessity for this task in the immediate future, but then one can never tell. After the procedure
is completed one arranges the material into different groups again. Then they can be put into
their appropriate places. Eventually they will be used once more and the whole cycle will
have to be repeated. However, this is part of life.

23.2 Describe how a simple pseudo-natural-language (template-based) explanation facility can
be built for a vanilla, backward-chaining, logical reasoning system. The explanation facility
should be written as a program WHY that generates an explanation after ASK has answered a
question from the user. The explanation should consist of a description of the premises and
inference method used to reach the conclusion; the user should be able to further query the
premises to see how they were derived.

23.3 Without looking back at Exercise 23.1, answer the following questions:

• What are the four steps that are mentioned?
• What step is left out?
• What is "the material" that is mentioned in the text?
• What kind of mistake would be expensive?
• Is it better to do too few or too many?
• Why?

23.4 Open any book or magazine to a random page and write down the first 20 nominal
compounds you find. Characterize the semantic relations (e.g., made-of, used-for, etc.).

23.5 Open any book or magazine to a random page and copy down the first 10 sentences. How
many of them are in £3 ? Show the parses of the sentences that are, and explain what went wrong
for the sentences that are not.

23.6 Work out the grammar rules for possessive noun phrases. There are three parts to this, (a)
Write a rule of the form Del —> NP(Case(Possessive)). (b) Make sure this rule combines with
the NP —»• Det Noun rule to produce the right semantics, (c) Write a rule that builds a possessive



722 Chapter 23. Practical Natural Language Processing

NP using the 's ending. You will first have to decide if 's attaches to a noun or NP. To help you
do this, consider at least the following examples:

the Queen of England's speech
the attorney general's decision
the man I saw yesterday's,name
the man and woman's house
Russell and Norvig's text

23.7 Collect some examples of time expressions, such as "two o'clock," "midnight," and
"12:46." Also think up some examples that are ungrammatical, such as "thirteen o'clock" or
"half past two fifteen." Write a grammar for the time language.

23.8 In this exercise, you will write rules for noun phrases consisting of a noun with no
determiner. Consider these examples:

a. Dogs like bones.
b. I ate rice.
c. Gold is valuable.
d. I saw some gold in 2,2.
e. I saw gold in 2,2.

Write down the semantics for each of these sentences. Then use that to write down lexical entries
for "gold" and "rice," and to write a rule (or rules) of the form NP -^ Noun.

23.9 We said that 3 e, x e E Sleep(John, Past) A Name(x) = John was a plausible interpretation
for "John slept." But it is not quite right, because it blurs the distinction between "John slept"
and "Some person named John slept." The point is that the former sentence presupposes that
speaker and hearer agree on which John is being talked about. Write grammar and lexical rules
that will distinguish the two examples.

23.10 Write grammar rules for the category Adjp, or adjective phrase, using reified categories.
Show how to derive 3 g (g £ Fake(Guns) as the semantics of "a fake gun." An adjective phrase
can be either a lone adjective (big), a conjunction (big and dumb), or an adjective phrase modified
by an adjective or adverb (light green or very dumb).

23.11 One way to define the task of spelling correction is this: given a misspelled word and a
dictionary of correctly spelled words, find the word(s) in the dictionary that can be transformed
into the misspelled word in one insertion, deletion, substitution, or transposition. Given a
dictionary of w words and a misspelled word that is k letters long, give the average case time
complexity of spelling correction for a dictionary implemented as (a) a hash table, (b) a b-tree,
and (c) a trie.

23.12 We forgot to mention that the title of the text in Exercise 23.1 is "Washing Clothes." Go
back and reread the text, and answer the questions in Exercise 23.3. Did you do better this time?
Bransford and Johnson (1973) used this text in a better-controlled experiment and found that the
title helped significantly. What does this tell you about discourse comprehension?



Section 23.7. Summary 723

23.13 Implement a version of the chart-parsing algorithm that returns a packed tree of all edges
that span the entire input.

23.14 Implement a version of the chart-parsing algorithm that returns a packed tree for the
longest leftmost edge, and then if that edge does not span the whole input, continues the parse
from the end of that edge. Show why you will need to call PREDICT before continuing. The final
result is a list of packed trees such that the list as a whole spans the input.



24 PERCEPTION

In which we connect the computer to the raw, unwashed world.

24.1 INTRODUCTION

Perception provides agents with information about the world they inhabit. Perception is initiated
SENSORS by sensors. A sensor is anything that can change the computational state of the agent in response

to a change in the state of the world. It could be as simple as a one-bit sensor that detects whether
a switch is on or off, or as complex as the retina of the human eye, which contains more than a
hundred million photosensitive elements.

There are a variety of sensory modalities that are available to artificial agents. Those they
share with humans include vision, hearing, and touch. In this chapter, our focus will be on vision,
because this is by far the most useful sense for dealing with the physical world. Hearing in the
context of speech recognition is also covered briefly in Section 24.7. Touch, or tactile sensing,
is discussed in Chapter 25, where we examine its use in dextrous manipulation by robots.

We will not have all that much to say about the design of sensors themselves. The main
focus will be on the processing of the raw information that they provide. The basic approach
taken is to first understand how sensory stimuli are created by the world, and then to ask the

l»-jSip following question: if sensory stimuli are produced in such and such a way by the world, then
I'*"S what must the world have been like to produce this particular stimulus? We can write a crude

mathematical analogue of this question. Let the sensory stimulus be S, and let W be the world
(where W will include the agent itself). If the function/ describes the way in which the world
generates sensory stimuli, then we have

S =f(W)
Now, our question is: given/ and S, what can be said about W? A straightforward approach
would try to calculate what the world is like by inverting the equation for generating the stimulus:

W=f-\S)

724



Section 24.2. Image Formation 725

MANIPULATION

NAVIGATION

OBJECT
RECOGNITION

Unfortunately,/ does not have a proper inverse. For one thing, we cannot see around corners,
so we cannot recover all aspects of the current world state from the stimulus. Moreover, even
the part we can see is enormously ambiguous. A key aspect of the study of perception is to
understand what additional information can be brought to bear to resolve ambiguity.

A second, and perhaps more important, drawback of the straightforward approach is that
it is trying to solve too difficult a problem. In many cases, the agent does not need to know
everything about the world. Sometimes, just one or two predicates are needed—such as "Is there
any obstacle in front of me?" or "Is that an electrical outlet over there?"

In order to understand what sorts of processing we will need to do, let us look at some of
the possible uses for vision:

<> Manipulation: grasping, insertion, and so on, need local shape information and feedback
("getting closer, too far to the right, . . .) for motor control.

<> Navigation: finding clear paths, avoiding obstacles, and calculating one's current velocity
and orientation.

0 Object recognition: a useful skill for distinguishing between tasty mice and dangerous
carnivores; edible and inedible objects; close relations and strangers; ordinary vehicles,
Volvos. and police cars.

None of these applications requires the extraction of complete descriptions of the environment.
This chapter is organized as follows. In Section 24.2, we study the process of image

formation. We cover both the geometry of the process, which dictates where a given point
will be imaged, and the photometry of the process, which dictates how bright the point will
appear. Section 24.3 treats the basic image-processing operations commonly used in early
vision. They set the stage for later analysis that extracts the information needed for tasks such as
manipulation, navigation, and recognition. In Section 24.4, we study various cues in the image
that can be harnessed to this end, including motion, stereopsis, texture, shading, and contour.
Section 24.5 discusses the information needed for visually guided manipulation and navigation,
and Section 24.6 covers various approaches to object recognition. Finally, Section 24.7 addresses
the problem of perception in the context of speech recognition, thereby helping to pinpoint the
issues that arise in perception in general.

24.2 IMAGE FORMATION

SCENE

IMAGE

Vision works by gathering light scattered from objects in the scene and creating a 2-D image. In
order to use this image to obtain information about the scene, we have to understand the geometry
of the process.

PINHOLE CAMERA

Pinhole camera
The simplest way to form an image is to use a pinhole camera (Figure 24.1). Let P be a point
in the scene, with coordinates (X, Y, Z), and P' be its image on the image plane, with coordinates



726 Chapter 24. Perception

image
plane

Figure 24.1 Geometry of image formation in the pinhole camera.

( x , y , z ) . If/ is the distance from the pinhole O to the image plane, then by similar triangles, we
can derive the following equations:

- * _ X -y y _ -fX -/y

PERSPECTIVE
PROJECTION

VANISHING POINT

SCALED
ORTHOGRAPHIC
PROJECTION

Note that the image is inverted, both left-right and up-down, compared to the scene as indicated
in the equations by the negative signs. These equations define an image formation process known
as perspective projection.

Equivalently, we can model the perspective projection process with the projection plane
being at a distance/ in front of the pinhole. This device of imagining a projection surface in front
was first recommended to painters in the Italian Renaissance by Alberti in 1435 as a technique for
constructing geometrically accurate depictions of a three-dimensional scene. For our purposes,
the main advantage of this model is that it avoids lateral inversion and thereby eliminates the
negative signs in the perspective projection equations.

Under perspective projection, parallel lines appear to converge to a point on the horizon —
think of railway tracks. Let us see why this must be so. We know from vector calculus that an
arbitrary point P\ on the line passing through (X0, YO,ZQ) in the direction (U, V, W) is given by
(Xo + \U, Y0 + XV, ZQ + AW), with A varying between +00 and -.30. The projection of FA on the
image plane is given by

•\U , V •xvf{Q+An
As A — DC. or A — - DC , this becomes 77^ = (f'U/WJV/W) if W^O. We call p^ the vanishing
point associated with the family of straight lines with direction (U, V, W). It does not depend on
the point (X(), Y0,ZQ) through which the straight line in the scene passes, only on the direction.

If the object is relatively shallow compared to its distance from the camera, we can ap-
proximate perspective projection by scaled orthographic projection. The idea is the following.
If the depth Z of points on the object varies in some range Zo ± AZ, with AZ <C ZQ, then the



Section 24.2. Image Formation 727

perspective scaling factor fIZ can be approximated by a constant s = f/Z0. The equations for
projection from the scene coordinates (X, Y,Z) to the image plane become x = sX and y = sY.
Note that scaled orthographic projection is an approximation valid only for parts of the scene
with not much internal depth variation. It should not be used to study properties "in the large."
An example to convince you of the need for caution: under orthographic projection, parallel lines
stay parallel instead of converging to a vanishing point!

Lens systems
LENS Vertebrate eyes and real cameras use a lens. A lens is much wider than a pinhole, enabling it to

let in more light. This is paid for by the fact that not all the scene can be in sharp focus at the
same time. The image of an object at distance Z in the scene is produced at a fixed distance from
the lens Z', where the relation between Z and Z' is given by the lens equation

1 _L -Iz + z* ~]'
where/ is the focal length of the lens. Given a certain choice of image distance Z'0 between the
nodal point of the lens and the image plane, scene points with depths in a range around ZQ, where
ZQ is the corresponding object distance, will be imaged in reasonably sharp focus. This range of

DEPTH OF FIELD depths in the scene is referred to as the depth of field.
Note that because the object distance Z is typically much greater than the image distance

Z' or/, we often make the following approximation:

I _L ~ _L J_ ~ 1
~Z + Z1~Zi ^ Z7 ~ /

Thus, the image distance Z' K, f . We can therefore continue to use the pinhole camera perspective
projection equations to describe the geometry of image formation in a lens system.

In order to focus objects at different distances Z, the lens in the eye (see Figure 24.2)
changes shape, whereas the lens in a camera moves in the Z-direction.

The image plane is coated with photosensitive material:

• Silver halides on photographic film.
• Rhodopsin and variants in the retina.
• Silicon circuits in the CCD (charge-coupled device) camera. Each site in a CCD integrates

the electrons released by photon absorption for a fixed time period.

PIXELS In the eye and CCD camera, the image plane is subdivided into pixels: typically 512x512
(0.25 x 106) in the CCD camera, arranged in a rectangular grid; 120 x 106 rods and 6 x 106

cones in the eye, arranged in a hexagonal mosaic.
In both cases, we can model the signal detected in the image plane by the variation in image

brightness over time: I(x,y,t). Figure 24.3 shows a digitized image of a stapler on a desk, and
Figure 24.4 shows an array of image brightness values associated with a 12 x 12 block of pixels
extracted from the stapler image. A computer program trying to interpret the image would have
to start from such a representation.



728 Chapter 24. Perception

_^- \ Optic Nerve

Figure 24.2 Horizontal cross-section of the human eye.

Figure 24.3 A photograph of a stapler on a table. The outlined box has been magnified and
displayed in Figure 24.4.



Section 24.2. Image Formation 729

195

210

164

167

162

153

126

103

095

093

093

095

209

236

172

164

167

157

135

107

095

093

093

093

221

249

180

171

166

160

143

118

097

093

093

093

235

254

192

170

169

162

147

125

101

093

093

093

249

255

241

179

169

169

156

133

115

095

093

093

251

254

251

189

170

170

157

145

124

099

093

093

254

225

255

208

176

168

160

151

132

105

095

093

255

226

255

244

185

169

166

156

142

118

097

093

250

212

255

254

196

171

167

158

117

125

101

093

241

204

255

255

232

176

171

159

122

135

109

093

247

236

235

251

249

185

168

163

124

143

119

093

248

211

190

234

254

218

170

164

161

119

132

119

(b)

Figure 24.4 (a) Magnified view of a 12 x 12 block of pixels from Figure 24.3. (b) The
associated image brightness values.

Photometry of image formation
The brightness of a pixel p in the image is proportional to the amount of light directed toward the
camera by the surface patch Sp that projects to pixel p. This in turn depends on the reflectance
properties of Sp, the position and distribution of the light sources. There is also a dependence
on the reflectance properties of the rest of the scene because other scene surfaces can serve as
indirect light sources by reflecting light received by them onto Sp.

The light reflected from an object is characterized as being either diffusely or specularly
reflected. Diffusely reflected light is light that has penetrated below the surface of an object, been
absorbed, and then re-emitted. The surface appears equally bright to an observer in any direction.
Lambert's cosine law is used to describe the reflection of light from a perfectly diffusing or

LAMBERTIAN Lambertiaii surface. The intensity E of light reflected from a perfect diffuser is given by

E = pEo cos 9
where E0 is the intensity of the light source; p is the albedo, which varies from 0 (for perfectly
black surfaces) to 1 (for pure white surfaces); and 0 is the angle between the light direction and
the surface normal.

Specularly reflected light is reflected from the outer surface of the object. Here the energy
of reflected light is concentrated primarily in a particular direction—the one where the reflected
ray is in the same plane as the incident ray and satisfies the condition that the angle of reflection
is equal to the angle of incidence. This is the behavior of a perfect mirror.

In real life, surfaces exhibit a combination of diffuse and specular properties. Modelling
this on the computer is the bread and butter of computer graphics. Rendering realistic images
is usually done by ray tracing, which aims to simulate the physical process of light originating



730 ___ Chapter 24. Perception

from light sources and being reflected and rereflected multiple times. The shape-from-shading
problem in computer vision is aimed at inverting the process, that is, starting from the "rendered"
image and figuring out the layout of the three-dimensional scene that gave rise to it. We will talk
about this in more depth in Section 24.4.

Spectrophotometry of image formation
We have been talking of image intensity I(x, y, t), merrily ignoring the fact that visible light comes
in a range of wavelengths—ranging from 400 nm on the violet end of the spectrum to 700 nm on
the red end. Given that there is a continuum of wavelengths, what does it mean that we have three
primary colors? The explanation is that color is quite literally in the eye of the beholder. There
are three different cone types in the eye with three different spectral sensitivity curves RkW- The
output of the Mi cone at location (x,y) at time t then is Ik(x,y, t) = f I(x,y, t, \)Rk(X) d\. The
infinite dimensional wavelength space has been projected to a three-dimensional color space.
This means that we ought to think of / as a three-dimensional vector at (x,y, t). Because the eye
maps many different frequency spectra into the same color sensation, we should expect that there

METAMERS exist metamers—different light spectra that appear the same to a human.

24.3 IMAGE-PROCESSING OPERATIONS FOR EARLY VISION

Figure 24.5 shows an image of a scene containing a stapler resting on a table as well as the
EDGES edges detected on this image. Edges are curves in the image plane across which there is a

"significant" change in image brightness. The ultimate goal of edge detection is the construction
of an idealized line drawing such as Figure 24.6. The motivation is that edge contours in the
image correspond to important scene contours. In the example, we have depth discontinuities,
labelled 1; surface-orientation discontinuities, labelled 2; a reflectance discontinuity, labelled 3;
and an illumination discontinuity (shadow), labelled 4.

As you can see, there is a big difference between the output of an edge detector as shown
in Figure 24.5(b) and an ideal line drawing. Typically, there are missing contours (such as the top
edge of the stapler), as well as noise contours that do not correspond to anything of significance
in the scene. Later stages of processing based on edges have to take these errors into account.

How do we detect edges in an image? Consider the profile of image brightness along a 1-D
cross-section perpendicular to an edge, for example, the one between the left edge of the table
and the wall. It looks something like what is shown in Figure 24.1 (a). The location of the edge
corresponds to x = 50.

Because edges correspond to locations in images where the brightness undergoes a sharp
change, a naive idea would be to differentiate the image and look for places where the magnitude
of the derivative I'(x) is large. Well, that almost works. In Figure 24.7(b) we see that although
there is a peak at x = 50, there are also subsidiary peaks at other locations (e.g., x = 75) that
could potentially be mistaken as true edges. These arise because of the presence of noise in the

SMOOTHING image. We get much better results by combining the differentiation operation with smoothing.



Section 24.3. Image-Processing Operations for Early Vision 731

(b)

Figure 24.5 (a) Photograph of a stapler, (b) Edges computed from (a).

Figure 24.6 Different kinds of edges: (1) depth discontinuities; (2) surface orientation discon-
tinuities; (3) reflectance discontinuities; (4) illumination discontinuities (shadows).

The result is Figure 24.7(c), in which the central peak at x = 50 remains and the subsidiary peaks
are much diminished. This allows one to find the edges without getting confused by the noise.

CONVOLUTION To understand these ideas better, we need the mathematical concept of convolution. Many
useful image-processing operations such as smoothing and differentiation can be performed by
convolving the image with suitable functions.



732 Chapter 24. Perception

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

Figure 24.7 (a) Intensity profile l(x) along a 1 -D section across a step edge, (b) Its derivative
/'(.v). (c) The result of the convolution R(x) = I * G'a. Looking for large values in this function is
a good way to find edges in (a).

Convolution with linear filters
The result of convolving two functions/ and g is the new function h, denoted as h =f * g, which
is defined by

f(u)g(x-u)du and h(x)=

for continuous and discrete domains respectively. Typically, the functions/ and g that we work
with take nonzero values only in some finite interval, so the summation can be easily performed
on a computer.

The generalization to functions defined on two dimensions (such as images) is straightfor-
ward. We replace the 1 -D integrals (or sums) by 2-D integrals (or sums). The result of convolving
two functions/ and g is the new function h, denoted as h =f * g, which is defined by

/

+OC /-+OO

/ f(u, v)g(x— u,y — v)dudv
-co J — oo

or if we take the domains of the two functions to be discrete



Section 24.3. Image-Processing Operations for Early Vision 733

Edge detection
Let us go back to our 1-D example in Figure 24.7. We want to make the notion of image smoothing
more precise. One standard form of smoothing is to convolve the image with a Gaussian function

Ga(x) =

Now it can be shown that for any functions/ and g, f * g' = (f * g)', so smoothing the image
by convolving with a Gaussian Ga and then differentiating is equivalent to convolving the image
with G'CT(JC), the first derivative of a Gaussian:

So, we have a simple algorithm for 1 -D edge detection:

1. Convolve the image / with G'a to obtain R.
2. Find the absolute value of R.
3. Mark those peaks in \\R\\ that are above some prespecified threshold Tn. The threshold is

chosen to eliminate spurious peaks due to noise.

In two dimensions, we need to cope with the fact that the edge may be at any angle 0. To detect
vertical edges, we have an obvious strategy: convolve with G'a(x)Ga(y). In the y-direction, the
effect is just to smooth (because of the Gaussian convolution), and in the ^-direction, the effect is
that of differentiation accompanied with smoothing. The algorithm for detecting vertical edges
then is as follows:

1. Convolve the image l(x,y) withfv(x,y) - G'c,(x)G(r(y) to obtain Rv(x,y).
2. Find the absolute value of RV(X, y).
3. Mark those peaks in | \RV\ \(x,y) that are above some prespecified threshold Tn.

In order to detect an edge at an arbitrary orientation, we need to convolve the image with two
filters fv = G'a(x)Ga(y) and/// = G'a(y)Ga(x), which is just fv rotated by 90°. The algorithm for
detecting edges at arbitrary orientations is

1. Convolve the image I(x, y) with/y(*, y) andfH(x, y) to obtain Rv(x, y) and RH(X, y), respec-
tively. Define R(x,y) = R2

v(x,y) + R2
H(x,y)

2. Find the absolute value of R(x, y).
3. Mark those peaks in \\R\ \(x,y) that are above some prespecified threshold Tn.

Once we have marked edge pixels by this algorithm, the next stage is to link those pixels that
belong to the same edge curves. This can be done by assuming that any two neighboring pixels
that are both edge pixels with consistent orientations must belong to the same edge curve.

We have just outlined the basic procedure used in the Canny edge detector (Canny, 1986),
which is a standard algorithm widely used for detecting edges in images.



734 Chapter 24. Perception

24.4 EXTRACTING 3-D INFORMATION USING VISION

SEGMENTATION

POSE

SLANT

TILT

SHAPE

We need to extract 3-D information for performing certain tasks such as manipulation, navigation,
and recognition. There are threte aspects of this:

1. Segmentation of the scene into distinct objects.
2. Determining the position and orientation of each object relative to the observer.
3. Determining the shape of each object.

Segmentation of the image is a key step towards organizing the array of image pixels into
regions that would correspond to semantically meaningful entities in the scene. For recognition,
we would like to know what features belong together so that one could compare them with stored
models; to grasp an object, one needs to know what belongs together as an object.

Edge detection, as discussed in the last section, is a useful first step toward image and scene
segmentation, but not adequate by itself. This is because of two reasons: (a) some fraction of
the edge curves that correspond to surface boundaries may be low contrast and not get detected;
(b) many of the edge curves that are detected may correspond to noise, surface markings, or
shadows. Segmentation is best viewed as part of extraction of 3-D information about the scene.

Determining the position and orientation of an object relative to the observer (the so-called
pose of the object) is most important for manipulation and navigation tasks. To move around
in a grocery store, one needs to know the locations of the obstacles, so that one can plan a path
avoiding them. If one wants to pick up and grasp an object, one needs to know its position relative
to the hand so that an appropriate trajectory of moves could be generated. Manipulation and
navigation actions typically are done in a control loop setting—the sensory information provides
feedback to modify the motion of the robot, or the robot arm. In fact, often we may be interested
more in relative change of position.

Let us specify position and orientation in mathematical terms. The position of a point P in
the scene is characterized by three numbers, the (X, Y, Z) coordinates of P in a coordinate frame
with its origin at the pinhole and the Z-axis along the optical axis (Figure 24.1). What we have
available is the perspective projection of the point in the image (x, y) . This specifies the ray from
the pinhole along which P lies; what we do not know is the distance. The term "orientation"
could be used in two senses:

1. The orientation of the object as a whole. This can be specified in terms of a three-
dimensional rotation relating its coordinate frame to that of the camera.

2. The orientation of the surface of the object at P. This can be specified by a vector n that
specifies the direction of the unit surface normal vector, which is locally perpendicular to
the surface. Often we express the surface orientation using the variables slant and tilt.
Slant is the angle between the Z-axis and n. Tilt is the angle between the X-axis and the
projection of n on the image plane.

When the camera moves relative to an object, both the object's distance and its orientation change.
What is preserved is the shape of the object. If the object is a cube, that fact is not changed when
the object moves. Geometers have been attempting to formalize shape for centuries—the basic
concept being that shape is what remains unchanged under some group of transformations, for



Section 24.4. Extracting 3-D Information Using Vision 735

example, combinations of rotations and translations. The difficulty lies in finding a representation
of global shape that is general enough to deal with the wide variety of objects in the real world—
not just simple forms like cylinders, cones, and spheres—and yet can be recovered easily from
the visual input. The problem of characterizing the local shape of a surface is much better
understood. Essentially, this can'be done in terms of curvature—how does the surface normal
change as one moves in different directions on the surface. For a plane, there is no change at
all. For a cylinder, if one moves parallel to the axis there is no change, but in the perpendicular
direction, the surface normal rotates at a rate inversely proportional to the radius of the cylinder.
And so on. All this is studied in the subject of differential geometry.

The shape of an object is relevant for some manipulation tasks, for example, deciding
where to grasp an object. But its most significant role is in object recognition, where geometric
shape along with color and texture provide the most significant cues to enable us to identify
objects, classify what is in the image as an example of some class one has seen before, and so on.

The fundamental question is the following: Given the fact that during perspective projec-
tion, all points in the 3-D world along a ray from the pinhole have been projected to the same
point in the image, how do we recover 3-D information? There are a number of cues available
in the visual stimulus for this, including motion, binocular stereopsis, texture, shading, and
contour. Each of these cues relies on background assumptions about physical scenes in order to
provide unambiguous interpretations. We discuss each of these cues in the following subsections.

OPTICAL FLOW

SUM OF SQUARED
DIFFERENCES

Motion
If the camera moves relative to the three-dimensional scene, the resulting apparent motion in the
image is called optical flow. This describes the direction and speed of motion of features in the
image as a result of relative motion between the viewer and the scene. In Figure 24.8, we show
two frames from a video of a rotating Rubik's cube. Figure 24.9 shows the optical flow vectors
computed from these images. The optical flow encodes useful information about scene structure.
For example, when viewed from a moving car, distant objects have much slower apparent motion
than close objects; thus, the rate of apparent motion can tell us something about distance.

The optical flow vector field can be represented by its components vx(x, y) in the ̂ -direction
and \\-(x,y) in the y-direction. To measure optical flow, we need to find corresponding points
between one time frame and the next. We exploit the fact that image patches around corresponding
points have similar intensity patterns. Consider a block of pixels centered at pixel p, Oo,yo) at
time to. This block of pixels is to be compared with pixel blocks centered at various candidate
pixels q-, at (x0 + A,.>'o + A) at time to + Dt. One possible measure of similarity is the sum of
squared differences (SSD):

SSD(Df, A ) = , y, 0 - I(x + A , v + D,,t + A))2

CROSS-
CORRELATION

Here (x, y) range over pixels in the block centered at (xo,yo) • We find the (A, A) that minimizes
the SSD. The optical flow at (x0,y0) is then (vx,vy) = (A/A, A/A)- Alternatively, one can
maximize the cross-correlation:

Correlation(Dx, A ) = , y, t)I(x + Dx, y + Dv,t + A)



736 Chapter 24. Perception

EGOMOTION

FOCUS OF
EXPANSION

Figure 24.8 (a) A Rubik's cube on a rotating turntable, (b) The same cube, shown 19/30
seconds later. (Image courtesy of Richard Szeliski.)

Cross-correlation works best when there is texture in the scene, resulting in windows containing
significant brightness variation among the pixels. If one is looking at a uniform white wall, then
the cross-correlation is going to be nearly the same for the different candidate matches q, and the
algorithm is reduced to making a blind guess.

Suppose that the viewer has translational velocity T and angular velocity u> (which thus
describe the egomotion). One can derive an equation relating the viewer velocities, the optical
flow, and the positions of objects in the scene. In fact, assuming/ = 1,

T,
Z(x,y)

T,
— U)7X+ <

[ Z(x,y)
T,

Z(x,y)
where Z(x, y) gives the z-coordinate of the scene point corresponding to the image point at (x, y).

One can get a good intuition by considering the case of pure translation. In that case, the
flow field becomes

-Tx+xTz vy(x,y) =
~Ty+yTz

Z(x,y) ' '-vv"-" Z(x,y)
One can observe some interesting properties. Both components of the optical flow, vx(x,y) and
vy(x,y), are zero at the point x = Tx/T,,y = Ty/Tz. This point is called the focus of expansion of
the flow field. Suppose we change the origin in the x-y plane to lie at the focus of expansion;
then the expressions for optical flow take on a particularly simple form. Let (X,/) be the new
coordinates defined by x1 = x - TJTZ, y' = y - TyITz. Then

Tc'T V'T
Vx(x',y') = *'z •• <-•' -'-- y '*



Section 24.4. Extracting 3-D Information Using Vision 737

* * t * *

* * *

* * * » » . - . • » - * ^

':^_ r-'-' ~~z£-
~** ^* ^*^* ~*~~*~* ~*~^~* * - *»* - t -T J -* -*^* J ' ^ '

^ • ^ * ~ " ^ * ^ * ^ * ^ " " * * 1 * ^ .» * » -t -t-» - * •*
-s. ^-«"»^»^* - * - * — * * * * ^ ^ ^ ^

-V^T. •

Figure 24.9 Flow vectors calculated by comparing the two images in Figure 24.8. (Courtesy
of Joe Weber and Jitendra Malik.)

This equation has some interesting applications. Suppose you are a fly trying to land on wall,
and you want to know the time to contact at the current velocity. This time is given by Z/TZ.
Note that although the instantaneous optical flow field cannot provide either the distance Z or the
velocity component Tz, it can provide the ratio of the two, and can therefore be used to control
the landing approach. Experiments with real flies show that this is exactly what they use.

To recover depth, one should make use of multiple frames. If the camera is looking at a
rigid body, the shape does not change from frame to frame and thus we are able to better deal
with the inherently noisy optical flow measurements. Results from one such approach due to
Tomasi and Kanade (1992) are shown in Figures 24.10 and 24.11.

DISPARITY

Binocular stereopsis
The idea here is rather similar to motion parallax, except that instead of using images over time,
we use two (or more) images separated in space, such as are provided by the forward-facing eyes
of humans. Because a given feature in the scene will be in a different place relative to the z-axis
of each image plane, if we superpose the two images, there will be a disparity in the location of



738 Chapter 24. Perception

Figure 24.10 (a) Four frames from a video sequence in which the camera is moved and rotated
relative to the object, (b) The first frame of the sequence, annotated with small boxes highlighting
the features found by the feature detector. (Courtesy of Carlo Tomasi.)

(a)

Figure 24.11 (a) 3-D reconstruction of the locations of the image features in Figure 24.10,
shown from above, (b) The real house, taken from the same position.

the image feature in the two images. You can see this clearly in Figure 24.12, where the nearest
point of the pyramid is shifted to the left in the right image and to the right in the left image.

Let us work out the geometrical relationship between disparity and depth. First, we will
consider the case when both the eyes (or cameras) are looking forward with their optical axes

L



Section 24.4. Extracting 3-D Information Using Vision 739

FIXATE

BASELINE

Perceived object

Right image

Figure 24.12 The idea of stereopsis: different camera positions result in slightly different 2-D
views of the same 3-D scene.

parallel. The relationship of the right camera to the left camera is then just translation along the
.r-axis by an amount b, the baseline. We can use the optical flow equations from the previous
section to compute the horizontal and vertical disparity as H = vx At. V = vv At, given that
rv = b/At and Ty = T- = 0. The rotational parameters wv , u>v , and u>- are zero. One obtains
H = b/Z, V = 0. In words, the horizontal disparity is equal to the ratio of the baseline to the
depth, and the vertical disparity is zero.

This is, of course, the simplest viewing geometry (relationship between the two cameras)
that we could consider. Under normal viewing conditions, humans fixate; that is, there is some
point in the scene at which the optical axes of the two eyes intersect. Figure 24.13 shows two eyes
fixated at a point PQ, which is at a distance Z from the midpoint of the eyes. For convenience, we
will compute the angular disparity, measured in radians. The disparity at the point of fixation PQ
is zero. For some other point P in the scene that is 6Z further away, we can compute the angular
displacements of the left and right images of P, which we will call PL and PR. If each of these is
displaced by an angle 60/2 relative to PQ, then the displacement between PL and PR, which is the
disparity of P, is just 60. From simple geometry, we have

— - ^L
~6Z ~ Z2"

In humans, b (the baseline) is about 6 cm. Suppose that Z is about 100 cm. The smallest
detectable 69 (corresponding to the pixel size) is about 5 seconds of arc, or 2.42 x 10~5 radians,
giving a 6Z of about 0.4 mm. ForZ = 30cm(l ft), we get the impressively small value 6Z = 0.036
mm. Stating this in words, at a distance of 30 cm, humans can discriminate depths that differ by
as little as 0.036 mm, enabling us to thread needles and the like.



740 Chapter 24. Perception

Figure 24.13 The relation between disparity and depth in stereopsis.

Note that unlike the case of motion, we have assumed that we know the viewing geometry,
or the relative orientation between the eyes. This is often a reasonable assumption. In the case of
the eyes, the brain has commanded a particular state of the ocular muscles to move the eyes, and
hence the positions of the eyes relative to the head are known. Similarly, in a binocular camera
system, one knows the relative configuration.

Knowledge of the viewing geometry is very useful in trying to measure disparity. As
in the case of optical flow, we can try to find corresponding points between the left and right
images by maximizing some measure of similarity. However, one does not have to search in

EPIPOLAR LINES a two-dimensional region. Corresponding points must always lie along epipolar lines in the
images (see Figure 24.14). These lines correspond to the intersections of an epipolar plane (the
plane through a point in the scene and the nodal points of the two eyes) with the left and right
image planes. Exploiting this epipolar constraint reduces an initially two-dimensional search to
a one-dimensional one. Obviously determination of the epipolar lines requires a knowledge of
the viewing geometry.

A simple-minded approach for finding disparity would be to search along epipolar lines
looking to maximize the cross-correlation, just as in the case of optical flow. Given a point pi
in the left view, its corresponding point q-t in the right view is obtained by searching along the
associated epipolar line in the other view. For each of the possible matches q, the cross-correlation
between windows centered at pt and q is computed. The corresponding point is declared to be
the pixel g, for which the cross-correlation is maximized.

One can do better by exploiting some additional constraints:

1. Uniqueness: a point in one image can correspond to at most one point in the other image.
We say at most one, because it is possible that the point may be occluded in the other view.

2. Piecewise continuity of surfaces in the scene: the fact the world is usually piecewise contin-
uous means that nearby points in the scene have nearby values of depth, and consequently
of disparity, except across object boundaries and occlusions.

An example of a system that exploits these multiple constraints is the work of Belhumeur (1993).
Belhumeur's results for an oblique view of a box (Figure 24.15) are shown in Figure 24.16. His



Section 24.4. Extracting 3-D Information Using Vision 741

Left image

Left
Center of Projection

Right image

Right
Center of Projection

Figure 24.14 Epipolar geometry.

(a)

Figure 24.15 The figure shows an image of a Q-tips box standing on end with a long vertical
crease protruding toward the camera. Behind the box is a flat surface.

algorithm uses the ordering constraint and deals with depth discontinuities where the windows at
corresponding points in the image are not sampling corresponding patches in the scene. Because
of occlusion in one of the views, there is a strip seen only in one eye. Note also the use of
stereopsis for scene segmentation as demonstrated in Figure 24.16(c).

A standard criticism of area-based matching approaches is that they are susceptible to
errors when corresponding patches in the two images do not look similar. This can happen for a
variety of reasons: (1) the surface reflectance function has an appreciable specular component,



742 Chapter 24. Perception

Figure 24.16 Results from processing the Q-tips stereo pair, (a) Image of depth, (b) Image
of smoothed slope, (c) Object boundaries (white) and surface creases (gray), (d) Wire frame of
depth. (Images courtesy of Peter Belhumeur.)

so the brightness of a point in the scene is a function of viewpoint; (2) there is a differing amount
of foreshortening in the two views, because the patch makes different angles to the optical axes
in the two views.

Another family of approaches is based on first finding edges and then looking for matches.
Edges are deemed compatible if they are near enough in orientation and have the same sign of
contrast across the edge. Corresponding edges are usually assumed to obey the same left-to-right
ordering in each image, which allows one to restrict the number of possible matches and lends
itself to efficient algorithms based on dynamic programming. With any edge-based approach,
however, the resulting depth information is sparse, because it is available only at edge locations.
Thus, a further step is needed to interpolate depth across surfaces in the scene.

Texture gradients
TEXTURE Texture in everyday language is a property of surfaces associated with the tactile quality they

suggest (texture has the same root as textile). In computational vision, it refers to a closely related
concept, that of a spatially repeating pattern on a surface that can be sensed visually. Examples



Section 24.4. Extracting 3-D Information Using Vision 743

include the pattern of windows on a building, the stitches on a sweater, the spots on a leopard's
skin, blades of grass on a lawn, pebbles on a beach or a crowd of people in a stadium. Sometimes
the arrangement is quite periodic, as in the stitches on a sweater; in other instances, as in pebbles
on a beach the regularity is only in a statistical sense—the density of pebbles is roughly the same
on different parts of the beach. ,

What we just said is true in the scene. In the image, the apparent size, shape, spacing, and
TEXELS so on, of the texture elements (the texels) do indeed vary, as illustrated in Figure 24.17. The tiles

are identical in the scene. There are two main causes for this variation in the projected size and
shape of the tiles:

1. Varying distances of the different texels from the camera. Recall that under perspective
projection, distant objects appear smaller. The scaling factor is 1/Z.

2. Varying foreshortening of the different texels. This is related to the orientation of the texel
relative to the line of sight from the camera. If the texel is perpendicular to the line of sight,
there is no foreshortening. The magnitude of the foreshortening effect is proportional to
cos (7, where <r is the slant of the plane of the texel.

After some mathematical analysis (Carding, 1992), one can compute expressions for the rate of
change of various image texel features, such as area, foreshortening, and density. These texture

GRADIENTS gradients are functions of the surface shape as well as its slant and tilt with respect to the viewer.
To recover shape from texture, one can use a two-step process: (a) measure the texture

gradients; (b) estimate the surface shape, slant, and tilt that would give rise to the measured texture
gradients. We show the results of an algorithm developed by Malik and Rosenholtz(1994) in
Figures 24.17 and 24.18.

Shading
Shading—variation in the intensity of light received from different portions of a surface in the
scene—is determined by scene geometry and reflectance properties of the surfaces. In computer
graphics, the objective is to determine the image brightness I(x,y) given the scene geometry and
reflectance properties. In computer vision, our hope might be to invert the process, that is, recover
the scene geometry and reflectance properties given the image brightness I(x, y). This has proved
difficult to do in anything but the simplest cases.

Let us start with an example of a situation where we can in fact solve for shape from
shading. Consider a Lambertian surface illuminated by a distant point light source. We will
assume that the surface is distant enough from the camera so that we could use orthographic
projection as an approximation to perspective projection. The image brightness is

l(x,y) = kn(x,y).s

where k is a scaling constant, n is the unit surface normal vector, and s is the unit vector in the
direction of the light source. Because n and s are unit vectors, their dot product is just the cosine
of the angle between them. Surface shape is captured in the variation of the surface normal n
along the surface. Let us assume that k and s are known. Our problem then is to recover the
surface normal n(x,y) given the image intensity I(x,y).



744
Chapter 24. Perception

—————————— — —
Figure 24.17 A scene illustrating texture gradient. Assuming that the real texture is uniform
allows recovery of the surface orientation. The computed surface orientation is indicated by
overlaying a white circle and pointer, transformed as if the circle were painted on the surface at
that point. (Image courtesy of Jitendra Malik and Ruth Rosenholtz.)

Figure 24.18 Recovery of shape from texture for a curved surface.



Section 24.4. Extracting 3-D Information Using Vision 745

The first observation to make is that the problem of determining n, given the brightness / at
a given pixel (x,y), is underdetermined locally. We can compute the angle that n makes with the
light source vector, but that only constrains it to lie on a certain cone of directions with axis s and
apex angle 0 = cos"1 (//£)• To proceed further, note that n cannot vary arbitrarily from pixel to
pixel. It corresponds to the normal vector of a smooth surface patch and consequently must also

INTEGRABILITY vary in a smooth fashion—the technical term for the constraint is integrability. Several different
techniques have been developed to exploit this insight. One technique is simply to rewrite n in
terms of the partial derivatives Zt and Zy of the depth Z(x, y). This results in a partial differential
equation for Z that can be solved to yield the depth Z(x, y), given appropriate boundary conditions.

One can generalize the approach somewhat. It is not necessary for the surface to be
Lambertian nor for the light source to be a point source. As long as one is able to determine

REFLECTANCE MAP the reflectance map /?(n), which specifies the brightness of a surface patch as a function of its
surface normal n, essentially the same kind of techniques can be used.

The real difficulty comes in dealing with interreflections. If we consider a typical indoor
scene, such as the objects inside an office, surfaces are illuminated not only by the light sources,
but also by the light reflected from other surfaces in the scene that effectively serve as secondary
light sources. These mutual illumination effects are quite significant. The reflectance map
formalism completely fails in this situation—image brightness depends not just on the surface
normal, but also on the complex spatial relationships among the different surfaces in the scene.

Humans clearly do get some perception of shape from shading, so this remains an interesting
problem in spite of all these difficulties.

Contour

When we look at a line drawing, such as Figure 24.19, we get a vivid perception of 3-D shape
and layout. How? After all, we saw earlier that there is an infinity of scene configurations that
can give rise to the same line drawing. Note that we get even a perception of surface slant and
tilt. It could be due to a combination of high-level knowledge about typical shapes as well as
some low-level constraints.

We will consider the qualitative knowledge available from a line drawing. As discussed
earlier, lines in a drawing can have multiple significances (see Figure 24.6 and the accompanying
text). The task of determining the actual significance of each line in an image is called line

LINE LABELLING labelling, and was one of the first tasks studied in computer vision. For now, let us deal with a
simplified model of the world where the objects have no surface marks and where the lines due
to illumination discontinuities like shadow edges and specularities have been removed in some
preprocessing step, enabling us to limit our attention to line drawings where each line corresponds
either to a depth or orientation discontinuity.

LIMB Each line then can be classified as either the projection of a limb (the locus of points on
the surface where the line of sight is tangent to the surface) or as an edge (a surface normal
discontinuity). Additionally, each edge can be classified as a convex, concave, or occluding edge.
For occluding edges and limbs, we would like to determine which of the two surfaces bordering
the curve in the line drawing is nearer in the scene. These inferences can be represented by giving

LINE LABELS each line one of 6 possible line labels as illustrated in Figure 24.20.



746 Chapter 24. Perception

TRIHEDRAL

CRACKS

Figure 24.19 An evocative line drawing. (Courtesy of Isha Malik.)

1. "+" and "—" labels represent convex and concave edges, respectively. These are associated
with surface normal discontinuities where both surfaces that meet along the edge are visible.

2. A "<—" or a "—»•" represents an occluding convex edge. When viewed from the camera,
both surface patches that meet along the edge lie on the same side, one occluding the other.
As one moves in the direction of the arrow, these surfaces are to the right.

3. A "^^" or a "^^" represents a limb. Here the surface curves smoothly around to
occlude itself. As one moves in the direction of the twin arrows, the surface lies to the
right. The line of sight is tangential to the surface for all points on the limb. Limbs move
on the surface of the object as the viewpoint changes.

Of the 6" combinatorially possible label assignments to the n lines in a drawing, only a small
number are physically possible. The determination of these label assignments is the line labelling
problem. Note that the problem only makes sense if the label is the same all the way along a line.
This is not always true, because the label can change along a line for images of curved objects.
In this section, we will deal only with polyhedral objects, so this is not a concern.

Huffman (1971) and Clowes (1971) independently attempted the first systematic approach
to polyhedral scene analysis. Huffman and Clowes limited their analysis to scenes with opaque
trihedral solids—objects in which exactly three plane surfaces come together at each vertex.
For scenes with multiple objects, they also ruled out object alignments that would result in a
violation of the trihedral assumption, such as two cubes sharing a common edge. Cracks, that
is, "edges" across which the tangent planes are continuous, were also not permitted. For the
trihedral world, Huffman and Clowes made an exhaustive listing of all the different vertex types
and the different ways in which they could be viewed under general viewpoint. The general
viewpoint condition essentially ensures that if there is a small movement of the eye, none of the
junctions changes character. For example, this condition implies that if three lines intersect in
the image, the corresponding edges in the scene must also intersect.



Section 24.4. Extracting 3-D Information Using Vision 747

Figure 24.20 Different kinds of line labels.

Figure 24.21 The four kinds of trihedral vertices.

The four ways in which three plane surfaces can come together at a vertex are shown in
Figure 24.21. These cases have been constructed by taking a cube and dividing it into eight

OCTANTS octants. We want to generate the different possible trihedral vertices at the center of the cube
by filling in various octants. The vertex labeled 1 corresponds to 1 filled octant, 3 to 3 filled
octants, and so on. Readers should convince themselves that these are indeed all the possibilities.
For example, if one fills two octants in a cube, one cannot construct a valid trihedral vertex at
the center. Note also that these four cases correspond to different combinations of convex and
concave edges that meet at the vertex.

The three edges meeting at the vertex partition the surrounding space into eight octants.
A vertex can be viewed from any of the octants not occupied by solid material. Moving the
viewpoint within a single octant does not result in a picture with different junction types. The
vertex labeled 1 in Figure 24.21 can be viewed from any of the remaining seven octants to give
the junction labels in Figure 24.22.



748 Chapter 24. Perception

Figure 24.22 The different appearances of vertex labeled 1 from Figure 24.21.

T

Figure 24.23 The Huffman-Clowes label set.

An exhaustive listing of the different ways each vertex can be viewed results in the possi-
bilities shown in Figure 24.23. We get four different junction types which can be distinguished
in the image: L-, Y-, arrow, and T-junctions. L-junctions correspond to two visible edges. Y-
and arrow junctions correspond to a triple of edges—in a Y-junction none of the three angles is
greater than TT. T-junctions are associated with occlusion. When a nearer, opaque surface blocks
the view of a more distant edge, one obtains a continuous edge meeting a half edge. The four
T-junction labels correspond to the occlusion of four different types of edges.

When using this junction dictionary to find a labeling for the line drawing, the problem is
to determine which junction interpretations are globally consistent. Consistency is forced by the
rule that each line in the picture must be assigned one and only one label along its entire length.



Section 24.5. Using Vision for Manipulation and Navigation 749

Waltz (1975) proposed an algorithm for this problem (actually for an augmented version with
shadows, cracks, and separably concave edges) that was one of the first applications of constraint
satisfaction in AI (see Chapter 3). In the terminology of CSPs, the variables are the junctions,
the values are labellings for the junctions, and the constraints are that each line has a single
label. Although Kirousis and Parjadimitriou (1988) have shown that the line-labelling problem
for trihedral scenes is NP-complete, standard CSP algorithms perform well in practice.

Although the Huffman-Clowes-Waltz labeling scheme was limited to trihedral objects,
subsequent work by Mackworth(1973) and Sugihara (1984) resulted in a generalization for
arbitrary polyhedra and work by Malik (1987) for piecewise smooth curved objects.

24.5 USING VISION FOR MANIPULATION AND NAVIGATION

One of the principal uses of vision is to provide information for manipulating objects—picking
them up, grasping, twirling, and so on—as well as navigating in a scene while avoiding obstacles.

The capability to use vision for these purposes is present in the most primitive of animal
visual systems. Perhaps the evolutionary origin of the vision sense can be traced back to the
presence of a photosensitive spot on one end of an organism that enabled it to orient itself toward
(or away from) the light. Flies use vision based on optic flow to control their landing responses.

Mobile robots moving around in an environment need to know where the obstacles are,
where free space corridors are available, and so on. More on this in Chapter 25.

Let us study the use of vision in driving in detail. Consider the tasks for the driver of the
car in the bottom left corner of Figure 24.24.

1. Keep moving at a reasonable speed VQ.
2. Lateral control—ensure that the vehicle remains securely within its lane, that is, keep

di = d,~.
3. Longitudinal control—ensure that there is a safe distance di between it and the vehicle in

front of it.
4. Monitor vehicles in neighboring lanes (at distances d\ and d^) and be prepared for appro-

priate maneuvers if one of them decides to change lanes.

The problem for the driver is to generate appropriate steering, actuation or braking actions to
best accomplish these tasks. Focusing specifically on lateral and longitudinal control, what
information is needed for these tasks?

For lateral control, one needs to maintain a representation of the position and orientation
of the car relative to the lane. The view of the road from a camera mounted on a car is shown in
Figure 24.25. We detect edges corresponding to the lane marker segments and then fit smooth
curves to these. The parameters of these curves carry information about the lateral position of the
car, the direction it is pointing relative to the lane, and the curvature of the lane. This information,
along with the dynamics of the car, is all that is needed by the steering control system. Note
also that because from every frame to the next frame there is only a small change in the position



750 Chapter 24. Perception

Figure 24.24 The information needed for visual control of a vehicle on a freeway.

of the projection of the lane in the image, one knows where to look for the lane markers in the
image—in the figure, this is indicated by showing the search windows.

For longitudinal control, one needs to know distances to the vehicles in front. This can be
accomplished using binocular stereopsis or optical flow. Both these approaches can be simplified
by exploiting the domain constraints derived from the fact that one is driving on a planar surface.
Using these techniques, Dickmanns and Zapp (1987) have demonstrated visually controlled car
driving on freeways at high speeds. Pomerleau (1993) achieved similar performance using a
neural network approach (see discussion on page 586).

The driving example makes one point very clear: for a specific task, one does not need
to recover all the information that in principle can be recovered from an image. One does
not need to recover the exact shape of every vehicle, solve for shape-from-texture on the grass
surface adjacent to the freeway, and so on. The needs of the task require only certain kinds of
information and one can gain considerable computational speed and robustness by recovering
only that information and fully exploiting the domain constraints. Our purpose in discussing the
general approaches in the previous section was that they form the basic theory, which one can
specialize for the needs of particular tasks.



Section 24.6. Object Representation and Recognition 751

Figure 24.25 Image of a road taken from a camera inside the car.

24.6 OBJECT REPRESENTATION AND RECOGNITION

The object recognition problem can be defined as follows. Given

1. a scene consisting of one or more objects chosen from a collection of objects O\, O
known a priori, and

2. an image of the scene taken from an unknown viewer position and orientation,

determine the following:

1. Which of the objects O\, O2, • • • , On are present in the scene.
2. For each such object, determine its position and orientation relative to the viewer.

Obviously, this determination requires prior storage of suitable descriptions of the objects.
This problem is clearly of considerable industrial importance. For example, in an assembly

process, the robot has to identify the different components and compute their positions and orien-
tations in order to generate a grasping or pick-and-place strategy. In addition to the engineering
standpoint, the problem is of great scientific interest. Humans have the impressive ability to rec-
ognize thousands of objects almost instantaneously even when the objects are partially occluded
or presented in highly simplified line drawings.

The two fundamental issues that any object recognition scheme must address are the
representation of the models and the matching of models to images.



752 Chapter 24. Perception

GENERALIZED
CYLINDERS

First, let us consider the representation problem. The two most popular representations of
3-D objects in computer vision have been polyhedral approximations and generalized cylinders.
Polyhedral descriptions are general, but they get painfully long if a high accuracy is desired
in modeling curved objects. They are also very cumbersome for users to input. Generalized
cylinders (Figure 24.26) provide compact descriptions for a wide class of objects and have been
used in a number of object recognition systems.

A generalized cylinder is defined by a planar cross section, an axis (which may be curved),
and a sweeping rule which describes how the cross section changes along the axis. Many shapes
can be built up using generalized cylinders as parts. Generalized cylinders are not always ideal
for representing arbitrary objects; the object may have to be decomposed into many parts, each of
which is a generalized cylinder. In such situations, there can be many alternative decompositions
into parts with each part describable as a generalized cylinder in several ways. This leads to
difficulties at matching time. In general, the problem of effective shape representation for curved
objects is largely unsolved.

Figure 24.26 Some examples of generalized cylinders. Each of these shapes has a principal
axis and a planar cross-section whose dimensions may vary along the axis.

The alignment method
We wi 11 consider one particular version of the problem in greater detail—we are asked to identify a
three-dimensional object from its projection on the image plane. For convenience, the projection
process is modelled as a scaled orthographic projection. We do not know the pose of the
object—its position and orientation with respect to the camera.

The object is represented by a set of m features or distinguished points // , , / i 2 , . . . , /^m in
three-dimensional space—perhaps vertices for a polyhedral object. These are measured in some
coordinate system natural for the object. The points are then subjected to an unknown 3-D
rotation R, followed by translation by unknown amount t and projection to give rise to image



Section 24.6. Object Representation and Recognition 753

feature points p \ ,p2, . . . , /?„ on the image plane. In general, n^m because some model points may
be occluded. The feature detector in the image also may miss true features and mark false ones
due to noise. We can express this as

for 3-D model point /», and corresponding image point/;,. Here FI denotes perspective projection
or one of its approximations such as scaled orthographic projection. We can summarize this by
the equation /?, = Q\i; where Q is the (unknown) transformation that brings the model points in
alignment with the image. Assuming the object is rigid, the transformation Q is the same for all
the model points.

One can solve for Q given the 3-D coordinates of three model points and their 2-D
projections. The intuition is as follows: one can write down equations relating the coordinates of
Pi to those of Hi. In these equations, the unknown quantities correspond to the parameters of the
rotation matrix R and the translation vector t. If we have sufficiently many equations, we ought
to be able to solve for Q. We will not give any proof here, but merely state the following result
(Huttenlocher and Ullman, 1990):

Given three noncollinear points / / i , / /2 , and //j in the model, and their projections
on the image plane, p\, p2, and pj under scaled orthographic projection, there exist
exactly two transformations from the three-dimensional model coordinate frame to
a two-dimensional image coordinate frame.

These transformations are related by a reflection around the image plane and can be computed by
a simple closed-form solution. We will just assume that there exists a function FlND-TRANSFORM,
as shown in Figure 24.27.

If we could identify the corresponding model features for three features in the image,
we could compute Q, the pose of the object. The problem is that we do not know these
correspondences. The solution is to operate in a generate-and-test paradigm. We have to
guess an initial correspondence of an image triplet with a model triplet and use the function
FIND-TRANSFORM to hypothesize Q. If the guessed correspondence was correct, then Q will be
correct, and when applied to the remaining model points will result in prediction of the image
points. If the guessed correspondence was incorrect, then Q will be incorrect, and when applied
to the remaining model points would not predict the image points.

function FIND-TRANSFORM^;,/^, 773, / « i , V2, / 'a) returns a transform Q such that
GO'i ) = pi
Q(V>2)=P2
2(/<3)= j03

inputs: p\,p2,pj, image feature points
AM, /*2, /<3, model feature points

Figure 24.27 The definition of the transformation-finding process. We omit the algorithm
(Huttenlocher and Ullman, 1990).



754 Chapter 24. Perception

function ALIGN(Image feature points, Model feature points) returns a solution or failure

loop do
choose an untried triplet p,,, p,2, p,3 from image
if no untried triplets left then return failure
while there are still untried model triplets left do

choose an untried triplet /*/,, p,j2, ///3 from model
g<-FlND-TRANSFORM(p,-|, ph, p,,,/*,,, ft,, [ij})
if projection according to Q explains image then

return (success, Q)
end

end

Figure 24.28 An informal description of the alignment algorithm.

This is the basis of the algorithm ALIGN, which seeks to find the pose for a given model
and return failure otherwise (see Figure 24.28). The worst-case time complexity of the algorithm
is proportional to the number of combinations of model triplets and image triplets—this gives the
number of times Q has to be computed—times the cost of verification. This gives (") (™) times
the cost of verification. The cost of verification is m logn, as we must predict the image position
of each of m model points, and find the distance to the nearest image point, a log n operation if
the image points are arranged in an appropriate data structure. Thus, the worst-case complexity
of the alignment algorithm is O(m4rr' log n), where m and n are the number of model and image
points, respectively.

One can lower the time complexity by a number of ideas. One simple technique is to
hypothesize matches only between pairs of image and model points. Given two image points
and the edges at these points, a third virtual point can be constructed by extending the edges
and finding the intersection. This lowers the complexity to O(m3n2 logn). Techniques based on
using pose clustering in combination with randomization (Olson, 1994) can be used to bring the
complexity down to O(mn3). Results from the application of this algorithm to the stapler image
are shown in Figure 24.29.

GEOMETRIC
INVARIANTS

Using projective invariants
Alignment using outline geometry and recognition is considered successful if outline geometry
in an image can be explained as a perspective projection of the geometric model of the object. A
disadvantage is that this involves trying each model in the model library, resulting in a recognition
complexity proportional to the number of models in the library.

A solution is provided by using geometric invariants as the shape representation. These
shape descriptors are viewpoint invariant, that is, they have the same value measured on the object
or measured from a perspective image of the object, and are unaffected by object pose. The
simplest example of a projective invariant is the "cross-ratio" of four points on a line, illustrated



Section 24.6. Object Representation and Recognition 755

Figure 24.29 (a) Corners found in the stapler image, (b) Hypothesized reconstruction overlaid
on the original image. (Courtesy of Clark Olson.)

in Figure 24.30. Under perspective projection, the ratios of distances are not preserved—think
of the spacing of sleepers on an image of a receding railway track. The spacing is constant in the
world, but decreases with distance from the camera in an image. However, the ratio of ratio of
distances on a line is preserved, that is, it is the same measured on the object or in the image.

INDEX FUNCTIONS Invariants are significant in vision because they can be used as index functions, so that a
value measured in an image directly indexes a model in the library. To take a simple example,
suppose there are three models {A,B, C] in the library, each with a corresponding and distinct
invariant value {/(A),/(fi),/(C)}. Recognition proceeds as follows: After edge detection and
grouping, invariants are measured from image curves. If a value / = I(B) is measured, then there
is evidence that object B is present. It is not necessary to consider objects A and C any further. It
may be that for a large model base, all invariants are not distinct (i.e., several models may share
invariant values). Consequently, when an invariant measured in the image corresponds to a value
in the library, a recognition hypothesis is generated. Recognition hypotheses corresponding to
the same object are merged if compatible. The hypotheses are verified by back projecting the
outline as in the alignment method. An example of object recognition using invariants is given
in Figure 24.31.

Another advantage of invariant shape representation is that models can be acquired directly
from images. It is not necessary to make measurements on the actual object, because the shape
descriptors have the same value when measured in any image. This simplifies and facilitates
automation of model acquisition. It is particularly useful in applications such as recognition from
satellite images.

Although the two approaches to object recognition that we have described are useful in
practice, it should be noted that we are far away from human competence. The generation
of sufficiently rich and descriptive representations from images, segmentation and grouping to
identify those features that belong together, and the matching of these to object models are
difficult research problems under active investigation.



756 Chapter 24. Perception

Figure 24.30 Invariance of the cross-ratio: AD.BC/AB.CD = A'D'.B'C'/A'B'.C'D'. Exer-
cise 24.7 asks you to verify this fact.

Figure 24.31 (a) A scene containing a number of objects, two of which also appearin the model
library. These are recognized using invariants based on lines and conies. The image shows 100
fitted lines and 27 fitted conies superimposed in white. Invariants are formed from combinations
of lines and conies, and the values index into a model library. In this case, there are 35 models in
the library. Note that many lines are caused by texture, and that some of the conies correspond to
edge data over only a small section, (b) The two objects from the library are recognized correctly.
The lock striker plate is matched with a single invariant and 50.9% edge match, and the spanner
with three invariants and 70.7% edge match. Courtesy of Andrew Zisserman.



Section 24.7. Speech Recognition 757

24.7 SPEECH RECOGNITION

SPEECH
RECOGNITION

PHONES

HOMOPHONES

SEGMENTATION

In this section, we turn from vision to another type of percept—speech. Speech is the dominant
modality for communication between humans, and promises to be important for communication
between humans and machines, if it can just be made a little more reliable. Speech recognition
is the task of mapping from a digitally encoded acoustic signal to a string of words. Speech
understanding is the task of mapping from the acoustic signal all the way to an interpretation of
the meaning of the utterance. A speech understanding system must answer three questions:

1. What speech sounds did the speaker utter?

2. What words did the speaker intend to express with those speech sounds?

3. What meaning did the speaker intend to express with those words?

To answer question 1, we have to first decide what a speech sound is. It turns out that all
human languages use a limited repertoire of about 40 or 50 sounds, called phones. Roughly
speaking, a phone is the sound that corresponds to a single vowel or consonant, but there are
some complications: combinations of letters such as "th" and "ng" produce single phones, and
some letters produce different phones in different contexts (for example, the "a" in rat and rate.
Figure 24.32 lists all the phones in English with an example of each. Once we know what the
possible sounds are, we need to characterize them in terms of features that we can pick out of the
acoustic signal, such as the frequency or amplitude of the sound waves.

Question 2 is conceptually much simpler. You can think of it as looking up words in a
dictionary that is arranged by pronunciation. We get a sequence of three phones, [k], [ce], and
ft], and find in the dictionary that this is the pronunciation for the word "cat." Two things make
this difficult. The first is the existence of homophones, different words that sound the same,
like "two" and "too."1 The second is segmentation, the problem of deciding where one word
ends and the next begins. Anyone who has tried to learn a foreign language will appreciate this
problem; at first all the words seem to run together. Gradually, one learns to pick out words from
the jumble of sounds. In this case, first impressions are correct; a spectrographic analysis shows
that in fluent speech, the words really do run together with no silence between them. We learn to
identify word boundaries despite the lack of silence.

Question 3 we already know how to answer—use the parsing and analysis algorithms
described in Chapter 22. Some speech understanding systems extract the most likely string of
words and pass them directly to an analyzer. Other systems have a more complex control structure
that considers multiple possible word interpretations so that understanding can be achieved even
if some individual words are not recognized correctly.

We will shortly define a model that answers questions 1 and 2, but first we will explain a
little about how the speech signal is represented.

1 It is also true that one word can be pronounced several ways—you say tow-may-tow and I say tow-mah-tow. This
makes it more tedious to construct the pronunciation dictionary, but it does not make it any harder to look up a word.



758 Chapter 24. Perception

Vowels
Phone Example

[iy] beat
[ih] bit
[ey] bet
[ae] bat
[ah] but
[ao] bought
[ow] boat
[uh] book
[ux] beauty
[er] Bert
[ay] buy
[oy] boy
[axr] diner
[aw] down
[ax] about
[ix] roses
[aa] cot

Consonants B-N
Phone Example
[b] bet
[ch] Chet

' [d] debt
[f] fat
[g] get
[hh] hat
[hv] high
Uh] jet
[k] kick
[1] let
[el] bottle
[m] met
[em] bottom
[n] net
[en] button
[ng] sing
[eng] Washington

Consonants P-Z
Phone Example

[p] pet
[r] rat
[s] set
[sh] shoe
[t] ten
[th] thick
[dh] that
[dx] butter
[v] vet
[w] wet
[wh] which
[y] yet
[z] zoo
[zh] measure

[-] (silence)

Figure 24.32 The DARPA phonetic alphabet, listing all the phones used in English. There are
several alternative notations, including an International Phonetic Alphabet (IPA), which contains
the phones in all known languages.

SAMPLING RATE

QUANTIZATION
FACTOR

FRAMES

FEATURES

Signal processing
Sound is an analog energy source. When a sound wave strikes a microphone, it is converted to
an electrical current, which can be passed to an analog-to-digital converter to yield a stream of
bits representing the sound. We have two choices in deciding how many bits to keep. First, the
sampling rate is the frequency with which we look at the signal. For speech, a sampling rate
between 8 and 16 KHz (i.e., 8 to 16,000 times per second) is typical. Telephones deliver only
about 3 KHz. Second, the quantization factor determines the precision to which the energy at
each sampling point is recorded. Speech recognizers typically keep 8 to 12 bits. That means
that a low-end system, sampling at 8 KHz with 8-bit quantization, would require nearly half a
megabyte per minute of speech. This is a lot of information to manipulate, and worse, it leaves
us very far from our goal of discovering the phones that make up the signal.

The first step in coming up with a better representation for the signal is to group the samples
together into larger blocks called frames. This makes it possible to analyze the whole frame for
the appearance of speech phenomena such as a rise or drop in frequency, or a sudden onset or
cessation of energy. A frame length of about 10 msecs (i.e., 80 samples at 8 KHz) seems to be
long enough so that most such phenomena can be detected and that few short-duration phenomena
will be missed. Within each frame, we represent what is happening with a vector of features. For
example, we might want to characterize the amount of energy at each of several frequency ranges.



Section 24.7. Speech Recognition 759

Other important features include overall energy in a frame, and the difference from the previous
frame. Picking out features from a speech signal is like listening to an orchestra and saying "here
the French horns are playing loud and the violins are playing softly." Breaking the sound down
into components like this is much more useful than leaving it as a single undifferentiated sound
source. Figure 24.33 shows frames with a vector of three features. Note that the frames overlap;
this prevents us from losing information if an important acoustic event just happens to fall on a
frame boundary.

Analog acoustic signal:

Sampled, quantized
digital signal:

Frames with features:

Frames with vector |-
quantization values: ~

1

\J

1 1 1 1 1 1 I I I I I
\

1 I 1 1

| |

Figure 24.33 Translating the acoustic signal into a sequence of vector quantization values.
(Don't try to figure out the numbers; they were assigned arbitrarily.)

VECTOR
QUANTIZATION The final step in many speech signal processing systems is vector quantization. If there

are n features in a frame, we can think of this as an n-dimensional space containing many
points. Vector quantization divides this ^-dimensional space into, say, 256 regions labelled Cl
through C256. Each frame can then be represented with a single label rather than a vector of n
numbers. So we end up with just one byte per frame, which is about a 100-fold improvement
over the original half megabyte per minute. Of course, some information is lost in going from a
feature vector to a label that summarizes a whole neighborhood around the vector, but there are
automated methods for choosing an optimal quantization of the feature vector space so that little
or no inaccuracy is introduced (Jelinek, 1990).

There are two points to this whole exercise. First, we end up with a representation of the
speech signal that is compact. But more importantly, we have a representation that is likely to
encode features of the signal that will be useful for word recognition. A given speech sound
can be pronounced so many ways: loud or soft, fast or slow, high-pitched or low, against a
background of silence or noise, and by any of millions of different speakers each with different
accents and vocal tracts. Signal processing hopes to capture enough of the important features so
that the commonalities that define the sound can be picked out from this backdrop of variation.
(The dual problem, speaker identification, requires one to focus on the variation instead of the
commonalities in order to decide who is speaking.



760 Chapter 24. Perception

LANGUAGE MODEL

ACOUSTIC MODEL

Defining the overall speech recognition model
Speech recognition is the diagnostic task of recovering the words that produce a given acoustic
signal. It is a classic example of reasoning with uncertainty. We are uncertain about how well
the microphones (and digitization hardware) have captured the actual sounds, we are uncertain
about which phones would give rise to the signal, and we are uncertain about which words would
give rise to the phones. As is often the case, the diagnostic task can best be approached with a
causal model—the words cause the signal. We can break this into components with Bayes' rule:

P(words)P(signal\words)
P(words\signal) = ————————-————

P(signal)
Given a signal, our task is to find the sequence of words that maximizes P(words\signal). Of the
three components on the right-hand side, P(signal) is a normalizing constant that we can ignore.
P(words) is known as the language model. It is what tells us, when we are not sure if we heard
"bad boy" or "pad boy" that the former is more likely. Finally, P(signal\words) is the acoustic
model. It is what tells us that "cat" is very likely to be pronounced [kcet].

BIGRAM

The language model: P( words)
In Jake the Money and Run, a bank teller interprets Woody Alien's sloppily written hold-up note
as saying "I have a gub." A better language model would have enabled the teller to determine that
the string "I have a gun" has a much higher prior probability of being on a hold-up note. That
makes "gun" a better interpretation even if P(signal\gub) is a little higher than P(signal\guri).
The language model should also tell us that "I have a gun" is a much more probable utterance
than "gun a have I."

At first glance, the language model task seems daunting. We have to assign a probability
to each of the (possibly infinite) number of strings. Context-free grammars are no help for this
task, but probabilistic context-free grammars (PCFGs) are promising. Unfortunately, as we saw
in Chapter 22, PCFGs aren't very good at representing contextual effects. In this section, we
approach the problem using the standard strategy of defining the probability of a complex event
as a product of probabilities of simpler events. Using the notation w\ • • • wn to denote a string of
n words and w, to denote the rth word of the string, we can write an expression for the probability
of a string as follows:2

P(W\ • • -Wn) - P(wt)P(w2 W\)P(W3\W]W2) ' ' ' P(wn\W\ • • - W n _ i )

Most of these terms are quite complex and difficult to estimate or compute, and they have
no obvious relation to CFGs or PCFGs. Fortunately, we can approximate this formula with
something simpler and still capture a large part of the language model. One simple, popular,
and effective approach is the bigram model. This model approximates P(Wi\w\ • • - w , _ i ) with
P(w,-|w,_ ,). In other words, it says that the probability of any given word is determined solely by
the previous word in the string. The probability of a complete string is given by

P(\Vl • • • W,,) = P(Wi)P(W2\W])P(w3\W2) ' ' ' P(W,, Wn-l) = n"

2 Actually, it would be better if all the probabilities were conditioned on the situation. Few speech recognizers do this,
however, because it is difficult to formalize what counts as a situation.



Section 24.7. Speech Recognition 761

Word

THE
ON
OF
TO
IS
A

THAT
WE

LINE
VISION

Unigram
count

367
69
281
212
175
153
124
105
17
13

Previous words
OF
179
0
0
0
0
36
0
0
1
3

IN

143
0
0'
0
0
36
3
0
0
0

IS
44
1
2
19
0
33
18
0
0
0

ON

44
0
0
0
0
23
0
1
0
1

TO
65
0
1
0
0

21
1
0
1
0

FROM

35
0
0
0
0
14
0
0
0
1

THAT

30
0
3
0
13
3
0
12
0
0

WITH

17
0
0
0
0
15
0
0
0
0

LINE
0
0
4
0
1
0
0
0
0
0

VISION
0
0
0
1
3
0
0
0
0
0

Figure 24.34 A partial table of unigram and bigram counts for the words in this chapter. The
word "the" appears 367 times in all (out of 17613 total words), the bigram "of the" appeared 179
times (or about 1%), and the bigram "in the" appeared 143 times. It turns out these are the only
two bigrams that occur more than 100 times.

TRIGRAM

A big advantage of the bigram model is that it is easy to train the model by counting the
number of times each word pair occurs in a representative corpus of strings and using the counts to
estimate the probabilities. For example, if "a" appears 10,000 times in the training corpus and it is
followed by "gun" 37 times, then P(gMn/|a/_ i) = 37/10,000, where by P we mean the estimated
probability. After such training one would expect "I have" and "a gun" to have relatively high
estimated probabilities, while "I has" and "an gun" would have low probabilities. One problem
is that the training corpus would probably not contain "gub" at all and more importantly, it would
be missing many valid English words as well, so these words would be assigned an estimated
probability of zero. Therefore, it is customary to set aside a small portion of the probability
distribution for words that do not appear in the training corpus. Figure 24.34 shows some bigram
counts derived from the words in this chapter.

It is possible to go to a trigram model that provides values for />(w;|w,-_iw/_2). This is a
more powerful language model, capable of determining that "ate a banana" is more likely than
"ate a bandana." The problem is that there are so many more parameters in trigram models
that it is hard to get enough training data to come up with accurate probability estimates. A
good compromise is to use a model that consists of a weighted sum of the trigram, bigram, and
unigram (i.e., word frequency) models. The model is defined by the following formula (with
c\ +c2 +c3 = 1):

• W,,) = C\ P(\Vi) C3P(Wi W,_ 1 W,-_2

Bigram or trigram models are not as sophisticated as PCFGs, but they account for local
context-sensitive effects better, and manage to capture some local syntax. For example, the fact
that the word pairs "I has" and "man have" get low scores is reflective of subject-verb agreement.
The problem is that these relationships can only be detected locally: "the man have" gets a low
score, but "the man over there have" is not penalized.



762 Chapter 24. Perception

MARKOV MODEL

COARTICULATION

HIDDEN MARKOV
MODEL

The acoustic model: P(signallwords)
The acoustic model is responsible for saying what sounds will be produced when a given string of
words is uttered. We divide the model into two parts. First, we show how each word is described
as a sequence of phones, and then we show how each phone relates to the vector quantization
values extracted from the acoustic signal.

Some words have very simple pronunciation models. The word "cat," for example, is
always pronounced with the three phones fk a? t]. There are, however, two sources of phonetic
variation. First, different dialects have different pronunciations. The top of Figure 24.35 gives
an example of this: for "tomato," you say [tow mey tow] and I say [tow maa tow]. The
alternative pronunciations are specified as a Markov model. In general, a Markov model is a
way of describing a process that goes through a series of states. The model describes all the
possible paths through the state space and assigns a probability to each one. The probability of
transitioning from the current state to another one depends only on the current state, not on any
prior part of the path. (This is the Markov property mentioned in Chapter 17.)

The top of Figure 24.35 is a Markov model with seven states (circles), each corresponding
to the production of a phone. The arrows denote allowable transitions between states, and each
transition has a probability associated with it.3 There are only two possible paths through the
model, one corresponding to the phone sequence [t ow m ey t ow] and the other to [t ow m aa
t ow]. The probability of a path is the product of the probabilities on the arcs that make up the
path. In this case, most of the arc probabilities are 1 and we have

P([towmeytow] ("tomato") = P([r«w»iaa?ow] ("tomato") = 0.5

The second source of phonetic variation is coarticulation. Remember that speech sounds are
produced by moving the tongue and jaw and forcing air through the vocal tract. When the speaker
is talking slowly and deliberately, there is time to place the tongue in just the right spot before
producing a phone. But when the speaker is talking quickly (or sometimes even at a normal
pace), the movements slur together. For example, the [t] phone is produced with the tongue at
the top of the mouth, whereas the [ow] has the tongue near the bottom. When spoken quickly,
the tongue often goes to an intermediate position, and we get [tah] rather than [tow]. The bottom
half of Figure 24.35 gives a more complicated pronunciation model for "tomato" that takes this
coarticulation effect into account. In this model there are four distinct paths and we have

P([towmeytow]\"tomato") = P([towmaa tow] ("tomato") = 0.1
P([tahmeytow]\"tomato") = P([tahmaatow]\ "tomato") = 0.4

Similar models would be constructed for every word we want to be able to recognize. Now if the
speech signal were a list of phones, then we would be done with the acoustic model. We could
take a given input signal (e.g., [towmeytow]) and compute P(signal\words) for various word
strings (e.g., "tomato," "toe may tow," and so on). We could then combine these with P(words)
values taken from the language model to arrive at the words that maximize P(words\signal).

Unfortunately, signal processing does not give us a string of phones. So all we can do
so far is maximize P(words\phones). Figure 24.36 shows how we can compute P(signal\phone)
using a model called a hidden Markov model or HMM. The model is for a particular phone,
3 Arcs with probability I are unlabelled in Figure 24.35. The 0.5 numbers are estimates based on the two authors'
preferred pronunciations.



Section 24.7. Speech Recognition 763

Word model with dialect variation:

Word model with coarticulation and dialect variations:

Figure 24.35 Two pronunciation models of the word "tomato." The top one accounts for
dialect differences. The bottom one does that and also accounts for a coarticulation effect.

[m], but all phones will have models with similar topology. A hidden Markov model is just like
a regular Markov model in that it describes a process that goes through a sequence of states. The
difference is that in a regular Markov model, the output is a sequence of state names, and because
each state has a unique name, the output uniquely determines the path through the model. In a
hidden Markov model, each state has a probability distribution of possible outputs, and the same
output can appear in more than one state.4 HMMs are called hidden models because the true
state of the model is hidden from the observer. In general, when you see that an HMM outputs
some symbol, you can't be sure what state the symbol came from.

Suppose our speech signal is processed to yield the sequence of vector quantization values
[C1 ,C4,C6]. From the HMM in Figure 24.36, we can compute the probability that this sequence
was generated by the phone [m] as follows. First, we note that there is only one path through the
model that could possibly generate this sequence: the path from Onset to Mid to End, where the
output labels from the three states are C1, C4, and C6, respectively. By looking at the probabilities
on the transition arcs, we see that the probability of this path is 0.7 x 0.1 x 0.6 (these are the
values on the three horizontal arrows in the middle of the Figure 24.36). Next, we look at the
output probabilities for these states to see that the probability of [C 1 ,C4,C6] given this path is
0.5 x 0.7 x 0.5 (these are the values for P(Cl\Onset), P(C4\Mid) and P(C6\End), respectively).
So the probability of [Cl ,C4,C6] given the [m] model is

/'([Cl,C4,C6]|[m]) = (0.7 x 0.1 x 0.6) x (0.5 x 0.7 x 0.5) = 0.00735

4 Note that this means that the "tomato" models in Figure 24.35 are actually hidden Markov models, because the same
output (e.g., [t]) appears on more than one state.



764 Chapter 24. Perception

Phone HMM for [m]:

0.3 0.9 0.4

Output probabilities for the phone HMM:

Onset: Mid: End:
C1:0.5 C3:0.2 C4:0.1
C2:0.2 C4:0.7 C6:0.5
C3:0.3 C5:0.1 C7:0.4

Figure 24.36 An HMM for the phone [m]. Each state has several possible outputs, each with
its own probability.

We could repeat the calculation for all the other phone models to see which one is the most
probable source of the speech signal.

Actually, most phones have a duration of 50-100 milliseconds, or 5-10 frames at 10
msec/frame. So the [C1,C4,C6J sequence is unusually quick. Suppose we have a more typical
speaker who generates the sequence [C1,C1,C4,C4,C6,C6J while producing the phone. It turns
out there are two paths through the model that generate this sequence. In one of them both C4s
come from the Mid state (note the arcs that loop back), and in the other the second C4 comes
from the End state. We calculate the probability that this sequence came from the [m] model
in the same way: take the sum over all possible paths of the probability of the path times the
probability that the path generates the sequence.

P([Cl,C\,C4, C4, C6, C6]jLm]) =
(0.3 x 0.7 x 0.9 x 0.1 x 0.4 x 0.6) x (0.5 x 0.5 x 0.7 x 0.7 x 0.5 x 0.5) +
(0.3 x 0.7 x 0.1 x 0.4 x 0.4 x 0.6) x (0.5 x 0.5 x 0.7 x 0.1 x 0.5 x 0.5)
= 0.0001477

We see that the loops in the phone model allow the model to represent both fast and slow speech,
a very important source of variation. The multiple vector quantization values on each state
represent other sources of variation. Altogether, this makes for a fairly powerful model. The
hard part is getting good probability values for all the parameters. Fortunately, there are ways of
acquiring these numbers from data, as we shall see.

Putting the models together
We have described three models. The language bigram model gives us P(wordi\wordi-\}. The
word pronunciation HMM gives us P(phones\word). The phone HMM gives us P(signal\phone).
If we want to compute P(words\signal), we will need to combine these models in some way. One



Section 24.7. Speech Recognition 765

approach is to combine them all into one big HMM. The bigram model can be thought of as an
HMM in which every state corresponds to a word and every word has a transition arc to every
other word. Now replace each word-state with the appropriate word model, yielding a bigger
model in which each state corresponds to a phone. Finally, replace each phone-state with the
appropriate phone model, yielding an even bigger model in which each state corresponds to a
distribution of vector quantization values.

Some speech recognition systems complicate the picture by dealing with coarticulation
effects at either the word/word or phone/phone level. For example, we could use one phone
model for [ow] when it follows a [t] and a different model for [ow] when it follows a [g]. There
are many trade-offs to be made—a more complex model can handle subtle effects, but it will
be harder to train. Regardless of the details, we end up with one big HMM that can be used to
compute P(words\signal).

The search algorithm

From a theoretical point of view, we have just what we asked for: a model that computes
P(words\signal). All we have to do is enumerate all the possible word strings, and we can assign
a probability to each one. Practically, of course, this is infeasible, because there are too many
candidate word strings. Fortunately, there is a better way.

VITERBIALGORITHM The Viterbi algorithm takes an HMM model and an output sequence, [C\, €2, • • • , Cn],
and returns the most probable path through the HMM that outputs the sequence. It also returns
the probability for the path. Think of it as an iterative algorithm that first finds all the paths that
output the first symbol, C\. Then, for each of those paths it finds the most probable path that
outputs the rest of the sequence, given that we have chosen a particular path for C\. So far this
doesn't sound very promising. If the length of the sequence is n and there are M different states
in the model, then this algorithm would seem to be at least O(M").

The key point of the Viterbi algorithm is to use the Markov property to make it more
efficient. The Markov property says that the most probable path for the rest of any sequence can
depend only on the state in which it starts, not on anything else about the path that got there. That
means we need not look at all possible paths that lead to a certain state; for each state, we only
need to keep track of the most probable path that ends in that state. Thus, the Viterbi algorithm
is an instance of dynamic programming.

Figure 24.37 shows the algorithm working on the HMM from Figure 24.36 and the output
sequence [Cl ,C3,C4,C61. Each column represents one iteration of the algorithm. In the leftmost
column, we see that there is only one way to generate the sequence [Cl], with the path [Onset].
The oval labelled "Onset 0.5" means that the path ends in the Onset state and has probability
0.5. The arc leading into the oval has the label "1.0; 0.5," which means that the probability of
making this transition is 1.0, and the probability of outputting a Cl, given that the transition is
made, is 0.5. In the second column, we consider all the possible continuations of the paths in
the first column that could lead to the output [Cl ,C3]. There are two such paths, one ending in
the Onset state and one in the Mid state. In the third column, it gets more interesting. There are
two paths that lead to the Mid state, one from Onset and the other from Mid. The bold arrow
indicates that the path from Mid is more probable (it has probability 0.0441), so that is the only



766 Chapter 24. Perception

one we have to remember. The path [Onset,Onset,Mid] has a lower probability, 0.022, so it is
discarded. We continue in this fashion until we reach the FINAL state, with probability 0.0013.
By tracing backwards and following the bold arrows whenever there is a choice, we see that the
most probable path is [Onset,Onset,Mid,End,Final]. The Viterbi algorithm is O(bMn), where b
is the branching factor (the number of arcs out of any state). If the model is fully connected, then
b-M, and the algorithm is O(M2ri), which is still quite an improvement over O(M").

[C1,C3] [C1,C3,C4] ,C3,C4,C6]

;' Onset '• • Onset '•
'•, o.o ?.;—~-\ o.o ;

Mid
0.0

1.0; 0.5 / onset \ 0.3; 0.3 / onset \ 0-3; o.p / Onset'.

Figure 24.37 A diagram of the Viterbi algorithm computing the most probable path (and its
probability) for the output [C1 ,C3,C4,C6] on the HMM from Figure 24.36.

Training the model
The HMM approach is used in speech recognition for two reasons. First, it is a reasonably good
performance element—we saw that the Viterbi algorithm is linear in the length of the input. More
importantly, HMMs can be learned directly from a training set of [signal,words] pairs. This is
important because it is far too difficult to determine all the parameters by hand. There are other
approaches that make better performance elements than HMMs, but they require the training data
to be labelled on a phone-by-phone basis rather than a sentence-by-sentence basis, and that too
is a difficult task. The standard algorithm for training an HMM is called the Baum-Welch or
forward-backward algorithm. Rabiner (1990) gives a tutorial on this and other HMM algorithms.



Section 24.8. Summary 767

The best current speech recognition systems recognize from about 80% to 98% of the words
correctly, depending on the quality of the signal, the allowable language, the length of each input,
and the variation in speakers. Speech recognition is easy when there is a good microphone, a
small vocabulary, a strong language model that predicts what words can come next, a limit of
one-word utterances (or a requirement for pauses between words), and when the system can be
trained specifically for a single speaker. The systems are not as accurate over phone lines, when
there is noise in the room, when there is a large vocabulary with no restrictions, when the words
of an utterance run together, and when the speaker is new to the system.

24.8 SUMMARY

Although perception appears to be an effortless activity for humans, it requires a significant
amount of sophisticated computation. This chapter studies vision as the prime example of
perceptual information processing. The goal of vision is to extract information needed for tasks
such as manipulation, navigation, and object recognition. We also looked at speech recognition.

• The process of image formation is well-understood in its geometric and physical aspects.
Given a description of a 3-D scene, we can easily produce a picture of it from some arbitrary
camera position (the graphics problem). Inverting the process by going from an image to
a description of the scene is difficult.

• To extract the visual information necessary for the tasks of manipulation, navigation,
and recognition, intermediate representations have to be constructed. Image-processing
algorithms extract primitive elements from the image, such as edges and regions.

• In the image, there exist multiple cues that enable one to obtain 3-D information about
the scene. These include motion, stereopsis, texture, shading, and contour analysis. Each
of these cues relies on background assumptions about physical scenes in order to provide
unambiguous interpretations.

• Object recognition in its full generality is a very hard problem. We discussed two relatively
simple techniques—alignment and indexing using geometric invariants—that provide ro-
bust recognition in restricted contexts.

• Speech recognition is a problem in diagnosis. It can be solved with a language model and
an acoustic model. Current emphasis is on systems that do well both as a performance
element and a learning element.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
Systematic attempts to understand human vision can be traced back to ancient times. Euclid
(ca. 300 B.C.) wrote about natural perspective, the mapping that associates with each point P in
the three-dimensional world the direction of the ray OP joining the center of projection O to the



768 Chapter 24. Perception

point P. He was well aware of the notion of motion parallax. The mathematical understanding
of perspective projection, this time in the context of projection onto planar surfaces, had its
next significant advance in the fifteenth century in Renaissance Italy. Brunelleschi (1413) is
usually credited with creating the first paintings based on geometrically correct projection of the
three-dimensional scene. In 1435, Alberti codified the rules and inspired generations of artists
whose artistic achievements amaze us to this day (Kemp, 1990). Particularly notable in their
development of the science of perspective, as it was called in those days, were Leonardo Da Vinci
and Albrecht Diirer. Leonardo's late fifteenth century descriptions of the interplay of light and
shade (chiaroscuro), umbra and penumbra regions of shadows, and aerial perspective are still
worth reading in translation (Kemp, 1989).

Although perspective was known to the Greeks, they were curiously confused by the role
of the eyes in vision. Aristotle thought of the eyes as devices emitting rays, rather in the manner
of modern laser range finders. This mistaken view was laid to rest by the work of Arab scientists,
such as Alhazen in the tenth century. The development of various kinds of cameras followed.
These consisted of rooms (camera is Latin for chamber) where light would be let in through a
small hole in one wall to cast an image of the scene outside on the opposite wall. Of course, in all
these cameras, the image was inverted, which caused no end of confusion. If the eye was to be
thought of as such an imaging device, how do we see right side up? This exercised the greatest
brains of the era (including Leonardo). It took the work of Kepler and Descartes to settle the
question. Descartes placed an eye from which the opaque cuticle had been removed in a hole in a
window shutter. This resulted in an inverted image being formed on a piece of paper laid out on
the retina. While the retinal image is indeed inverted, this need not cause a problem if the brain
interprets the image the right way. In modern jargon, one just has to access the data structure
appropriately.

The next major advances in the understanding of vision took place in the nineteenth
century. The work of Helmholtz and Wundt, described in Chapter 1, established psychophysical
experimentation as a rigorous scientific discipline. Through the work of Young, Maxwell, and
Helmholtz, a trichromatic theory of color vision was established. That humans can see depth
if the images presented to the left and right eyes are slightly different was demonstrated by
Wheatstone's (1838) invention of the stereoscope. The device immediately became very popular
in parlors and salons throughout Europe. The essential concept of binocular stereopsis, that
two images of a scene taken from slightly different viewpoints carry information sufficient to
obtain a 3-D reconstruction of the scene, was exploited in the field of photogrammetry. Key
mathematical results were obtained—Kruppa (1913) proved that given two views of five distinct
points, one could reconstruct the rotation and translation between the two camera positions as
well as the depth of the scene (up to a scale factor). Although the geometry of stereopsis had
been understood for a long time, the correspondence problem in photogrammetry used to be
solved by humans trying to match up corresponding points. The amazing ability of humans
in solving the correspondence problem was illustrated by Julesz's invention of the random dot
stereogram (Julesz, 1971). Both in computer vision and in photogrammetry, much effort was
devoted to solving this problem in the 1970s and 1980s.

The second half of the nineteenth century was a major foundational period for the psy-
chophysical study of human vision. In the first half of the twentieth century the most signif-
icant research results in vision were obtained by the Gestalt school of psychology led by Max



Section 24.8. Summary 769

Wertheimer. With the slogan "The whole is greater than the sum of the parts," they laid primary
emphasis on grouping processes, both of contours and regions. Constructing computational
models of these processes remains a difficult problem to this day.

The period after World War 2 was marked by renewed activity. Most significant was
the work of J. J. Gibson (1950; 1979), who pointed out the importance of optical flow as
well as texture gradients in the estimation of environmental variables such as surface slant and
tilt. He reemphasized the importance of the stimulus and how rich it was. Gibson, Olum,
and Rosenblatt (1955) pointed out that the optical flow field contained enough information to
determine the egomotion of the observer relative to the environment. In the computational vision
community, work in this area and the (mathematically equivalent) area of structure from motion
developed mainly in the 1980s, following the seminal works of Koenderinkand van Doom (1975),
Ullman (1979), and Longuet-Higgins (1981). Faugeras (1993) presents a comprehensive account
of our understanding in this area. In the 1990s, with the increase in computer speed and storage,
the importance of motion sequence analysis from digital video is growing rapidly.

In computational vision, major early works in shape from texture are due to Bajscy and
Liebermann (1976) and Stevens (1981). Whereas this work was for planar surfaces, a compre-
hensive analysis for curved surfaces is due to Carding (1992) and Malik and Rosenholtz (1994).

In the computational vision community, shape from shading was first studied by Berthold
Horn (1970). Horn and Brooks (1989) present an extensive survey of the main papers in the
area. This framework made a number of simplifying assumptions, the most critical of which
was ignoring the effect of mutual illumination. The importance of mutual illumination has been
well-appreciated in the computer graphics community, where ray tracing and radiosity have been
developed precisely to take mutual illumination into account. A theoretical and empirical critique
may be found in Forsyth and Zisserman (1991).

In the area of shape from contour, after the key initial contributions of Huffman (1971) and
Clowes (1971), Mackworth (1973) and Sugihara (1984) completed the analysis for polyhedral
objects. Malik (1987) developed a labeling scheme for piecewise smooth curved objects. Un-
derstanding the visual events in the projection of smooth curved objects requires an interplay of
differential geometry and singularity theory. The best study is Koenderink's (1990) Solid Shape.

In the area of three-dimensional object recognition, the seminal work was Roberts's (1963)
thesis at MIT. It is often considered to be the first PhD thesis in computer vision and introduced
several key ideas including edge detection and model-based matching. The idea of alignment,
first introduced by Roberts, resurfaced in the 1980s in the work of Lowe (1987) and Huttenlocher
and Ullman (1990). Generalized cylinders were introduced by Binford in 1971, and were used
extensively by Brooks in the ACRONYM system (Brooks, 1981). Geometrical invariants were
studied extensively in the late nineteenth century by English and German mathematicians. Their
use in object recognition is surveyed by Mundy and Zisserman (1992), Excellent results have
been achieved even in cluttered scenes (Rothwell et al, 1993).

A word about the research methodology used in computer vision. The early development
of the subject, like that of rest of AI, was mostly through Ph.D. theses that consisted largely of
descriptions of implemented systems. The work lacked significant contact with the literature
on human vision and photogrammetry, in which many of the same problems had been studied.
David Marr played a major role in connecting computer vision to the traditional areas of biological
vision—psychophysics and neurobiology. His main work, Vision (Marr, 1982), was published



770_________________________ Chapter 24. Perception

posthumously. That book conveys the excitement of working in vision better than any written
since, despite the fact that many of the specific hypotheses and models proposed by Marr have
not stood the test of time.

Under Marr's influence, reconstruction of the three-dimensional scene from various cues
became the dominant ideology of the day. This of course proved to be a difficult problem, and
it was inevitable that people would question whether it was really necessary. The old ideas of
Gibson—active vision and affordances—came back. The most solid proof that reconstruction
was not necessary for many (or most) tasks came from the work of Dickmanns in Germany,
who demonstrated robust driving using a control system perspective (Dickmanns and Zapp,
1987). As a general philosophy, active vision was advocated by Ruzena Bajcsy (1988) and John
Aloimonos (1988). A number of papers are collected in a special issue of CVGIP (Aloimonos,
1992). In the 1990s, the dominant perspective is that of vision as a set of processes aimed at
extracting information for manipulation, navigation, and recognition.

Eye, Brain and Vision by David Hubel (1988) and Perception by Irvin Rock (1984) pro-
vide excellent introductions to the field of biological vision. A Guided Tour of Computer
Vision (Nalwa, 1993) is a good general introduction to computer vision; Robot Vision (Horn,
1986) and Three-Dimensional Computer Vision (Faugeras, 1993) cover more advanced topics.
Two of the main journals for computer vision are the IEEE Transactions on Pattern Analysis
and Machine Intelligence and the International Journal of Computer Vision. Computer vision
conferences include ICCV (International Conference on Computer Vision), CVPR (Computer
Vision and Pattern Recognition), and ECCV (European Conference on Computer Vision).

The hidden Markov model was first used to model language by Markov himself in a
letter-sequence analysis of the text of Eugene Onegin (Markov, 1913). Early development of
algorithms for inferring Markov models from data was carried by Baum and Petrie (1966). These
were applied to speech by Baker (1975) and Jelinek (1976). In 1971, the Defense Advanced
Research Projects Agency (DARPA) of the United States Department of Defense, in cooperation
with a number of research centers, set out a five-year plan for speech recognition research. The
two most significant systems to emerge from this massive effort were HEARSAY-II (Erman et al.,
1980) and HARPY (Lowerre and Reddy, 1980). HARPY was the only system that clearly met the
rigorous specifications of the five-year plan. It used a highly compiled network representation for
all possible meaningful sequences of speech elements. HEARSAY-II, however, has had a greater

ARCHITECTURE influence on other research because of its use of the blackboard architecture. HEARSAY-II was
designed as an expert system with a number of more or less independent, modular knowledge
sources which communicated via a common blackboard from which they could write and read.
Because this representation was less compiled and more modular than HARPY'S, HEARSAY-II was
much easier to comprehend and modify, but was not fast enough to meet the DARPA criteria.

A good introduction to speech recognition is given by Rabiner and Juang (1993). Waibel
and Lee (1990) collect important papers in the area, including some tutorial ones. Lee (1989)
describes a complete modern speech recognition system. The presentation in this chapter drew
on the survey by Kay, Gawron, and Norvig (1994), and on an unpublished manuscript by Dan
Jurafsky. Speech recognition research is published in Computer Speech and Language and the
IEEE Transactions on Acoustics, Speech, and Signal Processing, and at the DARPA Workshops
on Speech and Natural Language Processing.



Section 24.8. Summary 771

EXERCISES

24.1 In the shadow of a tree with a dense, leafy canopy, one sees a number of light spots.
Surprisingly, they all appear to be circular. Why? After all, the gaps between the leaves through
which the sun shines through are not likely to be circular.

24.2 Label the line drawing in Figure 24.38, assuming that the outside edges have been labelled
as occluding and that all vertices are trihedral. Do this by a backtracking algorithm that examines
the vertices in the order A, B, C, and D, picking at each stage a choice consistent with previously
labelled junctions and edges. Now try the vertices in the order B, D, A, and C.

Figure 24.38 A drawing to be labelled, in which all vertices are trihedral.

24.3 Consider an infinitely long cylinder of radius r oriented with its axis along the y-axis. The
cylinder has a Lambertian surface and is viewed by a camera along the positive z-axis. What will
you expect.to see in the image of the cylinder if the cylinder is illuminated by a point source at
infinity located on the positive jc-axis. Explain your answer by drawing the isobrightness contours
in the projected image. Are the contours of equal brightness uniformly spaced?

24.4 Edges in an image can correspond to a variety of scene events. Consider the photograph
on the cover of your book and assume that it is a picture of a real 3-D scene. Identify a set
of ten different brightness edges in the image, and for each, decide whether it corresponds to a
discontinuity in (a) depth, (b) surface normal, (c) reflectance, or (d) illumination.

24.5 Show that convolution with a given function/ commutes with differentiation, that is,

(/*£)'=/*£'



772 Chapter 24. Perception

24.6 A stereo system is being contemplated for terrain mapping. It will consist of two CCD
cameras, each having 512x512 pixels on a 10 cm x 10 cm square sensor. The lenses to be used
have focal length 16 cm, and focus is fixed at infinity. For corresponding points (u\, vi) in the left
image and (u2, V2) in the right image, vi = V2 as the x-axes in the two image planes are parallel
to the epipolar lines. The optical axes of the two cameras are parallel. The baseline between the
cameras is 1 meter.

a. If the nearest range to be measured is 16 meters, what is the largest disparity that will occur
(in pixels)?

b. What is the range resolution, due to the pixel spacing, at 16 meters?
c. What range corresponds to a disparity of one pixel?

24.7 In Figure 24.30, physically measure the cross ratio of the points ABCD as well as of the
points A'B'C'D'. Are they equal?

24.8 We wish to use the alignment algorithm in an industrial situation where flat parts are
moving along a conveyor belt and being photographed by a camera vertically above the conveyor
belt. The pose of the part is specified by three variables, one for the rotation and two for the 2-D
position. This simplifies the problem and the function FlND-TRANSFORM needs only two pairs
of corresponding image and model features to determine the pose. Determine the worst-case
complexity of the alignment procedure in this context.

24.9 Read this chapter from the beginning until you find ten examples of homophones. Does
the status of a word as a homophone depend on the accent of the speaker?

24.10 Calculate the most probable path through the HMM in Figure 24.36 for the output
sequence [C1,C2,C3,C4,C4,C6,C7]. Also give its probability.

24.11 Some sports announcers have been known to celebrate a score with the drawn out
pronunciation [g ow ow ow ow ow ow el]. Draw a word HMM for "goal" such that the most
probable path has a sequence of four [ow]s, but any number greater than 1 is possible.

24.12 The Viterbi algorithm finds the most probable sequence of phones corresponding to
the speech signal. Under the assumption that some words can be pronounced with more than
one sequence of phones, explain why the Viterbi algorithm only computes an approximation to
P(words\signal}.



25 ROBOTICS

In which agents are endowed with physical effectors with which to do mischief.

25.1 INTRODUCTION

ROBOT

AUTONOMOUS
ROBOTS

The Robot Institute of America defines a robot as a programmable, multifunction manipulator
designed to move material, parts, tools, or specific devices through variable programmed motions
for the performance of a variety of tasks. This definition is not very demanding; a conveyer belt
with a two-speed switch would arguably satisfy it.

We will define robot simply as an active, artificial agent whose environment is the physical
world. The active part rules out rocks, the artificial part rules out animals, and the physical part
rules out pure software agents or softbots, whose environment consists of computer file systems,
databases and networks. We will be concerned primarily with autonomous robots, those that
make decisions on their own, guided by the feedback they get from their physical sensors.

Most of the design of an autonomous robot is the same as the design of any autonomous
agent. To some extent, we could take a generic planning agent (Chapter 11) or decision-making
agent (Chapter 16), equip it with wheels, grippers, and a camera, point it out the door, and wish it
good luck. Unfortunately, unless we pointed it at an exceptionally benign environment, it would
not fare very well. The real world, in general, is very demanding. We can see this by considering
the five properties of environments from page 46:

• The real world is inaccessible. Sensors are imperfect, and in any case can only perceive
stimuli that are near the agent.

• The real world is nondeterministic, at least from the robot's point of view. Wheels slip,
batteries run down, and parts break, so you never know if an action is going to work. That
means a robot needs to deal with uncertainty (Part V).

• The real world is nonepisodic—the effects of an action change over time. So a robot has
to handle sequential decision problems (Chapter 17) and learning (Part VI).

773



774 Chapter 25. Robotics

• The real world is dynamic. Therefore, a robot has to know when it is worth deliberating
and when it is better to act immediately.

• The real world is continuous, in that states and actions are drawn from a continuum of
physical configurations and motions. Because this makes it impossible to enumerate the
set of possible actions, many of the search and planning algorithms described in earlier
chapters will need to be modified.

We could go on about the unique properties of robotics, but instead we will refer you to Ex-
ercise 25.1. It does not require any additional reading, it will give you an instant and visceral
appreciation of the problems of robotics (and their possible solutions), and it can be amusing.

This chapter has three main points. First, we look at the tasks that robots perform (Sec-
tion 25.2) and the special effectors and sensors they use (Section 25.3). Second, we step away
from robots per se and look at agent architectures for inaccessible, nondeterministic, nonepisodic,
dynamic domains (Section 25.4). Third, we look at the specific problem of selecting actions in
a continuous state space (Sections 25.5 and 25.6). The algorithms rely on a level of computa-
tional geometry that is more suited for a specialized advanced text, so we only give qualitative
descriptions of the problems and solutions.

25.2 TASKS: WHAT ARE ROBOTS GOOD FOR?

While humans do a wide variety of things using more or less the same body, robot designs vary
widely depending on the task for which they are intended. In this section, we survey some of the
tasks, and in the next section, we look at the available parts (effectors and sensors) that make up
a robot's body.

Manufacturing and materials handling
Manufacturing is seen as the traditional domain of the robot. The repetitive tasks on a production
line are natural targets for automation, and so in 1954 George Devol patented the programmable
robot arm, based on the same technology—punch cards—that was used in the Jacquard loom 150
years earlier. By 1985, there were about 180,000 robots in production lines around the world,
with Japan, the United States, and France accounting for 150,000 of them. The automotive and
microelectronics industries are major consumers of robots. However, most robots in use today
are very limited in their abilities to sense and adapt. Autonomous robots are still struggling
for acceptance. The reasons for this are historical, cultural, and technological. Manufacturing
existed and burgeoned long before robots appeared, and many tricks were developed for solving
manufacturing problems without intelligence. And it is still true that simple machines are the
best solution for simple tasks.

Material handling is another traditional domain for robots. Material handling is the storage,
transport, and delivery of material, which can range in size from silicon chips to diesel trucks. The
robots used for material handling likewise vary from table-top manipulators to gantry cranes, and



Section 25.2. Tasks: What Are Robots Good For? 775

include many types of AGV (autonomous guided vehicles, typically golf-cart sized four-wheeled
vehicles that are used to ferry containers around a warehouse). Handling odd-shaped parts is
simplified by placing each part in a cradle or pallet that has a base of fixed shape. Bar codes
on the pallets make it easy to identify and inventory the parts. But these techniques falter when
applied to food packaging and handling, an area likely to see rapid growth in the future. The large
variety of forms, weights, textures, and firmnesses in familiar foods make this task a challenge
for future research.

Robots have recently been making their mark in the construction industry. Large prototype
robots have been built that can move a one-ton object with an accuracy of 2.5 mm in a workspace
of radius 10 m. Sheep shearing is another impressive application. Australia boasts a population
of 140 million sheep, and several industrial and academic development groups have deployed
automated sheep shearers. Because sheep come in different sizes, some kind of sensing (vision
or mechanical probing) is needed to get an idea of the right overall shearing pattern. Tactile
feedback is used to follow the contours of the animal without injuring it.

Gofer robots
MOBOTS Mobile robots (mobots) are also becoming widely useful. Two primary applications are as

couriers in buildings, especially hospitals, and as security guards. One company has sold over
3000 "mailmobiles." These robots respond to requests from a computer terminal and carry
documents or supplies to a destination somewhere else in the building. The robot negotiates
hallways and elevators, and avoids collision with other obstacles such as humans and furniture.
The robot is appropriate for this task because it has high availability (it can work 24 hours a day),
high reliability so that supplies are not lost or misplaced, and its progress can be monitored to
allow preparation for its arrival, or detection of failure.

We have seen (page 586) that autonomous vehicles are already cruising our highways, and
AUVs (autonomous underwater vehicles) are cruising the seas. It is far less expensive to send a
robot to the bottom of the ocean than a manned submarine. Furthermore, a robot can stay down
for months at a time, making scientific observations, reporting on enemy submarine traffic, or
fixing problems in transoceanic cables.

Hazardous environments
Mobile robots are an important technology for reducing risk to human life in hazardous environ-
ments. During the cleanup of the Chernobyl disaster, several Lunokhod lunar explorer robots
were converted to remote-controlled cleaning vehicles. In Japan and France, robots are used
for routine maintenance of nuclear plants. Crisis management is now being taken seriously as
a technological challenge in the United States. Robots can reduce risk to humans in unstable
buildings after earthquakes, near fire or toxic fumes, and in radioactive environments. They can
also be used for routine tasks in dangerous situations including toxic waste cleanup, deep sea
recovery, exploration, mining, and manipulation of biologically hazardous materials. A human
operator is often available to guide the robot, but it also needs autonomy to recognize and respond
to hazards to its own and others' well-being.



776______________________________________________ Chapter 25. Robotics

Autonomy is also essential in remote environments (such as the surface of Mars) where
communication delays are too long to allow human guidance. A robot for hazardous environments
should be able to negotiate very rough ground without falling or tipping over.1 It should have
sensing modalities that work with no light present. It should above all avoid doing harm to
humans who may be present but unconscious or disabled in its environment. Achieving this level
of autonomy along with reliability is a challenge for robotics. But the return is very great, and
this area of research is bound to continue its growth.

Telepresence and virtual reality
As computers spread from scientific/business applications to a consumer technology, telepresence
and virtual reality continue to captivate the public imagination. The idea of staying in one's home
and being able to sense exotic environments, either real (telepresence) or imaginary (virtual
reality) is indeed compelling, and is a driving force behind some major moves in the computer
and entertainment industries. Among the possible environments to which one might connect,
there are many important applications. Today, New York City police use teleoperated robots to
answer many of the city's estimated 9000 yearly bomb scares. Architects and customers can
walk through or fly over a building before it is built.2 Oceanographers can collect samples with
a deep-sea submersible off the Pacific coast without leaving their offices. Medical specialists
can examine patients hundreds of miles away. Surgeons can practice new techniques on virtual
organ models. Or they can operate with miniature implements through a catheter inserted in a
tiny incision.3

Much of the research in telepresence and virtual reality fall in the robotics category.
Robotics researchers have for many years been studying, designing, and improving anthropo-
morphic hands. They have also built exoskeletons and gloves that provide both control and
sensory feedback for those hands. Tactile sensing research opens the possibility of a true remote
sense of touch. Realistic virtual environments require object models with a full set of physical
attributes. Simulation requires algorithms that accurately factor in those attributes, including
inertia, friction, elasticity, plasticity, color, texture, and sound. There remains much work to do
to fully exploit the possibilities of remote and virtual presence.

Augmentation of human abilities
A precursor to telepresence involves putting a human inside a large, strong robot. In 1969,
General Electric built the Quadrupedal Walking Machine, an 11-foot, 3000-pound robot with a
control harness in which a human operator was strapped. Project leader Ralph Mosher remarked
that the man-machine relationship "is so close that the experienced operator begins to feel as if
those mechanical legs are his own. You imagine that you are actually crawling along the ground
1 The robot DANTE-II caused embarrassment to its sponsors when it tipped over while exploring a volcano in July, 1994.
2 The cover of this book shows a tiny model of Soda Hall, the computer science building at Berkeley. The model was
used for walkthroughs prior to actual construction.
3 The first medical telepresence system was deployed in 1971, under NASA sponsorship. A mobile van parked at the
Papago Indian Reservation near Tucson, Arizona, allowed patients to be diagnosed remotely.



Section 25.3. Parts: What Are Robots Made Of? 777

on all fours—but with incredible strength." A futuristic full-body exoskeleton of this kind was
worn by Ripley (Sigourney Weaver) in the final confrontation of the movie "Aliens."

No less fascinating is the attempt to duplicate lost human effectors. When an arm or
leg is amputated, the muscles in the stump still respond to signals from the brain, generating
myoelectric currents. Prosthetic li,mbs can pick up these signals and amplify them to flex joints
and move artificial fingers. Some prosthetics even have electrocutaneous feedback that gives a
sense of touch. There has also been work in giving humans artificial sensors. A Japanese MITI
project, for example, built a prototype robot guide dog for the blind. It uses ultrasound to make
sure that its master stays in a safe area as they walk along together. Artificial retinas and cochleas,
mostly based on analog VLSI, are the subject of intensive research at present.

25.3 PARTS: WHAT ARE ROBOTS MADE OF?

LINKS

JOINTS

END EFFECTORS

Robots are distinguished from each other by the effectors and sensors with which they are
equipped. For example, a mobile robot requires some kind of legs or wheels, and a teleoperated
robot needs a camera. We will assume that a robot has some sort of rigid body, with rigid links
that can move about. Links meet each other at joints, which allow motion. For example, on a
human the upper arm and forearm are links, and the shoulder and elbow are joints. The palm
is a link, and fingers and thumb have three links. Wrists and finger joints are joints. Robots
need not be so anthropomorphic; a wheel is a perfectly good link. Attached to the final links
of the robot are end effectors, which the robot uses to interact with the world. End effectors
may be suction cups, squeeze grippers, screwdrivers, welding guns, or paint sprayers, to name a
few. Some robots have special connectors on the last link that allow them to quickly remove one
end effector and attach another. The well-equipped robot also has one or more sensors, perhaps
including cameras, infrared sensors, radar, sonar, and accelerometers.

EFFECTOR

ACTUATOR

DEGREE OF
FREEDOM

LOCOMOTION

MANIPULATION

Effectors: Tools for action
An effector is any device that affects the environment, under the control of the robot. To have
an impact on the physical world, an effector must be equipped with an actuator that converts
software commands into physical motion. The actuators themselves are typically electric motors
or hydraulic or pneumatic cylinders. For simplicity, we will assume that each actuator determines
a single motion or degree of freedom. For example, an automatic phonograph turntable has three
degrees of freedom. It can spin the turntable, it can raise and lower the stylus arm, and it can
move the arm laterally to the first track. A side effect of the motion of the turntable is that one or
more vinyl recordings rotate as well. This motion, assuming the stylus has been lowered into a
recording groove, leads to a useful and musical product.

Effectors are used in two main ways: to change the position of the robot within its
environment (locomotion), and to move other objects in the environment (manipulation). A
third use, to change the shape or other physical properties of objects, is more in the realm of
mechanical engineering than robotics, so we will not cover it.



778 Chapter 25. Robotics

Locomotion

STATICALLY STABLE

DYNAMICALLY
STABLE

NONHOLONOMIC

HOLONOMIC

The vast majority of land animals use legs for locomotion. Legged locomotion turns out to be
very difficult for robots, and is used only in special circumstances. The most obvious application
is motion in rough terrain with large obstacles. The Ambler robot (Simmons et al, 1992), for
example, is a six-legged robot, about 30 feet tall, capable of negotiating obstacles more than 6
feet in diameter. The Ambler, unlike most animals, is a statically stable walker. That is, it can
pause at any stage during its gait without tumbling over. Statically stable walking is very slow
and energy-inefficient, and the quest for faster, more efficient legged machines has led to a series
of dynamically stable hopping robots (Raibert, 1986), which would crash if forced to pause, but
do well as long as they keep moving. These robots use rhythmic motion of four, two, or even a
single leg to to control the locomotion of the body in three dimensions. They do not have enough
legs in contact with the ground to be stable statically, and will fall if their hopping motion stops.
They are dynamically stable because corrections to leg motion keep the body upright when it is
bumped or when the ground is uneven. The control of legged machines is too complex a subject
to discuss here, except to remark on its difficulty and to marvel at recent successes—for example,
the one-legged robot shown in Figure 25.1 can "run" in any direction, hop over small obstacles,
and even somersault.

Despite the anthropomorphic attractions of legged locomotion, wheel or tread locomotion
is still the most practical for most environments. Wheels and treads are simpler to build, are
more efficient than legs, and provide static support. They are also easier to control, although they
are not without subtle problems of their own. Consider the car-like robot of Figure 25.2. We
know from experience that without obstructions, we can drive a car to any position, and leave
it pointing in any direction that we choose. Thus, the car has three degrees of freedom, two for
its x-y position, and one for its direction. But there are only two actuators, namely, driving and
steering. And for small motions, the car seems to have only two degrees of freedom, because we
can move it in the direction it points, or rotate it slightly, but we cannot move it sideways.

It is important here to draw the distinction between what the actuators actually do, namely,
turning or steering the wheels, and what these motions do to the environment. In this case, the
side effect of the wheel motion is to move the car to any point in a three-dimensional space.
Because the number of controllable degrees of freedom is only two, which is less than the total
degrees of freedom (three), this is a nonholonomic robot. In general, a nonholonomic robot has
fewer controllable degrees of freedom than total degrees of freedom. As a rule, the larger the gap
between controllable and total degrees of freedom, the harder it is to control the robot. A car with
a trailer has four total degrees of freedom but only two controllable ones, and takes considerable
skill to drive in reverse. If the number of total and controllable degrees freedom of the system is
the same, the robot is holonomic.

It is possible to build truly holonomic mobile robots, but at the cost of high mechanical
complexity. It is necessary to design the wheels or treads so that motion in the driving direction is
controlled, but sideways motion is free. Holonomic drives usually replace the tire or tread with a
series of rollers lined up with the drive direction. Although these designs make life easier for the
control architect, the common designs of nonholonomic mobile robots (Figures 25.2 and 25.3)
are not that difficult to control, and their mechanical simplicity makes them the best choice in
most situations. The main distinction to be made between different designs is whether the robot



Section 25.3. Parts: What Are Robots Made Of? 779

Figure 25.1 Raibert's dynamically stable hopping robot in motion. (© 1986. MIT Leg
Laboratory. All rights reserved.)

Figure 25.2 Motion of a four-wheeled vehicle with front-wheel steering.



780 Chapter 25. Robotics I
passive caster

independently
controlled wheels

Figure 25.3 The wheel arrangement on the Hilare mobile robot, viewed from the bottom.

has a minimum turning radius or can turn on the spot. If the latter is true, then it is always possible
to move from configuration A to B by turning on the spot toward B, moving to B in a straight
line, and rotating on the spot to the orientation of B. If there is a turning-radius constraint, or if
one would like to move without slowing down too much (which generates the same constraint),
a special path planner is needed. It can be shown that the shortest path in such cases consists of
straight-line segments joining segments of circles with the minimum radius.

Sometimes the robot's design makes the control of locomotion very difficult. Reversing a
wheeled vehicle with several trailers is beyond the capability of most humans; hence some large
fire engines are fitted with a second steering wheel for the back wheels to make it easier. Fire
engines have only a single trailer, but two-trailer examples can be seen at any modern airport.
When leaving a gate, most aircraft are driven by a nose-wheel tender. The nose-wheel tender
(the car) drives a long link attached to the nose wheel (first trailer). The aircraft itself forms the
second trailer. This combination must be backed out of the gate each time an aircraft departs,
and the only control is the steering of the tender. Fortunately, the much greater length of the
aircraft makes it insensitive to small motions of the tender and link, and the control problem is
tractable for an experienced driver. Recent advances in control theory have resulted in algorithms
for automatically steering vehicles with any number of trailers of any size.

MANIPULATORS

Manipulation

We return now to manipulators, effectors that move objects in the environment. The ancestors of
robot manipulators were teleoperated mechanisms that allowed humans to manipulate hazardous



Section 25.3. Parts: What Are Robots Made Of? 781

KINEMATICS

ROTARY

PRISMATIC

materials, and that mimicked the geometry of a human arm. Early robots as a rule followed this
precedent, and have anthropomorphic kinematics. Broadly defined, kinematics is the study of
the correspondence between the actuator motions in a mechanism, and the resulting motion of
its various parts.

Most manipulators allow for either rotary motion (rotation around a fixed hub) or prismatic
motion (linear movement, as with a piston inside a cylinder). Figure 25.4 shows the Stanford
Manipulator, used in several early experiments in robotics. A nearly anthropomorphic design is
the Unimation PUMA shown in Figure 25.5. This design has six rotary joints arranged sequentially.
The shorthand description of its kinematic configuration is "RRRRRR," ("6R" for short) listing
joint types from base to tip. A free body in space has six degrees of freedom (three for x-y-z
position, three for orientation), so six is the minimum number of joints a robot requires in order
to be able to get the last link into an arbitrary position and orientation.

Figure 25.4 The Stanford Manipulator, an early robot arm with five rotary (R) and one prismatic
(P) joints, for a total of six degrees of freedom.

In case this total of six degrees of freedom for a free body is not intuitively obvious, imagine
the body is a tennis ball. The center of the ball can be described with three position coordinates.
Now suppose that the ball is resting on a table with its center fixed. You can still rotate the ball
without moving its center. Paint a dot anywhere on the surface of the ball, you can rotate the ball
so that the dot touches the table-top. This takes two degrees of freedom, because the dot can be
specified with latitude and longitude. With the center fixed and the dot touching the table-top,
you can still rotate the ball about a vertical axis. This is the third and last degree of rotational
freedom. (In an airplane or boat, the three types of rotation are called pitch, yaw, and roll.)

At the end of the manipulator is the robot's end effector, which interacts directly with
objects in the world. It may be a screwdriver or other tool, a welding gun, paint sprayer, or
a gripper. Grippers vary enormously in complexity. Two- and three-fingered grippers perform
most tasks in manufacturing. The mechanical simplicity of these grippers makes them reliable
and easy to control, both important attributes for manufacturing.

At the other end of the complexity spectrum are anthropomorphic hands. The Utah-MIT
hand shown in Figure 25.6 faithfully replicates most of the kinematics of a human hand, less one
finger. A human hand has a very large number of degrees of freedom (see Exercise 25.4).



782 Chapter 25. Robotics

Figure 25.5 A PUMA robot, showing the six rotary joints.

Ultimately, the effectors are driven by electrical (or other) signals. Some effectors only
accept on/off signals, some accept scalar values (e.g., turn right 3°), and some robot development
environments provide higher level subroutine libraries or have complete languages for specifying
actions that can be turned into primitive signals.

Sensors: Tools for perception
Chapter 24 covered the general principles of perception, using vision as the main example. In
this section, we describe the other kinds of sensors that provide percepts for a robot.

Proprioception

Like humans, robots have a proprioceptive4 sense that tells them where their joints are. Encoders
fitted to the joints provide very accurate data about joint angle or extension. If the output of the
encoder is fed back to the control mechanism during motion, the robot can have much greater
positioning accuracy than humans. For a manipulator, this typically translates to around a few
mils (thousandths of an inch) of accuracy in its end-effector position. In contrast, humans can
manage only a centimeter or two. To test this for yourself, place your finger at one end of a ruler
(or some other object whose length is familiar). Then with your eyes closed try to touch the other
4 The word proprioceptive is derived from the same source as proprietary, and thus means "perception of privately
owned (i.e., internal) stimuli."



Section 25.3. Parts: What Are Robots Made Of? 783

Figure 25.6 The Utah-MIT Hand.

REPEATABILITY

ODOMETRY

end. You should do better after a few tries, which shows that your positioning repeatability is
better than your accuracy. The same is usually true for robots.

Mobots can measure their change in position using odometry, based on sensors that
measure wheel rotation (or, in the case of stepper motors that rotate a fixed angle per step, the
number of steps). Unfortunately, because of slippage as the robot moves, the position error
from wheel motion deteriorates as the robot moves, and may be several percent of the distance
travelled. Orientation can be measured more reliably, using a magnetic compass or a gyroscope
system. Accelerometers can measure the change in velocity.

Force sensing

Even though robots can sense and control the positions of their joints much more accurately
than humans, there are still many tasks that cannot be carried out using only position sensing.
Consider, for example, the task of scraping paint off a windowpane using a razor blade. To get
all the paint requires positioning accuracy of about a micron in the direction perpendicular to
the glass. An error of a millimeter would cause the robot to either miss the paint altogether or
break the glass. Obviously, humans are not doing this using position control alone. This and



784 Chapter 25. Robotics

FORCE SENSOR

COMPLIANT
MOTIONS

many other tasks involving contact, such as writing, opening doors, and assembling automobiles,
require accurate control of forces. Force can be regulated to some extent by controlling electric
motor current, but accurate control requires a force sensor. These sensors are usually placed
between the manipulator and end effector and can sense forces and torques in six directions.
Using force control, a robot can move along a surface while maintaining contact with a fixed
pressure. Such motions are called compliant motions, and are extremely important in many
robotic applications.

Tactile sensing

Picking up a paper coffee cup or manipulating a tiny screw requires more than proprioception.
The force applied to the cup must be just enough to stop it from slipping, but not enough to crush
it. Manipulating the screw requires information about exactly where it lies against the fingers that

TACTILE SENSING it contacts. In both cases, tactile sensing (or touch sensing) can provide the needed information.
Tactile sensing is the robotic version of the human sense of touch. A robot's tactile sensor uses an
elastic material and a sensing scheme that measures the distortion of the material under contact.
The sensor may give data at an array of points on the elastic surface, producing the analogue of a
camera image, but of deformation rather than light intensity. By understanding the physics of the
deformation process, it is possible to derive algorithms that are analogous to vision algorithms,
and can compute position information for the objects that the sensor touches. Tactile sensors
can also sense vibration, which helps to detect the impending escape of the coffee cup from the
holder's grasp. Human beings use this scheme with a very fast servo loop5 to detect slip and
control the grasping force to near the minimum needed to prevent slip.

Sonar

Sonar is SOund NAvigation and Ranging. Sonar provides useful information about objects very
close to the robot and is often used for fast emergency collision avoidance. It is sometimes used
to map the robot's environment over a larger area. In the latter case, an array of a dozen or more
sonar sensors is fitted around the perimeter of the robot, each pointing in a different direction.
Each sensor ideally measures the distance to the nearest obstacle in the direction it is pointing.

Sonar works by measuring the time of flight for a sound pulse generated by the sensor to
reach an object and be reflected back. The pulse or "chirp" is typically about 50 kHz. This is
more than twice the upper limit for humans of 20 kHz. Sound at that frequency has a wavelength
of about 7 mm. The speed of sound is about 330 m/second, so the round-trip time delay for an
object 1 m away is about 6 x 10~3 seconds. Sonar has been very effective for obstacle avoidance
and tracking a nearby target, such as another mobile robot. But although it should be possible
to measure the time delay very accurately, sonar has rarely been able to produce reliable and
precise data for mapping. The first problem is beam width. Rather than a narrow beam of sound,
a typical sensor produces a conical beam with 10° or more of spread. The second problem comes
from the relatively long (7 mm) wavelength of the sonar sound. Objects that are very smooth
5 A servomechanism is a device for controlling a large amount of power with a small amount of power. A servo loop
uses feedback to regulate the power.



Section 25.3. Parts: What Are Robots Made Of? 785

relative to this wavelength look shiny or "specular" to the sensor. Such objects reflect sound like
a perfect mirror. Sound will only be received back from patches of surface that are at right angles
to the beam. Objects with flat surfaces and sharp edges reflect very little sound in most directions.
(The same observation is used to design radar-eluding stealth aircraft and ships.) After being
reflected from the surface, the sound may yet strike a rough surface and be reflected back to the
sensor. The time delay will correspond not to a physical object, but to a "ghost," which may
mysteriously disappear when the robot moves.

As discussed in Chapter 17, noisy sensors can be handled by first constructing a probabilistic
model of the sensor, and then using Bayesian updating to integrate the information obtained over
time as the robot moves around. Eventually, reasonably accurate maps can be built up, and ghost
images can be eliminated.

DOMAIN
CONSTRAINTS

STRUCTURED LIGHT
SENSORS

LASER RANGE
FINDERS

CROSS-BEAM
SENSOR
PARALLEL-BEAM
SENSOR

Camera data

Human and animal vision systems remain the envy of all machine-vision researchers. Chapter 24
provides an introduction to the state of the art in machine vision, which is still some way from
handling complex outdoor scenes and general object recognition. Fortunately, for a robot's
purposes, something simpler than a general vision system will usually suffice. If the set of tasks
the robot needs to perform is limited, then vision need only supply the information relevant to
those tasks. Special-purpose robots can also take advantage of so-called domain constraints
that can be assumed to apply in restricted environments. For example, in a building (as opposed
to a forest), flat surfaces can be assumed to be vertical or horizontal, and objects are supported
on a flat ground plane.

In some cases, one can also modify the environment itself to make the robot's task easier.
One simple way of doing this, widely used in warehousing tasks, is to put bar-code stickers in
various locations that the robot can read and use to get an exact position fix. Slightly more
drastic is the use of structured light sensors, which project their own light source onto objects
to simplify the problem of shape determination. Imagine a vertical light stripe cast as shown in
Figure 25.7. When this stripe cuts an object, it produces a contour whose 3-D shape is easily
inferred by triangulation from any vantage point not in the plane of the stripe. A camera placed
in the same horizontal plane as the source needs only to locate the stripe within each horizontal
scan line. This is a simple image-processing task and easily done in hardware.

By moving the stripe, or by using several rasters of stripes at different spacings, it is
possible to produce a very dense three-dimensional map of the object in a short space of time.
A number of devices are available now that include a laser source, stripe control, camera, and
all the image processing needed to compute a map of distances to points in the image. From the
user's point of view, these laser range finders really are depth sensors, providing a depth image
that updates rapidly, perhaps several times a second.

For model-based recognition, some very simple light-beam sensors have been used recently.
These sensors provide a small number of very accurate measurements of object geometry. When
models are known, these measurements suffice to compute the object's identity and position. In
Figure 25.8, two examples are shown, a cross-beam sensor and a parallel-beam sensor.



786 Chapter 25. Robotics

Image

Object
Stripe Range

Figure 25.7 Sensing the shape of an object using a vertical light-stripe system.

//i\\- <m^ ^

TOP VIEW

FRONT VIEW

Emitter
Receiver
Path of Object

Mirror
\

(a)

| Emitter
I] Receiver

Object being
scanned

Figure 25.8 (a) A cross-beam sensor, (b) A parallel-beam sensor.

25.4 ARCHITECTURES

In this section, we step back from the nuts and bolts of robots and look at the overall control
mechanism. The architecture of a robot defines how the job of generating actions from per-
cepts is organized. We will largely be concerned with autonomous mobile robots in dynamic
environments, for which the need for a sophisticated control architecture is clear.

The design of robot architectures is essentially the same agent design problem that we
discussed in Chapter 2. We saw in the introduction to the current chapter that the environment for
mobile robots is toward the difficult end as environments go. Furthermore, the perceptual input
available to a robot is often voluminous; nevertheless, the robot needs to react quickly in some
situations. In the following subsections, we briefly describe a variety of architectures, ranging



Section 25.4. Architectures 787

from fully deliberative to fully reflex. There is no accepted theory of architecture design that
can be used to prove that one design is better than another. Many theoreticians deride the entire
problem as "just a bunch of boxes and arrows." Nonetheless, many superficially different designs
seem to have incorporated the same set of features for dealing with the real world.

Classical architecture

By the late 1960s, primitive but serviceable tools for intelligent robots were available. These
included vision systems that could locate simple polyhedral objects; two-dimensional path-
planning algorithms; and resolution theorem provers that could construct simple, symbolic plans
using situation calculus. From these tools, together with a collection of wheels, motors and
sensors, emerged Shakey, the forerunner of many intelligent robot projects.

The first version of Shakey, appearing in 1969, demonstrated the importance of experi-
mental research in bringing to light unsuspected difficulties. The researchers found that general-
purpose resolution theorem-provers were too inefficient to find nontrivial plans, that integrating
geometric and symbolic representations of the world was extremely difficult, and that plans don't
work. This last discovery came about because Shakey was designed to execute plans without
monitoring their success or failure. Because of wheel slippage, measurement errors and so on,
almost all plans of any length failed at some point during execution.

The second version of Shakey incorporated several improvements. First, most of the
detailed work of finding paths and moving objects was moved from the general problem-solving
level down into special-purpose programs called intermediate-level actions (ILAs). These
actions in fact consisted of complex routines of low-level actions (LLAs) for controlling the
physical robot, and included some error detection and recovery capabilities. For example, one
ILA called NAvTo could move the robot from one place to another within a room by calling
the A* algorithm to plan a path and then calling LLAs to execute the path, doing some path
corrections along the way. The LLAs were also responsible for updating the internal model of the
world state, which was stored in first-order logic. Motion errors were explicitly modelled, so that
as the robot moved, its uncertainty about its location increased. Once the uncertainty exceeded
a threshold for safe navigation, the LLA would call on the vision subsystem to provide a new
position fix. The key contribution of the ILA/LLA system, then, was to provide a relatively clean
and reliable set of actions for the planning system.

The planning system used the STRIPS algorithm, essentially a theorem-prover specially
designed for efficient generation of action sequences. STRIPS also introduced the idea of compiling

MACRO-OPERATORS the results of planning into generalized macro-operators, so that future problem-solving could
be more efficient (see Section 21.2). The entire system was controlled by PLANEX, which
accepted goals from the user, called STRIPS to generate plans, then executed them by calling the
specified ILAs. The execution mechanism was a simple version of the methods described in
Chapter 12. PLANEX kept track of the current world state, comparing it to the preconditions of
each subsequence in the original plan. After each action completed, PLANEX would execute the
shortest plan subsequence that led to a goal and whose preconditions were satisfied. In this way,
actions that failed would be retried, and fortunate accidents would lead to reduced effort. If no
subsequence was applicable, PLANEX could call STRIPS to make a new plan.



788____________________________________________ Chapter 25. Robotics

The basic elements of Shakey's design—specialized components for low-level control and
geometric reasoning, a centralized world model for planning, compilation to increase speed, and
execution monitoring to handle unexpected problems—are repeated in many modern systems.
Improvements in the symbolic planning and execution monitoring components are discussed in
depth in Part IV. Compilation, or explanation-based learning, has been used extensively in two
robot architectures: Robo-SOAR (Laird et al., 1991) and THEO (Mitchell, 1990). Computation
times for simple tasks can be reduced from several minutes to less than a second in some cases.
In both of these architectures, compilation is invoked whenever a problem is solved for which
no ready-made solution was available. In this way, the robot gradually becomes competent and
efficient in routine tasks, while still being able to fall back on general-purpose reasoning when
faced with unexpected circumstances.

Much of the research in robotics since Shakey was switched off has been at the level of
ILAs and LLAs. Shakey was able to move on a flat floor, and could push large objects around
with difficulty. Modern robots can twirl pencils in their fingers, screw in screws and perform
high-precision surgery with greater accuracy than human experts. Sections 25.5 and 25.6 describe
some of the theoretical advances in geometric reasoning and sensor integration that have made
such achievements possible. Hilare II (Giralt et al., 1991) is probably the most comprehensive
modern example of a robot architecture in the classical tradition that makes use of advanced
geometric methods.

Situated automata
Since the mid-1980s, a significant minority of Al and robotics researchers have begun to question
the "classical" view of intelligent agent design based on representation and manipulation of

•,:iilrB explicit knowledge. In robotics, the principal drawback of the classical view is that explicit
'"''85' reasoning about the effects of low-level actions is too expensive to generate real-time behavior.

We have seen that compilation can alleviate this to some extent. Researchers working on situated
SITUATED AUTOMATA automata have taken this idea one step further, by eliminating explicit deliberation from their

robot designs altogether.
A situated automaton is essentially a finite-state machine whose inputs are provided by

sensors connected to the environment, and whose outputs are connected to effectors. Situated
automata provide a very efficient implementation of reflex agents with state. There have been
two main strands in the development of such robots. The first approach involves generating the
automaton by an offline compilation process, starting with an explicit representation. The second
approach involves a manual design process based on a decomposition according to the various
behaviors that the robot needs to exhibit.

The compilation approach, pioneered by Stan Rosenschein, (Rosenschein, 1985; Kaelbling
and Rosenschein, 1990) distinguishes between the use of explicit knowledge representation by
human designers (what he calls the "grand strategy") and the use of explicit knowledge within
the agent architecture (the "grand tactic"). Through a careful logical analysis of the relationship
between perception, action, and knowledge, Rosenschein was able to design a compiler that
generates finite state machines whose internal states can be proved to correspond to certain
logical propositions about the environment, provided that the initial state and the correct laws



Section 25.4. Architectures 789

Sensor
input

State
register

Actions

Figure 25.9 The basic structure of Rosenschein's situated automaton design. The shaded
region on the left represents a Boolean circuit for updating the current state registers. The shaded
region to the right represents a circuit for selecting actions based on the current state.

BEHAVIOR-BASED
ROBOTICS

of "physics" are given to the compiler. Thus, the robot "knows" a set of propositions about the
environment, even though it has no explicit representation of the proposition.

Rosenschein's basic design is shown in Figure 25.9. It relies on a theorem to the effect
that any finite-state machine can be implemented as a state register together with a feedforward
circuit that updates the state based on the sensor inputs and the current state, and another circuit
that calculates the output given the state register. Because all the computation is carried out by
fixed-depth, feedforward circuits, the execution time for each decision cycle is vanishingly small.
Flakey, a robot based on situated automata theory, was able to navigate the halls of SRI, run
errands, and even ask questions, all without the benefit of explicit representations.

Rodney Brooks (1986) has advocated an approach to robot design that he calls behavior-
based robotics. The idea is that the overall agent design can be decomposed, not into functional
components such as perception, learning, and planning, but into behaviors such as obstacle
avoidance, wall-following, and exploration. Each behavioral module accesses the sensor inputs
independently to extract just the information it needs, and sends its own signals to the effectors.
Behaviors are arranged into a prioritized hierarchy in which higher level behaviors can access
the internal state of lower level behaviors and can modify or override their outputs. Figure 25.10
shows a hierarchy of behaviors proposed for a mobile robot by Brooks (1986).

The main aim of behavior-based robotics is to eliminate the reliance on a centralized,
complete representation of the world state, which seems to be the most expensive aspect of the
classical architecture. Internal state is needed only to keep track of those aspects of the world
state that are inaccessible to the sensors and are required for action selection in each behavior.
For tasks in which the appropriate action is largely determined by the sensor inputs, the slogan
"The world is its own model" is quite appropriate. In some cases, only a few bits of internal state
are needed even for quite complex tasks such as collecting empty soft drink cans. Similar results
have been found in Rosenschein's designs, in which the state register can be surprisingly small.

Behavior-based robotics has been quite successful in demonstrating that many basic com-
petences in the physical world can be achieved using simple, inexpensive mechanisms. At



790 Chapter 25. Robotics

Sensors

reason about behavior of objects

plan changes to the world

identify objects

monitor changes

build maps

explore

avoid objects

Figure 25.10 Design for a behavior-based mobile robot, showing the layered decomposition.

present, however, it is difficult to see how the design methodology can scale up to more complex
tasks. Even for the task "Find an empty cup and bring it back to the starting location," the
robot must form an internal representation that corresponds to a map in the classical architecture.
Furthermore, the behavior-based approach requires the design of a new controller for each task,
whereas classical robots are taskable: they can be assigned a goal and can carry out a plan to
achieve it. In many ways, behavior-based designs resemble the ILA and LLA levels in Shakey,
which are "nonclassical" components of an overall classical architecture.

Rosenschein's situated automata fall somewhere in between. The process of generating
the automaton can be completely automated, so that if the the compiler is included in the
robot's software, the robot can be given a task and can compile its own situated automaton. The
automaton can then be executed in software. Comparing this approach with the explanation-based
learning method used in SOAR and THEO, we see that the situated automaton is compiled prior to
execution and must handle all possible situations that can arise, whereas the explanation-based
learning approach generates efficient rules for handling the types of situations that actually arise
during execution. In simple domains, the situated-automaton approach is feasible and probably
more efficient, whereas in very complex domains, especially those with recursive structure, the
complete automaton becomes too large or even infinite in size.

25.5 CONFIGURATION SPACES: A FRAMEWORK FOR ANALYSIS

Recall from Chapter 3 that the main element in analyzing a problem is the state space6, which
describes all the possible configurations of the environment. In robotics, the environment includes
the body of the robot itself. The main distinction between the problems discussed in Chapter 3 and
those in robotics is that robotics usually involves continuous state spaces. Both the configuration
of the robot's body and the locations of objects in physical space are defined by real-valued
6 There is a source of confusion here because the term state space is used in robotics and control literature to include
the robot's state parameters and certain of their derivatives. Enough derivatives are included that the robot's motion can
be predicted from its dynamics and control equations. For simplicity, we assume here that derivatives of state parameters
are excluded.



Section 25.5. Configuration Spaces: A Framework for Analysis 791

CONFIGURATION
SPACE

coordinates. It is therefore impossible to apply standard search algorithms in any straightforward
way because the numbers of states and actions are infinite. Much of the work in robot planning
has dealt with ways to tame these continuous state spaces.

Suppose that we have a robot with k degrees of freedom. Then the state or configuration
of the robot can be described with k real values q\,...,qk. For the PUMA robot, this would be a
list of six joint angles 9\,..., 6*5. The k values can be considered as a point p in a ^-dimensional
space called the configuration space of the robot. We use C to refer to the configuration space
of the robot itself. This description is convenient because it lets us describe the complex three-
dimensional shape of the robot with a single fc-dimensional point. In other words, from the six
joint angles, we can determine the exact shape of the entire PUMA robot. This works because the
individual robot links are rigid—they rotate when the joint angles change, but they do not change
size or shape.

Configuration space can be used to determine if there is a path by which a robot can move
from one position to another. Consider the problem of getting the PUMA hand to replace a spark
plug in a car. We have to find a path through three-dimensional physical space that will lead
the hand to the right spot, without bumping into anything. But that is not enough—we need to
make sure that the other links of the robot do not bump into anything either. This is a difficult
problem to visualize in physical space, but it is easy to visualize in configuration space. We start
by considering the points in C for which any part of the robot bumps into something. This set of
points is called the configuration space obstacle, or O. The set difference C - O is called free
space, or f, and is the set of configurations in which the robot can move safely. (Note that we
also have to worry about the robot bumping into itself, or over-twisting power and data cables
that pass through its joints. For these reasons, there are upper and lower limits on the joint angles
of most robots, and corresponding bounds on the size of configuration space.)

Assume we have an initial point c\ and a destination point ci in configuration space. The
robot can safely move between the corresponding points in physical space if and only j/there is a
continuous path between c\ and C2 that lies entirely in T. This idea is illustrated in Figure 25.11.
A two-link robot is shown at the left of the figure, and its two-dimensional configuration space
at the right. The configuration obstacle is the shaded region, and configurations c\ and ci are
shown in both domains, with a safe path drawn in C between them. Even in this simple example,
the advantage of searching for a safe path in C is clear.

We humans have it much easier than the PUMA, because our shoulder joint has three degrees
of freedom, while the PUMA'S only has two. That gives the human arm seven degrees of freedom
overall, one more than is needed to reach any point. This extra or redundant degree of freedom
allows the arm to clear obstacles while keeping the hand in one spot, a wonderful facility that
helped our ancestors climb around in trees, and helps us change spark plugs.

We should emphasize that configuration space and free space are mathematical tools
for designing and analyzing motion-planning algorithms. The algorithms themselves need not
explicitly construct or search a configuration space; nonetheless, any motion-planning method or
control mechanism can be interpreted as seeking a safe path in f. Configuration-space analysis
can be used to establish whether or not a given mechanism is complete and correct, and can be
used to analyze the complexity of the underlying problems.



792 Chapter 25. Robotics

(a) (b)

Figure 25.11 (a) A workspace with a rotary two-link arm. The goal is to move from configu-
ration c\ to configuration C2. (b) The corresponding configuration space, showing the free space
and a path that achieves the goal.

GENERALIZED
CONFIGURATION
SPACE

ASSEMBLY
PLANNING

Generalized configuration space

The term generalized configuration space has been applied to systems where the state of
other objects is included as part of the configuration. The other objects may be movable, and
their shapes may vary. Shape variation occurs in objects such as scissors or staplers that have
mechanical joints, and in deformable objects like string and paper. Generalized configuration
spaces are especially useful in understanding tasks such as assembly planning in which the robot
must move a set of objects into some desired arrangement.

Let £ denote the space of all possible configurations of all possible objects in the world,
other than the robot. If a given configuration can be defined by a finite set of parameters
a\,...,am, then £ will be an m-dimensional space. This will not work for objects like string and
paper, whose shapes are not describable with finitely many parameters. These objects represent
a considerable challenge for geometric modelling at this stage. But we can use £ as a conceptual
tool even in those cases.

Now consider W = C x £. W is the space of all possible configurations of the world, both
robot and obstacles. In the two-link robot C described earlier, there was no variation in the object
shapes, so £ was a single point and W and C were equivalent.

If all of the objects in the environment are robots under central control, then the situation
is really the same as before. In this setting, it is best to cluster all the degrees of freedom of the
robots together to create a single super-robot. The generalized configuration space is the space of
all joint angles for all robots. Illegal configurations now include those where two robots overlap



Section 25.5. Configuration Spaces: A Framework for Analysis 793

TRANSIT PATHS

TRANSFER PATHS

FOLIATION

in space. The planning problem again reduces to finding a safe path for a point in the generalized
free space T.

If the other objects are not robots but are nonetheless movable, the problem is very much
harder. Unfortunately, this is also the most interesting case, because usually we would like a
robot to move inanimate things around. We can still construct a generalized configuration space,
and eliminate configurations wtiere the robot overlaps an object, or two objects overlap. But
even if we find a path between two configurations c\ and c^_ in generalized F, we may not be
able to execute it. The problem is that an unrestricted path in W will usually describe motion of
objects through midair without any help from the robot. We can partially address this problem
by restricting W to comprise configurations where objects are either held by the robot or are
supported by another object against gravity.

But legal paths in this W can still describe object motions without robot aid, such as
spontaneous sliding on a tabletop, which should be illegal. There is no easy solution to this
problem. We simply cannot think of W as a benign sea in which we can navigate freely. Instead,
we must follow certain shipping lanes, between which we transfer only at special configurations.
Although generalized W has many degrees of freedom, (it + m degrees using the notation above),
only k of these are actually controllable. Most of the time, we are changing only the robot
configuration q\,... ,qt, and the object configurations a\,... ,am stay fixed. Sometimes though,
if the robot is grasping an object, we can change both the robot and the objects configuration.
We are still moving in a fc-dimensional subset of W, but no longer one involving only the q
(robot) coordinates. So we are in a (k + m)-dimensional sea with steerage only along two types of
fc-dimensional lanes. Motions where the robot moves freely are called transit paths, and those
where the robot moves an object are called transfer paths.

The navigable W in this case is called a foliation, suggesting an abundance of small
randomly oriented sheets, but it is really more like a book. Each page of the book is a slightly
different free space for the robot, defined by slightly different positions for the movable objects.
Look again at Figure 25.12. On the left half of the figure, one of the objects has an arrow attached,
indicating possible motion. The variable b is a coordinate measuring the object's displacement.
The W for the system is now three-dimensional, and b is the new coordinate. For b fixed, a slice
through the >V describes the allowable motions of the robot with the obstacles fixed, and looks
like the C in the right half of the figure. Imagine constructing the C for many different values
of b, printing the results on separate pages, sorting them by b coordinate, and assembling the
pages into a book. Transit motion is possible within any page of the book, on which the object
positions are fixed, but not between pages. Transfer motions, in which an object is moving (or
being moved), form a kind of spine for the book, and allow motion between pages.

The difficulty of planning for movable objects is real: the towers of Hanoi problem7 is a
special case of it. The number of motions needed to move n Hanoi disks is exponential in n,
implying that planning for movable objects requires time that grows at least exponentially with
the dimension of W. At this time, there are no proved upper bounds for general planning with
n movable objects. Robot planners usually make some strong assumptions to avoid tackling this
problem head-on. One can do any of the following:

7 The towers of Hanoi problem is to move a set of n disks of different sizes from one peg to another, using a third peg
for temporary storage. Disks are moved one at a time, and a larger disk cannot rest on a smaller one.



794 Chapter 25. Robotics

Figure 25.12 A two-link manipulator in a workspace containing a movable obstacle.

1. Partition >V into finitely many states—a form of abstraction (see Section 12.2). The
planning problem then reduces to a logical planning problem of the kind addressed in
Part IV. For example, the blocks world involves a partition of block configurations into
those in which one block is "on another," and those in which it is "on the table." The exact
locations of the blocks are ignored. The partitioning must be done carefully, because it
involves a considerable loss of generality. In the blocks world case, one can no longer
construct plans involving blocks that are leaning, or in which two or more blocks perch on
another, or in which block positions are important (as in building a wall). Obviously, the
appropriate partition depends on the goal, but as yet no general method for constructing
partitions has been devised.

2. Plan object motions first and then plan for the robot. This could be called the classical
approach to assembly planning. We first restrict the object motions so that all the objects
move as two rigid subgroups, one representing the main assembly, and the other a sub-
assembly that is being added to it. A single robot then has a good chance to be able to
perform that step, and a separate planning phase generates the robot's motion.

Planning object motions also can be abstracted into discrete actions such as "screw part
A onto part B." Many early assembly planners used this kind of representation, and are
therefore able to use standard partial-order planning algorithms. They support a variety
of constraints on the order of assembly steps, but questions of geometric feasibility are
usually handled by separate geometric algorithms, or in some cases by the user.

Recently though, a very elegant method was described that plans a geometrically
feasible assembly sequence and runs in time polynomial in n (Wilson and Schweikard,
1992). This scheme necessarily does not generate all possible sequences, because there
are exponentially many. But a user can reject certain of the subassemblies it has chosen,
and it will generate another feasible sequence just as fast that satisfies the user's strictures.



Section 25.5. Configuration Spaces: A Framework for Analysis 795

3. Restrict object motions. Here one chooses a parameterized family of basic motions,
and searches for a sequence of such motions that will solve the planning problem. The
best-known example of this is the "LMT" approach8 (Lozano-Perez et al., 1984). One
must be careful about the choice of motions, because the problem will be intractable if
they are too general, but unsolvable if they are too restrictive. LMT suggests the use of
compliant motions, which produce straight-line motions in free space, but which follow the
boundaries of configuration space when needed. LMT also explicitly models uncertainty
in control and sensing. So the result of an LMT basic motion is not a single trajectory, but
an envelope of possible trajectories that grows with time. LMT is described more fully in
Section 25.6.

Recognizable Sets
Configuration space is a useful tool for understanding constraints induced by object shape. We
have so far tacitly assumed that robot planning problems are all of the form "How do I get from
here to there in W?" But the reality is that most robots have poor knowledge of where they are
in W. The robot has reasonably good knowledge of its own state (although often not accurately
enough for precision work), but its knowledge of other objects comes second hand from sensors
like sonar, laser range finders, and computer vision. Some objects simply may not be visible
from the robot's current vantage point, so their uncertainty is enormous. Rather than a point in
configuration space, our planner must start with a probability cloud, or an envelope of possible

RECOGNIZABLE SET configurations. We call such an envelope a recognizable set.9
ABSTRACT SENSOR It will be useful to formalize this notion. An abstract sensor a is a function from the true

world state W to the space of possible sensor values. A recognizable set is a set <r~l(s) of all
world states in which the robot would receive the sensor reading s.w

If the sensor is perfect, that is, if it always produces the same sensor values in the same
world state, the sets a~ '(5) form a partition of H'. Distinct recognizable sets do not overlap,
and their union is all of W. Unfortunately, because of noise, and because the chosen W often
does not incorporate all of the factors that can affect sensor readings, the value returned by the
sensor may not be a unique function of the state. To allow for this, we can treat a as a relation
rather than a function. The relation is true of a state and a sensor reading if the sensor reading
could possibly be returned in that world state. It still makes sense to define recognizable sets as
cr~l(s), where we now take this to mean the set of states in which the sensor could return the
value s. Now it no longer holds that distinct recognizable sets are disjoint, although their union
is still all of W.

Recognizable sets simplify the problem of planning with uncertainty. A robot will always
be in a recognizable set, because it will always have sensor readings available. The robot
may also use memories of earlier sensor readings, but this is equivalent to a virtual sensor that
provides both current and past readings. The (virtual) sensor readings determine uniquely which
8 LMT is named after the three authors.
9 Recognizable sets are to continuous domains what multiple state sets are to discrete problems (see Chapter 3).
10 Notice the close analogy with the idea of possible worlds introduced in the context of modal logic in Chapter 8. A
recognizable set is essentially the set of possible worlds given what the robot knows about the world.



796 Chapter 25. Robotics

recognizable set <T~I(S(\) the robot is in. From there, the planner can determine where the robot
might move next, given a motion command with uncertainty, and what the next sensor reading
A'i could be. Thinking of recognizable sets as states of the robot, the motion command caused a
nondeterministic transition from the state a~ I(SQ) to one of the states a~' (s\). Although there are
infinitely many such states with a continuous sensor, it is still possible to represent the possible
transitions, and to find a correct plan if one exists. Unfortunately, the complexity of doing this is
extremely high—in fact, doubly exponential in the number of plan steps (Canny and Reif, 1987).

25.6 NAVIGATION AND MOTION PLANNING

We now turn to the question of how to move around successfully. Given our analysis of robotics
problems as motion in configuration spaces, we will begin with algorithms that handle C directly.
These algorithms usually assume that an exact description of the space is available, so they cannot
be used where there is significant sensor error and motion error. In some cases, no description of
the space is available until the robot actually starts moving around in it.

We can identify five major classes of algorithms, and arrange them roughly in order of the
amount of information required at planning time and execution time:

<C> Cell decomposition methods break continuous space into a finite number of cells, yielding
a discrete search problem.

{> Skeletonization methods compute a one-dimensional "skeleton" of the configuration
space, yielding an equivalent graph search problem.

<> Bounded-error planning methods assume bounds on sensor and actuator uncertainty, and
in some cases can compute plans that are guaranteed to succeed even in the face of severe
actuator error.

0 Landmark-based navigation methods assume that there are some regions in which the
robot's location can be pinpointed using landmarks, whereas outside those regions it may
have only orientation information.

<0> Online algorithms assume that the environment is completely unknown initially, although
most assume some form of accurate position sensor.

As always, we are interested in establishing some of of the properties of these algorithms,
including their soundness, completeness, and complexity. When we talk about the complexity
of a planning method, we must keep in mind both offline costs (before execution) and the online
cost of execution.

Cell decomposition
Recalling that motion planning for a robot reduces to navigating a point in free space F, the basic

DECOMPOSITION idea of cel1 decomposition is easy to state:



Section 25.6. Navigation and Motion Planning 797

1. Divide T into simple, connected regions called "cells." This is the cell decomposition.
2. Determine which cells are adjacent to which others, and construct an "adjacency graph."

The vertices of this graph are cells, and edges join cells that abut each other.
3. Determine which cells the start and goal configurations lie in, and search for a path in the

adjacency graph between these cells.
4. From the sequence of cells found at the last step, compute a path within each cell from a

point of the boundary with the previous cell to a boundary point meeting the next cell.

The last step presupposes an easy method for navigating within cells. The cells are usually
geometrically "simple," so that this step is easy. For example, one could use rectangular cells,
and then it is possible to join any two points in the cell with a straight-line path (this property is
shared by all convex cells). The difficulty is that the cells must be constructed in configuration
space, and T typically has complex, curved boundaries (see Figure 25.12).

Because of the difficulty of the .F-boundary, the first approaches to cell decomposition did
not represent it exactly. Approximate subdivisions were used, using either boxes or rectangular
strips. A strip approximation to the configuration space of the 2-link robot is shown in Fig-
ure 25.13. The start and goal configurations are visible as points, and the cells joining them from
step 3 above are shaded. Finally, an explicit path from start to goal is constructed by joining the
midpoint (centroid) of each strip with the midpoints of the boundaries with neighboring cells.

This approach must be conservative if it is to produce a collision-free path. The strips
must be entirely in free space or a path found inside them might cross a (.--boundary and cause
a collision. So there will be some "wasted" wedges of free space at the ends of the strips. This
is not usually a problem, but in very tight situations, there might be no path except through
those wedges. To find this path, thinner strips would have to be used. This raises a general
issue for approximate cell decomposition: choosing the resolution of the decomposition. This
is sometimes done adaptively by the algorithm, by choosing smaller cells in "tight" parts of free
space. Or there might be a natural "safety clearance" below which it is inadvisable to move. To
be concrete about this, suppose that we are able to control our robot's motion to within 1 cm. If
we cannot find a safe path with cells at 1 cm resolution, a path through cells at a finer resolution
would take the robot closer than 1 cm to the obstacles. Because that conflicts with our desire for
a sensible path, there is no point in performing that more expensive search.

The approach just described is sound but not complete. It produces a safe path, but may
not always find one if one exists. With some small changes, we could instead have produced a
planner that is complete but not sound. If we were reckless rather than conservative, we could
have declared all partially free cells as being free. If there were any safe path, it would then pass
entirely through free cells, and our planner would be guaranteed to find it. As you can imagine
though, given the unforgiving nature of steel and aluminum during collisions, incorrect plans are
not very useful.

An alternative to approximate algorithms is exact cell decomposition. An exact cell de-
composition divides free space into cells that exactly fill it. These cells necessarily have complex
shapes, because some of their boundaries are also boundaries of f. Such a decomposition is
shown in Figure 25.14. This decomposition looks rather like a coarse strip decomposition, but
there are two important differences. The first is that the cells have curved top and bottom ends,
so there are no gaps of free space outside the decomposition. We call these cells cylinders. The



798 Chapter 25. Robotics

Start

Figure 25.13 A vertical strip cell decomposition of the configuration space for a two-link
robot. The obstacles are dark blobs, the cells are rectangles, and the solution is contained within
the grey rectangles.

second difference is that the width of the cylinders is not fixed, but determined by the geometry
of the environmerit. This is a key aspect of the exact method. To be useful for planning, the cell
shapes must be kept simple. Otherwise, we could declare all of free space as a single cell. This
does not help because there is no simple way to move around in such a cell. The cells in the
cylindrical decomposition are easy to move in, because their left and right boundaries are straight
lines (although sometimes of zero length).

To construct a cylindrical decomposition of a two-dimensional set, we first find critical
points of the boundary. These are the points where the boundary curve is vertical. Equivalently,
imagine sweeping a vertical line from left to right across Figure 25.14. At every instant, the line
can be divided into segments that lie in free space or in the obstacle. Critical points are exactly
those points where segments split or join as the line moves. As the line moves within a cylindrical
cell, there are no splitting or joining events, and this makes it easy to plan paths within the cell.
For example, to move from the left boundary to the right boundary of a cylindrical cell, we could
use this sweeping line. A single segment of the line would always lie in this cell, and its midpoint
would give us the path we want.

SKELETONIZATION

SKELETON

Skeletonization methods
Rather than producing a decomposition into a finite number of discrete chunks of space, skele-
tonization methods collapse the configuration space into a one-dimensional subset, or skeleton.
They simplify the task of navigating in a high-dimensional space by requiring paths to lie along
the skeleton. The skeleton is essentially a web with a finite number of vertices, and paths within
the skeleton can be computed using graph search methods. If the start and goal points do not
lie on the skeleton, short path segments are computed joining them to the nearest point on it.
Skeletonization methods are generally simpler than cell decomposition, because they provide a



Section 25.6. Navigation and Motion Planning 799

VISIBILITY GRAPH

sweeping line

Figure 25.14 A cylindrical cell decomposition of the configuration space for a two-link robot.
There are three critical points indicated by dots, and nine cylinders.

"minimal" description of free space. They avoid an explicit description of the boundary of free
space, and this can provide considerable time savings. There is only one kind of data structure
needed to describe skeleton curves, and this helps simplify implementation.

To be complete for motion planning, skeletonization methods must satisfy two properties:

1. If S is a skeleton of free space F, then S should have a single connected piece within each
connected region of T.

2. For any point/? in T, it should be "easy" to compute a path from p to the skeleton.
The second condition is rather vague, but it will become clearer from the examples of skele-
tonization methods coming up. The condition is crucial, because otherwise we could construct a
skeleton that consisted of a single point in each connected region of J-. Such a skeleton would be
a procrastination of the planning problem, rather than a solution of it. There are many types of
skeletonization methods in two dimensions. These include visibility graphs, Voronoi diagrams,
and roadmaps. We briefly describe each in turn.

The visibility graph for a polygonal configuration space C consists of edges joining all
pairs of vertices that can see each other. That is, there is an unobstructed straight line joining those
vertices. It is shown in Figure 25.15. To see that the visibility graph is complete for planning,
we need only observe that the shortest path between two points with polygonal obstacles lies
entirely on the visibility graph, except for its first and last segment (see Exercise 25.7).



800 Chapter 25. Robotics

Start Goal

Figure 25.15 The visibility graph for a collection of polygons.

VORONOI DIAGRAM

ROADMAPS
SILHOUETTE
CURVES
LINKING CURVES

SILHOUETTE
METHOD

The Voronoi diagram of a polygonal free space T is shown in Figure 25.16. You can
understand the diagram as follows. For each point in free space, compute its distance to the
nearest obstacle. Plot that distance on Figure 25.16 as a height coming out of the page. The
height of the terrain is zero at the boundary with the obstacles and increases as you move away
from them. The bounding rectangle of this C also counts as an obstacle. The terrain has sharp
ridges at points that are equidistant from two or more obstacles. The Voronoi diagram consists
of those sharp ridge points. Algorithms that find paths on this skeleton are complete, because the
existence of a path in f implies the existence of one on the Voronoi diagram. However, the path
in the Voronoi diagram is not in general the shortest path.

The most efficient complete method for motion planning is based on roadmaps. A roadmap
is a skeleton consisting of two types of curves: silhouette curves (also known as "freeways")
and linking curves (also known as "bridges"). The idea behind roadmaps is to make the search
for a path simpler by limiting it to travel on a few freeways and connecting bridges rather than
an infinite space of points. Figure 25.17 shows a roadmap for a three-dimensional torus. The
complexity of computing a roadmap is O(nk log n) for a robot with k degrees of freedom. Here,
n is the size of the C description, which is taken to be the number of equations in the formula
describing T.

There are two versions of roadmaps. The first has been called the silhouette method
because it uses curves that define the visible silhouette of the free-space boundary. The roadmap
shown in Figure 25.17 is of this type. To define it, we first choose two directions in C, and think
of them as coordinate axes. Call them X and Y. The roadmap is defined as follows:

• Silhouette curves are local extrema in Y of slices in X. That is, take a slice through f
by setting X = c for some constant c. The cross-section of f will have several connected
pieces. Every piece is either unbounded, or will have at least one point where the Y-
coordinate is locally maximized, and one where it is locally minimized. With some
technical tricks, we can make sure that all the pieces are bounded. If we then compute
all the local maxima and minima of J- in Y, we are guaranteed to get at least one point

L



Section 25.6. Navigation and Motion Planning 801

Figure 25.16 The Voronoi diagram for a set of polygonal obstacles.

Figure 25.17 A roadmap of a torus, showing one horizontal freeway and four vertical bridges.

in every connected piece of fs cross section. See Figure 25.17. To get silhouette curves
from these extremal points, we simply allow c to vary, and follow the extremal points in Y
as the plane X = c moves through f'.
Linking curves join critical points to silhouette curves. Critical points are points where
the cross section X = c changes abruptly as c varies. By referring to Figure 25.17, the
reader will find two critical points where the cross-section changes. If the critical point
has X-coordinate CQ, then for X < CQ, the cross-section is an hourglass-shaped curve. For
X > CQ side, the hourglass has pinched off into two circles. We will call a slice X = c
containing a critical point a "critical slice." Linking curves can be defined several ways, but



802 Chapter 25. Robotics

the easiest is to define a linking curve as the roadmap of a critical slice. Because roadmaps
are defined in terms of linking curves, this is a circular definition. But because the linking
curve is a roadmap of a slice that has one less dimension, the recursive construction is
well-defined and terminates after a number of steps that equals the dimension of C.

One disadvantage of this definition is that it gives curves on the boundary of free space. This
is undesirable from both efficiency and safety perspectives. A slightly better definition borrows
some ideas from Voronoi diagrams. Instead of using extremals in Y to define the silhouette
curves, it uses extremals of distance from obstacles in slices X - c. This sounds like the same
definition as the Voronoi diagram, but there are slight differences in two dimensions, and major
differences in more than two. The definition of linking curves also changes. They still link
critical points to silhouette curves, but this time, linking curves are computed by moving away
from a critical point along curves that follow the direction of maximum increase of the distance
function. In other words, start from a critical point, and hill-climb in configuration space to a
local maximum of the distance function. That point lies on a silhouette curve under the new
definition. This kind of roadmap is exemplified in Figure 25.18.

Figure 25.18 A Voronoi-like roadmap of a polygonal environment.

FINE-MOTION
PLANNING

Fine-motion planning
Fine-motion planning (FMP) is about planning small, precise motions for assembly. At the
distance scales appropriate for FMP, the environment is not precisely known. Furthermore, the
robot is unable to measure or control its position accurately. Dealing with these uncertainties is
the principal concern of FMP. Like online algorithms, fine-motion plans are strategies or policies
that make use of sensing or environment shape to determine the robot's path at run time. However,
whereas online algorithms assume nothing about the environment, partial knowledge is available
to the fine-motion planner. This knowledge includes explicit models of the uncertainties in



Section 25.6. Navigation and Motion Planning 803

sensing, control, and environment shape. A fine-motion planner does most of its work offline,
generating a strategy that should work in all situations consistent with its models.

A fine-motion plan consists of a series of guarded motions. Each guarded motion consists
of (1) a motion command and (2) a termination condition, which is a predicate on the robot's
sensor values, and returns true to indicate the end of the guarded move. The motion commands
are typically compliant motions that allow the robot to slide if the motion command would
cause collision with an obstacle. Compliant motion requires a dynamic model such as a spring
or damper. The spring model is the simplest to understand. Rather than moving the robot itself,
imagine moving one end of a spring with the other end attached to the robot. The damper model
is similar but instead of a spring, a device called a damper is attached to the robot. Whereas the
spring gives a reaction force proportional to relative displacement of its endpoints, the damper
gives a reaction force proportional to relative velocity. Both allow the robot to slide on a surface
so long as the commanded velocity is not directly into the surface. (In reality, there will be some
friction between robot and obstacle, and the robot will not move even if the commanded velocity
is close to right angles with the surface.)

As an example, Figure 25.19 shows a 2-D configuration space with a narrow vertical
hole. It could be the configuration space for insertion of a rectangular peg into a hole that is
slightly larger. The motion commands are constant velocities. The termination conditions are
contact with a surface. To model uncertainty in control, we assume that instead of moving at the
commanded velocity, the robot's actual motion lies in the cone Cv about it. The figure shows
what would happen if we commanded a velocity straight down from the start region a. Because
of the uncertainty in velocity, the robot could move anywhere in the conical envelope, possibly
going into the hole, but more likely landing to one side of it. Because the robot would not then
know which side of the hole it was on, it would not know which way to move.

A more sensible strategy is shown in Figures 25.20 and 25.21. In Figure 25.20, the robot
deliberately moves to one side of the hole. The motion command is shown in the figure, and the
termination test is contact with any surface. In Figure 25.21, a motion command is given that
causes the robot to slide along the surface and into the hole. This assumes we use a compliant
motion command. Because all possible velocities in the motion envelope are to the right, the
robot will slide to the right whenever it is in contact with a horizontal surface. It will slide down
the right-hand vertical edge of the hole when it touches it, because all possible velocities are down
relative to a vertical surface. It will keep moving until it reaches the bottom of the hole, because
that is its termination condition. In spite of the control uncertainty, all possible trajectories of the
robot terminate in contact with the bottom of the hole. (That is, unless friction or irregularities
in the surface causes the robot to stick in one place.)

As one might imagine, the problem of constructing fine-motion plans is not trivial; in fact,
it is a good deal harder than planning with exact motions. One can either choose a fixed number
of discrete values for each motion or use the environment geometry to choose directions that give
qualitatively different behavior. A fine-motion planner takes as input the configuration-space
description, the angle of the velocity uncertainty cone, and a specification of what sensing is
possible for termination (surface contact in this case). It should produce a multistep conditional
plan or policy that is guaranteed to succeed, if such a plan exists.

We did not include uncertainty in the environment in our example, but there is one elegant
way to do it. If the variation can be described in terms of parameters, those parameters can



804 Chapter 25. Robotics

initial
configuration

motion
envelope —=•

Figure 25.19 A 2-D environment, velocity uncertainty cone, and envelope of possible robot
motions. The intended velocity is v, but with uncertainty the actual velocity could be anywhere
in Cv, resulting in a final configuration somewhere in the motion envelope, which means we
wouldn't know if we hit the hole or not.

initial
configuration

Figure 25.20 The first motion command and the resulting envelope of possible robot motions.
No matter what the error, we know the final configuration will be to the left of the hole.

motion
envelope

Figure 25.21 The second motion command and the envelope of possible motions. Even with
error, we will eventually get into the hole.

L



Section 25.6. Navigation and Motion Planning 805

be added as degrees of freedom to the configuration space. In the last example, if the depth
and width of the hole were uncertain, we could add them as two degrees of freedom to the
configuration space. It is impossible to move the robot in these directions in C or to sense its
position directly. But both those restrictions can be incorporated when describing this problem
as an FMP problem by appropriately specifying control and sensor uncertainties. This gives a
complex, four-dimensional planning problem, but exactly the same planning techniques can be
applied. Notice that unlike the decision-theoretic methods in Chapter 17, this kind of approach
results in plans designed for the worst case outcome, rather than maximizing the expected quality
of the plan. Worst-case plans are only optimal in the decision-theoretic sense if failure during
execution is much worse than any of the other costs involved in execution.

Unfortunately, the complexity of fine-motion planning is extremely high. It grows expo-
nentially not only with the dimension of configuration space, but also with the number of steps
in the plan. FMP as described earlier also involves some tenuous assumptions about control and
sensor uncertainty, uncertainty in environment shape, and capabilities of the run-time system.
On the other hand, the FMP methodology can be applied to mobile robot navigation, and its
assumptions seem more reasonable there. We will see some examples of this in the next section.

Landmark-based navigation

In the last two sections, we saw motion planning extended to include run-time decisions based
on sensing. The sensors were assumed to be simple position or contact sensors, and to provide
uniform accuracy across the environment. More complex sensors, such as vision and sonar, have
very different attributes. It is much more difficult to model these sensors in a reasonable way, but
we will present a couple of recent approaches.

In the first, called the landmark model of sensing, we assume that the environment contains
LANDMARKS easily recognizable, unique landmarks. A landmark is modeled as a point with a surrounding

circular field of influence. Within the field of influence, the robot is able to know its position
exactly. If the robot is outside all the fields of influence, it has no direct position information.
This model might seem unrealistic at first, but it is good model for landmarks such as bar codes.
Bar codes, like the ones on supermarket items, are sometimes used as landmarks for mobile
robots in indoor environments. They are placed in strategic locations on walls, a few feet above
the floor. They have unique codes enabling each to be distinguished. As long as the robot is
close enough to recognize a bar code, it can get a good estimate of distance from that landmark.
Getting good angular data is harder, but some estimate can be computed. Beyond the range of
recognition of the code, the robot cannot get any information from it.

The robot's control is assumed to be imperfect. When it is commanded to move in a
direction v, we assume the actual motion lies in a cone of paths centered on v. This is the same
uncertainty model that we used in the last section. It is a very reasonable one for mobile robots.
If the robot has a gyroscope or magnetic compass, the errors in its motion will be offsets in
direction from the commanded motion. This is exactly what the uncertainty cone models.

An environment with landmarks is shown in Figure 25.22. This environment is known at
planning time, but not the robot's position. We assume though that the robot lies somewhere inside
a region (rectangular in the figure) that we do know. We plan a strategy for the robot by working



806_____________________________________ Chapter 25. Robotics

backwards from the goal. Figure 25.22 shows a commanded velocity v, and the backprojection
of the goal region with respect to v. If the robot starts anywhere in the backprojection and moves
with commanded velocity v, it will definitely reach the goal disk. Notice that the backprojection
intersects a landmark D \. Because D \ is the field of influence of a landmark, the robot has perfect
position sensing inside D\. So if it reaches any part of D\, it can move reliably to the part of D\
that intersects the backprojection of the goal. From there it can move in direction v to the goal.

This means that the robot can reach the goal from a region R if it can move reliably from R
straight to the goal or if it can move reliably from R to disk D\. Continuing to work backwards,
Figure 25.23 shows a backprojection of the union of the goal and D\ relative to velocity command
u. This new backprojection contains the start region S. This gives us a guaranteed strategy for
reaching the goal. The execution of this strategy would be (1) move in direction u to D\ and then
(2) move in direction v to the goal.

As for fine-motion planning, we must choose these velocities by searching all possibilities.
Fortunately, in this case, we do not have an exponential blowup with the number of plan steps.
This is because the backprojections all have the same form, namely, they are backprojections of
unions of disks. This gives a polynomial bound on the number of qualitatively different motion
command directions. By using this observation, it is possible to plan in time that is polynomial
in the number of disks. The plan itself will have at most n steps if there are n landmarks, because
no landmark need be visited more than once. This planning method is both sound and complete.

Online algorithms
Most robot applications have to deal with some amount of uncertainty about the environment.
Even robots used for manufacturing, which may have complete geometric models of robot and
environment, have to perform high-precision tasks such as assembly. Assembly may require
motions of a thousandth of an inch or less, and at this scale, models are far from accurate.

is^fspr* When the environment is poorly known, it is impossible to plan a path for the robot that will be
collision-free and reach a goal under all circumstances.

Instead, one can try to produce a conditional plan (in the language of Chapter 13) or
policy (in the language of Chapter 17) that will make decisions at run time. In some cases, it is
possible to compute such a plan with no knowledge of the environment at all. This avoids the
need for an offline planning stage, and all choices are made at run time. We will call such an

ONLINE ALGORITHM algorithm an online algorithm. Online algorithms need to be simple, because they must make
choices in real time. For that reason, they cannot "remember" much about their environment.

Despite their simplicity, online algorithms have been found that are both complete and
"efficient." Efficiency for online algorithms can be defined in different ways. Because it depends
on the environment, it must depend on measures of the environment's complexity. In Figure 25.24
we see a two-dimensional environment with start and goals points. The environment is not known
to the robot when it begins, and it cannot "see" anything. It can only sense a boundary when it
runs into it. The robot is equipped with a position sensor, and it knows where the goal is. Here
is one complete online strategy:

1. Let / be the straight line joining the initial position of the robot with its goal position. The
robot begins to move toward the goal along /.



Section 25.6. Navigation and Motion Planning 807

Figure 25.22 A series of landmarks and the backprojection of G for commanded velocity v.

Figure 25.23 The backprojection of G and D\ for velocity u.



808 Chapter 25. Robotics

Figure 25.24 A two-dimensional environment, robot, and goal.

COMPETITIVE RATIO

2. If the robot encounters an obstacle before it reaches the goal, it stops and records its
current position Q. The robot then walks around the obstacle clockwise (the direction is
not important) back to Q. During this walk, the robot records points where it crosses the
line /, and how far it has walked to reach them. After the walk, let P0 be the closest such
point to the goal.

3. The robot then walks around the obstacle from Q to P0. Because it knows how far it
walked to reach PQ, it can decide whether it will get to PO faster by going clockwise
or counterclockwise. Once it reaches P0, it starts moving toward the goal along /, and
continues until it reaches another obstacle (in which case, it executes step 2 again) or until
it reaches the goal.

Online algorithms such as this are usually very fast in terms of computation time, but almost
always give up any guarantee of finding the shortest path. Their efficiency is often measured
using a competitive ratio. In the case of robot motion, one typically uses the worst-case ratio
between the actual length of the path found, and the shortest path. For example, the preceding
algorithm has a competitive ratio of at most 1 + 1.5B/\l\, where B is the sum of the lengths of all
the obstacle boundaries and \l\ is the length of the line / from start to goal.

It is fairly easy to see that this ratio can be very bad in some cases. For example, if an
enormous obstacle protrudes just a teeny bit into the straight-line path, and the robot happens to
start walking around it the wrong way, then the ratio can be unbounded. For some special cases,
there are algorithms with competitive ratios bounded by a constant (Exercise 25.12), but there
are some environments for which no algorithm has a finite competitive ratio. Fortunately for
humans, these do not occur often in practice.



Section 25.7. Summary____________________________________________809

25.7 SUMMARY __ ___

Robotics is a challenging field for two reasons. First, it requires hardware (sensors and effectors)
that actually work, a real challenge for mechanical engineering. Second, robots have to work in
the physical world, which is more complex than most of the simulated software worlds that we
have used for our examples in other chapters. Some robots finesse this problem by operating in a
restricted environment. But modern autonomous robots with sophisticated sensors and effectors
provide a challenging testbed for determining what it takes to build an intelligent agent.

• In general, the physical world is inaccessible, nondeterministic, nonepisodic, and dynamic.
• Robots have made an economic impact in many industries, and show promise for exploring

hazardous and remote environments.
• Robots consist of a body with rigid links connected to each other by joints. The movement

of the links is characterized by the degrees of freedom of the joints.
• Robots can have sensors of various types, including vision, force sensing, tactile (touch)

sensing, sonar, and a sense of where their own body parts are.
• In a dynamic world, it is important to be able to take action quickly. Robots are designed

with this in mind.
• The problem of moving a complex-shaped object (i.e., the robot and anything it is carrying)

through a space with complex-shaped obstacles is a difficult one. The mathematical notion
of a configuration space provides a framework for analysis.

• Cell decomposition and skeletonization methods can be used to navigate through the
configuration space. Both reduce a high-dimensional, continuous space to a discrete
graph-search problem.

• Some aspects of the world, such as the exact location of a bolt in the robot's hand, will
always be unknown. Fine-motion planning deals with this uncertainty by creating a
sensor-based plan that will work regardless of the exact initial conditions.

• Uncertainty applies to sensors at the large scale as well. In the landmark model, a robot
uses certain well-known landmarks in the environment to determine where it is, even in
the face of uncertainty.

• If a map of the environment is not available, then the robot will have to plan its navigation
as it goes. Online algorithms do this. They do not always choose the shortest route, but
we can analyze how far off they will be.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The word robot was popularized by Czech playwright Karel Capek in his 1921 play R.U.R.
(Rossum's Universal Robots). The theme of the play—the dehumanization of mankind in a
technological society—appealed to audiences in war-torn Europe and the United States. The



810 Chapter 25. Robotics

HAND-EYE
MACHINES

robots, which were grown chemically rather than constructed mechanically, end up resenting
their masters and decide to take over. It appears (Glanc, 1978) that it was actually Capek's
brother, Josef, who first combined the Czech words "robota" (obligatory work) and "robotnik"
(serf) to yield "robot" in his 1917 short story Opilec.

Reichardt (1978) surveys the history and future of robots, grouping them into four cat-
egories: (1) strictly mythological, fictional, or fraudulent; (2) working, but nonelectronic; (3)
controlled by very special-purpose electronic or electromechanical hardware; (4) controlled
by general-purpose computers. Brief accounts of early robots of all four kinds are given by
Raphael(1976), McCorduck (1979), and Heppenheimer (1985); more detailed treatments are
given by Cohen (1966) and Chapuis and Droz (1958). The most famous classical instances of the
first type are Talos (supposedly designed and built by Hephaistos, the Greek god of metallurgy)
and the Golem of Prague. Perhaps the first impressive example of the second type was Jacques
Vaucanson's mechanical duck, unveiled in 1738. An early instance of the third type is Torres
y Quevedo's electromechanical automaton for playing the chess endgame of king and rook vs.
king, described in Chapter 5. In the 1890s, Nikola Tesla built some experimental vehicles that
were teleoperated (or remote controlled) via radio. Grey Walter's "turtle," built in 1948, could
be considered the first modern type three robot.

In the late 1950s, George Engelberger and George Devol developed the first useful industrial
robots, starting with type three, and moving on to type four. Engelberger founded Unimation to
market them, and earned the title "father of robotics." His Robotics in Practice (1980) is a good
survey of the early days of industrial robots. In the mid-1980s, there was a surge of interest in
the field, largely funded by automotive companies. Reality did not live up to expectations, and
there was a major shakeout in the robotics industry in the late 1980s. Perhaps in reaction to this
shakeout, Engelberger's Robotics in Service (1989) is much more sanguine about the imminent
practicality of type four robots in industrial settings.

Type four robots can be further divided into mobile robots (or mobots) and static manip-
ulators, originally called hand-eye machines. The first modern mobile robot was the "Hopkins
Beast," built in the early 1960s at Johns Hopkins University. It had pattern-recognition hardware
and could recognize the cover plate of a standard AC power outlet. It was capable of searching for
outlets, plugging itself in, and then recharging its batteries! Still, the Beast had a limited reper-
toire of skills. The first general-purpose mobot was "Shakey," developed at SRI International
from 1966 through 1972 (Nilsson, 1984).

The first major effort at creating a hand-eye machine was Heinrich Ernst's MH-1, described
in his MIT Ph.D. thesis (Ernst, 1961) and in a retrospective by Taylor (1989). The Machine
Intelligence project at Edinburgh (Michie, 1972) also demonstrated an impressive early system
for vision-based assembly called FREDDY.

Robotics engages virtually every component and subfield of AI. Some areas of AI were
originally driven primarily by the demands of robotics, although they have since become separate
areas of study. The main two are computer vision (and other forms of perception) and planning.
The Shakey robot project at SRI, in particular, was seminal in the development of the techniques
of planning. There are also several problem areas that are unique to robotics. Planning in
continuous state spaces is usually restricted to robotics. Sensor and motion errors are taken
much more seriously in robotics, although they are also studied for military applications. Also,
quite apart from perception and planning, it is far from trivial simply to describe the motions



Section 25.7. Summary 811

one wishes a robot arm (for instance) to undertake, and then design physical devices and control
systems to carry out the motions described. The mechanics and control of multilink robot arms
are among the most complex problems studied in applied mathematics today.

Robot Manipulators: Mathematics, Programming, and Control (Paul, 1981) is a classic
guide to the basics of robot arm design. Yoshikawa (1990) provides a more up-to-date text
in this area. Latombe (1991) presents a good specialized textbook on motion planning. The
robot motion planning problem, stated in the most natural way, is PSPACE-hard (Reif, 1979)
(see page 853 for a description of PSPACE). Canny (1988) gives a book-length treatment of the
computational complexity of robot motion planning, dealing with a number of ways of stating the
problem. The major conference for robotics is the IEEE International Conference on Robotics
and Automation. Robotics journals include IEEE Robotics and Automation, the International
Journal of Robotics Research, and Robotics and Autonomous Systems.

EXERCISES

25.1 (This exercise was first devised by Michael Genesereth and Nils Nilsson.) Humans are so
adept at basic tasks such as picking up cups or stacking blocks that they often forget what it was
like to try such things as newborn babies. The idea of this exercise is to make explicit some of
the difficulties involved, in a very direct manner. As you solve these difficulties, you should find
yourself recapitulating the last 20 years of developments in robotics.

First, pick a task. The task should not be too difficult! (For example, making a column
from three cereal boxes standing on end takes over an hour.) Set up the initial environment.
Then, build a robot out of four other humans as follows:

<) Brain: the job of the Brain is to come up with a plan to achieve the goal, and to direct the
hands in the execution of the plan. The Brain receives input from the Eyes, but cannot see
the scene directly.

<) Eyes: the Eyes' job is to report a brief description of the scene to the Brain. The Eyes
should stand a few feet away from the working environment, and can provide qualitative
descriptions (such as "There is a red box standing on top of a green box, which is on its
side") or quantitative descriptions ("The green box is about two feet to the left of the blue
cylinder"). Eyes can also answer questions from the Brain such as, "Is there a gap between
the Left Hand and the red box?" The Eyes should not know what the goal is.

0 Hands (Left and Right): one person plays each Hand. The two Hands stand next to each
other; the Left Hand uses only his or her left hand, and the Right Hand only his or her
right hand. The Hands execute only simple commands from the Brain—for example, "Left
Hand, move two inches forward." They cannot execute commands other than motions; for
example, "Pick up the box" is not something a Hand can do. To discourage cheating, you
might want to have the hands wear gloves, or have them operate tongs. As well as being
ignorant of the goal, the Hands must be blindfolded. The only sensory capability they have
is the ability to tell when their path is blocked by an immovable obstacle such as a table or
the other Hand. In such cases, they can beep to inform the Brain of the difficulty.



812 Chapter 25. Robotics

We have given only the most basic protocol. As the task unfolds, you may find that more complex
protocols are needed in order to make any progress. What you learn about robotics will depend
very much on the task chosen and on how closely you stick to the protocols.

25.2 Design and sketch a mobile robot for an office environment. Your robot should be able
to perform typical office tasks like retrieving files, books, journals, and mail, and photocopying.
What types of arm/hand did you choose? Consider carefully the trade-off between flexibility and
custom design for those tasks. What kinds of sensing did you choose?

25.3 Consider the problem of designing a robot that will keep an office building tidy by
periodically collecting and emptying bins and picking up empty cans and paper cups.

a. Describe an appropriate physical design for the robot.
b. Define a suitable performance evaluation measure.
c. Propose an overall architecture for the robot agent. Mitchell (1990) and Brooks (1989)

describe two different approaches to the problem.

25.4 Calculate the number of degrees of freedom of your hand, with the forearm fixed.

25.5 Consider the arm of a record player as a two-link robot. Let 0\ measure the elevation of
the arm, and 6*2 measure its horizontal rotation. Sketch the configuration space of this robot with
6*1 and $2 axes. Include the configuration space obstacles for the platter and spindle.

25.6 Draw the cylindrical cell decomposition for the environment in Figure 25.25. With n boards
in such an arrangement, how many regions would there be in the cell decomposition?

25.7 If you have not done them already, do Exercises 4.13 to 4.15. Also answer the following:
a. Prove rigorously that shortest paths in two dimensions with convex polygonal obstacles lie

on the visibility graph.
b. Does this result hold in three dimensions? If so, prove it. If not, provide a counterexample,
c. Can you suggest (and prove) a result for the shortest paths in two dimensions with curved

obstacles?

Figure 25.25 Row of boards environment.



Section 25.7. Summary 813

Figure 25.26 An environment for online navigation.

d. Can the two-dimensional path-planning problem be solved using Voronoi diagrams instead
of visibility graphs? Explain the modifications that would be needed to the overall system.

25.8 Suppose a robot can see two point landmarks L\ and LI, and that it measures the angle
between them as 17°. What is the shape of the recognizable set corresponding to this sensor
reading? What is the shape of the recognizable set if the angle measurement has an uncertainty
of ± 1 ° ? Sketch this situation.

25.9 For the environment in Figure 25.26, sketch the path taken by the robot in executing
the online navigation strategy. This strategy always completely circumnavigates any obstacle
it encounters, which is often unnecessary. Try to think of another strategy that will travel less
distance around some obstacles. Make sure your strategy will not get stuck in cycles. Your
strategy will probably have a worse worst-case bound than the one presented in this chapter, but
should be faster in typical cases.

25.10 Implement a general environment in which to exercise the online navigation algorithm,
such that arbitrary obstacles can be placed in the environment. Construct a specific environment
corresponding to Figure 25.26. Then implement an agent that incorporates the online algorithm,
and show that it works.

25.11 Explain how to approach the problem of online navigation for a cylindrical robot of
significant diameter. Does the point-robot algorithm need to be modified? What happens when
the robot is heading down a passageway that becomes too narrow to get through?

25.12 We stated in our discussion of online algorithms that some special classes of environments
are amenable to online algorithms with constant competitive ratios. An example is shown in
Figure 25.27, which shows a robot on the bank of a river. We assume that the robot has an exact
position sensor. The robot is trying to find the bridge, which it knows is somewhere nearby, but is
not sure how far and in which direction. Unfortunately, there is a thick fog and the robot cannot
see the bridge unless it stumbles right onto it.

a. Describe an online algorithm for the robot that is guaranteed to find the bridge after a finite
search, no matter where the bridge is.

b. Calculate the total distance traversed by the robot using your algorithm, and compute its
competitive ratio.



814 Chapter 25. Robotics

\^

Robot * d /_

/

V

Figure 25.27 An online motion-planning problem: find the bridge in thick fog.

o 0
Figure 25.28 Landmarks L,, goal G, start region 5, and the motion uncertainty cone.

25.13 For the environment and motion uncertainty cone shown in Figure 25.28, find a navigation
strategy that is guaranteed to reach the goal G.

25.14 Here are the three laws of robotics from the science fiction book /, Robot (Asimov, 1950):
1. A robot may not injure a human being or through inaction allow a human being to come to
harm.
2. A robot must obey the orders given to it by human beings except where such orders would
conflict with the first law.
3. A robot must protect its own existence as long as such protection does not conflict with the
first or second law.

So far, only a few attempts have been made to build such safeguards into robotic software (Weld
and Etzioni, 1994).

a. How would you design a robot to obey these laws? What type of architecture would be
best? What aspects of the laws are hard to obey?

b. Are the laws sensible? That is, if it were possible to build a sophisticated robot, would you
want it to be governed by them? Can you think of a better set of laws?



I

Part VIII
CONCLUSIONS

In this part we summarize what has come before, and give our views of what the
future of AI is likely to hold. We also delve into the philosophical foundations
of AI, which have been quietly assumed in the previous parts.



26 PHILOSOPHICAL
FOUNDATIONS

In which we consider what it means to think and to be conscious, and whether
artifacts could ever do such things.

26.1 THE BIG QUESTIONS

As we mentioned in Chapter 1, philosophers have been around for much longer than computers,
and have been trying to resolve many of the same questions that AI and cognitive science claim
to address: How can minds work, how do human minds work, and can nonhumans have minds?
For most of the book we have concentrated on getting AI to work at all, but in this chapter, we
address the big questions.

Sometimes the questions have led philosophers and AI researchers to square off in heated
debate. More often, the philosophers have debated each other. Some philosophers have sided
with the computational approach provided by artificial intelligence, partly because it has the tools
and the inclination to give detailed, causal explanations of intelligent behavior:'

It is rather as if philosophers were to proclaim themselves expert explainers of the methods
of a stage magician, and then, when we ask them to explain how the magician does the
sawing-the-lady-in-half trick, they explain that it is really quite obvious: the magician doesn't
really saw her in half; he simply makes it appear that he does. "But how does he do thatT
we ask. "Not our department," say the philosophers. (Dennett, 1984)

... among philosophers of science one finds an assumption that machines can do everything
that people can do, followed by an attempt to interpret what this bodes for the philosophy
of mind; while among moralists and theologians one finds a last-ditch retrenchment to such
highly sophisticated behavior as moral choice, love and creative discovery, claimed to be
beyond the scope of any machine. (Dreyfus, 1972)

1 At a recent meeting of the American Philosophical Association, it was put to us by one philosopher, who may prefer
to remain nameless, that "Philosophy has already capitulated to AI."

817



818 Chapter 26. Philosophical Foundations

Other philosophers have openly derided the efforts of AI researchers and, by implication, their
philosophical fellow travellers:

Artificial intelligence pursued within the cult of computationalism stands not even a ghost of
a chance of producing durable results ... it is time to divert the efforts of AI researchers—
and the considerable monies made available for their support—into avenues other than the
computational approach. (Sayre, 1993)

After fifty years of effort, however, it is clear to all but a few diehards that this attempt to
produce general intelligence has failed. (Dreyfus, 1992)

The nature of philosophy is such that clear disagreements can continue to exist unresolved for
many years. If there were any simple experiment that could resolve the disagreements, the issues
would not be of philosophical interest.

We will begin in Section 26.2 by looking at philosophical questions concerning which the
interests of AI and philosophy coincide—the "how to" questions concerning the basic capabilities
of perception, learning, and reasoning. This will help to clarify the concepts used later.

In Section 26.3, we look at the question "Can machines be made to act as if they were
WEAKAI intelligent." The assertion that they can is called the weak AI position. Arguments against weak

AI make one of these three claims:

• There are things that computers cannot do, no matter how we program them.

• Certain ways of designing intelligent programs are bound to fail in the long run.

• The task of constructing the appropriate programs is infeasible.

The arguments can be, and sometimes have been, refuted by exhibiting a program with the
supposedly unattainable capabilities. On the other hand, by making AI researchers think more
carefully about their unstated assumptions, the arguments have contributed to a more robust
methodology for AI.

STRONG AI In Section 26.4, we take on the real bone of contention: the strong AI position, which
claims that machines that act intelligently cannot have real, conscious minds. Debates about
strong AI bring up some of the most difficult conceptual problems in philosophy.

Note that one could legitimately believe in strong AI but not weak AI. It is perfectly
consistent to believe that it is infeasible to build machines that act intelligently, but to be willing
to grant such a machine full consciousness if it could in fact ever be built.

We will try to present the arguments in their simplest forms, while preserving the lunges
and parries that characterize philosophical debates. We do not have space to do them full justice,
and we encourage the reader to consult the original sources. A caution: one of the most important
things to keep in mind when reading the contributions to a philosophical debate is that what often
appears to be an attempt to refute some proposition (such as "computers understand English") is
actually an attempt to refute a particular justification for the proposition, or an attempt to show
that the proposition is merely possible rather than logically necessary. Thus, many of the debates
are not what they may seem at first, but there is still plenty to argue about.



I
Section 26.2. Foundations of Reasoning and Perception 819

26.2 FOUNDATIONS OF REASONING AND PERCEPTION

PHYSICALISM

MATERIALISM
BIOLOGICAL
NATURALISM

FUNCTIONALISM

HOMUNCULI

INFINITE REGRESS

Almost all parties to the AI debate share a certain amount of common ground regarding the relation
of brain and mind. The common ground goes under various names—physicalism, materialism,
and biological naturalism among others —but it can be reduced to the characteristically pithy
remark by John Searle: "Brains cause minds" Intelligence and mental phenomena are products
of the operation of the physical system of neurons and their associated cells and support structures.

This doctrine has a number of corollaries. Perhaps the most important is that mental
states—such as being in pain, knowing that one is riding a horse, or believing that Vienna is the
capital of Austria—are brain states. This does not commit one to very much, other than to avoid
speculation about nonphysical processes beyond the ken of science. The next step is to abstract
away from specific brain states. One must allow that different brain states can correspond to the
same mental state, provided they are of the same type. Various authors have various positions
on what one means by type in this case. Almost everyone believes that if one takes a brain
and replaces some of the carbon atoms by a new set of carbon atoms,2 the mental state will
not be affected. This is a good thing because real brains are continually replacing their atoms
through metabolic processes, and yet this in itself does not seem to cause major mental upheavals.
Functionalism, on the other hand, proposes a much looser definition of "same type," based on
identity of the functional properties of the components of the brain—that is, their input/output
specifications. In the neural version of functionalism,3 what matters is the input/output properties
of the neurons, not their physical properties. Because the same input/output properties can be
realized by many different physical devices, including silicon devices, functionalism naturally
leads to the belief that AI systems with the appropriate structure might have real mental states.

Now we begin to explain how it is that brains cause minds. Some of the earliest forms of
explanation involved what are now called homunculi—a Latin term meaning "miniature men."
For example, when it was found that a small image of the world was formed on the retina by the
lens, some early philosophers proposed that vision was achieved by a subsystem of the brain—a
homunculus—that looked at this image and reported what it saw.4 Unfortunately, one then has
to explain how it is that the homunculus can see. An infinite regress begins when one proposes
that the homunculus sees by means of a smaller homunculus inside his head.

Modern proponents of rule-based models of human behavior have been accused of falling
into the same infinite regress trap. The objection goes as follows: every use of a logical rule
(such as "all men are mortal") must itself be governed by a rule (such as Modus Ponens). The
application of a rule such as Modus Ponens must in turn be governed by another rule, and so on
ad infinitum. Therefore, intelligent behavior cannot be produced by following rules. Now this
argument has a certain superficial plausibility, particularly if we note that the forward-chaining
application of inference rales such as Modus Ponens indeed can be viewed as itself an application

2 Perhaps even atoms of a different isotope of carbon, as is sometimes done in brain-scanning experiments.
3 There are other versions of functionalism that make the decomposition at different points. In general, there is a wide
range of choices in what counts as a component.
4 Proponents of this theory were excited by the discovery of the pineal gland, which in many mammals looks superficially
like an eye. Closer examination of course revealed that it has no powers of vision.



820 Chapter 26. Philosophical Foundations

INTENTIONAL STATES

INTENTIONAL
STANCE

of Modus Ponens at a higher level. Clearly, however, logical systems do manage to work without
infinite regress. This is because at some point, the rule application process is fixed; for example,
in Prolog, the process of left-to-right, depth-first chaining applies to all inferences. Although this
process could be implemented by a meta-Prolog interpreter, there is no need because it is not
subject to alteration. This means that it can be implemented directly by a physical process, based
on the actual operation of the laws of physics, rather than the application of rules representing
those laws. The physical implementation of the reasoning system serves as the base case that
terminates the regress before it becomes infinite. There is therefore no in-principle philosophical
difficulty in seeing how a machine can operate as a reasoning system to achieve intelligent
behavior. There is a practical difficulty: the system designer must show both that the rules
will lead to the right inferences, and that the reasoning system (the fixed, physical instantiation)
correctly implements the metalevel reasoning rules.

So much for intelligent behavior, at least for now. What about mental states? How do
we explain their possession by humans, and do machines have them? We will first consider
prepositional attitudes, which are also known as intentional states. These are states, such as
believing, knowing, desiring, fearing, and so on, that refer to some aspect of the external world.
For example, the belief that Vienna is the capital of Austria is a belief about a particular city and
its status (or if you prefer, a belief about a proposition which is in turn about a city). The question
is, when can one say that a given entity has such a belief?

One approach is to adopt what Daniel Dennett (1971) has called the intentional stance
toward the entity. On this view, ascribing beliefs or desires to entities is no more than a calcula-
tional device that allows one to predict the entity's behavior. For example, a thermostat can be
said to desire that room temperature be maintained in a certain range, and to believe that the room
is currently too cold and that switching on the heat increases the room temperature (McCarthy
and Hayes, 1969). It is then reasonable to ascribe intentional states when that provides the most
succinct explanatory model for the entity's behavior. As mentioned in Chapter 1, this is similar
to ascribing pressure to a volume of gas. However, the thermostat's "belief" that the room is too
cold is not identical to the corresponding belief held by a person. The thermostat's sensors only
allow it to distinguish three states in the world, which we might call Hot, OK, and Cold. It can
have no conception of a room, nor of heat for that matter. "The room is too cold" is simply a way
of naming the proposition in which the thermostat is said to believe.

The "intentional stance" view has the advantage of being based solely on the entity's
behavior and not on any supposed internal structures that might constitute "beliefs." This is also
a disadvantage, because any given behavior can be implemented in many different ways. The
intentional stance cannot distinguish among the implementations. For some implementations,
there are no structures that might even be candidates for representations of the ascribed beliefs
or desires. For example, if a chess program is implemented as an enormous lookup table, then it
does not seem reasonable to suppose that the program actually believes that it is going to capture
the opponent's queen; whereas a human with identical chess behavior might well have such a
belief. The question of actual intentional states is still a real one.

The intentional stance allows us to avoid paradoxes and clashes of intuition (such as being
forced to say that thermostats have beliefs). This makes us all feel more comfortable, but it is not
necessarily the right scientific approach. Intuitions can change, and paradoxes can be resolved.
The hypothesis that the earth revolves around the sun was once called "the Copernican paradox"

I



Section 26.2. Foundations of Reasoning and Perception 821

CORRESPONDENCE
THEORY

GROUNDING

CAUSAL SEMANTICS

WIDE CONTENT

NARROW CONTENT

BRAIN IN A VAT

QUALIA

precisely because it clashed with the intuitions afforded by the folk cosmology of the time. We
may find out that our current folk psychology is so far off base that it is giving us similar kinds
of faulty intuitions.

The correspondence theory of belief goes somewhat further toward a realistic account.
According to this theory, an internal structure in an agent is a reasonable candidate for a repre-
sentation of a proposition if the following conditions hold:

1. The structure is formed when sensory evidence for the truth of the proposition is obtained.
2. The structure ceases to exist when sensory evidence for the proposition's falsehood is

obtained.
3. The structure plays the appropriate causal role in the selection of actions.

Thus, the internal structure acts as a "flag" that correlates with the external proposition.
The correspondence theory contains the crucial element of grounding—the agent's beliefs

are grounded in its sensory experience of the world. Grounding is often viewed as essential to
the possession of intentional states. For example, before an agent can be said to be dying for a
hamburger, it must have some direct experience of hamburgers, or at least of related comestibles. It
is not enough that its knowledge base contain the sentence DyingFor(Me, Hamburger). However,
if the sentence gets there "in the right way"—that is, through experience of hamburgers and so
on —then we say it has the appropriate causal semantics. It has meaning relating to hamburgers
because of its connection to actual hamburger experiences.

There are two views on the sense in which an internal representation has actual meaning.
The first view, called wide content, has it that the internal representation intrinsically refers
to some aspect of the outside world; that is, there is some connection between the internal
representation and the external world that exists by the nature of the representation. For example,
the internal state corresponding to the belief that "This hamburger is delicious" intrinsically refers
to the particular hamburger that it is "about." The second view, called narrow content, says that
no such connection exists. The "hamburgery" aspect of the belief is an intrinsic aspect of the
belief as experienced by the agent.

We can distinguish between the two views by considering one of the favorite devices of
philosophers: the brain in a vat. Imagine, if you will, that your brain was removed from your
body at birth and placed in a marvellously engineered vat. The vat sustains your brain, allowing
it to grow and develop. At the same time, electronic signals are fed to your brain from a computer
simulation of an entirely fictitious world, and motor signals from your brain are intercepted and
used to modify the simulation as appropriate. The brain in a vat has been wheeled out many times
to resolve questions in philosophy. Its role here is to show that wide content is not consistent
with physicalism. The brain in the vat can be in an identical state to the brain of someone
eating a hamburger; yet in one case, the hamburger exists; in the other, it does not. Even in
the former case, then, the belief only refers to the actual hamburger in the eyes of a third party
who has independent access to the internals of the brain and to the external world containing the
hamburger. The brain by itself does not refer to the hamburger.

The narrow-content view goes beyond the simple correspondence theory. The belief that
a hamburger is delicious has a certain intrinsic nature—there is something that it is like to have
this belief. Now we get into the realm of qualia, or intrinsic experiences (from the Latin word
meaning, roughly, "such things"). The correspondence theory can account for the verbal or



822 Chapter 26. Philosophical Foundations

discriminatory behaviors associated with the beliefs "the light is red" or "the light is green," for
example. But it cannot distinguish between the experiences of red and green—what it is like to
see red as opposed to what it is like to see green. It does seem that there is a real question here, but
it is not one that seems likely to yield to a behavioral analysis. If the intrinsic experiences arising
from exposure to red and green rights were somehow switched, it seems reasonable to suppose
that we would still behave the same way at traffic lights, but it also seems reasonable to say
that our lives would be in some way different. This final aspect of intentional states—their "felt
quality" if you like—is by far the most problematic. It brings up the question of consciousness,
which, as we will see, is very ticklish indeed.

26.3 ON THE POSSIBILITY OF ACHIEVING INTELLIGENT BEHAVIOR

One of the most basic philosophical questions for AI is "Can machines think?" We will not
attempt to answer this question directly, because it is not clearly defined. To see why, consider
the following questions:

• Can machines fly?
• Can machines swim?

Most people would agree that the answer to the first question is yes, airplanes can fly, but the
answer to the second is no; boats and submarines do move through the water, but we do not
normally call that swimming. However, neither the questions nor the answers have any impact
at all on the working lives of aeronautic and naval engineers. The answers have very little to do
with the design or capabilities of airplanes and submarines, and much more to do with the way
we have chosen to use words. The word "swim" has come to mean "to move along in the water
by movements of the limbs or other body parts," whereas the word "fly" has no such limitation
on the means of locomotion.

To complicate matters, words can be used metaphorically, so when we say a computer
(or an engine, or the economy) is running well, we mean it is operating smoothly, not that it is
propelling itself with its legs in an admirable fashion. Similarly, a person who says, "My modem
doesn't work because the computer thinks it is a 2400-baud line" is probably using "thinks"
metaphorically, and may still maintain that computers do not literally think.

The practical possibility of "thinking machines" has been with us only for about 40 years,
not long enough for speakers of English to settle on an agreed meaning for the word "think." In
the early days of the debate, some philosophers thought that the question of thinking machines
could be settled by means of linguistic analysis of the kind hinted at earlier. If we define "think"
to mean something like "make decisions or deliberations by means of an organic, natural brain,"
then we must conclude that computers cannot think. Ultimately, the linguistic community will
come to a decision that suits its need to communicate clearly,5 but the decision will not tell us
much about the capabilities of machines.

5 Wittgenstein said that we should "look at the word 'to think' as a tool."



Section 26.3. On the Possibility of Achieving Intelligent Behavior 823

Alan Turing, in his famous paper "Computing Machinery and Intelligence" (Turing, 1950),
suggested that instead of asking "Can machines think?" we should instead ask if they can pass
a behavioral test (which has come to be called the Turing Test) for intelligence. He conjectured
that by the year 2000, a computer with a storage of 109 units could be programmed well enough
to have a conversation with an interrogator for 5 minutes and have a 30% chance of fooling the
interrogator into thinking it was human. Although we would certainly not claim that anything
like general, human-level intelligence will be achieved by that time, his conjecture may not be
that far off the truth. Turing also examined a wide variety of possible objections to the possibility
of intelligent machines, including virtually all of those that have been raised in the 44 years since
his paper appeared.

Some of the objections can be overcome quite easily. For example, Lady Ada Lovelace,
commenting on Babbage's Analytical Engine, says, "It has no pretensions to originate anything.
It can do whatever we know how to order it to perform." This objection, that computers can only
do what they are told to do and are therefore not capable of creativity, is commonly encountered
even today. It is refuted simply by noting that one of the things we can tell them to do is to learn
from their experience. For example, Samuel's checker-playing program performed very poorly
with its original programming. However, it was able to learn, over the course of a few days
of self-play, to play checkers far better than Samuel himself (see Chapter 20). One can try to
preserve Lady Lovelace's objection by maintaining that the program's ability to learn originated
in Samuel, and so too did its checker-playing ability. But then one would also be led to say that
Samuel's creativity originated in his parents, and theirs originated in their parents, and so on.

The "argument from disability" takes the form of a claim, usually unsupported, to the effect
that "a machine can never do X." As examples of X, Turing lists the following:

Be kind, resourceful, beautiful, friendly, have initiative, have a sense of humor, tell right from
wrong, make mistakes, fall in love, enjoy strawberries and cream, make someone fall in love
with it, learn from experience, use words properly, be the subject of its own thought, have as
much diversity of behavior as man, do something really new.

Although some of these abilities concern the consciousness of machines, which we discuss at
length in what follows, many concern behavioral properties (see Exercise 26.1). Turing suggests
that scepticism of this nature arises from experience of machines as devices for carrying out
repetitive tasks requiring little sensory and no reasoning ability. He points to the fact that in the
late 1940s, the general population found it difficult to believe that machines could find numerical
solutions of equations or predict ballistic trajectories. Even today, however, many technically
literate people do not believe that machines can learn.

The supposed inability to make mistakes presents an interesting problem when considering
the Turing Test. Certainly, instantaneous and correct answers to long division problems would
be a giveaway, and some attempt to simulate human fallibility would be required.6 But this is not
a mistake in the normal sense, because the program is doing exactly what its designer intended.
Something more akin to human mistakes will arise when intractable problems are involved. For
example, given only a small amount of time to find a chess move, the computer must essentially
guess that its move is correct. Similarly, a program that is trying to induce hypotheses from
6 In recent Turing Test competitions, the winning programs are those that type their answers back slowly and irregularly,
with occasional corrections and spelling mistakes. A Markov model of typing speed and accuracy is sufficient.



824 Chapter 26. Philosophical Foundations

a small amount of data is bound to make mistakes when using such hypotheses for prediction.
When unavoidably irrational behavior on the part of the computer matches corresponding failings
of humans, this provides evidence that similar mechanisms are in operation. Rational behavior,
on the other hand, provides much weaker constraints on mechanisms.

What Turing calls the mathematical objection concerns the proven inability of computers
to answer certain questions. We discuss this in-principle barrier to intelligence in Section 26.3.
In-practice objections center on the so-called "argument from informality," which claims that
intelligent behavior cannot be captured by formal rules. We discuss this category of objections in
Section 26.3. The final, and most interesting, objection claims that even if computers behave as
intelligently as humans, they still will not be intelligent. Although AI cannot do much more than
make machines behave intelligently, we still have some fun discussing the issue in Section 26.4.

The mathematical objection
It is well-known, partly through the work of Turing himself (Turing, 1936) as well as that of
Godel (1931), that certain questions cannot be answered correctly by any formal system. An

HALTING PROBLEM example is the halting problem: will the execution of a program P eventually halt, or will it run
forever? Turing proved that for any algorithm H that purports to solve halting problems there
will always be a program P, such that H will not be able to answer the halting problem correctly.
Turing therefore acknowledges that for any particular machine that is being subjected to the
Turing Test, the interrogator can formulate a halting problem that the machine cannot answer
correctly.

Philosophers such as Lucas (1961) have claimed that this limitation makes machines
inferior to humans, who can always "step outside" the limiting logic to see whether the problem
in question is true or not. Lucas bases his argument not on the halting problem but on Godel's
incompleteness theorem (see Chapter 9). Briefly, for any non-trivial formal system F (a formal
language, and a set of axioms and inference rules), it is possible to construct a so-called "Godel
sentence" G(F) with the following properties:

• G(F) is a sentence of F, but cannot be proved within F.
• If F is consistent, then G(F) is true.

Lucas claims that because a computer is a formal system, in a sense that can be made precise,
then there are sentences whose truth it cannot establish—namely, its own Godel sentences. A
human, on the other hand, can establish the truth of these sentences by applying Godel's theorem
to the formal system that describes the computer and its program.

Lucas's point is essentially the same as the potential objection raised by Turing himself,
and can be refuted in the same way. We admit that there is a strong intuition that human
mathematicians can switch from one formalism to another until they find one that solves the
problem they are faced with. But there is no reason why we could not have the same intuition
about a computer that was programmed to try thousands of different formalisms (and to invent
new formalisms) in an attempt to solve the halting or Godel problem. If we accept that the brain
is a deterministic physical device operating according to normal physical laws, then it is just
as much a formal system as the computer (although a harder one to analyze), and thus has the
same limitations as computers. If you believe there are nondeterministic aspects of the world



Section 26.3. On the Possibility of Achieving Intelligent Behavior 825

that keep the brain from being a formal system, then we can build a computer that incorporates
analog devices to achieve the same nondeterminism (for example, using a Geiger counter to seed
a random number generator).

In practical terms, the limitations of formal systems are not going to be of much help to the
interrogator in the Turing Test anyway. First of all, descriptions of the halting problems for either
humans or sufficiently intelligent computers are going to be far too large to talk about. Even if
they were small enough, the interrogator does not know the details of the computer it is talking
to, and thus has no way of posing the right halting problem. And even if the interrogator made
a lucky guess, the computer could just wait a few minutes (or weeks) and then reply "It looks
like it doesn't halt, but I'm not sure—it's pretty complicated." Presumably that would be a good
imitation of a typical human reply.

Another way of stating the refutation argument, in a form appropriate to Lucas's version, is
that a human being cannot show the consistency of a formal system that describes the operation of
his or her brain or of a large computer, and cannot therefore establish the truth of the corresponding
Godel sentence. Therefore, humans have the same limitations that formal systems have.

In a more recent revival of the mathematical objection, the mathematician Roger Penrose
has written a reasonably controversial book on AI, provocatively entitled The Emperor's New
Mind,1 which purports to overcome these objections to Lucas. Penrose argues that, at least
when we consider the mental faculties that mathematicians use to generate new mathematical
propositions and their proofs, the claim that F is complex cannot hold up. This is because
when a new result is found, it is usually a simple matter for one mathematician to communicate
it to another, and to provide convincing evidence by means of a series of simple steps. He
begins by assuming that this universal facility for mathematics is algorithmic, and tries to show
a contradiction:

Now this putative "universal" system, or algorithm, cannot ever be known as the one that we
mathematicians use to decide truth. For if it were, we would construct its Godel proposition
and know that to be a mathematical truth also. Thus, we are driven to the conclusion that the
algorithm that mathematicians use to decide mathematical truth is so complicated or obscure
that its very validity can never be known to us. (Penrose, 1990, p. 654).

And because mathematical truths are in fact simple to see, at least step by step, mathematical
"insight" cannot be algorithmic. We can paraphrase the argument as follows:

Mathematics is simple, and includes the "Godelisation" process, which is also simple.
Hence the "validity of mathematics" is easily seen.
Thus, if mathematics were a formal system, its Godel sentence would easily be seen to be
true by mathematicians.

4. Hence mathematical insight cannot be algorithmic.

In an entertaining series of replies appearing in the journal Behavioral and Brain Sciences, a
number of mathematicians including George Boolos (1990) and Martin Davis (1990) point out
an obvious flaw in the first two steps. Mathematics has a long history of inconsistencies, the most
famous of which is Frege's Basic Laws of Arithmetic, shown inconsistent by Russell's paradox
7 Penrose (1990) strenuously denies that the obvious analogy to the tale of the Emperor's New Clothes was intended in
any way to suggest that AI is not all it claims to be.



826 Chapter 26. Philosophical Foundations

in 1902. Almost every major figure in the history of logic has at one time or another published
an inconsistent set of axioms. Even today, there is some doubt as to whether the principal
axiomatization of set theory known as ZFC (the Zermelo-Fraenkel axioms plus the Axiom of
Choice) is consistent, even though it is used widely as the basis for most of mathematics. Penrose
replies as follows:

I am not asserting that, in any particular case of a formal system/7, we need necessarily be able
to "see" that G(F) is true, but I am asserting that the "Godelian insight" that enables one to
pass from F to G(F) is just as good a mathematical procedure for deriving new truths from old
as are any other procedures in mathematics. This insight is not contained within the rules of F
itself, however. Thus, F does not encapsulate all the insights available to mathematicians. The
insights that are available to mathematicians are not formalizable. (Penrose, 1990, p. 694).

Penrose does not say why he thinks the "Godelian insight" is not formalizable, and it appears
that in fact it has been formalized. In his Ph.D. thesis, Natarajan Shankar (1986) used the
Boyer-Moore theorem prover BMTP to derive Godel's theorem from a set of basic axioms, in
much the same way that Godel himself did.8 The thesis was intended mainly to demonstrate
the power of automatic theorem provers, in particular the capability of BMTP to develop and
apply lemmata. But it shows, as Robert Wilensky (1990) has pointed out, that one needs to
be careful to distinguish between the formal system that is doing the proving—in this case, a
computer programmed with the BMTP—and the formal system within which the proof is carried
out, namely, an axiomatization of arithmetic and of sentences in that axiomatization. Just like a
mathematician, a good automated theorem prover can apply Godelisation to the particular formal
system that it is working on; but it can no more establish the consistency of its own program
and hardware than a mathematician can establish the consistency of his or her own brain. We
therefore seem to be back where we started, with the refutation of the "mathematical objection"
that Turing himself raised.

Penrose naturally maintains that in some way, mathematicians' use of insight remains
nonalgorithmic. Perhaps the most interesting aspect of his book is the conclusion he draws
from this. After providing a valuable discussion of the relevance of physics to the brain, he
deduces that nothing in our current physical understanding of its operation would suggest that it
has nonalgorithmic aspects—that is, the simulation of its operation by a computer, as described
earlier, would in principle be possible according to modern physics. Rather than accepting the
conclusion that perhaps the brain is, after all, algorithmic in this sense, he prefers to believe
that modern physics must be wrong. In particular, the brain must use physical principles not
yet discovered, but probably relating to the interaction between quantum theory and gravity, that
must also be nonalgorithmic in character.

The argument from informality
One of the most influential and persistent criticisms of AI as an enterprise was raised by Turing as
the "argument from informality of behavior." Essentially, this is the claim that human behavior

8 Ammon's SHUNYATA system (1993) even appears to have developed by itself the diagonalization technique used by
Oodel and developed originally by Cantor.



Section 26.3. On the Possibility of Achieving Intelligent Behavior 827

is far too complex to be captured by any simple set of rules; and because computers can do no
more than follow a set of rules, they cannot generate behavior as intelligent as that of humans.

The principal proponent of this view has been the philosopher Hubert Dreyfus, who
has produced a series of powerful critiques of artificial intelligence: What Computers Can't
Do (1972; 1979), What Computers. Still Can't Do (1992), and, with his brother Stuart, Mind
Over Machine (1986). Terry Winograd, whose PhD thesis (Winograd, 1972) on natural language
understanding is criticized fiercely by Dreyfus (1979), has also expressed views similar to those
of Dreyfus in his recent work (Winograd and Flores, 1986).

The position they criticize came to be called "Good Old-Fashioned AI," or GOFAI, a term
coined by Haugeland (1985). GOFAI is supposed to claim that all intelligent behavior can be
captured by a system that reasons logically from a set of facts and rules describing the domain.
It therefore corresponds to the simplest logical agent described in Chapter 6. Dreyfus claims that

when Minsky or Turing claims that man can be understood as a Turing machine, they must
mean that a digital computer can reproduce human behavior... by processing data represent-
ing/acts about the world using logical operations that can be reduced to matching, classifying
and Boolean operations. (Dreyfus, 1972, p. 192)

It is important to point out, before continuing with the argument, that AI and GOFAI are not the
same thing. In fact, it is not clear whether any substantial section of the field has ever adhered
to GOFAI in this extreme form, although the phrase "facts and rules" did appear in Turing's two-
sentence speculation concerning how systems might be programmed to pass the Turing Test.9
One only has to read the preceding chapters to see that the scope of AI includes far more than
logical inference. However, we shall see that Dreyfus' criticisms of GOFAI make for interesting
reading and raise issues that are of interest for all of AI.

Whether or not anyone adheres to GOFAI, it has indeed been a working hypothesis of most
AI research that the knowledge-based approach to intelligent system design has a major role to
play. Hubert Dreyfus has argued that this presumption is based in a long tradition of rationalism
going back to Plato (see Section 1.2). He cites Leibniz as providing a clear statement of the goals
of the modern "expert systems" industry:

The most important observations and turns of skill in all sorts of trades and professions are as
yet unwritten . . . We can also write up this practice, since it is at bottom just another theory.

Furthermore, he claims that the presumption is wrong; that competence can be achieved without
explicit reasoning or rule following. The Dreyfus critique therefore is not addressed against
computers per se, but against one particular way of programming them. It is reasonable to
suppose, however, that a book called What First-Order Logical Rule-Based Systems Can't Do
might have had less impact.

Dreyfus's first target is the supposition that early successes of GOFAI justify optimism that
the methodology will succeed in scaling up to human-level intelligence. Many AI programs
in the 1960s and early 1970s operated in microworlds—small, circumscribed domains such
as the Blocks World. In microworlds, the totality of the situation can be captured by a small
number of facts. At the time, many AI researchers were well aware that success in microworlds
could be achieved without facing up to a major challenge in the real world: the vast amount of

Significantly, Turing also said that he expected AI to be achieved by a learning machine, not a preprogrammed store.



828 Chapter 26. Philosophical Foundations

potentially relevant information that could be brought to bear on any given problem. As we saw
in Chapter 22, disambiguation of natural language seems to require access to this background
knowledge. Dreyfus gives as an example the text fragment

Mary saw a dog in the window. She wanted it.

This example was used originally by Lenat (Lenat and Feigenbaum, 1991) to illustrate the
commonsense knowledge needed to disambiguate the "it" in the second sentence. Presumably,
"it" refers to the dog rather than the window. If the second sentence had been "She smashed
it" or "She pressed her nose up against it," the interpretation would be different. To generate
these different interpretations in the different contexts, an AI system would need a fair amount
of knowledge about dogs, windows, and so on. The project of finding, encoding, and using such
knowledge has been discussed since the early days of AI, and Lenat's CYC project (Lenat and
Guha, 1990) is probably the most well-publicized undertaking in this area.

The position that Dreyfus adopts, however, is that this general commonsense knowledge
is not explicitly represented or manipulated in human performance. It constitutes the "holistic
context" or "Background" within which humans operate. He gives the example of appropriate
social behavior in giving and receiving gifts: "Normally one simply responds in the appropriate
circumstances by giving an appropriate gift." One apparently has "a direct sense of how things
are done and what to expect." The same claim is made in the context of chess playing: "A
mere chess master might need to figure out what to do, but a grandmaster just sees the board as
demanding a certain move." Apparently, the "right response just pops into his or her head."

Dreyfus seems at first to be making a claim that might appear somewhat irrelevant to the
weak AI program: that if humans are sometimes not conscious of their reasoning processes, then
on those occasions no reasoning is occurring. The obvious AI reply would be to distinguish

PHENOMENOLOGY between phenomenology—how things, including our own reasoning, appear to our conscious
experience—and causation. AI is required to find a causal explanation of intelligence. One might
well claim that knowledge of chess—the legal moves and so on—is being used, but perhaps not
at a conscious level. As yet, AI does not claim to have a theory that can distinguish between
conscious and unconscious deliberations, so the phenomenological aspects of decision-making
are unlikely to falsify any particular approach to AI.

Another approach might be to propose that the grandmaster's supposed ability to see the
right move immediately derives from a partial situation-action mapping used by a reflex agent
with internal state. The mapping might be learned directly (see Chapter 20) or perhaps compiled
from more explicit knowledge (see Chapter 21). And as discussed in Chapter 2, situation-
action mappings have significant advantages in terms of efficiency. On the other hand, even
a grandmaster sometimes needs to use his or her knowledge of the legal moves to deal with
unfamiliar situations, to find a way out of a trap, or to ensure that a mating attack is unavoidable.

Dreyfus's position is actually more subtle than a simple appeal to magical intuition. Mind
Over Matter (Dreyfus and Dreyfus, 1986) proposes a five-stage process of acquiring expertise,
beginning with rule-based processing (of the sort proposed in AI) and ending with the ability to
select correct responses instantaneously:

We have seen that computers do indeed reason things out rather like inexperienced persons,
but only with greater human experience comes know-how, a far superior, holistic, intuitive
way of approaching problems that cannot be imitated by rule-following computers.



Section 26.3. On the Possibility of Achieving Intelligent Behavior 829

Dreyfus's first proposal for how this "know-how" operates is that humans solve problems by
analogy, using a vast "case library" from which somehow the most relevant precedents are
extracted. He proposed "some sort of holographic memory" as a potential mechanism. He later
suggests neural networks as a possible implementation for the final "know-how" phase.

Now he reaches what is perhaps the inevitable destination of the weak-AI critic: he ends up
effectively as an AI researcher, because he cannot avoid the question "If AI mechanisms cannot
work, what mechanism do you propose instead for human performance?" His answer, that humans
use some sort of learning method, is not new to AI. Since the very early experiments of Samuel
and Friedberg, researchers have proposed using machine learning as a method of achieving higher
levels of performance and avoiding the difficulties of hand coding. The question is, what is the
target representation for the learning process? Dreyfus chooses neural networks because they can
achieve intelligence, to some degree, without explicit representation of symbolic knowledge.10

He claims, however, that there is no reason to suppose that real intelligence can be achieved
without a brain-sized network; nor would we understand the results of training such a network.

Dreyfus's natural pessimism also leads him to make two useful observations on the difficulty
of a naive scheme to construct intelligence by training a large network with appropriate examples:

1. Good generalization from examples cannot be achieved without a good deal of background
knowledge; as yet, no one has any idea how to incorporate background knowledge into the
neural network learning process.

2. Neural network learning is a form of supervised learning (see Chapter 18), requiring the
prior identification of relevant inputs and correct outputs. Therefore, it cannot operate
autonomously without the help of a human trainer.

The first objection was also raised in Chapter 18, and in Chapter 21, we saw several ways
in which background knowledge indeed can improve a system's ability to generalize. Those
techniques, however, relied on the availability of knowledge in explicit form, something that
Dreyfus denies strenuously. In our view, this is a good reason for a serious redesign of current
models of neural processing so that they can take advantage of previously learned knowledge.
There has been some progress in this direction. The second objection leads directly to the
need for reinforcement learning (Chapter 20), in which the learning system receives occasional
positive or negative rewards, rather than being told the correct action in every instance. Given
enough experience, a reinforcement learning agent can induce a utility function on situations, or
alternatively a mapping from situation-action pairs to expected values. For example, by winning
and losing games a chess-playing agent can gradually learn which sorts of positions are promising
or dangerous. Reinforcement learning is currently very popular in neural network systems.

Dreyfus correctly points out that the major problem associated with reinforcement learning
is how to generalize from particular situations to more general classes of situations—the general
problem of inductive learning. One can take heart from the observation that reinforcement
learning reduces to ordinary inductive learning, for which we already have some well-developed
techniques. There are, of course, problems yet to be solved with inductive learning, including
problem 1, mentioned earlier, concerning how to use background knowledge to improve learning.
Dreyfus also brings up the problem of learning in the context of a large number of potentially
10 In fact, many neural network researchers are proud that their networks seem to learn distinct, higher-level "features"
of the input space and to combine them in approximately logical ways.



830 Chapter 26. Philosophical Foundations

relevant features. One possible solution is to stick to a small finite set of features, and add new
ones when needed. But according to him, "There is no known way of adding new features should
the current set prove inadequate to account for the learned facts." As we saw in Chapter 21, there
are well-principled ways to generate new features for inductive learning.

Another difficult problem in reinforcement learning arises when the available perceptual
inputs do not completely characterize the situation. In such cases, the agent must develop
additional internal state variables, in terms of which output mappings can be learned. Dreyfus
claims that "Since no one knows how to incorporate internal states appropriately, a breakthrough
will be necessary." Again, this is a tricky problem, but one on which some progress has been
made (see Chapter 20).

The final problem to which Dreyfus refers in What Computers Still Can't Do is that of
controlling the acquisition of sensory data. He notes that the brain is able to direct its sensors to
seek relevant information and to process it to extract aspects relevant to the current situation. He
says (page xliv), "Currently, no details of this mechanism are understood or even hypothesized
in a way that could guide AI research." Yet the field of active vision, underpinned by the theory
of information value (Chapter 16), is concerned with exactly this problem, and already robots
incorporate the theoretical results obtained.

Dreyfus seems willing to grant that success in overcoming these obstacles would constitute
the kind of real progress in AI that he believes to be impossible. In our view, the fact that AI has
managed to reduce the problem of producing human-level intelligence to a set of relatively well-
defined technical problems seems to be progress in itself. Furthermore, these are problems that
are clearly soluble in principle, and for which partial solutions are already emerging. In summary,
we have seen that the life of a weak-AI critic is not an easy one. Claims that "X is impossible for
computers" (e.g., X might be beating a chess master) tend to be overtaken by actual events. They
also open the critic to the requirement of suggesting a mechanism by which humans do X; this
forces them, essentially, to become AI researchers. On the other hand, perceptive criticism from
outside the field can be very useful. Many of the issues Dreyfus has focused on—background
commonsense knowledge, the qualification problem, uncertainty, learning, compiled forms of
decision making, the importance of considering situated agents rather thaii disembodied inference
engines—are now widely accepted as important aspects of intelligent agent design.

26.4 INTENTIONALITY AND CONSCIOUSNESS

Many critics have objected to the Turing Test, stating that it is not enough to see how a machine
acts; we also need to know what internal "mental" states it has. This is a valid and useful criticism;
certainly in trying to understand any computer program or mechanical device it is helpful to know
about its internal workings as well as its external behavior. Again, the objection was foreseen by
Turing. He cites a speech by a Professor Jefferson:

Not until a machine could write a sonnet or compose a concerto because of thoughts and
emotions felt, and not by the chance fall of symbols, could we agree that machine equals
brain—that is, not only write it but know that it had written it.



Section 26.4. Intentionality and Consciousness 831

I jii|f * Jefferson's key point is consciousness: the machine has to be aware of its own mental state and
' actions. Others focus on intentionality, that is, the "aboutness" (or lack thereof) of the machine's

purported beliefs, desires, intentions, and so on.
Turing's response to the objection is interesting. He could have presented reasons why

machines can in fact be conscious. But instead he maintains that the question is just as ill-
defined as asking "can machines think," and in any case, why should we insist on a higher
standard for machines than we do for humans? After all, in ordinary life we never have any
evidence about the internal mental states of other humans, so we cannot know that anyone else
is conscious. Nevertheless, "instead of arguing continually over this point, it is usual to have the
polite convention that everyone thinks," as Turing puts it.

Turing argues that Jefferson would be willing to extend the polite convention to machines
if only he had experience with ones that act intelligently, as in the following dialog, which has
become such a part of AI's oral tradition that we simply have to include it:

HUMAN: In the first line of your sonnet which reads 'shall I compare thee to a summer's day,'
would not a 'spring day' do as well or better?
MACHINE: It wouldn't scan.
HUMAN: How about 'a winter's day'. That would scan all right.
MACHINE: Yes, but nobody wants to be compared to a winter's day.
HUMAN: Would you say Mr. Pickwick reminded you of Christmas?
MACHINE: In a way.
HUMAN: Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind the
comparison.
MACHINE: I don't think you're serious. By a winter's day one means a typical winter's day,
rather than a special one like Christmas.

Jefferson's objection is still an important one, because it points out the difficulty of establishing
any objective test for consciousness, where by "objective" we mean a test that can be carried out
with consistent results by any sufficiently competent third party. Turing also concedes that the
question of consciousness is not easily dismissed: "I do not wish to give the impression that I
think there is no mystery about consciousness ... But I do not think these mysteries necessarily
need to be solved before we can answer the question with which we are concerned in this paper,"
namely, "Can machines think?"

Although many, including Jefferson, have claimed that thinking necessarily involves con-
sciousness, the issue is most commonly associated with the work of the philosopher John Searle.
We will now discuss two thought experiments that, Searle claims, refute the thesis of strong AI.

The Chinese Room
We begin with the Chinese Room argument (Searle, 1980). The idea is to describe a hypothetical
system that is clearly running a program and passes the Turing Test, but that equally clearly
(according to Searle) does not understand anything of its inputs and outputs. The conclusion will
be that running the appropriate program (i.e., having the right outputs) is not a sufficient condition
for being a mind.

The system consists of a human, who understands only English, equipped with a rule
book, written in English, and various stacks of paper, some blank, some with indecipherable



832 ___________________________Chapter 26. Philosophical Foundations

inscriptions. (The human therefore plays the role of the CPU, the rule book is the program, and
the stacks of paper are the storage device.) The system is inside a room with a small opening
to the outside. Through the opening appear slips of paper with indecipherable symbols. The
human finds matching symbols in the rule book, and follows the instructions. The instructions
may include writing symbols on new slips of paper, finding symbols in the stacks, rearranging the
stacks, and so on. Eventually, the instructions will cause one or more symbols to be transcribed
onto a piece of paper that is handed through the opening to the outside world.

So far, so good. But from the outside, we see a system that is taking input in the form
of Chinese sentences and generating answers in Chinese that are as obviously "intelligent" as
those in the conversation imagined by Turing.11 Searle then argues as follows: the person in
the room does not understand Chinese (given); the rule book and the stacks of paper, being
just pieces of paper, do not understand Chinese; therefore there is no understanding of Chinese

I ifts going on. Hence, According to Searle, running the right program does not necessarily generate
'"-*=•• understanding.

Like Turing, Searle considered and attempted to rebuff a number of replies to his argument.
First, we will consider the so-called Robot Reply (due to Jerry Fodor (1980) among others), which
turns out to be a red herring, although an interesting one. The Robot Reply is that although the
symbols manipulated by the Chinese Room may not have real meaning to the room itself (e.g.,
nothing in the room has any experience of acupuncture, with respect to which the symbol for it
might have any meaning), a fully equipped robot would not be subject to the same limitations.
Its internal symbols would have meaning to it by virtue of its direct experience of the world.
Searle's reply is to put the Chinese Room inside the robot's "head": the sensors are redesigned
to generate Chinese symbols instead of streams of bits, and the effectors redesigned to accept
Chinese symbols as control inputs. Then we are back where we started. The Robot Reply is a
red herring because the causal semantics of the symbols is not the real issue. Even the original
Chinese Room needs some causal semantics, in order to be able to answer questions such as "How
many questions have I asked so far?" Conversely, the outputs of human sensors, for example,
along the optic nerve or the auditory nerve, might as well be in Chinese (see the earlier discussion
of wide and narrow content). Not even Searle would argue that connecting artificial sensors to
these nerves would remove consciousness from the brain involved.12

Several commentators, including John McCarthy and Robert Wilensky, propose what
Searle calls the Systems Reply. This gets to the point. The objection is that although one can ask
if the human in the room understands Chinese, this is analogous to asking if the CPU can take
cube roots. In both cases, the answer is no, and in both cases, according to the Systems Reply,
the entire system does have the capacity in question. Certainly, if one asks the Chinese Room
whether it understands Chinese, the answer would be affirmative (in fluent Chinese). Searle's
response is to reiterate the point that the understanding is not in the human, and cannot be in
the paper, so there cannot be any understanding. He further suggests that one could imagine the
human memorizing the rule book and the contents of all the stacks of paper, so that there would

1' The fact that the stacks of paper might well be larger than the entire planet, and the generation of answers would take
millions of years, has no bearing on the logical structure of the argument. One aim of philosophical training is to develop
a finely honed sense of which objections are germane and which are not.
12 This is a good thing, because artificial inner ears are at the prototype stage (Watson, 1991), and artificial retinas, with
associated image processing, are rapidly becoming feasible (Campbell et al., 1991).



Section 26.4. Intentionality and Consciousness 833

EMERGENT
PROPERTY

be nothing to have understanding except the human; and again, when one asks the human (in
English), the reply will be in the negative.

Now we are down to the real issues. The shift from paper to memorization is a red herring,
because both forms are simply physical instantiations of a running program. The real claim made
by Searle has the following form:

1. Certain kinds of objects are incapable of conscious understanding (of Chinese).
2. The human, paper, and rule book are objects of this kind.
3. If each of a set of objects is incapable of conscious understanding, then any system

constructed from the objects is incapable of conscious understanding
4. Therefore there is no conscious understanding in the Chinese room.

While the first two steps are on firm ground,13 the third is not. Searle just assumes it is true
without giving any support for it. But notice that if you do believe it, and if you believe that
humans are composed of molecules, then either you must believe that humans are incapable of
conscious understanding, or you must believe that individual molecules are capable.

It is important to see that the rebuttal of Searle's argument lies in rejecting the third step,
and not in making any claims about the room. You can believe that the room is not conscious
(or you can be undecided about the room's consciousness) and still legitimately reject Searle's
argument as invalid.

Searle's (1992) more recent position, described in his book The Rediscovery of the Mind,
is that consciousness is an emergent property of appropriately arranged systems of neurons
in the same way that solidity is an emergent property of appropriately arranged collections of
molecules, none of which are solid by themselves.

Now most supporters of strong AI would also say that consciousness is an emergent
property of systems of neurons (or electronic components, or whatever). The question is, which
properties of neurons are essential to consciousness, and which are merely incidental? In a
solid, what counts are the forces that molecules exert on each other, and the way in which those
forces change with distance. The solid would still be solid if we replaced each molecule with
a tiny computer connected to electromagnetic force field generators. As yet, we do not know
which properties of neurons are important—the functional properties associated with information
processing or the intrinsic properties of the biological molecules. The Chinese Room argument
therefore can be reduced to the empirical claim that the only physical medium that can support
consciousness is the neural medium. The only empirical evidence for this empirical claim is that
other media do not resemble neurons in their intrinsic physical properties. Searle (1992) admits
that it is possible that other media, including silicon, might support consciousness, but he would
claim that in such cases, the system would be conscious by virtue of the physical properties of
the medium and not by virtue of the program it was running.

To reiterate, the aim of the Chinese Room argument is to refute strong AI—the claim that
running the right sort of program necessarily generates consciousness. It does this by exhibiting
an apparently intelligent system running the right sort of program that is, according to Searle,
demonstrably unconscious. He tried to demonstrate this with the argument that unconscious parts
13 Searle never explicitly says what kinds of objects are incapable of consciousness. Books and papers for sure, but he
wants us to generalize this to computers but not brains without saying exactly what the generalization is.



834 ___ Chapter 26. Philosophical Foundations

cannot lead to a conscious whole, an argument that we have tried to show is invalid. Having
failed to prove that the room is unconscious, Searle then appeals to intuition: just look at the
room; what's there to be conscious? While this approach gains some supporters, intuitions can
be misleading. It is by no means intuitive that a hunk of brain can support consciousness while
an equally large hunk of liver cannot. Furthermore, when Searle admits that materials other than
neurons could in principle support consciousness, he weakens his argument even further, for two
reasons: first, one has only Searle's intuitions (or one's own) to say that the Chinese room is not
conscious, and second, even if we decide the room is not conscious, that tells us nothing about
whether a program running on some other physical media might be conscious.

Searle describes his position as "biological naturalism." The physical nature of the system
is important, and not its computational description. He even goes so far as to allow the logical
possibility that the brain is actually implementing an AI program of the traditional sort. But even
if that program turned out to be an exact copy of some existing AI program, moving it to a different
machine would destroy consciousness. The distinction between the intrinsic properties (those
inherent in its specific physical makeup) and functional properties (the input/output specification)
of a neuron is thus crucial.

One way to get at the distinction between intrinsic and functional properties is to look at
other artifacts. In 1848, artificial urea was synthesized for the first time, by Wohler. This was
important because it proved that organic and inorganic chemistry could be united, a question that
had been hotly debated. Once the synthesis was accomplished, chemists agreed that artificial
urea was urea, because it had all the right physical properties. Similarly, artificial sweeteners
are undeniably sweeteners, and artificial insemination (the other AI) is undeniably insemination.
On the other hand, artificial flowers are not flowers, and Daniel Dennett points out that artificial
Chateau Latour wine would not be Chateau Latour wine, even if it was chemically indistinguish-
able, simply because it was not made in the right place in the right way. Similarly, an artificial
Picasso painting is not a Picasso painting, no matter what it looks like.

Searle is interested in the notion of simulations as well as in artifacts. He claims that
AI programs can at best be simulations of intelligence, and such simulations imply no intrinsic
properties. The following quote is representative:

No one supposes that a computer simulation of a storm will leave us all wet . . . Why on earth
would anyone in his right mind suppose a computer simulation of mental processes actually
had mental processes? (Searle, 1980, pp. 37-38)

While it is easy to agree that computer simulations of storms do not make us wet, it is not
clear how to carry this analogy over to computer simulations of mental processes. After all, a
Hollywood simulation of a storm using sprinklers and wind machines does make the actors wet.
A computer simulation of multiplication does result in a product—in fact a computer simulation
of multiplication is multiplication. Searle achieves his rhetorical effect by choosing examples
carefully. It would not have been as convincing to say "Why on earth would anyone in his right
mind suppose that a computer simulation of a video game actually is a game?," but it would have
the same logical force as his original quote.

To help decide whether intelligence is more like Chateau Latour and Picasso or more like
urea and multiplication, we turn to another thought experiment.



Section 26.4. Intentionality and Consciousness 835

The Brain Prosthesis Experiment
The Brain Prosthesis Experiment was touched on by Searle (1980), but is most commonly
associated with the work of Hans Moravec (1988). It goes like this. Suppose we have developed
neurophysiology to the point where the input/output behavior and connectivity of all the neurons
in the brain are perfectly understood. Furthermore, suppose that we can build microscopic
electronic devices that mimic this behavior and can be smoothly interfaced to neural tissue.
Lastly, suppose that some miraculous surgical technique can replace individual neurons with
the corresponding electronic devices without interrupting the operation of the brain as a whole.
The experiment consists of gradually replacing all the neurons with electronic devices, and then
reversing the process to return the subject to his or her normal biological state.

We are concerned with both the external behavior and the internal experience of the subject,
during and after the operation. By the definition of the experiment, the subject's external behavior
must remain unchanged compared to what would be observed if the operation were not carried
out.14 Now although the presence or absence of consciousness cannot be easily ascertained by
a third party, the subject of the experiment ought at least to be able to record any changes in
his or her own conscious experience. Apparently, there is a direct clash of intuitions as to what
would happen. Moravec, a robotics researcher, is convinced his consciousness would remain
unaffected. He adopts the functionalist viewpoint, according to which the input/output behavior
of neurons is their only significant property. Searle, on the other hand, is equally convinced his
consciousness would vanish:

You find, to your total amazement, that you are indeed losing control of your external behavior.
You find, for example, that when doctors test your vision, you hear them say "We are holding
up a red object in front of you; please tell us what you see." You want to cry out "I can't see
anything. I'm going totally blind." But you hear your voice saying in a way that is completely
out of your control, "I see a red object in front of me." . . . [Y]our conscious experience slowly
shrinks to nothing, while your externally observable behavior remains the same. (Searle, 1992)

But one can do more than argue from intuition. First, note that in order for the external behavior
to remain the same while the subject gradually becomes unconscious, it must be the case that the
subject's volition is removed instantaneously and totally, otherwise the shrinking of awareness
would be reflected in external behavior—"Help, I'm shrinking!" or words to that effect. This
instantaneous removal of volition as a result of gradual neuron-at-a-time replacement seems an
unlikely claim to have to make.

Second, consider what happens if we do ask the subject questions concerning his or her
conscious experience during the period when no real neurons remain. By the conditions of the
experiment, we will get responses such as "I feel fine. I must say I'm a bit surprised because I
believed the Chinese Room argument." Or we might poke the subject with a pointed stick, and
observe the response, "Ouch, that hurt." Now, in the normal course of affairs, the sceptic can
dismiss such outputs from AI programs as mere contrivances. Certainly, it is easy enough to use
a rule such as "If sensor 12 reads 'High' then print 'Ouch.' " But the point here is that because we
have replicated the functional properties of a normal human brain, we assume that the electronic
brain contains no such contrivances. Then we must have an explanation of the manifestations of
14 One can imagine using an identical "control" subject who is given a placebo operation, so that the two behaviors can
be compared.



836 Chapter 26. Philosophical Foundations

"consciousness" produced by the electronic brain that appeals only to the functional properties
of the neurons. And this explanation must also apply to the real brain, which has the same
functional properties. There are, it seems, only two possible conclusions:

1. The causal mechanisms involved in consciousness that generate these kinds of outputs in
normal brains are still operating in the electronic version, which is therefore "conscious."

2. The conscious mental events in the normal brain have no causal connection to the subject's
behavior, and are missing from the electronic brain.

Although we cannot rule out the second possibility, it reduces consciousness to what philosophers
EPIPHENOMENAL call an epiphenomenal role—something that happens but casts no shadow, as it were, on the

observable world. Furthermore, if consciousness is indeed epiphenomenal, then the brain must
contain a second, unconscious mechanism that is responsible for the "Ouch."

Third, consider the situation after the operation has been reversed and the subject has a
normal brain. Once again, the subject's external behavior must be as if the operation had not
occurred. In particular, we should be able to ask, "What was it like during the operation? Do
you remember the pointed stick?" The subject must have accurate memories of the actual nature
of his or her conscious experiences, including the qualia, despite the fact that according to Searle
there were no such experiences.

Searle might reply that we have not specified the experimental conditions properly. If the
real neurons are, say, put into suspended animation between the time they are extracted and the
time they are replaced in the brain, then of course they will not "remember" the experiences
during the operation. To deal with this, we simply need to make sure that the neurons' state is
updated, by some means, to reflect the internal state of the artificial neurons they are replacing.
If the supposed "nonfunctional" aspects of the real neurons then result in functionally different
behavior from that observed with artificial neurons still in place, then we have a simple reductio
ad absurdum, because that would mean that the artificial neurons are not functionally equivalent
to the real neurons. (Exercise 26.4 addresses a rebuttal to this argument.)

Patricia Churchland (1986) points out that the functionalist arguments that operate at the
level of the neuron can also operate at the level of any larger functional unit—a clump of neurons,
a mental module, a lobe, a hemisphere, or the whole brain. That means that if you accept that the
brain prosthesis experiment shows that the replacement brain is conscious, then you should also
believe that consciousness is maintained when the entire brain is replaced by a circuit that maps
from inputs to outputs via a huge lookup table. This is disconcerting to many people (including
Turing himself) who have the intuition that lookup tables are not conscious.

Discussion
We have seen that the subject of consciousness is problematic. Simple intuitions seem to lead
to conflicting answers if we propose different experimental situations. But what is clear is
that if there is an empirical question concerning the presence or absence of consciousness in
appropriately programmed computers, then like any empirical question it can only be settled by
experiment. Unfortunately, it is not clear what sort of experiment could settle the question, nor
what sort of scientific theory could explain the results. Scientific theories are designed to account
for objective phenomena; in fact Popper (1962) has characterized all physical laws as theories



Section 26.5. Summary 837

that, ultimately, allow one to conclude the existence of particles in certain space-time locations.
How would we view a theory that allowed one to infer pains, for example, from premises of the
ordinary physical kind? It seems that it would be at best a description ("When a voltage is applied
to such-and-such neuron, the subject will feel pain") rather than an explanation. An explanatory
theory should, among other things, be able to explain why it is pain that the subject experiences
when a given neuron is stimulated, rather than, say, the smell of bacon sandwiches.

It is also hard to imagine how a better understanding of neurophysiology could help.
Suppose, for example, that (1) we could train a subject to record all his or her conscious
thoughts without interrupting them too much; (2) neuroscientists discovered a system of neurons
whose activity patterns could be decoded and understood;15 and (3) the decoded activity patterns
corresponded exactly to the recorded conscious thoughts. Although we might claim to have
located the "seat of consciousness," it seems we would still be no better off in our understanding
of why these patterns of activity actually constitute consciousness.

The problem seems to be that consciousness, as we currently (fail to) understand it, is not
understandable by the normal means available to science.

No one can rule out a major intellectual revolution that would give us a new—and at present
unimaginable—concept of reduction, according to which consciousness would be reducible.
(Searle, 1992, p. 124).

If consciousness is indeed irreducible, that would suggest that there can be no explanations in
nonsubjective terms of why red is the sort of sensation it is and not some other sort, or why pain
is like pain and not like the smell of bacon sandwiches.

One final (but not necessarily conclusive) argument can be made concerning the evolu-
tionary origin of consciousness. Both sides of the debate agree that simple animals containing
only a few neurons do not possess consciousness. In such animals, neurons fulfill a purely
functional role by allowing simple adaptive and discriminative behaviors. Yet the basic design
and construction of neurons in primitive animals is almost identical to the design of neurons in
higher animals. Given this observation, the proponent of consciousness as an intrinsic neural
phenomenon must argue that neurons, which evidently evolved for purely functional purposes,
just happen by chance to have exactly the properties required to generate consciousness. The
functionalist, on the other hand, can argue that consciousness necessarily emerges when systems
reach the kind of functional complexity needed to sustain complex behavior.

26.5 SUMMARY

We have presented some of the main philosophical issues in AI. These were divided into ques-
tions concerning its technical feasibility (weak AI), and questions concerning its relevance and
explanatory power with respect to the mind (strong AI). We concluded, although by no means
conclusively, that the arguments against weak AI are needlessly pessimistic and have often mis-
characterized the content of AI theories. Arguments against strong AI are inconclusive; although
15 It is not clear if this really makes sense, but the idea is to grant neuroscience as much success as we can imagine.



838 Chapter 26. Philosophical Foundations

they fail to prove its impossibility, it is equally difficult to prove its correctness. Fortunately, few
mainstream AI researchers, if any, believe that anything significant hinges on the outcome of the
debate given the field's present stage of development. Even Searle himself recommends that his
arguments not stand in the way of continued research on AI as traditionally conceived.

Like genetic engineering and nuclear power, artificial intelligence has its fair share of critics
concerned about its possible misuses. We will discuss these concerns in the next chapter. But
unlike other fields, artificial intelligence has generated a thriving industry devoted to proving its
impossibility. This second batch of critics has raised some important issues concerning the basic
aims, claims, and assumptions of the field. Every AI scientist and practitioner should be aware of
these issues, because they directly affect the social milieu in which AI research is carried out and
in which AI techniques are applied. Although general societal awareness should be part of the
education of every scientist, it is especially important for AI because the nature of the field seems
to arouse scepticism and even hostility in a significant portion of the population. There persists
an incredible degree of misunderstanding of the basic claims and content of the field, and, like it
or not, these misunderstandings have a significant effect on the field itself.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The nature of the mind has been a standard topic of philosophical theorizing from ancient times
to the present. In the Phaedo, Plato specifically considered and rejected the idea that the mind
could be an "attunement" or pattern of organization of the parts of the body, a viewpoint that
approximates the functionalist viewpoint in modern philosophy of mind. He decided instead
that the mind had to be an immortal, immaterial soul, separable from the body and different in
substance—the viewpoint of dualism. Aristotle distinguished a variety of souls (Greek ^v\'i])
in living things, some of which, at least, he described in a functionalist manner. (See Nuss-
baum (1978) for more on Aristotle's functionalism.) Aristotle also conceived of deliberation
about what action to take in a way reminiscent of the modern situated agent approach (the last
part of this extract also appears on the cover of the book):

But how does it happen that thinking is sometimes accompanied by action and sometimes not,
sometimes by motion, and sometimes not? It looks as if almost the same thing happens as in
the case of reasoning and making inferences about unchanging objects. But in that case the
end is a speculative proposition . . . whereas here the the conclusion which results from the
two premises is an action. . . . I need covering; a cloak is a covering. I need a cloak. What I
need, I have to make; I need a cloak. I have to make a cloak. And the conclusion, the "I have
to make a cloak," is an action. (Nussbaum, 1978, p. 40)

Descartes is notorious for his dualistic view of the human mind, but ironically his historical influ-
ence was toward mechanism and physicalism. He explicitly conceived of animals as automata,
and his spirited defense of this viewpoint actually had the effect of making it easier to conceive of
humans as automata as well, even though he himself did not take this step. The book L'Homme
Machine or Man a Machine (La Mettrie, 1748) did explicitly argue that humans are automata.



Section 26.5. Summary 839

Twentieth-century analytic philosophy has typically accepted physicalism (often in the
form of the brain-state "identity theory" (Place, 1956; Armstrong, 1968), which asserts that
mental states are identical with brain states), but has been much more divided on functionalism,
the machine analogy for the human mind, and the question of whether machines can literally
think. A number of early philosophical responses to Turing's (1950) "Computing Machinery
and Intelligence," for example, Scriven (1953), attempted to deny that it was even meaningful to
say that machines could think, on the ground that such an assertion violated the meanings of the
relevant terms. Scriven, at least, had retracted this view by 1963; see his addendum to a reprint of
his article (Anderson, 1964). In general, later philosophical responses to AI have at least granted
the meaningfulness of the question, although some might answer it vehemently in the negative.

Following the classification used by Block (1980), we can distinguish varieties of func-
tionalism. Functional specification theory (Lewis, 1966; Lewis, 1980) is a variant of brain-state
identity theory that selects the brain states that are to be identified with mental states on the basis
of their functional role. Functional state identity theory (Putnam, 1960; Putnam, 1967) is more
closely based on a machine analogy. It identifies mental states not with physical brain states but
with abstract computational states of the brain conceived expressly as a computing device. These
abstract states are supposed to be independent of the specific physical composition of the brain,
leading some to charge that functional state identity theory is a form of dualism!

Both the brain-state identity theory and the various forms of functionalism have come
under attack from authors who claim that they do not account for the qualia or "what it's
like" aspect of mental states (Nagel, 1974). Searle has focused instead on the alleged inability of
functionalism to account for intentionality (Searle, 1980; Searle, 1984; Searle, 1992). Churchland
and Churchland (1982) rebut both these types of criticism.

Functionalism is the philosophy of mind most naturally suggested by AI, and critiques of
functionalism often take the form of critiques of AI (as in the case of Searle). Other critics of AI,
most notably Dreyfus, have focused specifically on the assumptions and research methods of AI
itself, rather than its general philosophical implications. Even philosophers who are functionalists
are not always sanguine about the prospects of AI as a practical enterprise (Fodor, 1983). Despite
Searle's "strong'V'weak" terminology, it is possible for a philosopher to believe that human
intellectual capabilities could in principle be duplicated by duplicating their functional structure
alone (and thus to support "strong AI") while also believing that as a practical matter neither GOFAI
nor any other human endeavor is likely to discover that functional structure in the foreseeable
future (and thus to oppose "weak AI"). In fact, this seems to be a relatively common viewpoint
among philosophers.

Not all philosophers are critical of GOFAI, however; some are, in fact, ardent advocates
and even practitioners. Zenon Pylyshyn (1984) has argued that cognition can best be understood
through a computational model, not only in principle but also as a way of conducting research
at present, and has specifically rebutted Dreyfus's criticisms of the computational model of
human cognition (Pylyshyn, 1974). Gilbert Harman (1983), in analyzing belief revision, makes
connections with AI research on truth maintenance systems. Michael Bratman has applied
his "belief-desire-intention" model of human psychology (Bratman, 1987) to AI research on
planning (Bratman, 1992). At the extreme end of strong AI, Aaron Sloman (1978, p. xiii) has
even described as "racialist" Joseph Weizenbaum's view (Weizenbaum, 1976) that hypothetical
intelligent machines should not be regarded as persons.



840 Chapter 26. Philosophical Foundations

ELIMINATIVE
MATERIALISM Eliminative materialism (Rorty, 1965; Churchland, 1979) differs from all other prominent

theories in the philosophy of mind, in that it does not attempt to give an account of why our
"folk psychology" or commonsense ideas about the mind are true, but instead rejects them as
false and attempts to replace them with a purely scientific theory of the mind. In principle,
this scientific theory could be given by classical AI, but in practice, eliminative materialists
tend to lean on neuroscience and neural network research instead (Churchland, 1986), on the
grounds that classical AI, especially "knowledge representation" research of the kind described
in Chapter 8, tends to rely on the truth of folk psychology. Although the "intentional stance"
viewpoint (Dennett, 1971) could be interpreted as functionalist, it should probably instead be
regarded as a form of eliminative materialism, in that taking the "intentional stance" is not
supposed to reflect any objective property of the agent toward whom the stance is taken. It should
also be noted that it is possible to be an eliminative materialist about some aspects of mentality
while analyzing others in some other way. For instance, Dennett (1978a) is much more strongly
eliminativist about qualia than about intentionality.

The Encyclopedia of Philosophy (1967) is an impressively authoritative source. General
collections of articles on philosophy of mind, including functionalism and other viewpoints
related to AI, are Materialism and the Mind-Body Problem (Rosenthal, 1971) and Readings
in the Philosophy of Psychology, volume 1 (Block, 1980). Biro and Shahan (1982) present
a collection devoted to the pros and cons of functionalism. Anthologies of articles dealing
more specifically with the relation between philosophy and AI include Minds and Machines
(Anderson, 1964), Philosophical Perspectives in Artificial Intelligence (Ringle, 1979), Mind
Design (Haugeland, 1981), and The Philosophy of Artificial Intelligence (EoA&n, 1990). There are
several general introductions to the philosophical "AI question" (Boden, 1977; Haugeland, 1985;
Copeland, 1993). The Behavioral and Brain Sciences, abbreviated BBS, is a major journal
devoted to philosophical questions (and high-level, abstract scientific questions) about AI and
neuroscience. A BBS article includes occasionally amusing peer commentary from a large
number of critics and a rebuttal by the author of the main article.

EXERCISES

26.1 Go through Turing's list of alleged "disabilities" of machines, identifying which have
been shown to be achievable, which are achievable in principle by a program, and which are still
problematic because they require conscious mental states.

26.2 Does a refutation of the Chinese Room argument necessarily prove that appropriately
programmed computers are conscious?

26.3 Suppose we ask the Chinese Room to prove that John Searle is not a conscious being. After
a while, it comes up with a learned paper that looks remarkably like Searle's paper, but switches
"computer" and "human" throughout, along with all the corresponding terms. The claim would
be that if Searle's argument is a refutation of the possibility of conscious machines, then the
Chinese Room's argument is a refutation of the possibility of conscious humans. Then, provided



Section 26.5. Summary 841

we agree that humans are conscious, this refutes Searle's argument by reductio ad absurdum. Is
this a sound argument? What might Searle's response be?

26.4 In the Brain Prosthesis argument, it is important to be able to restore the subject's brain
to normal, such that its external behavior is as it would have been if the operation had not taken
place. Can the sceptic reasonably object that this would require updating those neurophysiological
properties of the neurons relating to conscious experience, as distinct from those involved in the
functional behavior of the neurons?

26.5 Find and analyze an account in the popular media of one or more of the arguments to the
effect that AI is impossible.

26.6 Under the correspondence theory, what kinds of propositions can be represented by a
logical agent? A reflex (condition-action) agent?

26.7 Attempt to write definitions of the terms "intelligence," "thinking," and "consciousness."
Suggest some possible objections to your definitions.



r\ r-i AI: PRESENT AND
^ / FUTURE

In which we take stock of where we are and where we are going, this being a good
thing to do before continuing.

27.1 HAVE WE SUCCEEDED YET?

In Part I, we proposed a unified view of AI as intelligent agent design. We showed that the
design problem depends on the percepts and actions available to the agent, the goals that the
agent's behavior should satisfy, and the nature of the environment. A variety of different agent
designs are possible, ranging from reflex agents to fully deliberative, knowledge-based agents.
Moreover, the components of these designs can have a number of different instantiations—for
example, logical, probabilistic, or "neural." The intervening chapters presented the principles by
which these components operate.

In areas such as game playing, logical inference and theorem proving, planning, and
medical diagnosis, we have seen systems based on rigorous theoretical principles that can perform
as well as, or better than, human experts. In other areas, such as learning, vision, robotics, and
natural language understanding, rapid improvements in performance are occurring through the
application of better analytical methods and improvements in our understanding of the underlying
problems. Continued research will bear fruit in the form of better capabilities in all of these areas.

Enthralled by the technical details, however, one can sometimes lose sight of the big
picture. We need an antidote for this tendency. We will consider therefore whether we have the
tools with which to build a complete, general-purpose intelligent agent. This will also help to
reveal a number of gaps in our current understanding.

Let us begin with the question of the agent architecture. We discussed some general prin-
ciples and types in Chapter 2, and some specific architectures in Chapter 25. One key aspect of
a general architecture is the ability to incorporate a variety of types of decision making, ranging
from knowledge-based deliberation to reflex responses. Reflex responses are needed for situa-
tions in which time is of the essence, whereas knowledge-based deliberation allows the agent to

842



Section 27.1. Have We Succeeded Yet? 843

REAL-TIME Al

take into account more information, to plan ahead, to handle situations in which no immediate
response is available, and to produce better responses tailored specifically for the current situa-
tion. Compilation processes such as explanation-based learning (Chapter 21) continually convert
declarative information at the deliberative level into more efficient representations, eventually
reaching the reflex level (Figure 27.1). Architectures such as SOAR (Laird et al, 1987) and
THEO (Mitchell, 1990) have exactly this structure. Every time they solve a problem by explicit
deliberation, they save away a generalized version of the solution for use by the reflex component.

Knowledge-based
deliberation

Figure 27.1 Compilation serves to convert deliberative decision making into more efficient,
reflexive mechanisms.

As we saw in Part V, uncertainty is an inevitable problem in the real world. We also
saw how uncertain knowledge is one possible response to the fact that exactly correct rules in
realistic environments are usually very complex, and hence unusable. Unfortunately, there are
clear gaps in our understanding of how to incorporate uncertain reasoning into general-purpose
agent architectures. First, very little work has been done on compilation of uncertain reasoning
and decision making. Second, we need more expressive languages for uncertain knowledge—
a first-order probabilistic logic. Third, we need much better mechanisms for planning under
uncertainty. Current algorithms, such as policy iteration (Chapter 17), are really more analogous
to the simple search algorithms of Part II than to the powerful planning methods of Part IV. The
latter methods incorporate partial ordering, goal directedness, and abstraction in order to handle
very complex domains. Al is only just beginning to come to grips with the problem of integrating
techniques from the logical and probabilistic worlds (Hanks et al., 1994).

Agents in real environments also need ways to control their own deliberations. They must
be able to cease deliberation when action is demanded, and they must be able to use the available
time for deliberation to execute the most profitable computations. For example, a taxi-driving
agent that sees an accident ahead should decide either to brake or to take avoiding action in a
split second rather than in half an hour. It should also spend that split second thinking about the
most important questions, such as whether the lanes to the left and right are clear and whether
there is a large truck close behind, rather than worrying about wear and tear on the tires or
where to pick up the next passenger. These issues are usually studied under the heading of real-
time Al. As Al systems move into more complex domains, all problems will become real-time
because the agent will never have long enough to solve the decision problem exactly (see also
Section 27.2). This issue came up in our discussion of game-playing systems in Chapter 5, where



844 Chapter 27. AI: Present and Future

ANYTIME
ALGORITHMS

DECISION-
THEORETIC
METAREASONING

we described alpha-beta pruning to eliminate irrelevant deliberations and depth limits to ensure
timely play. Clearly, there is a pressing need for methods that work in more general decision-
making situations. Two promising techniques have emerged in recent years. The first involves
the use of anytime algorithms (Dean and Boddy, 1988). An anytime algorithm is an algorithm
whose output quality improves gradually over time, so that it has a reasonable decision ready
whenever it is interrupted. Such algorithms are controlled by a metalevel decision procedure that
decides whether further computation is worthwhile. Iterative deepening search in game playing
provides a simple example of an anytime algorithm. More complex systems, composed of many
such algorithms working together, can also be constructed (Zilberstein, 1993).

The second technique is decision-theoretic metareasoning (Russell and Wefald, 1991).
This method applies the theory of information value (Chapter 16) to select computations. The
value of a computation depends on both its cost (in terms of delaying action) and its benefits
(in terms of improved decision quality). Metareasoning techniques can be used to design better
search algorithms, and automatically guarantee that the algorithms have the anytime property.
Metareasoning is expensive, of course, and compilation methods can be applied to generate more
efficient implementations. The application of anytime and metareasoning methods to general
decision-making architectures has not yet been investigated in any depth.

The final architectural component for a general intelligent agent is the learning mechanism,
or mechanisms. As the architecture becomes more complicated, the number of niches for
learning increases. As we saw in Part VI, however, the same methods for inductive learning,
reinforcement learning, and compilation can be used for all of the learning tasks in an agent.
The learning methods do depend on the representations chosen, of course. Methods for attribute-
based logical and neural representations are well understood, and methods for first-order logical
representations and probabilistic representations are catching up fast. As new representations,
such as first-order probabilistic logics, are developed, new learning algorithms will have to be
developed to accompany them. We also will need to find a way to integrate inductive methods into
the agent architecture in the same way that compilation methods are integrated into architectures
such as SOAR and THEO.

An agent architecture is an empty shell without knowledge to fill it. Some have proposed
that the necessary knowledge can be acquired through a training process, starting virtually
from scratch. To avoid recapitulating the entire intellectual history of the human race, the
training process also might include direct instruction and knowledge acquisition from sources
such as encyclopedias and television programs. Although such methods might avoid the need
for knowledge representation and ontological engineering work, they currently seem impractical.
For the foreseeable future, useful knowledge-based systems will require some work by human
knowledge engineers. Robust natural language systems, for example, may require very broad
knowledge bases. Further work on general-purpose ontologies, as sketched in Chapter 8, is
clearly needed. The CYC project (Lenat and Guha, 1990) is a brave effort in this direction, but
many open problems remain and we have little experience in using large knowledge bases.

To sum up: by looking at current systems and how they would need to be extended, we
can identify a variety of research questions whose answers would take us further toward general-
purpose intelligent systems. This incremental approach is useful, provided we are fairly confident
that we have a reasonable starting point. In the next section, we look at the AI problem from first
principles to see whether this is in fact the case.



Section 27.2. What Exactly Are We Trying to Do? 845

27.2 WHAT EXACTLY ARE WE TRYING TO Do?

PERFECT
RATIONALITY

CALCULATIVE
RATIONALITY

BOUNDED
OPTIMALITY

Even before the beginning of artificial intelligence, philosophers, control theorists, and economists
sought a satisfactory definition of rational action. This is needed to underpin theories of ethics,
inductive learning, reasoning, optimal control, decision making, and economic modelling. It has
also been our goal in this book to show how to design agents that act rationally. Initially, we
presented no formal definition of rational action. Later chapters presented logical and decision-
theoretic definitions together with specific designs for achieving them. The role of such definitions
in AI is clear: if we define some desirable property P, then we ought in principle to be able to
design a system that provably possesses property P. Theory meets practice when our systems
exhibit P in reality. Furthermore, that they exhibit P in reality should be something that we
actually care about. In a sense, the choice of what P to study determines the nature of the field.
Therefore, we need to look carefully at what exactly we are trying to do.

There are a number of possible choices for P. Here are three:

<0> Perfect rationality: the classical notion of rationality in decision theory. A perfectly
rational agent acts at every instant in such a way as to maximize its expected utility, given
the information it has acquired from the environment. In Chapter 1, we warned that

achieving perfect rationality—always doing the right thing—is just not possible in com-
plicated environments. The computational demands are just too high. However, for most
of the book, we will adopt the working hypothesis that understanding perfect decision
making is a good place to start.

Because perfect rational agents do not exist for nontrivial environments, perfect rationality
is not a suitable candidate for P.

0 Calculative rationality: the notion of rationality that we have used implicitly in designing
logical and decision-theoretic agents. A calculatively rational agent eventually returns
what would have been the rational choice at the beginning of its deliberation. This is an
interesting property for a system to exhibit because it constitutes an "in-principle" capacity
to do the right thing. Calculative rationality is sometimes of limited value, because
the actual behavior exhibited by such systems can be rather irrational. For example, a
calculatively rational chess program may choose the right move, but may take 1050 times
too long to do so. In practice, AI system designers are forced to compromise on decision
quality to obtain reasonable overall performance, yet the theoretical basis of calculative
rationality does not provide for such compromises.

<C> Bounded optimality (BO): a bounded optimal agent behaves as well as possible given its
computational resources. That is, the expected utility of the agent program for a bounded
optimal agent is at least as high as the expected utility of any other agent program running
on the same machine.

Of these three possibilities, choosing P to be "bounded optimality" seems to offer the best hope
for a strong theoretical foundation for AI. Clearly, a BO agent is of real, practical interest because
its behavior is the best that can be obtained. Equally clearly, BO programs exist for any given
task, machine, and environment. Obviously, finding the BO program is the trick; AI as the study



846________ __ Chapter 27. AI: Present and Future

of bounded optimality is feasible in principle, but no one said it was easy! One obvious difficulty
is that the designer may not have a probability distribution over the kinds of environments in
which the agent is expected to operate, and so may not be able to ascertain the bounded optimality
of a given design. In such cases, however, a suitably designed learning agent should be able
to adapt to the initially unknown environment; analytical results on the bounded optimality of
learning agents can be obtained using computational learning theory (Chapter 18). One crucial
open question is to what extent bounded optimal systems can be composed from bounded optimal
subsystems, thereby providing a hierarchical design methodology.

Although bounded optimality is a very general specification, it is no more general than the
definition of calculative rationality on which much of past AI work has been based. The important
thing is that by including resource constraints from the beginning, questions of efficiency and
decision quality can be handled within the theory rather than by ad hoc system design. The
two approaches only coincide if BO agents look something like calculatively rational agents
with various efficiency improvements added on. Real environments are/ar more complex than
anything that can be handled by a pure calculatively rational agent, however, so this would quite
a radical assumption.

As yet, little is known about bounded optimality. It is possible to construct bounded optimal
programs for very simple machines and for somewhat restricted kinds of environments (Etzioni,
1989; Russell and Subramanian, 1993), but as yet we have no idea what BO programs are like
for large, general-purpose computers in complex environments. If there is to be a constructive
theory of bounded optimality, we have to hope that the design of bounded optimal programs
does not depend too strongly on the details of the computer being used. It would make scientific
research very difficult if adding a few kilobytes of memory to a machine with 100 megabytes
made a significant difference to the design of the BO program and to its performance in the
environment. One way to make sure this cannot happen is to be slightly more relaxed about
the criteria for bounded optimality. By analogy with asymptotic complexity (Appendix A), we

BOUNDED can define asymptotic bounded optimality (ABO) as follows (Russell and Subramanian, 1993).
Suppose a program P is bounded optimal for a machine M in a class of environments E (the
complexity of environments in E is unbounded). Then program P' is ABO for M in E if it
can outperform P by running on a machine kM that is k times faster (or larger). Unless k were
enormous, we would be happy with a program that was ABO for a nontrivial environment on a
nontrivial architecture. There would be little point in putting enormous effort into finding BO
rather than ABO programs, because the size and speed of available machines tends to increase
by a constant factor in a fixed amount of time anyway.

We can hazard a guess that BO or ABO programs for powerful computers in complex
environments will not necessarily have a simple, elegant structure. We have already seen that
general-purpose intelligence requires some reflex capability and some deliberative capability,
a variety of forms of knowledge and decision making, learning and compilation mechanisms
for all of those forms, methods for controlling reasoning, and a large store of domain-specific
knowledge. A bounded optimal agent must adapt to the environment in which it finds itself, so
that eventually its internal organization may reflect optimizations that are specific to the particular
environment. This is only to be expected, and is similar to the way in which racing cars restricted
by weight and horsepower have evolved into extremely complex designs. We suspect that a
science of artificial intelligence based on bounded optimality will involve a good deal of study of



Section 27.2. What Exactly Are We Trying to Do? 847

ACT UTILITARIANISM
RULE
UTILITARIANISM

GAME THEORY

PRISONER'S
DILEMMA

the processes that allow an agent program to converge to bounded optimality, and perhaps less
concentration on the details of the messy programs that result.

In summary, the concept of bounded optimality is proposed as a formal task for artificial
intelligence research that is both well-defined and feasible. Bounded optimality specifies optimal
programs rather than optimal actions. Actions are, after all, generated by programs, and it is over
programs that designers have control.

This move from prescribing actions to prescribing programs is not unique to AI. Philosophy
has also seen a gradual evolution in the definition of rationality. There has been a shift from
consideration of act utilitarianism—the rationality of individual acts—to rule utilitarianism,
or the rationality of general policies for acting. A philosophical proposal generally consistent
with the notion of bounded optimality can be found in the "Moral First Aid Manual" (Dennett,
1986). Dennett explicitly discusses the idea of reaching equilibrium within the space of feasible
configurations of decision procedures. He uses as an example the Ph.D. admissions procedure
of a philosophy department. He concludes, as do we, that the best configuration may be neither
elegant nor illuminating. The existence of such a configuration and the process of reaching it are
the main points of interest.

Another area to undergo the same transition is game theory, a branch of economics
initiated in the same book—Theory of Games and Economic Behavior (Von Neumann and
Morgenstern, 1944)—that began the widespread study of decision theory. Game theory studies
decision problems in which the utility of a given action depends not only on chance events in
the environment but also on the actions of other agents. The standard scenario involves a set of
agents who make their decisions simultaneously, without knowledge of the decisions of the other
agents. The Prisoner's Dilemma is a famous example, in which each of two crime suspects
can "collaborate" (refuse to implicate his or her partner) or "defect" (spill the beans in return
for a free pardon). If the suspects collaborate, they will only be convicted of a minor offense,
a one-year sentence. If they both defect, both receive a four-year sentence. If one defects and
the other does not, the defector goes free whereas the other receives the maximum sentence of
ten years. Considered from the point of view of either player separately, the best plan is to
defect, because this gives better results whatever the other agent does. Unfortunately for the
suspects (but not for the police), this results in both suspects spilling the beans and receiving
a four-year sentence, whereas if they had collaborated, they would both have received lighter
sentences. Even more disturbing is the fact that defection also occurs when the game has a
finite number of rounds. (This can easily be proved by working backwards from the last round.)
Recently, however, there has been a shift from consideration of optimal decisions in games to
a consideration of optimal decision-making programs. This leads to different results because
it limits the ability of each agent to do unlimited simulation of the other, who is also doing
unlimited simulation of the first, and so on. Even the requirement of computability makes a
significant difference (Megiddo and Wigderson, 1986). Bounds on the complexity of players
have also become a topic of intense interest. Neyman's theorem (Neyman, 1985), recently proved
by Papadimitriou and Yannakakis (1994), shows that a collaborative equilibrium exists if each
agent is a finite automaton with a number of states that is less than exponential in the number of
rounds. This is essentially a bounded optimality result, where the bound is on space rather than
speed of computation. Again, the bounded optimal program for the automaton is rather messy,
but its existence and properties are what counts.



848 Chapter 27. AI: Present and Future

27.3 WHAT IF WE Do SUCCEED?_______ ____

In David Lodge's Small World, ,a novel about the academic world of literary criticism, the
protagonist causes consternation by asking a panel of eminent but contradictory literary theorists
the following question: "What if you were right?" None of the theorists seems to have considered
this question before, perhaps because debating unfalsifiable theories is an end in itself. Similar
confusion can sometimes be evoked by asking AI researchers, "What if you succeed?" AI is
fascinating, and intelligent computers are clearly more useful than unintelligent computers, so
why worry?

To the extent that AI has already succeeded in finding uses within society, we are now
facing some of the real issues. In the litigious atmosphere that prevails in the United States, it
is hardly surprising that legal liability needs to be discussed. When a physician relies on the
judgment of a medical expert system for a diagnosis, who is at fault if the diagnosis is wrong?
Fortunately, due in part to the growing influence of decision-theoretic methods in medicine, it is
now accepted that negligence cannot be shown if the physician performs medical procedures that
have high expected utility, even if the actual utility is catastrophic. The question should therefore
be, "Who is at fault if the diagnosis is unreasonable?" So far, courts have held that medical expert
systems play the same role as medical textbooks and reference books; physicians are responsible
for understanding the reasoning behind any decision and for using their own judgment in deciding
whether or not to accept the system's recommendations. In designing medical expert systems
as agents, therefore, the actions should not be thought of as directly affecting the patient but
as influencing the physician's behavior. If expert systems become reliably more accurate than
human diagnosticians, doctors may be legally liable if they fail to use the recommendations of
an expert system.

Similar issues are beginning to arise regarding the use of intelligent agents on the "informa-
tion highway." Some progress has been made in incorporating constraints into intelligent agents
so that they cannot damage the files of other users (Weld and Etzioni, 1994). Also problematic
is the fact that network services already involve monetary transactions. If those monetary trans-
actions are made "on one's behalf" by an intelligent agent, is one liable for the debts incurred?
Would it be possible for an intelligent agent to have assets itself and to perform electronic trades
on its own behalf? Could it own stocks and bonds in the same way that corporations own stocks
and bonds? So far, these questions do not seem to be well understood. To our knowledge, no
program has been granted legal status as an individual for the purposes of financial transactions;
at present, it seems unreasonable to do so. Programs are also not considered to be "drivers" for
the purposes of enforcing traffic regulations on real highways. In California law, at least, there
do not seem to be any legal sanctions to prevent an automated vehicle from exceeding the speed
limits, although the designer of the vehicle's control mechanism would be liable in the case of
accident. As with human reproductive technology, the law has yet to catch up with the new
developments. These topics, among others, are covered in journals such as AI and Society, Law,
Computers and Artificial Intelligence, and Artificial Intelligence and Law.

Looking further into the future, one can anticipate questions that have been the subject of
innumerable works of science fiction, most notably those of Asimov (1942). If we grant that



Section 27.3. What If We Do Succeed? 849

machines will achieve high levels of intelligent behavior and will communicate with humans as
apparent equals, then these questions are unavoidable. Should (or will) intelligent machines have
rights? How should intelligent machines interact with humans? What might happen if intelligent
machines decide to work against the best interests of human beings? What if they succeed?

In Computer Power and Human Reason, Joseph Weizenbaum (the author of the ELIZA
program) has argued that the effect of intelligent machines on human society will be such that
continued work on artificial intelligence is perhaps unethical. One of Weizenbaum's principal
arguments is that AI research makes possible the idea that humans are automata—an idea that
results in a loss of autonomy or even of humanity. (We note that the idea has been around
much longer than AI. See L'Homme Machine (La Mettrie, 1748).) One can perhaps group
such concerns with the general concern that any technology can be misused to the detriment of
humanity. Arguments over the desirability of a given technology must weigh the benefits and
risks, and put the onus on researchers to ensure that policy makers and the public have the best
possible information with which to reach a decision. On the other hand, AI raises deeper questions
than, say, nuclear weapons technology. No one, to our knowledge, has suggested that reducing
the planet to a cinder is better than preserving human civilization. Futurists such as Edward
Fredkin and Hans Moravec have, however, suggested that once the human race has fulfilled its
destiny in bringing into existence entities of higher (and perhaps unlimited) intelligence, its own
preservation may seem less important. Something to think about, anyway.

Looking on the bright side, success in AI would provide great opportunities for improving
the material circumstances of human life. Whether it would improve the quality of life is an open
question. Will intelligent automation give people more fulfilling work and more relaxing leisure
time? Or will the pressures of competing in a nanosecond-paced world lead to more stress?
Will children gain from instant access to intelligent tutors, multimedia online encyclopedias, and
global communication, or will they play ever more realistic war games? Will intelligent machines
extend the power of the individual, or of centralized governments and corporations? Science
fiction authors seem to favor dystopian futures over Utopian ones, probably because they make
for more interesting plots. In reality, however, the trends seem not to be too terribly negative.



A COMPLEXITY ANALYSIS
AND O() NOTATION

Computer scientists are often faced with the task of comparing two algorithms to see which runs
BENCHMARKING faster or takes less memory. There are two approaches to this task. The first is benchmarking—

running the two algorithms on a computer and measuring which is faster (or which uses less
memory). Ultimately, this is what really matters, but a benchmark can be unsatisfactory because
it is so specific: it measures the performance of a particular program written in a particular
language running on a particular computer with a particular compiler and particular input data.
From the single result that the benchmark provides, it can be difficult to predict how well
the algorithm would do on a different compiler, computer, or data set. A useful variant of
benchmarking is to count the number of operations performed of a particular kind: for example,
in testing a numerical sorting algorithm we might count the number of "greater-than" tests.

A. 1 ASYMPTOTIC ANALYSIS

ANALYSIS OF
ALGORITHMS The second approach relies on a mathematical analysis of algorithms, independent of the

particular implementation and input. We will discuss the approach with the following example,
a program to compute the sum of a sequence of numbers:

function S\JMMAi:iON(sequence) returns a number
sum — 0
for i — 1 to LENGTH(sequence)

.turn — sum + sequence[i]
end
return sum

The first step in the analysis is to abstract over the input, to find some parameter or parameters that
characterize the size of the input. In this example, the input can be characterized by the length
of the sequence, which we will call n. The second step is to abstract over the implementation, to
find some measure that reflects the running time of the algorithm, but is not tied to a particular



852 Appendix A. Complexity analysis and O() notation

compiler or computer. For the SUMMATION program, this could be just the number of lines of
code executed. Or it could be more detailed, measuring the number of additions, assignments,
array references, and branches executed by the algorithm. Either way gives us a characterization
of the total number of steps taken by the algorithm, as a function of the size of the input. We will
call this T(n). With the simpler measure, we have T(n) = 2n + 2 for our example.

If all programs were as simple as SUMMATION, analysis of algorithms would be a trivial
field. But two problems make it more complicated. First, it is rare to find a parameter like n that
completely characterizes the number of steps taken by an algorithm. Instead, the best we can
usually do is compute the worst case Twors,(ri) or the average case Tmg(ri). Computing an average
means that the analyst must assume some distribution of inputs.

The second problem is that algorithms tend to resist exact analysis. In that case, it is
necessary to fall back on an approximation. We say that the SUMMATION algorithm is O(ri),
meaning that its measure is at most a constant times n, with the possible exception of a few small
values of n. More formally,

T(n) is O(f(n)) if T(n) < kf(n) for some k, for all n > n0

ANALYSIS™ The OQ notation gives us what is called an asymptotic analysis. We can say without question
that as n asymptotically approaches infinity, an O(ri) algorithm is better than an O(n2) algorithm.
A single benchmark figure could not substantiate such a claim.

The OQ notation abstracts over constant factors, which makes it easier to use than the T()
notation, but less precise. For example, an O(n2) algorithm will always be worse than an O(ri) in
the long run, but if the two algorithms are T(n2 +1) and T( 100« +1000), then the O(n2) algorithm
is actually better for n < 110.

Despite this drawback, asymptotic analysis is the most widely used tool for analyzing
algorithms. It is precisely because the analysis abstracts both over the exact number of operations
(by ignoring the constant factor, k) and the exact content of the input (by only considering its size,
n) that the analysis becomes mathematically feasible. The OQ notation is a good compromise
between precision and ease of analysis.

A.2 INHERENTLY HARD PROBLEMS

Analysis of algorithms and the OQ notation allow us to talk about the efficiency of a particular
algorithm. However, they have nothing to say about whether or not there could be a better

ANALYS^SITY algorithm for the problem at hand. The field of complexity analysis analyzes problems rather
than algorithms. The first gross division is between problems that can be solved in polynomial
time and those that cannot be solved in polynomial time, no matter what algorithm is used. The
class of polynomial problems is called P. These are sometimes called "easy" problems, because
the class contains those problems with running times like O(logn) and O(n). But it also contains
those with O(nloo°), so the name "easy" should not be taken too literally.

Another important class of problems is NP, the class of nondeterministic polynomial
problems. A problem is in this class if there is some algorithm that can guess a solution and then
verify whether or not the guess is correct in polynomial time. The idea is that if you either have



Section A.2. Inherently Hard Problems 853

NP-COMPLETE

an exponentially large number of processors so that you can try all the guesses at once, or you
are very lucky and always guess right the first time, then the NP problems become P problems.

One of the big open questions in computer science is whether the class NP is equivalent to
the class P when one does not have the luxury of an infinite number of processors or omniscient
guessing. Most computer scientists ̂ re convinced that P ^ NP, that NP problems are inherently
hard and only have exponential time algorithms. But this has never been proven.

Those who are interested in deciding if P = NP look at a subclass of NP called the NP-
complete problems. The word complete is used here in the sense of "most extreme," and thus
refers to the hardest problems in the class NP. It has been proven that either all the NP-complete
problems are in P or none of them is. This makes the class theoretically interesting, but the class
is also of practical interest because many important problems are known to be NP-complete.
An example is the satisfiability problem: given a logical expression (see Chapter 6), is there an
assignment of truth values to the variables of the expression that make it true?

Also studied is the class of PSPACE problems, those that require a polynomial amount of
space, even on a nondeterministic machine. It is generally believed that PSPACE-hard problems
are worse than NP-complete, although it could turn out that NP = PSPACE, just as it could turn
out that P = NP.

BIBLIOGRAPHICAL AND HISTORICAL NOTES
The O() notation so widely used in computer science today was first introduced in the context of
number theory by the German mathematician P. G. H. Bachmann (1894). The concept of NP-
completeness was invented by Cook (1971), and the modern method for establishing a reduction
from one problem to another is due to Karp (1972). Cook and Karp have both won the Turing
award, the highest honor in computer science, for their work.

Classic works on the analysis and design of algorithms include those by Knuth (1973) and
Aho, Hopcroft, and Ullman (1974); more recent contributions are by Tarjan (1983) and Cormen,
Leiserson, and Rivest (1990). These books place an emphasis on designing and analyzing
algorithms to solve tractable problems. For the theory of NP-completeness and other forms of
intractability, the best introduction is by Garey and Johnson (1979). In addition to the underlying
theory, Garey and Johnson provide examples that convey very forcefully why computer scientists
are unanimous in drawing the line between tractable and intractable problems at the border
between polynomial and exponential time complexity. They also provide a voluminous catalog
of problems that are known to be NP-complete or otherwise intractable.



B NOTES ON LANGUAGES
AND ALGORITHMS

B. 1 DEFINING LANGUAGES WITH BACKUS-NAUR FORM (BNF)

BACKUS-NAUR
FORM
BNF

TERMINAL SYMBOLS

NONTERMINAL
SYMBOLS

START SYMBOL

In this book, we define several languages, including the languages of prepositional logic (page
166), first-order logic (page 187), and a subset of English (page 670). A formal language is
defined as a set of strings where each string is a sequence of symbols. All the languages we are
interested in consist of an infinite set of strings, so we need a concise way to characterize the
set. We do that with a grammar. We have chosen to write our grammars in a formalism called
Backus-Naur form, or BNF. There are four components to a BNF grammar:

• A set of terminal symbols. These are the symbols or words that make up the strings of
the language. They could be letters (A, B, C,...) or words (a, aardvark, abacus,...) for
English). For the language of arithmetic, the set of symbols is

{0,1,2,3,4,5,6,7,8,9, +, -, -r, x, (,)}

• A set of nonterminal symbols that categorize subphrases of the language. For example,
the nonterminal symbol NounPhrase in English denotes an infinite set of strings including
"you" and "the big slobbery dog."

• A start symbol, which is the nonterminal symbol that denotes the complete strings of the
language. In English, this is Sentence; for arithmetic, it might be Exp.

• A set of rewrite rules or productions of the form LHS —> RHS, where LHS is a nonter-
minal, and RHS is a sequence of zero or more symbols (either terminal or nonterminal).

A rewrite rule of the form

Digit — 7
means that anytime we see the string consisting of the lone symbol 7, we can categorize it as a
Digit. A rule of the form

Sentence —> NounPhrase VerbPhrase
means that whenever we have two strings categorized as a NounPhrase and a VerbPhrase, we can
append them together and categorize the result as a Sentence. As an abbreviation, the symbol |



Section B.2. Describing Algorithms with Pseudo-Code 855

can be used to separate alternative right-hand sides. Here is a BNF grammar for simple arithmetic
expressions:

Exp —> Exp Operator Exp
I ( E x p )
| Number -

Number —> Digit
Number Digit

Digit - > 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Operator —> + \ — \ -J- | X

We cover languages and grammars in more detail in Chapter 22. Be aware that other books use
slightly different notations for BNF; for example, you might see (Digit} instead of Digit for a
nonterminal; 'word' instead of word for a terminal; or : : = instead of —> in a rule.

B.2 DESCRIBING ALGORITHMS WITH PSEUDO-CODE

In this book, we define over 100 algorithms. Rather than picking a programming language (and
risking that readers who are unfamiliar with the language will be lost), we have chosen to describe
the algorithms in pseudo-code. Most of it should be familiar to users of languages like Pascal,
C, or Common Lisp, but in some places we use mathematical formulas or ordinary English to
describe parts that would otherwise be more cumbersome. There are a few idiosyncrasies that
should be remarked on.

Nondeterminism
It is the nature of AI that we are often faced with making a decision before we know enough to
make the right choice. So our algorithms have to make a choice, but keep track of the alternatives
in case the choice does not succeed. The clearest way to describe such algorithms without
bogging them down with bookkeeping details is with the primitives choose and fail.

The idea is that when we call choose(a,£,c), the algorithm will return either a, b, or c as
the value of the choose expression. But it will also save the other two on an agenda of pending
choices. The algorithm continues; if it terminates normally then all is done, and we forget about
the agenda. But if a fail statement is encountered, then a pending choice is taken off the agenda,
and control is resumed at the point in the algorithm where that choice was saved. Algorithms

A?GORirHMSNISTIC that make use of choose are called nondeterministic algorithms.
You can think of a nondeterministic algorithm as a search through the space of possible

choices. As such, any of the search algorithms from Chapters 3 or 4 can be used. The beauty
of the nondeterministic algorithm is that the search strategy can be specified separately from the
main algorithm.



856 Appendix B. Notes on Languages and Algorithms

ORACLE Another way to think of nondeterministic algorithms is to imagine an oracle that magically
advises the algorithm to make the correct choice at every choice point. If such an oracle could
be found, the algorithm would be deterministic; it would never need to backtrack. You can think
of the agenda as a slower means of simulating the advice of the oracle.

Nondeterministic algorithms are often clearer than deterministic versions, but unfortunately
only a few programming languages support nondeterminism directly—Prolog and ICON are
probably the best known, choose and fail can be implemented in SCHEME in about 15 lines of
code, using the function call-with-current-continuation.

Here is an example of a nondeterministic function: the function call lNTEGER(^tor?) returns
an integer greater than or equal to start, chosen nondeterministically.

function iNTEGER(ifart) returns an integer
return choose(start, lNTEGER(start + 1))

It is important to understand what the code fragment PRINT(!NTEGER (0)); fail will do. First, it
will print some integer, although we cannot say which one without knowing what control strategy
is used by choose. Then fail will return control to one of the choice points in one of the recursive
calls to INTEGER. Eventually, a different integer will be chosen and printed, and then fail will be
executed again. The result is an infinite loop, with a single integer printed each time.

We sometimes use the term pick to mean a choice that is not a backtracking point. For
example, an algorithm to sum the elements of a set is to initialize the total to 0, pick an element
from the set and add it to the total, and continue until there are no more elements to pick. There
is no need to backtrack, because any order of picking will get the job done.

Static variables
We use the keyword static to say that a variable is given an initial value the first time a function
is called and retains that value (or the value given to it by a subsequent assignment statement)
on all subsequent calls to the function. Thus, static variables are like global variables in that
they outlive a single call to their function, but they are only accessible within the function. The
agent programs in the book use static variables for "memory." Programs with static variables
can be implemented as "objects" in object-oriented languages such as C++ and Smalltalk. In
functional languages, they can be implemented easily by executing lambda-expressions within
an environment in which the required variables are defined.

Functions as values
Functions and procedures have capitalized names and variables have lower case italic names.
So most of the time, a function call looks like SOME-FuNCTlON(van'a&/<?). However, we allow
the value of a variable to be a function; for example, if the value of variable is the square root
function, then variable!*)) returns 3.



Section B .3. The Code Repository 857

B. 3 THE CODE REPOSITORY

The pseudo-code in the book is meant to be easy to read and understand, but it is not easy to
run on a computer. To fix this problem, we have provided a repository of working code. Most
of the algorithms in the book are implemented, as well as a set of basic tools not covered in the
book. Currently, the algorithms are all written in Lisp, although we may add other languages in
the future. If you are reading this book as part of a course, your instructor will probably retrieve
the code for you. If not, send an electronic mail message to

aima-request@cs.berkeley.edu

with the word "help" in the subject line or in the body. You will receive a return message with
instructions on how to get the code. (We don't print the instructions here because they are subject
to frequent change.) You can also order the code on a floppy disk by writing to Prentice-Hall
Inc., Englewood Cliffs, NJ, 07632.

B.4 COMMENTS

If you have any comments on the book, any typos you have noticed, or any suggestions on how
it can be improved, we would like to hear from you. Please send a message to

aima-bug@cs.berkeley.edu

or write to us in care of Prentice-Hall.



Bibliography

Aarup, M., Arentoft, M. M., Parrod, Y., Stader,
J., and Stokes, I. (1994). OPTIMUM-AIV:
A knowledge-based planning and scheduling sys-
tem for spacecraft AIV. In Fox, M. and Zweben,
M., editors, Knowledge Based Scheduling. Morgan
Kaufmann, San Mateo, California.
Abu-Mostafa, Y. S. and Psaltis, D. (1987). Optical
neural computers. Scientific American, 256:88-95.
Acharya, A., Tambe, M., and Gupta, A. (1992).
Implementation of production systems on message-
passing computers. IEEE Transactions on Parallel
and Distributed Systems, 3(4):477-487.
Adelson-Velsky, G. M., Arlazarov, V. L., Bitman,
A. R., Zhivotovsky, A. A., and Uskov, A. V. (1970).
Programming a computer to play chess. Russian
Mathematical Surveys, 25:221-262.
Adelson-Velsky, G. M., Arlazarov, V. L., and Don-
skoy, M. V. (1975). Some methods of controlling
the tree search in chess programs. Artificial Intelli-
gence,6(4):36\-37l.
Agmon, S. (1954). The relaxation method for lin-
ear inequalities. Canadian Journal of Mathematics,
6(3):382-392.
Agre, P. E. and Chapman, D. (1987). Pengi: an
implementation of a theory of activity. In Proceed-
ings of the Tenth International Joint Conference on
Artificial Intelligence (IJCAI-87), pages 268-272,
Milan, Italy. Morgan Kaufmann.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D.
(1974). The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, Massachusetts.
Ait-Kaci, H. (1991). Warren's Abstract Machine:
A Tutorial Reconstruction. MIT Press, Cambridge,
Massachusetts.
Ait-Kaci, H. and Nasr, R. (1986). LOGIN: a logic
programming language with built-in inheritance.
Journal of Logic Programming, 3(3): 185-215.
Ait-Kaci, H. and Podelski, A. (1993). Towards a
meaning of LIFE. Journal of Logic Programming,
16(3-4): 195-234.
Allais, M. (1953). Le comportment de Fhomme
rationnel devant la risque: critique des postulats

et axiomes de 1'ecole Americaine. Econometrica,
21:503-546.
Alien, J. F. (1983). Maintaining knowledge about
temporal intervals. Communications of the Associ-
ation for Computing Machinery, 26(11):832-843.
Alien, J. F. (1984). Towards a general theory of ac-
tion and time. Artificial Intelligence, 23:123-154.
Alien, J. F. (1991). Time and time again: the many
ways to represent time. International Journal of
Intelligent Systems, 6:341-355.
Alien, J. F. (1995). Natural Language Understand-
ing. Benjamin/Cummings, Redwood City, Califor-
nia.
Alien, J. F, Hendler, J., andTate, A., editors (1990).
Readings in Planning. Morgan Kaufmann, San Ma-
teo, California.
Almuallim, H. and Dietterich, T. G. (1991). Learn-
ing with many irrelevant features. In Proceedings
of the Ninth National Conference on Artificial Intel-
ligence (AAAI-91), volume 2, pages 547-552, Ana-
heim, California. AAAI Press.
Aloimonos, J., Weiss, I., and Bandyopadhyay, A.
(1988). Active vision. International Journal of
Computer Vision, 1:333-356.
Aloimonos, Y. (1992). Special issue on purposive,
qualitative, active vision. CVGIP: Image Under-
standing, 56(1).
Alshawi, H., editor (1992). The Core Language
Engine. MIT Press, Cambridge, Massachusetts.
Alspector, J., Alien, R. B., Hu, V., and Satya-
narayana, S. (1987). Stochastic learning networks
and their electronic implementation. In Anderson,
D. Z., editor, Neural Information Processing Sys-
tems, Denver 1987, pages 9-21, Denver, Colorado.
American Institute of Physics.
Alterman, R. (1988). Adaptive planning. Cognitive
Science, 12:393^22.
Amarel, S. (1968). On representations of problems
of reasoning about actions. In Michie, D., editor,
Machine Intelligence 3, volume 3, pages 131-171.
Elsevier/North-Holland, Amsterdam, London, New
York.

859



860 Bibliography

Ambros-Ingerson, J. and Steel, S. (1988). Integrat-
ing planning, execution and monitoring. In Pro-
ceedings of the Seventh National Conference on
Artificial Intelligence (AAAI-88), pages 735-740,
St. Paul, Minnesota. Morgan Kaufmann.
Amit, D., Gutfreund, H., and Sompolinsky, H.
(1985). Spin-glass models of neural networks. Phys-
ical Review, A 32:1007-1018.
Ammon, K. (1993). An automatic proof of Godel's
incompleteness theorem. Artificial Intelligence,
61(2):291-306.
Andersen, S. K., Olesen, K. G., Jensen, F. V., and
Jensen, F. (1989). HUGIN—a shell for building
Bayesian belief universes forexpert systems. In Pro-
ceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence (IJCAI-89), vol-
ume 2, pages 1080-1085, Detroit, Michigan. Mor-
gan Kaufmann.
Anderson, A. R., editor (1964). Minds and Ma-
chines. Prentice-Hall, Englewood Cliffs, New Jer-
sey.
Anderson, J. (1980). Cognitive Psychology and its
Implications. W. H. Freeman, New York.
Anderson, J. A. and Rosenfeld, E., editors
(1988). Neurocomputing: Foundations of Re search.
MIT Press, Cambridge, Massachusetts.
Anderson, J. R. (1983). The Architecture of Cog-
nition. Harvard University Press, Cambridge, Mas-
sachusetts.
Armstrong, D. M. (1968). A Materialist Theory of
the Mind. Routledge and Kegan Paul, London.
Arnauld, A. (1662). La logique, ou I'artdepenser.
Chez Charles Savreux, au pied de la Tour de Nostre
Dame, Paris.Usually referred to as the Port-Royal
Logic; translated into English as Arnauld (1964).
Arnauld, A. (1964). The Art of Thinking. Bobbs-
Merrill, Indianapolis, Indiana.Translation of Ar-
nauld (1662), usually referred to as the Port-Royal
Logic.
Ashby, W. R. (1952). Design for a Brain. Wiley,
New York.
Asimov, I. (1942). Runaround. Astounding Science
Fiction.
Asimov, I. (1950). /, Robot. Doubleday, Garden
City, New York.

Astrom, K. J. (1965). Optimal control of Markov
decision processes with incomplete state estimation.
/ Math. Anal. Applic., 10:174-205.

Austin, J. L. (1962). How To Do Things with
Words. Harvard University Press, Cambridge, Mas-
sachusetts.

Bacchus, F. (1990). Representing and Reasoning
with Probabilistic Knowledge. MIT Press, Cam-
bridge, Massachusetts.

Bacchus, F., Grove, A., Halpern, J. Y, and Koller,
D. (1992). From statistics to beliefs. In Proceed-
ings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), pages 602-608, San Jose,
California. AAAI Press.
Bach, E. (1986). The algebra of events. Linguistics
and Philosophy, 9:5-16.
Bachmann,P. G. H. (1894). Die anafytische Zahlen-
theorie. B. G. Teubner, Leipzig.
Bain, M. and Muggleton, S. H. (1991). Non-
monotonic learning. In Hayes, J. E., Michie, D.,
and Tyugu, E., editors, Machine Intelligence 12,
pages 105-119. Oxford University Press, Oxford.
Bajcsy, R. (1988). Active perception. Proceedings
of the IEEE, 76(8):996-1005.
Bajcsy, R. and Lieberman, L. (1976). Texture gra-
dient as a depth cue. Computer Graphics and Image
Processing, 5(l):52-67.
Baker, C. L. (1989). English Syntax. MIT Press,
Cambridge, Massachusetts.

Baker, J. (1975). The Dragon system—an overview.
IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 23.
Ballard, B. W. (1983). The *-minimax search pro-
cedure for trees containing chance nodes. Artificial
Intelligence, 21(3):327-350.
Bar-Hillel, Y. (1954). Indexical expressions. Mind,
63:359-379.
Bar-Hillel, Y. (1960). The present status of auto-
matic translation of languages. In Alt, F. L., edi-
tor, Advances in Computers. Academic Press, New
York.

Bar-Shalom, Y. andFortmann, T. E. (1988). Track-
ing and Data Association. Academic Press, New
York.



Bibliography 861

Barr, A., Cohen, P. R., and Feigenbaum, E. A.,
editors (1989). The Handbook of Artificial Intelli-
gence, volume 4. Addison-Wesley, Reading, Mas-
sachusetts.
Barr, A. and Feigenbaum, E. A., editors (1981).
The Handbook of Artificial Intelligence, volume 1.
HeurisTech Press and William Kaufmann, Stanford,
California and Los Altos, California.First of four
volumes; other volumes published separately (Barr
and Feigenbaum, 1982; Cohen and Feigenbaum,
1982; Barr et al, 1989).
Barr, A. and Feigenbaum, E. A., editors (1982).
The Handbook of Artificial Intelligence, volume 2.
HeurisTech Press and William Kaufmann, Stanford,
California and Los Altos, California.
Barrett, A., Golden, K., Penberthy, J. S., and Weld,
D. S. (1993). UCPOP user's manual (version 2.0).
Technical Report 93-09-06, Department of Com-
puter Science and Engineering, University of Wash-
ington.
Barrett, R., Ramsay, A., and Sloman, A. (1985).
POP-11: A Practical Language for Artificial Intel-
ligence. Ellis Horwood, Chichester, England.
Barstow, D. R. (1979). Knowledge-Based Program
Construction. Elsevier/North-Holland, Amsterdam,
London, New York.
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1991).
Real-time learning and control using asynchronous
dynamic programming. Technical Report TR-91-
57, University of Massachusetts Computer Science
Department, Amherst, Massachusetts.
Barto, A. G., Sutton, R. S., and Brouwer, P. S.
(1981). Associative search network: a reinforce-
ment learning associative memory. Biological Cy-
bernetics, 40(3):201-211.
Barwise, J. (1993). Everyday reasoning and log-
ical inference. Behavioral and Brain Sciences,
16(2):337-338.
Barwise, J. and Etchemendy, J. (1993). The Lan-
guage of First-Order Logic: Including the Macin-
tosh Program Tarski's World 4.0. Center for the
Study of Language and Information (CSLI), Stan-
ford, California, third revised and expanded edition.
Baum, L. E. and Petrie, T. (1966). Statistical in-
ference for probabilistic functions of finite state
Markov chains. Annals of Mathematical Statistics,
41.

Bayes, T. (1763). An essay towards solving a prob-
lem in the doctrine of chances. Philosophical Trans-
actions of the Royal Society of London, 53:370^t 18.
Beal, D. F. (1980). An analysis of minimax. In
Clarke, M. R. B., editor, Advances in Computer
Chess 2, pages 103-109. Edinburgh University
Press, Edinburgh, Scotland.
Beck, H. W., Gala, S. K., and Navathe, S. B. (1989).
Classification as a query processing technique in the
CANDIDE semantic data model. In Proceedings
Fifth International Conference on Data Engineer-
ing, pages 572-581, Los Angeles, California. IEEE
Computer Society Press.
Belhumeur, P. N. (1993). A binocular stereo algo-
rithm for reconstructing sloping, creased, and bro-
ken surfaces in the presence of half-occlusion. In
Proceedings of the 4th International Conference on
Computer Vision, Berlin. IEEE Computer Society
Press.
Bell, C. and Tate, A. (1985). Using temporal con-
straints to restrict search in a planner. In Proceedings
of the Third Alvey IKBS SIC Workshop, Sunning-
dale, Oxfordshire.
Bell, J. L. and Machover, M. (1977). A Course in
Mathematical Logic. Elsevier/North-Holland, Am-
sterdam, London, New York.
Bellman, R. E. (1957). Dynamic Programming.
Princeton University Press, Princeton, New Jersey.
Bellman, R. E. (1978). An Introduction to Artifi-
cial Intelligence: Can Computers Think? Boyd &
Fraser Publishing Company, San Francisco.
Bellman, R. E. and Dreyfus, S. E. (1962). Applied
Dynamic Programming. Princeton University Press,
Princeton, New Jersey.
Berlekamp, E. R., Conway, J. H., and Guy, R. K.
(1982). Winning Ways, For Your Mathematical
Plays. Academic Press, New York.
Berliner, H. J. (1977). BKG—A program that
plays backgammon. Technical report, Computer
Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.
Berliner, H. J. (1979). TheB* tree search algorithm:
A best-first proof procedure. Artificial Intelligence,
12(1):23-40.
Berliner, H. J. (1980a). Backgammon computer pro-
gram beats world champion. Artificial Intelligence,
14:205-220.



862 Bibliography

Berliner, H. J. (1980b). Computer backgammon.
Scientific American, 249(6):64-72.
Berliner, H. J. (1989). Hitech chess: From master
to senior master with no hardware change. In MIV-
89: Proceedings of the International Workshop on
Industrial Applications of Machine Intelligence and
Vision (Seiken Symposium), pages 12-21.
Berliner, H. J. and Ebeling, C. (1989). Pattern
knowledge and search: The SUPREM architecture.
Artificial Intelligence, 38(2): 161-198.
Berliner, H. J. and Goetsch, G. (1984). A quan-
titative study of search methods and the effect of
constraint satisfaction. Technical Report CMU-CS-
84-187, Computer Science Department, Carnegie-
Mellon University, Pittsburgh, Pennsylvania.
Bernoulli, D. (1738). Specimen theoriae novae de
mensura sortis. Proceedings of the St. Petersburg
Imperial Academy of Sciences, 5.Translated into
English as Bernoulli (1954).
Bernoulli, D. (1954). Exposition of a new theory of
the measurement of risk. Econometrica, 22:123-
136. Translation of Bernoulli (1738) by Louise
Sommer.
Bernstein, A. and Roberts, M. (1958). Computer
vs. chess player. Scientific American, 198(6):96-
105.
Bernstein, A., Roberts, M., Arbuckle, T, and Bel-
sky, M. S. (1958). A chess playing program for
the IBM 704. In Proceedings of the 1958 Western
Joint Computer Conference, pages 157-159, Los
Angeles.
Berry, D. A. andFristedt, B. (1985). Bandit Prob-
lems: Sequential Allocation of Experiments. Chap-
man and Hall, London.
Bertsekas, D. P. (1987). Dynamic Programming:
Deterministic and Stochastic Models. Prentice-Hall,
Englewood Cliffs, New Jersey.
Beth, E. W. (1955). Semantic entailment and for-
mal derivability. Mededelingen van de Koninklijke
Nederlandse Akademie van Wetenschappen, Afdel-
ing Letterkunde, N.R., 18(13):309-342.
Bibel, W. (1981). On matrices with connections.
Journal of the Association for Computing Machin-
ery, 28(4):633-645.
Bibel, W. (1986). A deductive solution for plan
generation. New Generation Computing, 4(2): 115-
132.

Birnbaum, L. and Selfridge, M. (1981). Conceptual
analysis of natural language. In Schank, R. and Ries-
beck, C., editors, Inside Computer Understanding.
Lawrence Erlbaum.

Biro, J. I. and Shahan,R. W., editors (1982). Mind,
Brain and Function: Essays in the Philosophy of
Mind. University of Oklahoma Press, Norman, Ok-
lahoma.

Birtwistle, G., Dahl, O.-J., Myrhaug, B., and Ny-
gaard, K. (1973). Simula Begin. Studentliteratur
(Lund) and Auerbach, New York.

Bitner, J. R. andReingold, E. M. (1975). Backtrack
programming techniques. Communications of the
Association for Computing Machinery, 18(11):651-
656.

Black, E., Jelinek, P., Lafferty, J., Magerman, D.,
Mercer, R., and Roukos, S. (1992). Towards history-
based grammars: using richer models for proba-
bilistic parsing. In Marcus, M., editor, Fifth DARPA
Workshop on Speech and Natural Language, Arden
Conference Center, Harriman, New York.

Block, N., editor (1980). Readings in Philosophy
of Psychology,volume 1. Harvard University Press,
Cambridge, Massachusetts.

Bloom, P. (1994). Language Acquisition: Core
Readings. MIT Press.

Blum, A. L. and Rivest, R. L. (1992). Training
a 3-node neural network is NP-complete. Neural
Networks, 5(l):l 17-127.

Blumer, A., Ehrenfeucht, A., Haussler, D., and War-
muth, M. K. (1989). Learnability and the Vapnik-
Chervonenkis dimerision. Journal of the Associa-
tion for Computing Machinery, 36(4):929-965.

Blumer, A., Ehrenfeucht, A., Haussler,D., andWar-
muth, M. K. (1990). Occam's razor. In Shavlik, J. W.
and Dietterich, T. G., editors, Readings in Machine
Learning, pages 201-204. Morgan Kaufmann.
Board, R. and Pitt, L. (1992). On the necessity of
Occam algorithms. Theoretical Computer Science,
100(1):157-184.

Bobrbw, D. G. (1967). Natural language input
for a computer problem solving system. In Min-
sky, M. L., editor, Semantic Information Process-
ing, pages 133-215. MIT Press, Cambridge, Mas-
sachusetts.



Bibliography 863

Bobrow, D. G. and Raphael, B. (1974). New pro-
gramming languages for artificial intelligence re-
search. Computing Surveys, 6(3):153-174.
Boden, M. A. (1977). Artificial Intelligence and
Natural Man. Basic Books, New York.
Boden, M. A., editor (1990). The Philosophy of Arti-
ficial Intelligence. Oxford University Press, Oxford.
Boole, G. (1847). The Mathematical Analysis of
Logic: Being an Essay towards a Calculus of
Deductive Reasoning. Macmillan, Barclay, and
Macmillan, Cambridge.
Boolos, G. S. (1990). On "seeing" the truth of
the Godel sentence. Behavioral and Brain Sci-
ences, 13(4):655-656.Peer commentary on Pen-
rose (1990).
Boolos, G. S. and Jeffrey, R. C. (1989). Computabil-
ity and Logic. Cambridge University Press, Cam-
bridge, third edition.
Borgida, A., Brachman, R. J., McGuinness, D. L.,
and Alperin Resnick, L. (1989). CLASSIC: a struc-
tural data model for objects. SIGMOD Record,
18(2):58-67.
Boyer, R. S. (1971). Locking: A Restriction of Res-
olution. PhD thesis, University of Texas, Austin,
Texas.
Boyer, R. S. and Moore, J. S. (1972). The sharing of
structure in theorem-proving programs. In Meltzer,
B. and Michie, D., editors, Machine Intelligence 7,
pages 101-116. Edinburgh University Press, Edin-
burgh, Scotland.
Boyer, R. S. and Moore, J. S. (1979). A Computa-
tional Logic. Academic Press, New York.
Boyer, R. S. andMoore, J. S. (1984). Proof checking
the RS A public key encryption algorithm. American
Mathematical Monthly, 91 (3): 181-189.
Brachman, R. J. (1979). On the epistemological sta-
tus of semantic networks. In Findler, N. V., editor,
Associative Networks: Representation and Use of
Knowledge by Computers, pages 3-50. Academic
Press, New York.
Brachman, R. J., Fikes, R. E., and Levesque, H. J.
(1983). Krypton: A functional approach to knowl-
edge representation. Computer, 16(10):67-73.
Brachman, R. J. and Levesque, H. J., editors (1985).
Readings in Knowledge Representation. Morgan
Kaufmann, San Mateo, California.

Bransford, J. and Johnson, M. K. (1973). Consid-
eration of some problems in comprehension. In
Chase, W. G., editor, Visual Information Process-
ing. Academic Press, New York.

Bratko, I. (1986). Prolog Programming for Artifi-
cial Intelligence. Addison-Wesley, Reading, Mas-
sachusetts, first edition.

Bratko, I. (1990). Prolog Programming for Artifi-
cial Intelligence. Addison-Wesley, Reading, Mas-
sachusetts, second edition.

Bratman, M. E. (1987). Intention, Plans, and Prac-
tical Reason. Harvard University Press, Cambridge,
Massachusetts.

Bratman, M. E. (1992). Planning and the stability
of intention. Minds and Machines, 2(1):1-16.

Brelaz, D. (1979). New methods to color the ver-
tices of agraph. Communications of the Association
for Computing Machinery, 22(4):251-256.

Bresnan, J. (1982). The Mental Representation of
Grammatical Relations. MIT Press, Cambridge,
Massachusetts.

Briggs, R. (1985). Knowledge representation in
Sanskrit and artificial intelligence. AI Magazine,
6(l):32-39.
Brooks, R. A. (1981). Symbolic reasoning among
3-D models and 2-D images. Artificial Intelligence,
17:285-348.
Brooks, R. A. (1986). A robust layered control sys-
tem for a mobile robot. IEEE Journal of Robotics
and Automation, 2:14-23.

Brooks, R. A. (1989). Engineering approach to
building complete, intelligent beings. Proceedings
of the SPIE—The International Society for Optical
Engineering, 1002:618-625.

Brudno, A. L. (1963). Bounds and valuations for
shortening the scanning of variations. Problems of
Cybernetics, 10:225-241.

Bryson, A. E. and Ho, Y.-C. (1969). Applied Opti-
mal Control. Blaisdell, New York.

Buchanan,B. G. andMitchell, T. M. (1978). Model-
directed learning of production rules. In Waterman,
D. A. and Hayes-Roth, E, editors, Pattern-Directed
Inference Systems, pages 297-312. Academic Press,
New York.



864 Bibliography

Buchanan, B. G., Mitchell, T. M., Smith, R. G.,
and Johnson, C. R. (1978). Models of learning sys-
tems. In Encyclopedia of Computer Science and
Technology, volume 11. Dekker.
Buchanan, B. G. and Shortliffe, E. H., editors
(1984). Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming
Project. Addison-Wesley, Reading, Massachusetts.
Buchanan, B. G., Sutherland, G. L., and Feigen-
baum, E. A. (1969). Heuristic DENDRAL: a pro-
gram for generating explanatory hypotheses in or-
ganic chemistry. In Meltzer, B., Michie, D., and
Swann, M., editors, Machine Intelligence 4, pages
209-254. Edinburgh University Press, Edinburgh,
Scotland.
Buchler, J., editor (1955). Philosophical Writings
ofPeirce. Dover, New York.
Bundy, A. (1983). The Computer Modelling of
Mathematical Reasoning. Academic Press, New
York.
Bunt, H. C. (1985). The formal representation of
(quasi-) continuous concepts. In Hobbs, J. R. and
Moore, R. C., editors, Formal Theories of the Com-
monsense World, chapter 2, pages 37-70. Ablex,
Norwood, New Jersey.
Burstall, R. M. (1974). Program proving as hand
simulation with a little induction. In Information
Processing '74, pages 308-312. Elsevier/North-
Holland, Amsterdam, London, New York.
Burstall, R. M. and Darlington, J. (1977). A
transformation system for developing recursive pro-
grams. Journal of the Association for Computing
Machinery,24(l):44-61.
Bylander, T. (1992). Complexity results for serial
decomposability. In Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence (AAAI-
92), pages 729-734, San Jose, California. AAAI
Press.
Caianello, E. R. (1961). Outline of a theory of
thought and thinking machines. Journal of Theoret-
ical Biology, 1:204-235.
Campbell, P. K., Johnes, K. E., Huber, R. J., Horch,
K. W., and Normann, R. A. (1991). A silicon-
based, 3-dimensional neural interface: manufac-
turing processes for an intracortical electrode ar-
ray. IEEE Transactions on Biomedical Engineering,
38(8):758-768.

Canny, J. (1986). A computational approach to edge
detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 8:679-698.

Canny, J. and Reif, J. (1987). New lower bound
techniques for robot motion planning problems. In
IEEE FOCS, pages 39-48.

Canny, J. F. (1988). The Complexity of Robot Motion
Planning. MIT Press, Cambridge, Massachusetts.

Carbonell, J. R. and Collins, A. M. (1973). Natural
semantics in artificial intelligence. In Proceedings
of the Third International Joint Conference on Arti-
ficial Intelligence (IJCAI-73), Stanford, California.
IJCAII.

Carnap, R. (1948). On the application of inductive
logic. Philosophy and PhenomenologicalResearch,
8:133-148.

Carnap, R. (1950). Logical Foundations of Proba-
bility. University of Chicago Press, Chicago, Illi-
nois.

Cassandra, A. R., Kaelbling, L. P., and Littman,
M. L. (1994). Acting optimally in partially ob-
servable stochastic domains. In Proceedings of the
Twelfth National Conference on Artificial Intelli-
gence (AAAI-94), pages 1023-1028, Seattle, Wash-
ington. AAAI Press.

Chakrabarti, P. P., Ghose, S., Acharya, A., and
de Sarkar, S. C. (1989). Heuristic search in restricted
memory. Artificial Intelligence, 41 (2): 197-122.

Chang, C.-L. and Lee, R. C.-T. (1973). Symbolic
Logic andMechanicalTheoremProving. Academic
Press, New York.

Chapman, D. (1987). Planning for conjunctive
goals. Artificial Intelligence, 32(3):333-377.

Chapuis, A. and Droz, E. (1958). Automata: A
Historical and Technological Study. Editions du
Griffon, Neufchatel, Switzerland.

Charniak, E. (1972). Toward a Model of Children's
Story Comprehension. PhD thesis, Massachusetts
Institute of Technology.

Charniak, E. (1993). Statistical Language Learning.
MIT Press.

Charniak, E. and Goldman, R. P. (1992). A Bayesian
model of plan recognition. Artificial Intelligence,
64(l):53-79.



Bibliography 865

Charniak, E. and McDermott, D. (1985). Intro-
duction to Artificial Intelligence. Addison-Wesley,
Reading, Massachusetts.
Charniak, E., Riesbeck, C., McDermott, D., and
Meehan, J. (1987). Artificial Intelligence Program-
ming. Lawrence Erlbaum Associates, Potomac,
Maryland, second edition.
Cheeseman, P. (1985). In defense of probability. In
Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence (IJCAI-85), pages
1002-1009, Los Angeles, California. Morgan Kauf-
mann.
Cheeseman, P. (1988). An inquiry into computer un-
derstanding. Computational Intelligence, 4(1):58-
66.
Cheeseman, P., Self, M., Kelly, J., and Stutz, J.
(1988). Bayesian classification. In Proceedings of
the Seventh National Conference on Artificial In-
telligence (AAAI-88), volume 2, pages 607-611,
St. Paul, Minnesota. Morgan Kaufmann.
Chellas, B. F. (1980). Modal Logic: An Introduc-
tion. Cambridge University Press, Cambridge.
Cherniak, C. (1986). Minimal Rationality.
MIT Press, Cambridge, Massachusetts.
Chierchia, G. and McConnell-Ginet, S. (1990).
Meaning and Grammar. MIT Press.

Chitrao, M. and Grishman, R. (1990). Statistical
parsing of messages. In Proceedings of DARPA
Speech and Natural Language Processing. Morgan
Kaufman: New York.
Chomsky, N. (1956). Three models for the descrip-
tion of language. IRE Transactions on Information
Theory, 2(3): 113-124.
Chomsky, N. (1957). Syntactic Structures. Mouton,
The Hague and Paris.
Chomsky, N. (1965). Aspects of the Theory of Syn-
tax. MIT Press, Cambridge, Massachusetts.
Chomsky, N. (1980). Rules and representations.
The Behavioral and Brain Sciences, 3:1-61.
Chung, K. L. (1979). Elementary Probability The-
ory with Stochastic Processes. Springer-Verlag,
Berlin, third edition.
Church, A. (1936). A note on the Entschei-
dungsproblem. Journal of Symbolic Logic, 1:40-41
and 101-102.

Church, A. (1941). The Calculi of Lambda-
Conversion. Princeton University Press, Princeton,
New Jersey.
Church, K. (1988). A stochastic parts program and
noun phrase parser for unrestricted texts. In Pro-
ceedings of the Second Conference on Applied Nat-
ural Language Processing, Austin, Texas.
Church, K. and Patil, R. (1982). Coping with syn-
tactic ambiguity or how to put the block in the box
on the table. American Journal of Computational
Linguistics, 8(3-4): 139-149.
Churchland, P. M. (1979). Scientific Realism and
the Plasticity of Mind. Cambridge University Press,
Cambridge.
Churchland, P. M. and Churchland, P. S. (1982).
Functionalism, qualia, and intentionality. In Biro,
J. I. and Shahan, R. W., editors, Mind, Brain and
Function: Essays in the Philosophy of Mind, pages
121-145. University of Oklahoma Press, Norman,
Oklahoma.
Churchland, P. S. (1986). Neurophilosophy:
Toward a Unified Science of the Mind-Brain.
MIT Press, Cambridge, Massachusetts.
Clark, K. L. (1978). Negation as failure. In Gallaire,
H. and Minker, J., editors, Logic and Data Bases,
pages 293-322. Plenum, New York.
Clark, K. L. and Gregory, S. (1986). PARLOG: par-
allel programming in logic. ACM Transactions on
Programming Languages, 8:1-49.
Clark, R. (1992). The selection of syntactic knowl-
edge. Language Acquisition, 2(2):83-149.
Clarke, M. R. B., editor (1977). Advances in Com-
puter Chess I. Edinburgh University Press, Edin-
burgh, Scotland.
Clocksin, W. F. and Mellish, C. S. (1987). Pro-
gramming in Prolog. Springer-Verlag, Berlin, third
revised and extended edition.
Clowes, M. B. (1971). On seeing things. Artificial
Intelligence, 2(1):79-116.
Cobham, A. (1964). The intrinsic computational
difficulty of functions. In Bar-Hillel, Y., editor,
Proceedings of the 1964 International Congress for
Logic, Methodology, and Philosophy of Science,
pages 24—30. Elsevier/North-Holland.
Cohen, J. (1966). Human Robots in Myth and Sci-
ence. Alien and Unwin, London.



866 Bibliography

Cohen, J. (1988). A view of the origins and de-
velopment of PROLOG. Communications of the
Association/or Computing Machinery, 31:26-36.
Cohen, P., Morgan, J., and Pollack, M. (1990). In-
tentions in Communication. MIT Press.
Cohen, P. and Perrauit, C. R. (1979). Elements of a
plan-based theory of speech acts. Cognitive Science,
3(3): 177-212.
Cohen, P. R. and Feigenbaum, E. A., editors (1982).
The Handbook of Artificial Intelligence, volume 3:
HeurisTech Press and William Kaufmann, Stanford,
California and Los Altos, California.
Colmerauer, A. (1975). Les grammaires
de metamorphose. Technical report, Groupe
d'lntelligence Artificielle, Universite de Marseille-
Luminy.Translated into English as Colmer-
auer (1978).
Colmerauer, A. (1978). Metamorphosis gram-
mars. In Bole, L., editor, Natural Language
Communication with Computers. Springer-Verlag,
Berlin.English translation of Colmerauer (1975).
Colmerauer, A. (1985). Prolog in 10 figures. Com-
munications of the Association for Computing Ma-
chinery, 28(12): 1296-1310.
Colmerauer, A. (1990). Prolog III as it actually is.
In Warren, D. H. D. and Szeredi, P., editors, Logic
Programming: Proceedings of the Seventh Interna-
tional Conference,page 766, Jerusalem. MIT Press.
Colmerauer, A., Kanoui, H., Pasero, R., and
Roussel, P. (1973). Un systeme de commu-
nication homme-machine en Franjais. Rap-
port, Groupe d'lntelligence Artificielle, Universite
d'Aix-Marseille II.
Colomb, R. M. (1991). Enhancing unification in
PROLOG through clause indexing. Journal of Logic
Programming, 10(1):23^4.
Condon, E. U., Tawney, G. L., and Derr, W. A.
(1940). Machine to play game of Nim. U.S. Patent
2,215,544, United States Patent Office, Washington,
D.C.
Condon, J. H. and Thompson, K. (1982). Belle chess
hardware. In Clarke, M. R. B., editor, Advances in
Computer Chess 3, pages 45-54. Pergamon, New
York.
Cook, S. A. (1971). The complexity of theorem-
proving procedures. In Proceedings of the 3rd An-
nual ACM Symposium on Theory of Computing,
pages 151-158, New York.

Cooper, G. and Herskovits, E. (1992). A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning, 9:309-347.

Cooper, G. F. (1990). The computational complex-
ity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42:393—405.

Copeland, J. (1993). Artificial Intelligence:
A Philosophical Introduction. Blackwell, Oxford.

Cormen, T. H., Leiserson, C. E., and Rivest, R. R.
(1990). Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts.

Covington, M. A. (1994). Natural Language Pro-
cessing for Prolog Programmers. Prentice-Hall, En-
glewood Cliffs, New Jersey.

Cowan, J. D. and Sharp, D. H. (1988a). Neural nets.
Quarterly Reviews of Biophysics, 21 :365- 427.

Cowan, J. D. and Sharp, D. H. (1988b). Neural nets
and artificial intelligence. Daedalus, 117:85-121.

Cox, R. T. (1946). Probability, frequency, and rea-
sonable expectation. American Journal of Physics,

Cragg, B. G. and Temperley, H. N. V. (1954). The
organization of neurones: A cooperative analogy.
EEG and Clinical Neurophysiology, 6:85-92.

Cragg, B. G. and Temperley, H. N. V. (1955). Mem-
ory: The analogy with ferromagnetic hysteresis.
firain,78(II):304-316.

Craik, K. J. W. (1943). The Nature of Explanation.
Cambridge University Press, Cambridge.

Crevier, D. (1993). AI: The Tumultuous History of
the Search for Artificial Intelligence. Basic Books,
New York.

Crockett, L. (1994). The Turing Testandthe Frame
Problem: AI's Mistaken Understanding of Intelli-
gence. Ablex, Norwood, New Jersey.

Cullingford, R. E. (1981). Integrating knowledge
sources for computer 'understanding' tasks. IEEE
Transactions on Systems, Man and Cybernetics,
SMC-11.

Currie, K. W. and Tate, A. (1991). O-Plan: the
Open Planning Architecture. Artificial Intelligence,
52(l):49-86.



Bibliography 867

Curry, H. B. and Feys, R. (1958). Combinatory
Logic, volume 1. Elsevier/North-Holland, Amster-
dam, London, New York.

Cybenko, G. (1988). Continuous valued neural net-
works with two hidden layers are sufficient. Techni-
cal report, Department of Computer Science, Tufts
University, Medford, Massachusetts.

Cybenko, G. (1989). Approximation by superpo-
sitions of a sigmoidal function. Mathematics of
Controls, Signals, and Systems, 2:303-314.

Dagum, P. and Luby, M. (1993). Approximating
probabilistic inference in Bayesian belief networks
is NP-hard. Artificial Intelligence, 60(1): 141-153.
Dahl, O.-J., Myrhaug, B., and Nygaard, K. (1970).
(Simula 67) common base language. Technical Re-
port N. S-22, Norsk Regnesentral (Norwegian Com-
puting Center), Oslo.

Dantzig, G. B. (1960). On the significance of solv-
ing linear programming problems with some integer
variables. Econometrica, 28:30-44.

Darwiche, A. Y. and Ginsberg, M. L. (1992). A
symbolic generalization of probability theory. In
Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), pages 622-627,
San Jose, California. AAAI Press.

Davidson, D. (1980). Essays on Actions and Events.
Oxford University Press, Oxford.

Davies, T. (1985). Analogy. Informal Note IN-
CSLI-85-4, Center for the Study of Language and
Information (CSLI), Stanford, California.
Davies, T. R. and Russell, S. J. (1987). A logi-
cal approach to reasoning by analogy. In Proceed-
ings of the Tenth InternationalJoint Conference on
Artificial Intelligence (IJCAI-87), volume 1, pages
264-270, Milan, Italy. Morgan Kaufmann.
Davis, E. (1986). Representing and Acquiring Ge-
ographic Knowledge. Pitman and Morgan Kauf-
mann, London and San Mateo, California.

Davis, E. (1990). Representations of Commonsense
Knowledge. Morgan Kaufmann, San Mateo, Cali-
fornia.

Davis, M. (1957). A computer program for Pres-
burger's algorithm. In Robinson, A., editor, Prov-
ing Theorems, (as Done by Man, Logician, or Ma-
chine), pages 215-233, Cornell University, Ithaca,

New York. Communications Research Division, In-
stitute for Defense Analysis.Summaries of Talks
Presented at the 1957 Summer Institute for Sym-
bolic Logic. Second edition; publication date is
1960.
Davis, M. and Putnam, H. (1960). A computing
procedure for quantification theory. Journal of the
Association for Computing Machinery, 7(3):201-
215.
Davis, R. (1980). Meta-rules: reasoning about con-
trol. Artificial Intelligence, 15(3):179-222.
Davis, R. and Lenat, D. B. (1982). Knowledge-
Based Systems in Artificial Intelligence. McGraw-
Hill, New York.
Dayan, P. (1992). The convergence of TDA for
general A. Machine Learning, 8(3^1):341-362.
de Dombal, F. T, Leaper, D. J., Horrocks, J. C.,
and Staniland, J. R. (1974). Human and computer-
aided diagnosis of abdominal pain: Further report
with emphasis on performance of clinicians. British
Medical Journal, 1:376-380.
de Dombal, F. T, Staniland, J. R., and Clamp, S. E.
(1981). Geographical variation in disease presenta-
tion. Medical Decision Making, 1:59-69.
de Finetti, B. (1937a). Foresight: Its logical laws,
its subjective sources. In Kyburg, H. E. and Smok-
ier, H. E., editors, Studies in Subjective Probability,
pages 55-118. Krieger, New York.
de Finetti, B. (1937b). Le prevision: ses lois
logiques, ses sources subjectives. Ann. Inst.
Poincare, 7:l-68.Translated into English as De-
Finetti(1937a).
de Groot, A. D. (1946). Het Denken van den
Schaker. Elsevier/North-Holland, Amsterdam,
London, New York.Translated as DeGroot (1978).
de Groot, A. D. (1978). Thought and Choice in
Chess. Mouton, The Hague and Paris, second edi-
tion.
de Kleer, J. (1975). Qualitative and quantitative
knowledge in classical mechanics. Technical Report
AI-TR-352, MIT Artificial Intelligence Laboratory.
de Kleer, J. (1986). An assumption-based TMS.
Artificial Intelligence, 28(2): 127-162.
de Kleer, J. (1986a). Extending the ATMS. Artificial
Intelligence, 28(2): 163-196.
de Kleer, J. (1986b). Problem solving with the
ATMS. Artificial Intelligence, 28(2): 197-224.



Bibliography

de Kleer, J. and Brown, J. S. (1985). A qualitative
physics based on confluences. In Hobbs, J. R. and
Moore, R. C., editors, Formal Theories of the Com-
monsense World, chapter 4, pages 109-183. Ablex,
Norwood, New Jersey.
de Kleer, J., Doyle, J., Steele, G. L.,'and Sussman,
G. J. (1977). AMORD: explicit control of reason-
ing. SIGPLAN Notices, 12(8): 116-125.
De Morgan, A. (1864). On the syllogism IV and
on the logic of relations. Cambridge Philosophical
Transactions, x:331-358.
De Raedt, L. (1992). Interactive Theory Revision:
An Inductive Logic Programming Approach. Aca-
demic Press, New York.
Dean, T. and Boddy, M. (1988). An analysis of
time-dependent planning. In Proceedings of the Sev-
enth National Conference on Artificial Intelligence
(AAAI-88), pages 49-54, St. Paul, Minnesota. Mor-
gan Kaufmann.
Dean, T., Firby, J., and Miller, D. (1990). Hier-
archical planning involving deadlines, travel time,
and resources. Computational Intelligence, 6(1).
Dean, T., Kaelbling, L. P., Kirman, J., and Nichol-
son, A. (1993). Planning with deadlines in stochas-
tic domains. In Proceedings of the Eleventh Na-
tional Conference on Artificial Intelligence (AAAI-
93), pages 574-579, Washington, D.C. AAAI Press.
Dean, T. and Kanazawa, K. (1989). A model for
reasoning about persistence and causation. Compu-
tational Intelligence, 5(3): 142-150.
Dean, T. L. and Wellman, M. P. (1991). Planning
and Control. Morgan Kaufmann, San Mateo, Cali-
fornia.
Debreu, G. (1960). Topological methods in cardi-
nal utility theory. In Arrow, K. J., Karlin, S., and
Suppes, P., editors, Mathematical Methods in the
Social Sciences, 1959. Stanford University Press,
Stanford, California.
Dechter, R. and Pearl, J. (1985). Generalized best-
first search strategies and the optimality of A*. Jour-
nal of the Association for Computing Machinery,
32(3):505-536.
DeGroot, M. H. (1970). Optimal Statistical Deci-
sions. McGraw-Hill, New York.
DeGroot, M. H. (1989). Probability and Statistics.
Addison-Wesley, Reading, Massachusetts, second
edition.Reprinted with corrections.

DeJong, G. (1981). Generalizations based on expla-
nations. In Proceedings of the Seventh International
Joint Conference on Artificial Intelligence (IJCAI-
81), pages 67-69, Vancouver, British Columbia.
Morgan Kaufmann.

DeJong, G. and Mooney, R. (1986). Explanation-
based learning: An alternative view. Machine
Learning, 1:145-176.

Dempster, A., Laird, N., and Rubin, D. (1977).
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety, 39 (Series B): 1-38.

Dempster, A. P. (1968). A generalization of
Bayesian inference. Journal of the Royal Statistical
Society, 30 (Series B):205-247.

Dennett, D. C. (1969). Content and Consciousness.
Routledge and Kegan Paul, London.

Dennett, D. C. (1971). Intentional systems. The
Journal of Philosophy, 68(4):87-106.

Dennett, D. C. (1978a). Brainstorms: Philosoph-
ical Essays on Mind and Psychology. MIT Press,
Cambridge, Massachusetts, first edition.

Dennett, D. C. (1978b). Why you can't make a
computer that feels pain. Synthese, 38(3).

Dennett, D. C. (1984). Cognitive wheels: the frame
problem of AI. In Hookway, C., editor, Minds,
Machines, and Evolution: Philosophical Studies,
pages 129-151. Cambridge University Press, Cam-
bridge.

Dennett, D. C. (1986). The moral first aid man-
ual. Tanner lectures on human values, University of
Michigan.

Deo, N. and Pang, C. (1982). Shortest path al-
gorithms: Taxonomy and annotation. Technical
Report CS-80-057, Computer Science Department,
Washington State University.

Descotte, Y. and Latombe, J. C. (1985). Mak-
ing compromises among antagonist constraints in
a planner. Artificial Intelligence, 27:183-217.

Devanbu, P., Brachman, R. J., Selfridge, P. G.,
and Ballard, B. W. (1991). LaSSIE: a knowledge-
based software information system. Communica-
tions of the Association for Computing Machinery,
34(5):34-49.



Bibliography 869

Dickmanns, E. D. and Zapp, A. (1987). Au-
tonomous high speed road vehicle guidance by com-
puter vision. In Isermann, R., editor, Automatic
Control—World Congress, 1987: Selected Papers
from the 10th Triennial World Congress of the In-
ternational Federation of Automatic Control, pages
221-226, Munich, Germany. Pergamon.

Dietterich, T. G. (1990). Machine learning. Annual
Review of Computer Science, 4.

Dijkstra, E. W. (1959). A note on two problems in
connexion with graphs. Numerische Mathematik,
1:269-271.

Dincbas, M. and LePape, J.-P. (1984). Metacontrol
of logic programs in METALOG. In Proceedings
of the International Conference on Fifth-Generation
Computer Systems, Tokyo. Elsevier/North-Holland.

Dingwell, W. O. (1988). The evolution of human
communicative behavior. In Newmeyer, F. J., ed-
itor, Linguistics: The Cambridge Survey, Vol. Ill,
pages 274-313. Cambridge University Press.

Doran, J. and Michie, D. (1966). Experiments with
the graph traverser program. Proceedings of the
Royal Society of London, 294, Series A:235-259.

Dowty, D., Wall, R., andPeters, S. (1991). Introduc-
tion to Montague Semantics. D. Reidel, Dordrecht,
The Netherlands.

Doyle, J. (1979). A truth maintenance system. Artifi-
cial Intelligence, 12(3):231-272.Reprintedin Web-
ber and Nilsson (1981).

Doyle, J. (1980). A model for deliberation, ac-
tion, and introspection. Technical Report AI-
TR-581, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge,
Massachusetts.Republished PhD dissertation.

Doyle, J. (1983). What is rational psychology? To-
ward a modern mental philosophy. AI Magazine,
4(3):50-53.

Doyle, J. and Patil, R. S. (1991). Two theses of
knowledge representation: language restrictions,
taxonomic classification, and the utility of represen-
tation services. Artificial Intelligence, 48(3):261-
297.

Drabble, B. (1990). Mission scheduling for space-
craft: Diaries of T-SCHED. In Expert Planning Sys-
tems, pages 76-81. Institute of Electrical Engineers.

Draper, D., Hanks, S., and Weld, D. (1994). Prob-
abilistic planning with information gathering and
contingent execution. In Proceedings 2nd AIPS,
San Mateo, California. Morgan Kaufmann.
Dreyfus, H. L. (1972). What Computers Can't Do:
A Critique of Artificial Reason. Harper and Row,
New York, first edition.
Dreyfus, H. L. (1979). What Computers Can't Do:
The Limits of Artificial Intelligence. Harper and
Row, New York, revised edition.
Dreyfus, H. L. (1992). What Computers Still Can't
Do: A Critique of Artificial Reason. MIT Press,
Cambridge, Massachusetts.
Dreyfus, H. L. and Dreyfus, S. E. (1986). Mind
over Machine: The Power of Human Intuition and
Expertise in the Era of the Computer. Blackwell,
Oxford.With Tom Athanasiou.
Dreyfus, S. E. (1969). An appraisal of some
shortest-paths algorithms. Operations Research,
17:395-412.
Dubois, D. and Prade, H. (1994). A survey of belief
revision and updating rules in various uncertainty
models. International Journal of Intelligent Sys-
tems, 9(l):6l-\00.
Duda, R., Gaschnig, I., and Hart, P. (1979). Model
design in the Prospector consultant system for min-
eral exploration. In Michie, D., editor, Expert Sys-
tems in the Microelectronic Age, pages 153-167.
Edinburgh University Press, Edinburgh, Scotland.
Dyer, M. (1983). In-Depth Understanding.
MIT Press, Cambridge, Massachusetts.
Dzeroski, S., Muggleton, S., and Russell, S. I.
(1992). PAC-learnability of determinate logic
programs. In Proceedings of the Fifth Annual
ACM Workshop on Computational Learning Theory
(COLT-92), Pittsburgh, Pennsylvania. ACM Press.
Barley, I. (1970). An efficient context-free parsing
algorithm. Communications of the Association for
Computing Machinery, 13(2):94-102.
Ebeling, C. (1987). All the Right Moves. MIT Press,
Cambridge, Massachusetts.
Edmonds, J. (1962). Covers and packings in a fam-
ily of sets. Bulletin of the American Mathematical
Society, 68:494-499.
Edmonds, J. (1965). Paths, trees, and flowers. Cana-
dian Journal of Mathematics, 17:449-467.



870 Bibliography

Edwards, P., editor (1967). The Encyclopedia of
Philosophy. Macmillan, London.

Elkan, C. (1992). Reasoning about action in first-
order logic. In Proceedings of the Conference of
the Canadian Society for Computational Studies of
Intelligence, Vancouver, British ColuYnbia.

Elkan, C. (1993). The paradoxical success of fuzzy
logic. In Proceedings of the Eleventh National Con-
ference on Artificial Intelligence (AAAI-93), pages
698-703, Washington, D.C. AAAI Press.

Empson, W. (1953). Seven Types of Ambiguity. New
Directions.

Enderton, H. B. (1972). A Mathematical Introduc-
tion to Logic. Academic Press, New York.

Engelberger, J. F. (1980). Robotics in Practice.
Amacom, New York.

Engelberger, J. F. (1989). Robotics in Service.
MIT Press, Cambridge, Massachusetts.

Erman, L. D., Hayes-Roth, P., Lesser, V. R., and
Reddy, D. R. (1980). The HEARSAY-11 speech-
understanding system: Integrating knowledge to re-
solve uncertainty. Computing Surveys, 12(2):213-
253.Reprinted in Webber and Nilsson (1981).
Ernst, H. A. (1961). MH-l, a Computer-Operated
Mechanical Hand. PhD thesis, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts.
Erol, K., Hendler, J., and Nau, D. S. (1994). HTN
planning: complexity and expressivity. In Proceed-
ings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), Seattle, Washington. AAAI
Press.
Etzioni, O. (1989). Tractable decision-analytic con-
trol. In Proc. of 1st International Conference on
Knowledge Representation and Reasoning, pages
114-125, Toronto, Ontario.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh,
N., and Williamson, M. (1992). An approach to
planning with incomplete information. In Proceed-
ings of the 3rd International Conference on Princi-
ples of Knowledge Representation and Reasoning.
Evans, T. G. (1968). A program for the solution of
a class of geometric-analogy intelligence-test ques-
tions. In Minsky, M. L., editor, Semantic Informa-
tion Processing, pages 271-353. MIT Press, Cam-
bridge, Massachusetts.

Fahlman, S.E. (1974). A planning system for robot
construction tasks. Artificial Intelligence, 5(1):1-
49.
Fahlman, S. E. (1979). NETL: A System for
Representing and Using Real-World Knowledge.
MIT Press, Cambridge, Massachusetts.
Farhat, N. H., Psaltis, D., Prata, A., and Paek, E.
(1985). Optical implementation of the Hopfield
model. Applied Optics, 24:1469-1475.Reprinted
in Anderson and Rosenfeld (1988).
Faugeras, O. (1993). Three-Dimensional Computer
Vision: A Geometric Viewpoint. MIT Press, Cam-
bridge, Massachusetts.
Feigenbaum, E. and Shrobe, H. (1993). The
Japanese national fifth generation project: intro-
duction, survey, and evaluation. Future Generation
Computer Systems, 9(2):105-117.
Feigenbaum, E. A. (1961). The simulation of ver-
bal learning behavior. Proceedings of the Western
Joint Computer Conference, 19:121-131 .Reprinted
in (Feigenbaum and Feldman, 1963, pp. 297-309).
Feigenbaum, E. A., Buchanan, B. G., and Leder-
berg, J. (1971). On generality and problem solving:
A case study using the DENDRAL program. In
Meltzer, B. and Michie, D., editors, Machine In-
telligence 6, pages 165-190. Edinburgh University
Press, Edinburgh, Scotland.
Feigenbaum, E. A. and Feldman, J., editors (1963).
Computers and Thought. McGraw-Hill, New York.
Feldman, J. A. and Sproull, R. F. (1977). Deci-
sion theory and artificial intelligence II: The hungry
monkey. Technical report, Computer Science De-
partment, University of Rochester.
Feldman, J. A. and Yakimovsky, Y. (1974). Decision
theory and artificial intelligence I: Semantics-based
region analyzer. Artificial Intelligence, 5(4):349-
371.
Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972).
Learning and executing generalized robot plans. Ar-
tificial Intelligence, 3(4):251-288.
Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: a
new approach to the application of theorem prov-
ing to problem solving. Artificial Intelligence, 2(3-
4): 189-208.
Fikes, R. E. and Nilsson, N. J. (1993). STRIPS, a
retrospective. Artificial Intelligence, 59(l-2):227-
232.



Bibliography 871

Findlay, J. N. (1941). Time: A treatment of some
puzzles. Australasian Journal of Psychology and
Philosophy, 19(3):216-235.
Fischer, M. J. and Ladner, R. E. (1977). Preposi-
tional modal logic of programs. In Proceedings of
the 9th ACM Symposium on the Theory of Comput-
ing, pages 286-294.
Fisher, R. A. (1922). On the mathematical founda-
tions of theoretical statistics. Philosophical Trans-
actions of the Royal Society of London, Series A
222:309-368.
Floyd, R. W. (1962a). Algorithm 96: Ancestor.
Communications of the Association for Computing
Machinery, 5:344-345.

Floyd, R. W. (1962b). Algorithm 97: Shortest path.
Communications of the Association for Computing
Machinery, 5:345.
Fodor, J. A. (1980). Searle on what only brains can
do. Behavioral and Brain Sciences, 3:43 l-432.Peer
commentary on Searle (1980).
Fodor, J. A. (1983). The Modularity of Mind: An Es-
say on Faculty Psychology. MIT Press, Cambridge,
Massachusetts.
Forbus, K. D. (1985). The role of qualitative dy-
namics in naive physics. In Hobbs, J. R. and Moore,
R. C., editors, Formal Theories of the Commonsense
World, chapter 5, pages 185-226. Ablex, Norwood,
New Jersey.
Forbus, K. D. and de Kleer, J. (1993). Building
Problem Solvers. MIT Press, Cambridge, Mas-
sachusetts.
Forsyth, D. and Zisserman, A. (1991). Reflections
on shading. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 13(7):671-679.
Fox, M. S. (1990). Constraint-guided scheduling:
a short history of research at CMU. Computers in
Industry, 14(l-3):79-88.
Fox, M. S., Alien, B., and Strohm, G. (1981). Job
shop scheduling: an investigation in constraint-
based reasoning. In Proceedings of the Seventh
International Joint Conference on Artificial Intel-
ligence (IJCAI-81), Vancouver, British Columbia.
Morgan Kaufmann.
Fox, M. S. and Smith, S. F. (1984). Isis: a
knowledge-based system for factory scheduling.
Expert Systems, l(l):25-49.

Frean, M. (1990). The upstart algorithm: A method
for constructing and training feedforward neural
networks. Neural Computation, 2:198-209.
Frege, G. (1879). Begriffsschrift, eine der arith-
metischen nachgebildete Formelsprache des reinen
Denkens. Halle, Berlin.Reprinted in English trans-
lation in van Heijenoort (1967).
Friedberg, R., Dunham, B., and North, T. (1959).
A learning machine: Part II. IBM Journal of Re-
search and Development, 3(3):282-287.
Friedberg, R.M. (1958). A learning machine: Parti.
IBM Journal, 2:2-13.
Fu, K.-S. and Booth, T. L. (1986a). Grammat-
ical inference: Introduction and survey—part I.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-8(3):343-359.Reprinted
from IEEE Trans. on Systems, Man, and Cybernet-
ics, Vol. SMC-5, No. 1, January 1975.
Fu, K.-S. and Booth, T. L. (1986b). Grammat-
ical inference: Introduction and survey—part II.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-8(3):360-375.Reprinted
from IEEE Trans. on Systems, Man, and Cybernet-
ics, Vol. SMC-5, No. 4, January 1975.
Fuchs, J. J., Gasquet, A., Olalainty, B., and Cur-
rie, K. W. (1990). PlanERS-1: An expert planning
system for generating spacecraft mission plans. In
First International Conference on Expert Planning
Systems, pages 70-75, Brighton, United Kingdom.
Institute of Electrical Engineers.
Fung, R. and Chang, K. C. (1989). Weighting
and integrating evidence for stochastic simulation
in Bayesian networks. In Proceedings of the Fifth
Conference on Uncertainty in Artificial Intelligence
(UAI-89), Windsor, Ontario. Morgan Kaufmann.
Furukawa, K. (1992). Summary of basic research
activities of the FGCS project. In Fifth Generation
Computer Systems 1992, volume 1, pages 20-32,
Tokyo. IOS Press.
Furuta, K., Ochiai, T, and Ono, N. (1984). Attitude
control of a triple inverted pendulum. International
Journal of Control, 39(6): 1351-1365.
Gabbay, D. M. (1991). Abduction in labelled de-
ductive systems: A conceptual abstract. In Kruse,
R. andSiegel, P., editors, Symbolic and Quantitative
Approaches to Uncertainty: Proceedings of Euro-
pean Conference ECSQAU, pages 3-11. Springer-
Verlag.



872 Bibliography

Gallaire, H. and Minker, J., editors (1978). Logic
and Databases. Plenum, New York.

Gallier, J. H. (1986). Logic for Computer Science:
Foundations of Automatic Theorem Proving. Harper
and Row, New York.
Gamba, A., Gamberini, L., Palmieri, G., and Sanna,
R. (1961). Further experiments with PAPA. Nuovo
Cimento Supplement, 20(2):221-231.
Carding, J. (1992). Shape from texture for smooth
curved surfaces in perspective projection. Journal
of Mathematical Imaging and Vision, 2(4):327-350.

Gardner, M. (1968). Logic Machines, Diagrams
and Boolean Algebra. Dover, New York.

Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability. W. H. Freeman, New York.

Garside, R., Leech, F, and Sampson, G., editors
(1987). The Computational Analysis of English.
Longman.
Gaschnig,J. (1979). Performance measurement and
analysis of certain search algorithms. Technical Re-
port CMU-CS-79-124, Computer Science Depart-
ment, Carnegie-Mellon University.
Gauss, K. F. (1809). Theoria Motus Corporum
Coelestium in Sectionibus Conicis Solem Ambien-
tium. Sumtibus F. Perthes et I. H. Besser, Hamburg.
Gazdar, G. (1989). COMIT =>* PATR. In Wilks, Y,
editor, Theoretical Issues in Natural Language Pro-
cessing, Potomac, Maryland. Lawrence Erlbaum
Associates.
Gazdar, G., Klein, E., Pullum, G., and Sag, I.
(1985). Generalized Phrase Structure Grammar.
Blackwell, Oxford.
Geffner, H. (1992). Default Reasoning: Causal
and Conditional Theories. MIT Press, Cambridge,
Massachusetts.
Gelb, A. (1974). Applied Optimal Estimation.
MIT Press, Cambridge, Massachusetts.
Gelernter, H. (1959). Realization of a geometry-
theorem proving machine. In Proceedings of an
International Conference on Information Process-
ing, pages 273-282, Paris. UNESCO House.
Gelernter, H., Hansen, J. R., and Gerberich, C. L.
(1960). A FORTRAN-compiled list processing lan-
guage. Journal of the Association for Computing
Machinery, 7(2):87-101.

Gelfond, M. and Lifschitz, V. (1988). Compiling cir-
cumscriptive theories into logic programs. In Rein-
frank, M., de Kleer, J., Ginsberg, M. L., and Sande-
wall, E., editors, Non-Monotonic Reasoning: 2nd
International Workshop Proceedings, pages 74-99,
Grassau, Germany. Springer-Verlag.
Gelfond, M. and Lifschitz, V. (1991). Classi-
cal negation in logic programs and disjunctive
databases. New Generation Computing, 9(3-
4):365-385.
Genesereth, M. R. (1984). The use of design de-
scriptions in automated diagnosis. Artificial Intelli-
gence, 24(1-3):411^436.
Genesereth, M. R. and Ketchpel, S. P. (1994). Soft-
ware agents. Communications of the Association
for Computing Machinery, 37(7).
Genesereth, M. R. and Nilsson, N. J. (1987). Log-
ical Foundations of Artificial Intelligence. Morgan
Kaufmann, San Mateo, California.
Genesereth, M. R. and Smith, D. (1981). Meta-level
architecture. Memo HPP-81 -6, Computer Science
Department, Stanford University, Stanford, Califor-
nia.
Gentner, D. (1983). Structure mapping: A theo-
retical framework for analogy. Cognitive Science,
7:155-170.
Gentzen, G. (1934). Untersuchungen uber das logis-
che Schliessen. MathematischeZeitschrift, 39:176-
210,405-431.
Georgeff, M. P. and Lansky, A. L., editors (1986).
Reasoning about Actions and Plans: Proceedings
of the 1986 Works hop,Timberline, Oregon. Morgan
Kaufmann.
Gibson, J. J. (1950). The Perception of the Visual
World. Houghton Mifflin, Boston, Massachusetts.
Gibson, J. J. (1979). The Ecological Approach to
Visual Perception. Houghton Mifflin, Boston, Mas-
sachusetts.
Gibson, J. J., Olum, P., and Rosenblatt, F. (1955).
Parallax and perspective during aircraft landings.
American Journal of Psychology, 68:372-385.
Gilmore, P. C. (1960). A proof method for quantifi-
cation theory: Its justification and realization. IBM
Journal of Research and Development, 4:28-35.
Ginsberg, M. (1993). Essentials of Artificial Intelli-
gence. Morgan Kaufmann, San Mateo, California.



Bibliography 873

Ginsberg, M. L., editor (1987). Readings in Non-
monotonic Reasoning. Morgan Kaufmann, San Ma-
teo, California.
Ginsberg, M. L. (1989). Universal planning: An (al-
most) universally bad idea. AI Magazine, 10(4):40-
44.
Giralt, G., Alami, R., Chatila, R., and Freedman,
P. (1991). Remote operated autonomous robots. In
Intelligent Robotics: Proceedings of the Interna-
tional Symposium, volume 1571, pages 416-427,
Bangalore, India. International Society for Optical
Engineering (SPIE).
Glanc, A. (1978). On the etymology of the word
"robot". SIGARTNewsletter, 67:12.
Glover, F. (1989). Tabu search: 1. ORSA Journal
on Computing, 1(3): 190-206.
Godel, K. (1930). Uber die Vollstdndigkeit des
Logikkalkiils. PhD thesis, University of Vienna.
Godel, K. (1931). Uber formal unentscheidbare
Satze der Principia mathematica und verwandter
Systeme I. Monatshefte fur Mathematik und Physik,
38:173-198.
Gold, E. M. (1967). Language identification in the
limit. Information and Control, 10:447-474.
Goldberg, D. E. (1989). Genetic Algorithms
in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, Massachusetts.
Goldman, R. P. andCharniak, E. (1992). Probabilis-
tic text understanding. Statistics and Computing,
2(2): 105-114.
Goldszmidt, M., Morris, P., and Pearl, I. (1990). A
maximum entropy approach to nonmonotonic rea-
soning. In Proceedings of the Eighth National Con-
ference on Artificial Intelligence (AAAI-90), vol-
ume 2, pages 646-652, Boston, Massachusetts.
MIT Press.
Good, I. J. (1950). Contribution to the discussion
of Eliot Slater's "Statistics for the chess computer
and the factor of mobility". In Symposium on In-
formation Theory, page 199, London. Ministry of
Supply.
Good, I. J. (1961). A causal calculus. British Journal
of the Philosophy of Science, 11:305-318.Reprinted
in Good (1983).
Good, I. J. (1983). Good Thinking: The Founda-
tions of Probability and Its Applications. University
of Minnesota Press, Minneapolis, Minnesota.

Goodman, N. (1954). Fact, Fiction and Forecast.
University of London Press, London, first edition.

Goodman, N. (1977). The Structure of Appearance.
D. Reidel, Dordrecht, The Netherlands, third edi-
tion.

Gorry, G. A. (1968). Strategies for computer-aided
diagnosis. Mathematical Biosciences, 2(3^):293-
318.

Gorry, G. A., Kassirer, J. P., Essig, A., and Schwartz,
W. B. (1973). Decision analysis as the basis for
computer-aided management of acute renal failure.
American Journal of Medicine, 55:473^484.

Gould, S. J. (1994). This view of life. Natural
History, 8:10-17.

Graham, S. L., Harrison, M. A., and Ruzzo, W. L.
(1980). An improved context-free recognizer. ACM
Transactions on Programming Languages and Sys-
tems, 2(3):4 15-462.

Grayson, C. I. (1960). Decisions under uncertainty:
Drilling decisions by oil and gas operators. Techni-
cal report, Division of Research, Harvard Business
School, Boston.

Green, C. (1969a). Application of theorem prov-
ing to problem solving. In Proceedings of the First
International Joint Conference on Artificial Intel-
ligence (IJCAI-69), pages 219-239, Washington,
D.C. IJCAII.

Green, C. (1969b). Theorem-proving by resolu-
tion as a basis for question-answering systems. In
Meltzer, B., Michie, D., and Swann, M., editors,
Machine Intelligence 4, pages 183-205. Edinburgh
University Press, Edinburgh, Scotland.

Greenblatt, R. D., Eastlake, D. E., and Crocker,S. D.
(1967). The Greenblatt chess program. In Proceed-
ings of the Fall Joint Computer Conference, pages
801-810.

Greiner, R. (1989). Towards a formal analysis of
EBL. In Proceedings of the Sixth International
Machine Learning Workshop, Ithaca, NY. Morgan
Kaufmann.

Grice, H. P. (1957). Meaning. Philosophical Re-
view, 66:377-388.
Grimes, J. (1975). The Thread of Discourse. Moul-
ton.



874 Bibliography

Grosz, B., Appelt, D., Martin, P., and Pereira, F.
(1987). Team: An experiment in the design of
transportable natural-language interfaces. Artificial
Intelligence, 32(2): 173-244.
Grosz, B. J. and Sidner, C. L. (1986). Attention,
intentions, and the structure of discourse. Compu-
tational Linguistics, 12(3): 175-204.
Grosz, B. J., Sparck Jones, K., and Webber, B. L.,
editors (1986). Readings in Natural Language Pro-
cessing. Morgan Kaufmann, San Mateo, California.
Gu,J. (1989). Parallel Algorithms and Architectures
for Very Fast Al Search. PhD thesis, University of
Utah.
Guard, J., Oglesby, R, Bennett, J., and Settle, L.
(1969). Semi-automated mathematics. Journal of
the Association for Computing Machinery, 16:49-
62.
Haas, A. (1986). A syntactic theory of belief and
action. Artificial Intelligence, 28(3):245-292.
Hacking, I. (1975). The Emergence of Probability.
Cambridge University Press, Cambridge.
Hald, A. (1990). A History of Probability andStatis-
tics and Their Applications Before 1750. Wiley,
New York.
Halpern, J. Y. (1987). Using reasoning about knowl-
edge to analyze distributed systems. In Traub, J. R,
Grosz,B. J., Lampson,B. W., andNilsson, N. J., ed-
itors, Annual review of computer science, volume 2,
pages 37-68. Annual Reviews, Palo Alto.
Hamming, R. W. (1991). The Art of Probability for
Scientists and Engineers. Addison-Wesley, Read-
ing, Massachusetts.
Hammond, K. (1989). Case-BasedPlanning: View-
ing Planning as a Memory Task. Academic Press,
New York.
Hanks, S., Russell, S., and Wellman, M., editors
(1994). Proceedings of the AAAI Spring Symposium
on Decision-Theoretic Planning, Stanford, Califor-
nia.
Hanski, I. and Cambefort, Y, editors (1991). Dung
Beetle Ecology. Princeton University Press, Prince-
ton, New Jersey.
Hansson, O. and Mayer, A. (1989). Heuristic search
as evidential reasoning. In Proceedings of the Fifth
Workshop on Uncertainty in Artificial Intelligence,
Windsor, Ontario. Morgan Kaufmann.

Haralick, R. and Elliot, G. (1980). Increasing tree
search efficiency for constraint-satisfaction prob-
lems. Artificial Intelligence, 14(3):263-313.

Harel, D. (1984). Dynamic logic. In Gabbay, D.
and Guenthner, R, editors, Handbook of Philosoph-
ical Logic, volume 2, pages 497-604. D. Reidel,
Dordrecht, The Netherlands.

Harkness, K. and Battell, J. S. (1947). This made
chess history. Chess Review.

Harman, G. H. (1983). Change in View: Princi-
ples of Reasoning. MIT Press, Cambridge, Mas-
sachusetts.

Harp, S. A., Samad, T., and Guha, A. (1990). De-
signing application-specific neural networks using
the genetic algorithm. In Touretzky, D. S., editor,
Advances in Neural Information Processing Sys-
tems II, pages 447^-54. Morgan Kaufmann, San
Mateo, California.

Harris, L. R. (1984). Experience with INTELLECT:
Artificial intelligence technology transfer. Al Mag-
azine, 5(2, Summer):43-55.

Hart, P. E., Nilsson, N. J., andRaphael, B. (1968). A
formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems
Science and Cybernetics, SSC-4(2):100-107.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1972).
Correction to "A formal basis for the heuristic deter-
mination of minimum cost paths". SIGART'Newslet-
ter, 37:28-29.

Hart, T. P. and Edwards, D. J. (1961). The tree
prune (TP) algorithm. Artificial Intelligence Project
Memo 30, Massachusetts Institute of Technology,
Cambridge, Massachusetts.

Haugeland, J., editor (1981). Mind Design.
MIT Press, Cambridge, Massachusetts.

Haugeland, J., editor (1985). Artificial Intelli-
gence: The Very Idea. MIT Press, Cambridge,
Massachusetts.
Haussler, D. (1989). Learning conjunctive concepts
in structural domains. Machine Learning, 4(1):7-
40.

Hawkins, J. (1961). Self-organizing systems: A re-
view and commentary. Proceedings of the IRE,



Bibliography 875

Hayes, J. E. and Levy, D. N. L. (1976). The World
Computer Chess Championship: Stockholm 1974.
Edinburgh University Press, Edinburgh, Scotland.
Hayes, P. J. (1973). Computation and deduc-
tion. In Proceedings of the Second Symposium
on Mathematical Foundations of Computer Science,
Czechoslovakia. Czechoslovakian Academy of Sci-
ence.

Hayes, P. J. (1978). The naive physics manifesto. In
Michie, D., editor. Expert Systems in the Microelec-
tronic Age. Edinburgh University Press, Edinburgh,
Scotland.
Hayes, P. J. (1979). The logic of frames. In Metz-
ing, D., editor, Frame Conceptions and Text Under-
standing, pages 46-61. de Gruyter, Berlin.
Hayes, P. J. (1985a). Naive physics I: ontology for
liquids. In Hobbs, J. R. and Moore, R. C., editors,
Formal Theories of the Commonsense World, chap-
ter 3, pages 71-107. Ablex, Norwood, New Jersey.

Hayes, P. J. (1985b). The second naive physics man-
ifesto. In Hobbs, J. R. and Moore, R. C., editors,
Formal Theories of the Commonsense World, chap-
ter 1, pages 1-36. Ablex, Norwood, New Jersey.
Kazan, M. (1973). The Classic Italian Cookbook.
Ballantine.
Hebb, D. O. (1949). The Organization of Behavior.
Wiley, New York.

Heckerman, D. (1986). Probabilistic interpretation
for MYCIN's certainty factors. In Kanal, L. N. and
Lemmer, J. F., editors, Uncertainty in Artificial In-
telligence, pages 167-196. Elsevier/North-Holland,
Amsterdam, London, New York.
Heckerman, D. (1991). Probabilistic Similarity Net-
works. MIT Press, Cambridge, Massachusetts.
Heckerman, D., Geiger, D., and Chickering, M.
(1994). Learning Bayesian networks: The combi-
nation of knowledge and statistical data. Technical
Report MSR-TR-94-09, Microsoft Research, Red-
mond, Washington.
Held, M. and Karp, R. M. (1970). The traveling
salesman problem and minimum spanning trees.
Operations Research, 18:1138-1162.

Helman, D. H., editor (1988). Analogical Reason-
ing: Perspectives of Artificial Intelligence, Cogni-
tive Science, and Philosophy. Kluwer, Dordrecht,
The Netherlands.

Hendrix, G. G. (1975). Expanding the utility of se-
mantic networks through partitioning. In Proceed-
ings of the Fourth International Joint Conferenceon
Artificial Intelligence (UCAI-75), pages 115-121,
Tbilisi, Georgia. IJCAII.

Henrion, M. (1988). Propagation of uncertainty in
Bayesian networks by probabilistic logic sampling.
In Lemmer, J. F. and Kanal, L. N., editors, Uncer-
tainty in Artificial Intelligence 2, pages 149-163.
Elsevier/North-Holland, Amsterdam, London, New
York.
Heppenheimer, T. A. (1985). Man makes man. In
Minsky, M., editor, Robotics, pages 28-69. Double-
day, Garden City, New York.
Herbrand, J. (1930). Recherches sur la Theorie de
la Demonstration. PhD thesis, University of Paris.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). In-
troduction to the Theory of Neural Computation.
Addison-Wesley, Reading, Massachusetts.
Hewitt, C. (1969). PLANNER: a language for prov-
ing theorems in robots. In Proceedings of the First
International Joint Conference on Artificial Intel-
ligence (IJCAI-69), pages 295-301, Washington,
D.C. IJCAII.
Hintikka, J. (1962). Knowledge and Belief. Cornell
University Press, Ithaca, New York.
Hinton, G. E. and Anderson, J. A. (1981). Parallel
Models of Associative Memory. Lawrence Erlbaum
Associates, Potomac, Maryland.
Hinton, G. E. and Sejnowski, T. (1983). Optimal
perceptual inference. In Proceedings of the IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, pages 448-453, Washing-
ton, D.C. IEEE Computer Society Press.
Hinton, G. E. and Sejnowski, T. J. (1986). Learning
and relearning in Boltzmann machines. In Rumel-
hart, D. E. and McClelland, J. L., editors, Parallel
Distributed Processing, chapter 7, pages 282-317.
MIT Press, Cambridge, Massachusetts.
Hirsh, H. (1987). Explanation-based generalization
in a logic programming environment. In Proceed-
ings of the Tenth International Joint Conference on
Artificial Intelligence (IJCAI-87), Milan, Italy. Mor-
gan Kaufmann.

Hirst, G. (1987). Semantic Interpretation Against
Ambiguity. Cambridge University Press.



876 Bibliography

Hobbs, J. R. (1985). Ontological promiscuity. In
Proceedings, 23rd Annual Meeting of the Associ-
ation for Computational Linguistics, pages 61-69,
Chicago, Illinois.

Hobbs, J. R. (1986). Overview of the TACITUS
project. Computational Linguistics, 12(3):220-222.

Hobbs, J. R. (1990). Literature and Cognition. CSLI
Press, Stanford, California.

Hobbs, J. R., Blenko,T., Croft, B., Hager, G., Kautz,
H. A., Kube, P., and Shoham, Y. (1985). Com-
monsense summer: Final report. Technical Report
CSLI-85-35, Center for the Study of Language and
Information (CSLI), Stanford, California.

Hobbs, J. R., Croft, W., Davies, T., Edwards, D. D.,
and Laws, K. I. (1987). Commonsense metaphysics
and lexical semantics. Computational Linguistics,
13(3-4):241-250.

Hobbs, J. R. and Moore, R. C., editors (1985). For-
mal Theories of the Commonsense World. Ablex,
Norwood, New Jersey.

Hobbs, J. R., Stickel, M., Appelt, D., and Martin, P.
(1990). Interpretation as abduction. Technical Note
499, SRI International, Menlo Park, California.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Mar-
tin, P. (1993). Interpretation as abduction. Artificial
Intelligence, 63(l-2):69-142.

Holland, J. H. (1975). Adaption in Natural and
Artificial Systems. University of Michigan Press.

Hopfield, J. J. (1982). Neurons with graded response
have collective computational properties like those
of two-state neurons. Proceedings of the National
Academy of Sciences (USA), 79:2554-2558.

Horn, A. (1951). On sentences which are true of di-
rect unions of algebras. Journal of Symbolic Logic,
16:14-21.

Horn, B. K. P. (1970). Shape from shading: a
method for obtaining the shape of a smooth opaque
object from one view. Technical Report 232, MIT
Artificial Intelligence Laboratory, Cambridge, Mas-
sachusetts.

Horn, B. K. P. (1986). Robot Vision. MIT Press,
Cambridge, Massachusetts.

Horn,B. K. P. andBrooks,M. J. (1989). Shape/mm
Shading. MIT Press, Cambridge, Massachusetts.

Horvitz, E. J., Breese, J. S., andHenrion, M. (1988).
Decision theory in expert systems and artificial in-
telligence. International Journal of Approximate
Reasoning, 2:247-302.
Horvitz, E. J. and Heckerman, D. (1986). The
inconsistent use of measures of certainty in arti-
ficial intelligence research. In Kanal, L. N. and
Lemmer, J. P., editors, Uncertainty in Artificial In-
telligence, pages 137-151. Elsevier/North-Holland,
Amsterdam, London, New York.
Horvitz, E. J., Heckerman, D. E., and Langlotz,
C. P. (1986). A framework for comparing alterna-
tive formalisms for plausible reasoning. In Proceed-
ings of the Fifth National Conference on Artificial
Intelligence (AAAI-86), volume 1, pages 210-214,
Philadelphia, Pennsylvania. Morgan Kaufmann.
Horvitz, E. J., Suermondt, H. J., and Cooper, G. F.
(1989). Bounded conditioning: Flexible inference
for decisions under scarce resources. In Proceed-
ings of the Fifth Conference on Uncertainty in Arti-
ficial Intelligence (UAI-89), pages 182-193, Wind-
sor, Ontario. Morgan Kaufmann.
Howard, R. A. (1960). Dynamic Programming and
Markov Processes. MIT Press, Cambridge, Mas-
sachusetts.
Howard, R. A. (1966). Information value theory.
IEEE Transactions on Systems Science and Cyber-
netics, SSC-2:22-26.
Howard, R. A. (1977). Risk preference. In Howard,
R. A. and Matheson, J. E., editors, Readings in De-
cision Analysis, pages 429-465. Decision Analysis
Group, SRI International, Menlo Park, California.
Howard, R. A. (1989). Microrisks for medical deci-
sion analysis. International Journal of Technology
Assessment in Health Care, 5:357-370.
Howard, R. A. and Matheson, J. E. (1984). Influence
diagrams. In Howard, R. A. and Matheson, J.E., ed-
itors, Readings on the Principles and Applications
of Decision Analysis, pages 721-762. Strategic De-
cisions Group, Menlo Park, California.Article dates
from 1981.
Hsu, F.-H., Anantharaman, T. S., Campbell, M. S.,
and Nowatzyk, A. (1990). A grandmaster chess
machine. Scientific American, 263(4):44-50.
Hsu, K., Brady, D., and Psaltis, D. (1988). Ex-
perimental demonstration of optical neural comput-
ers. In Anderson, D. Z., editor, Neural Information



Bibliography 877

Processing Systems, Denver 1987, pages 377-386,
Denver, Colorado. American Institute of Physics.

Huang, T., Roller, D., Malik, J., Ogasawara, G.,
Rao, B., Russell, S., and Weber, J. (1994). Au-
tomatic symbolic traffic scene analysis using be-
lief networks. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence (AAAI-
94), pages 966-972, Seattle, Washington. AAA1
Press.
Hubel, D. H. (1988). Eye, Brain, and Vision. W. H.
Freeman, New York.

Huddleston, R. D. (1988). English Grammar: An
Outline. Cambridge University Press, Cambridge.

Huffman, D. A. (1971). Impossible objects as non-
sense sentences. In Meltzer, B. and Michie, D.,
editors, Machine Intelligence 6, pages 295-324. Ed-
inburgh University Press, Edinburgh, Scotland.
Hughes, G. E. and Cresswell, M. J. (1968). An
Introduction to Modal Logic. Methuen, London.

Hughes, G. E. and Cress well, M. J. (1984). A Com-
panion to Modal Logic. Methuen, Eondon.

Hume, D. (1978). A Treatise of Human Na-
ture. Oxford University Press, Oxford, second edi-
tion.Edited by E. A. Selby-Bigge and P. H. Nidditch.

Hunt, E. B., Marin, J., and Stone, P. T. (1966). Ex-
periments in Induction. Academic Press, New York.
Hunter, G. (1971). Metalogic: An Introduction to
the Metatheory of Standard First-Order Logic. Uni-
versity of California Press, Berkeley and Eos Ange-
les.
Hunter, E. and States, D. J. (1992). Bayesian classi-
fication of protein structure. IEEE Expert, 7(4):67-
75.

Huttenlocher, D. P. and Ullman, S. (1990). Recog-
nizing solid objects by alignment with an image. In-
ternational Journal of Computer Vision, 5(2): 195-
212.

Huygens, C. (1657). Ratiociniis in ludo aleae. In
van Schooten, R, editor, Exercitionum Mathemati-
corum. Elsevirii, Amsterdam.
Hwang, C. H. and Schubert, E. K. (1993). EE:
a formal, yet natural, comprehensive knowledge
representation. In Proceedings of the Eleventh Na-
tional Conference on Artificial Intelligence (AAAI-
93), pages 676-682, Washington, D.C. AAAI Press.

Hyatt, R. M., Gower, A. E., and Nelson, H. E.
(1986). Cray Blitz. In Beal, D. P., editor, Advances
in Computer Chess 4, pages 8-18. Pergamon, New
York.
Ingerman, P. Z. (1967). Panini-Backus form sug-
gested. Communications of the Association for
Computing Machinery, 10(3):137.
Jackson, P. (1986). Introduction to Expert Systems.
Addison-Wesley, Reading, Massachusetts.
Jacobs, P. and Rau, E. (1990). Scisor: A system for
extracting information from on-line news. Commu-
nications of the ACM, 33(11):88-97.
Jaffar, J. and Eassez, J.-E. (1987). Constraint logic
programming. In Proceedings of the Fourteenth
ACM Conference on Principles of Programming
Languages, Munich. Association for Computing
Machinery.
Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R.
H. C. (1992a). The CEP(R) language and system.
ACM Transactions on Programming Languages and
Systems, 14(3):339-395.
Jaffar, J., Stuckey, P. J., Michaylov, S., and Yap, R.
H. C. (1992b). An abstract machine for CEP(R).
SIGPLAN Notices, 27(7): 128-139.
Jaskowski, S. (1934). On the rules of suppositions
in formal logic. Studia Logica, 1.
Jeffrey, R. C. (1983). The Logic of Decision. Uni-
versity of Chicago Press, Chicago, Illinois, second
edition.
Jelinek, F. (1976). Continuous speech recognition
by statistical methods. Proceedings of the IEEE,
64(4):532-556.
Jelinek, F. (1990). Self-organizing language mod-
eling for speech recognition. In Waibel, A. and
Eee, K.-F., editors, Readings in Speech Recogni-
tion, pages 450-506. Morgan Kaufmann.
Jensen, F. V., Eauritzen, S. E., and Olesen, K. G.
(1990). Bayesian updating in causal probabilistic
networks by local computations. Computational
Statistics Quarterly, 5(4):269-282.
Jerison, H. J. (1991). Brain Size and the Evolution
of Mind. American Museum of Natural History,
New York.
Jochem, T., Pomerleau, D., and Thorpe, C. (1993).
Maniac: A next generation neurally based au-
tonomous road follower. In Proceedings of the In-
ternational Conference on Intelligent Autonomous
Systems: IAS-3.



878 Bibliography

Johnson, W. W. and Story, W. E. (1879). Notes on
the "15" puzzle. American Journal of Mathematics,
2:397-404.

Johnson-Laird, P. N. (1988). The Computer and the
Mind: An Introduction to Cognitive Science. Har-
vard University Press, Cambridge, Massachusetts.

Johnston, M. D. and Adorf, H.-M. (1992). Schedul-
ing with neural networks: the case of the Hub-
ble space telescope. Computers & Operations Re-
search, 19(3-4):209-240.

Jones,N. D., Gomard, C. K., andSestoft, P. (1993).
Partial Evaluation and Automatic Program Gener-
ation. Prentice-Hall, Englewood Cliffs, New Jersey.
Joshi, A. (1985). Tree-adjoining grammars: How
much context sensitivity is required to provide rea-
sonable structural descriptions. In Dowty, D., Kart-
tunen, L., and Zwicky, A., editors, Natural Lan-
guage Parsing. Cambridge University Press.
Joshi, A., Webber, B., and Sag, I. (1981). Elements
of Discourse Understanding. Cambridge University
Press.
Judd, J. S. (1990). Neural Network Design and the
Complexity of Learning. MIT Press, Cambridge,
Massachusetts.

Julesz, B. (1971). Foundations of Cyclopean Per-
ception. University of Chicago Press, Chicago, Illi-
nois.

Kaelbling, L. P. (1990). Learning functions in k-
DNF from reinforcement. In Machine Learning:
Proceedings of the Seventh International Confer-
ence, pages 162-169, Austin, Texas. Morgan Kauf-
mann.

Kaelbling, L. P. and Rosenschein, S. J. (1990). Ac-
tion and planning in embedded agents. Robotics
and Autonomous Systems, 6(I-2):35-48.

Kahneman, D., Slovic, P., and Tversky, A., editors
(1982). Judgment under Uncertainty: Heuristics
and Biases. Cambridge University Press, Cam-
bridge.
Kaindl, H. (1990). Tree searching algorithms. In
Marsland, A. T. and Schaeffer, J., editors, Com-
puters, Chess, and Cognition, pages 133-158.
Springer-Verlag, Berlin.
Kaindl, H. and Khorsand, A. (1994). Memory-
bounded bidirectional search. In Proceedings of the

Twelfth National Conference on Artificial Intelli-
gence (AAA1-94), pages 1359-1364, Seattle, Wash-
ington. AAAI Press.
Kalman, R. E. (1960). A new approach to linear
filtering and prediction problems. Journal of Basic
Engineering, pages 35^6.
Kambhampati, S. and Nau, D. S. (1993). On the
nature and role of modal truth criteria in plan-
ning. Technical Report ISR-TR-93-30, University
of Maryland, Institute for Systems Research.
Kanal, L. N. and Kumar, V. (1988). Search in Arti-
ficial Intelligence. Springer-Verlag, Berlin.
Kanal, L. N. and Lemmer, J. P., editors (1986). Un-
certainty in Artificial Intelligence. Elsevier/North-
Holland, Amsterdam, London, New York.
Kandel, E. R., Schwartz, J. H., and Jessell, T. M.,
editors (1991). Principles of Neural Science.
Elsevier/North-Holland, Amsterdam, London, New
York, third edition.
Kaplan, D. and Montague, R. (1960). A paradox
regained. Notre Dame Journal of Formal Logic,
l(3):79-90.Reprinted in Thomason (1974).
Karger, D. R., Roller, D., and Phillips, S. J. (1993).
Finding the hidden path: time bounds for all-
pairs shortest paths. SIAM Journal on Computing,
22(6):1199-1217.
Karp, R. M. (1972). Reductibility among combi-
natorial problems. In Miller, R. E. and Thatcher,
J. W., editors, Complexity of Computer Computa-
tions, pages 85-103. Plenum, New York.
Kasami, T. (1965). An efficient recognition and
syntax analysis algorithm for context-free lan-
guages. Technical Report AFCRL-65-758, Air
Force Cambridge Research Laboratory, Bedford,
Massachusetts.
Kautz, H. A. and Selman, B. (1991). Hard problems
for simple default logics. Artificial Intelligence,
49(l-3):243-279.
Kay, M., Gawron, J. M., and Norvig, P. (1994).
Verbmobil: A Translation System for Face-To-Face
Dialog. CSLI Press, Stanford, California.
Kearns, M. J. (1990). The Computational Complex-
ity of Machine Learning. MIT Press, Cambridge,
Massachusetts.
Keeney, R. L. (1974). Multiplicative utility func-
tions. Operations Research, 22:22-34.



Bibliography 879

Keeney, R. L. and Raiffa, H. (1976). Decisions with
Multiple Objectives: Preferences and Value Trade-
offs. Wiley, New York.

Kemp, M., editor (1989). Leonardo on Painting:
An Anthology of Writings. Yale University Press,
New Haven, Connecticut.

Kemp, M. (1990). The Science of Art: Optical
Themes in Western Art from Brunelleschi to Seurat.
Yale University Press, New Haven, Connecticut.
Keynes, J. M. (1921). A Treatise on Probability.
Macmillan, London.
Kierulf, A., Chen, K., and Nievergelt, J. (1990).
Smart Game Board and Go Explorer: A study in
software and knowledge engineering. Communica-
tions of the Association for Computing Machinery,
33(2): 152-167.
Kietz, J.-U. and Dzeroski, S. (1994). Inductive logic
programming and learnability. SIGART Bulletin,
5(l):22-32.
Kirn, J. H. (1983). CONVINCE: A Conversational
Inference Consolidation Engine. PhD thesis, De-
partment of Computer Science, University of Cali-
fornia at Los Angeles.
Kirn, J. H. and Pearl, J. (1983). A computational
model for combined causal and diagnostic reason-
ing in inference systems. In Proceedings of the
Eighth International Joint Conference on Artificial
Intelligence (IJCAI-83), pages 190-193, Karlsruhe,
Germany. Morgan Kaufmann.
Kirn, J. H. and Pearl, J. (1987). CONVINCE: A con-
versational inference consolidation engine. IEEE
Transactions on Systems, Man, and Cybernetics,
17(2):120-132.

King, R. D., Muggleton, S., Lewis, R. A., and
Sternberg, M. J. E. (1992). Drug design by ma-
chine learning: the use of inductive logic pro-
gramming to model the structure activity relation-
ships of trimethoprim analogues binding to dihy-
drofolate reductase. Proceedings of the National
Academy of Sciences of the United States of Amer-
ica, 89(23):! 1322-11326.

King, S., Motet, S., Thomere, J., and Arlabosse, F.
(1993). A visual surveillance system for incident
detection. In AAAI93 Workshop on AI in Intelligent
Vehicle Highway Systems, pages 30-36, Washing-
ton, D.C.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.
(1983). Optimization by simulated annealing. Sci-
ence, 220:671-680.
Kirkpatrick, S. and Selman, B. (1994). Critical
behavior in the satisfiability of random Boolean ex-
pressions. Science, 264(5163):1297-1301.
Kirousis, L. M. and Papadimitriou, C. H.
(1988). The complexity of recognizing polyhedral
scenes. Journal of Computer and System Sciences,
37(1): 14-38.
Kister, J., Stein, P., Ulam, S., Walden, W., and Wells,
M. (1957). Experiments in chess. Journalofthe As-
sociation for Computing Machinery, 4:174-177.
Kjaerulff, U. (1992). A computational scheme for
reasoning in dynamic probabilistic networks. In
Proceedings of the Eighth Conference on Uncer-
tainty in Artificial Intelligence, pages 121-129.
Knight, K. (1989). Unification: A multidisciplinary
survey. ACM Computing Surveys, 21(1):93-121.
Knoblock, C. A. (1990). Learning abstraction hi-
erarchies for problem solving. In Proceedings of
the Eighth National Conference on Artificial In-
telligence (AAAI-90), volume 2, pages 923-928,
Boston, Massachusetts. MIT Press.
Knuth, D. (1968). Semantics for context-free lan-
guages. Mathematical Systems Theory 2, pages
127-145.
Knuth, D. E. (1973). The Art of Computer Pro-
gramming, volume 2: Fundamental Algorithms.
Addison-Wesley, Reading, Massachusetts, second
edition.
Knuth, D. E. and Bendix, P. B. (1970). Simple word
problems in universal algebras. In Leech, J., edi-
tor, Computational Problems in Abstract Algebra,
pages 263-267. Pergamon, New York.
Knuth, D. E. and Moore, R. W. (1975). An anal-
ysis of alpha-beta pruning. Artificial Intelligence,
6(4):293-326.
Koenderink, J. J. (1990). Solid Shape. MIT Press,
Cambridge, Massachusetts.
Koenderink, J. J. and van Doom, A. J. (1975). In-
variant properties of the motion parallax field due to
the movement of rigid bodies relative to an observer.
OpticaActa, 22(9):773-791.
Kohn, W. (1991). Declarative control architecture.
Communications of the Association for Computing
Machinery, 34(8):65-79.



880 Bibliography

Kohonen, T. (1989). Self-Organization and Asso-
ciative Memory. Springer-Verlag, Berlin, third edi-
tion.
Roller, D., Weber, J., Huang, T., Malik, J., Oga-
sawara,G., Rao, B., and Russell, S. (1994). Towards
robust automatic traffic scene analysis in real-time.
In Proceedings of the International Conference on
Pattern Recognition, Israel.
Kolmogorov, A. N. (1941). Interpolation und ex-
trapolation von stationaren zufalligen folgen. Bul-
letin of the Academy of Sciences of the USSR, Ser.
Math.5:3-14.
Kolmogorov, A. N. (1950). Foundations of the
Theory of Probability. Chelsea, New York.English
translation of Kolmogorov (1950).
Kolmogorov, A. N. (1963). On tables of random
numbers. Sankhya, the Indian Journal of Statistics,
Series A 25.
Kolmogorov, A. N. (1965). Three approaches to the
quantitative definition of information. Problems in
Information Transmission, l(l):l-7.
Kolodner, J. (1983). Reconstructive memory: A
computer model. Cognitive Science, 7:281-328.
Kolodner, J. (1993). Case-Based Reasoning. Mor-
gan Kaufmann, San Mateo, California.
Konolige, K. (1982). A first order formalization
of knowledge and action for a multi-agent planning
system. In Hayes, J. E., Michie, D., and Pao, Y.-H.,
editors, Machine Intelligence 10. Ellis Horwood,
Chichester, England.
Koopmans, T. C. (1972). Representation of pref-
erence orderings over time. In McGuire, C. B.
and Radner, R., editors, Decision and Organiza-
tion. Elsevier/North-Holland, Amsterdam, London,
New York.
Korf, R. E. (1985a). Depth-first iterative-deepening:
an optimal admissible tree search. Artificial Intelli-
gence,21(l):91-l09.
Korf, R. E. (1985b). Iterative-deepening A*: An
optimal admissible tree search. In Proceedings of
the Ninth International Joint Conference on Artifi-
cial Intelligence (IJCAI-85), pages 1034^ 1036, Los
Angeles, California. Morgan Kaufmann.
Korf, R. E. (1988). Optimal path finding algorithms.
In Kanal, L. N. and Kumar, V., editors, Search in
Artificial Intelligence, chapter 7, pages 223-267.
Springer-Verlag, Berlin.

Korf, R. E. (1993). Linear-space best-first search.
Artificial Intelligence, 62(l):41-78.

Kotok, A. (1962). A chess playing program for the
IBM 7090. AI Project Memo 41, MIT Computation
Center, Cambridge, Massachusetts.

Kowalski, R. (1974). Predicate logic as a pro-
gramming language. In Proceedings of the IFIP-74
Congress, pages 569-574. Elsevier/North-Holland.

Kowalski, R. (1979a). Algorithm = logic + control.
Communications of the Association for Computing
Machinery, 22:424^136.

Kowalski, R. (1979b). Logic for Problem Solving.
Elsevier/North-Holland, Amsterdam, London, New
York.

Kowalski, R. (1988). The early years of logic pro-
gramming. Communications of the Association for
Computing Machinery, 31:38-43.

Kowalski, R. and Sergot, M. (1986). A logic-based
calculus of events. New Generation Computing,
4(l):67-95.

Koza, J. R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, Massachusetts.

Kripke, S. A. (1963). Semantical considerations on
modal logic. Acta Philosophica Fennica, 16:83-94.

Kruppa, E. (1913). Zur Ermittlung eines Objeck-
tes aus zwei Perspektiven mil innerer Orientierung.
Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw., Kl. Abt.
Ila, 122:1939-1948.

Kuehner, D. (1971). A note on the relation between
resolution and Maslov's inverse method. DCL
Memo 36, University of Edinburgh.

Kukich, K. (1992). Techniques for automatically
correcting words in text. ACM Computing Surveys,
24(4):377-439.

Kumar, V. (1991). A general heuristic bottom-up
procedure for searching AND/OR graphs. Informa-
tion Sciences, 56(l-3):39-57.

Kumar, V. and Kanal, L. N. (1983). A general
branch and bound formulation for understanding
and synthesizing and/or tree search procedures. Ar-
tificial Intelligence, 21:179-198.



Bibliography 881

Kumar, V. and Kanal, L. N. (1988). The CDP: A
unifying formulation for heuristic search, dynamic
programming, and branch-and-bound. In Kanal,
L. N. and Kumar, V., editors, Search in Artificial In-
telligence, chapter 1, pages 1-27. Springer-Verlag,
Berlin.

Kumar, V., Nau, D. S., and Kanal, L. N.
(1988). A general branch-and-bound formulation
for AND/OR graph and game tree search. In Kanal,
L. N. and Kumar, V., editors, Search in Artificial
Intelligence, chapter 3, pages 91-130. Springer-
Verlag, Berlin.

Kurzweil, R. (1990). The Age of Intelligent Ma-
chines. MIT Press, Cambridge, Massachusetts.

Kyburg, H. E. (1977). Randomness and the right ref-
erenceclass. The Journal of Philosophy, 74(9):501-
521.

Kyburg, H. E. (1983). The reference class. Philos-
ophy of Science, 50:374-397.

La Mettrie, J. O. d. (1748). L'homme machine.
E. Luzac, Leyde.Translatedinto English as La Met-
trie (1912).

La Mettrie, J. O. d. (1912). Man a Machine. Open
Court, La Salle, Illinois.English translation of La
Mettrie (1748).

Ladkin, P. (1986a). Primitives and units for time
specification. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-86),
volume 1, pages 354-359, Philadelphia, Pennsyl-
vania. Morgan Kaufmann.

Ladkin, P. (1986b). Time representation: a taxon-
omy of interval relations. In Proceedings of the
Fifth National Conference on Artificial Intelligence
(AAAI-86), volume 1, pages 360-366, Philadelphia,
Pennsylvania. Morgan Kaufmann.

Laird, J. E., Newell, A., and Rosenbloom, P. S.
(1987). SOAR: an architecture for general intelli-
gence. Artificial Intelligence, 33(1): 1-64.

Laird, J. E., Rosenbloom, P. S., and Newell, A.
(1986). Chunking in Soar: the anatomy of a general
learning mechanism. Machine Learning, 1:11-46.

Laird, J. E., Yager, E. S., Hucka, M., and Tuck, M.
(1991). Robo-Soar: an integration of external inter-
action, planning, and learning using Soar. Robotics
and Autonomous Systems, 8(1-2):113-129.

Lakoff, G. (1987). Women, Fire, and Dangerous
Things: What Categories Reveal About the Mind.
University of Chicago Press, Chicago, Illinois.
Lakoff, G. and Johnson, M. (1980). Metaphors We
Live By. University of Chicago Press, Chicago, Illi-
nois.
Langley, P., Simon, H. A., Bradshaw, G. L., and
Zytkow, J. M. (1987). Scientific Discovery: Com-
putational Explorations of the Creative Processes.
MIT Press, Cambridge, Massachusetts.
Lassez, J.-L., Maher, M. J., and Marriott, K. (1988).
Unification revisited. In Minker, J., editor, Founda-
tions of Deductive Databases and Logic Program-
ming, pages 587-625. Morgan Kaufmann, San Ma-
teo, California.
Latombe, J.-C. (1991). Robot Motion Planning.
Kluwer, Dordrecht, The Netherlands.
Lauritzen, S. L. (1991). The EM algorithm for
graphical association models with missing data.
Technical Report TR-91-05, Department of Statis-
tics, Aalborg University.
Lauritzen, S. L. and Spiegelhalter, D. J. (1988).
Local computations with probabilities on graphi-
cal structures and their application to expert sys-
tems. Journal of the Royal Statistical Society,
B 50(2): 157-224.
Lauritzen, S. L. and Wermuth, N. (1989). Graphical
models for associations between variables, some of
which are qualitative and some quantitative. Annals
of Statistics, 17:31-57.
Lawler, E. L. and Wood, D. E. (1966). Branch-and-
bound methods: A survey. Operations Research,
14(4):699-719.
Le Cun, Y, Jacket, L. D., Boser, B., and Denker,
J. S. (1989). Handwritten digit recognition: appli-
cations of neural network chips and automatic learn-
ing. IEEE Communications Magazine, 27(11):41-
46.
Lee, K.-F. (1989). Automatic Speech Recognition:
The Development of the SPHINX System. Kluwer,
Dordrecht, The Netherlands.
Lee, K.-F. and Mahajan, S. (1988). A pattern clas-
sification approach to evaluation function learning.
Artificial Intelligence, 36(1): 1-26.
Lefkovitz, D. (1960). A strategic pattern recogni-
tion program for the game Go. Technical Note 60-
243, Wright Air Development Division, University



882 Bibliography

of Pennsylvania, The Moore School of Electrical
Engineering.
Lenat, D. B. (1983). EURISKO: a program that
learns new heuristics and domain concepts: the na-
ture of heuristics, III: program design and results.
Artificial Intelligence, 21(l-2):61-98.
Lenat, D. B. and Brown, J. S. (1984). Why AM and
EURISKO appear to work. Artificial Intelligence,
23(3):269-294.
Lenat, D. B. and Feigenbaum, E. A. (1991). On
the thresholds of knowledge. Artificial Intelligence,
47(1-3): 185-250.
Lenat, D. B. and Guha, R. V. (1990). Building
Large Knowledge-Based Systems: Representation
and Inference in the CYC Project. Addison-Wesley,
Reading, Massachusetts.
Leonard, H. S. and Goodman, N. (1940). The calcu-
lus of individuals and its uses. Journal of Symbolic
Logic, 5(2):45-55.
Leonard, J. J. and Durrant-Whyte, H. F. (1992). Di-
rected sonar sensing for mobile robot navigation.
Kluwer, Dordrecht, The Netherlands.
Lesniewski, S. (1916). Podstawy ogolnej teorii
mnogosci. Moscow.
Levesque, H. J. and Brachman, R. J. (1987). Ex-
pressiveness and tractability in knowledge represen-
tation and reasoning. Computational Intelligence,
3(2):78-93.
Levy, D. N. L. (1983). Computer Gamesmanship:
The Complete Guide to Creating and Structuring
Intelligent Games Programs. Simon and Schuster,
New York.
Levy, D. N. L., editor (1988a). Computer Chess
Compendium. Springer-Verlag, Berlin.
Levy, D. N. L., editor (1988b). Computer Games.
Springer-Verlag, Berlin.Two volumes.
Lewis, D. K. (1966). An argument for the identity
theory. The Journal of Philosophy, 63(l):17-25.
Lewis, D. K. (1972). General semantics. In David-
son, D. and Harman, G., editors, Semantics of Nat-
ural Language, pages 169-218. D. Reidel, Dor-
drecht, The Netherlands.
Lewis, D. K. (1980). Mad pain and Martian pain.
In Block, N., editor, Readings in Philosophy of Psy-
chology, volume 1, pages 216-222. Harvard Uni-
versity Press, Cambridge, Massachusetts.

Li, M. and Vitanyi, P. M. B. (1993). An Intro-
duction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag, Berlin.

Lifschitz, V. (1986). On the semantics of STRIPS.
In Georgeff, M. P. and Lansky, A. L., editors, Rea-
soning about Actions and Plans: Proceedings of
the 1986 Workshop, pages 1-9, Timberline, Ore-
gon. Morgan Kaufmann.

Lifschitz, V. (1989). Between circumscription
and autoepistemic logic. In Brachman, R. J. and
Levesque, H. J., editors, Proceedings of the First
International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 235-
244, Toronto, Ontario. Morgan Kaufmann.

Lighthill, J. (1973). Artificial intelligence: A gen-
eral survey. In Lighthill, J., Sutherland, N. S., Need-
ham, R. M., Longuet-Higgins, H. C., and Michie,
D., editors, Artificial Intelligence: A Paper Sympo-
sium. Science Research Council of Great Britain,
London.

Lin, S. (1965). Computer solutions of the travelling
salesman problem. Bell Systems Technical Journal,
44(10):2245-2269.

Linden, T. A. (1991). Representing software designs
as partially developed plans. In Lowry, M. R. and
McCartney, R. D., editors, Automating Software De-
sign, pages 603-625. MIT Press, Cambridge, Mas-
sachusetts.

Lindsay, R. K. (1963). Inferential memory as the ba-
sis of machines which understand natural language.
In Feigenbaum, E. A. andFeldman, J., editors, Com-
puters and Thought, pages 217-236. McGraw-Hill,
New York.

Lindsay, R, K., Buchanan, B. G., Feigenbaum,
E. A., and Lederberg, J. (1980). Applications of
Artificial Intelligence for Organic Chemistry: The
DENDRAL Project. McGraw-Hill, New York.

Lloyd, J. W. (1987). Foundations of Logic Program-
ming. Springer-Verlag, Berlin.

Locke, W. N. and Booth, A. D. (1955). Ma-
chine Translation of Languages: Fourteen Essays.
MIT Press, Cambridge, Massachusetts.

Longuet-Higgins, H. C. (1981). A computer algo-
rithm for reconstructing a scene from two projec-
tions. Nature, 293:133-135.



Bibliography 883

Lovejoy, W. S. (1991). A survey of algorithmic
methods for partially observed Markov decision
processes. Annals of Operations Research, 28(1-
4):47-66.

Loveland, D. W. (1968). Mechanical theorem prov-
ing by model elimination. Journal of the Association
for Computing Machinery, 15(2):236-251.

Loveland, D. W. (1984). Automated theorem-
proving: A quarter-century review. Contemporary
Mathematics, 29:1-45.

Lowe, D. G. (1987). Three-dimensional object
recognition from single two-dimensional images.
Artificial Intelligence, 31:355-395.

Lowenheim, L. (1915). Uber moglichkeiten im
Relativkalkiil. Mathematische Annalen, 76:447-
470. Reprinted in English translation in van Hei-
jenoort (1967).

Lowerre, B. T. and Reddy, R. (1980). The HARPY
speech recognition system. In Lea, W. A., editor,
Trends in Speech Recognition, chapter 15. Prentice-
Hall, Englewood Cliffs, New Jersey.

Lowry, M. R. and McCartney, R. D. (1991). Au-
tomating Software Design. MIT Press, Cambridge,
Massachusetts.

Loyd, S. (1959). Mathematical Puzzles of Sam
Loyd: Selected and Edited by Martin Gardner.
Dover, New York.

Lozano-Perez, T., Mason, M., and Taylor, R. (1984).
Automatic synthesis of fine-motion strategies for
robots. International Journal of Robotics Research,
3(l):3-24.

Lucas, J. R. (1961). Minds, machines, and Godel.
Philosophy, 36.

Luger, G. F. and Stubblefield, W. A. (1993). Ar-
tificial Intelligence: Structures and Strategies for
Complex Problem Solving. Benjamin/Cummings,
Redwood City, California, second edition.

Mackworth, A. K. (1973). Interpreting pictures of
polyhedral scenes. Artificial Intelligence, 4:121-
137.

Maes, P., Darrell, T., Blumberg, B., and Pentland,
A. (1994). ALIVE: Artificial Life Interactive Video
Environment. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence (AAAI-
94), page 1506, Seattle, Washington. AAAI Press.

Magerman, D. (1993). Natural Language Parsing
as Statistical Pattern Recognition. PhD thesis, Stan-
ford University.
Mahanti, A. and Daniels, C. J. (1993). A SIMD
approach to parallel heuristic search. Artificial In-
telligence, 60(2):243-282.
Malik, J. (1987). Interpreting line drawings of
curved objects. International Journal of Computer
Vision, 1(1):73-103.
Malik, J. and Rosenholtz, R. (1994). Recover-
ing surface curvature and orientation from texture
distortion: a least squares algorithm and sensi-
tivity analysis. In Eklundh, J.-O., editor, Pro-
ceedings of the Third European Conf. on Com-
puter Vision, pages 353-364, Stockholm. Springer-
Verlag.Published as Lecture Notes in Computer Sci-
ence 800.
Manin, Y. I. (1977). A Course in Mathematical
Logic. Springer-Verlag, Berlin.
Mann, W. C. and Thompson, S. A. (1983). Rela-
tional propositions in discourse. Technical Report
RR-83-115, Information Sciences Institute.
Manna, Z. and Waldinger, R. (1971). Toward au-
tomatic program synthesis. Communications of the
Association for Computing Machinery, 14(3):151-
165.
Manna, Z. and Waldinger, R. (1985). The Logi-
cal Basis for Computer Programming: Volume I :
Deductive Reasoning. Addison-Wesley, Reading,
Massachusetts.
Manna, Z. and Waldinger, R. (1986). Special rela-
tions in automated deduction. Journal of the Asso-
ciation for Computing Machinery, 33(1): 1-59.
Manna, Z. and Waldinger, R. (1992). Fundamentals
of deductive program synthesis. IEEE Transactions
on Software Engineering, 18(8):674-704.
Marchand, M., Golea, M., and Rujan, P. (1990). A
convergence theorem for sequential learning in two-
layer perceptrons. Europhysics Letters, 11:487-
492.
Markov, A. A. (1913). An example of statistical
investigation in the text of "Eugene Onegin" illus-
trating coupling of "tests" in chains. Proceedings
of the Academy of Sciences of St. Petersburg, 1.
Marr, D. (1982). Vision: A Computational Inves-
tigation into the Human Representation and Pro-
cessing of Visual Information. W. H. Freeman, New
York.



884 Bibliography

Marsland, A. T. and Schaeffer, J., editors (1990).
Computers, Chess, and Cognition. Springer-Verlag,
Berlin.

Martelli, A. and Montanari, U. (1973). Additive
AND/OR graphs. In Proceedings of the Thirdlnter-
national Joint Conference on Artificial Intelligence
(IJCAI-73), pages 1-11, Stanford, California. IJ-
CAII.
Martelli, A. and Montanari, U. (1976). Unification
in linear time and space: A structured presentation.
Internal Report B 76-16, Istituto di Elaborazione
della Informazione, Pisa, Italy.
Martelli, A. and Montanari, U. (1978). Optimizing
decision trees through heuristically guided search.
Communications of the Association for Computing
Machinery, 21:1025-1039.

Martin, C. D. (1993). The myth of the awesome
thinking machine. Communications of the Associa-
tion for Computing Machinery, 36(4): 120-133.

Martin, J. H. (1990). A Computational Model of
Metaphor Interpretation. Academic Press.

Maslov, S. Y. (1964). An inverse method for estab-
lishing deducibility in classical predicate calculus.
Doklady Akademii nauk SSSR, 159:17-20.
Maslov, S. Y. (1967). An inverse method for estab-
lishing deducibility of nonprenex formulas of the
predicate calculus. Doklady Akademii nauk SSSR,
172:22-25.
Maslov, S. Y. (1971). Relationship between tactics
of the inverse method and the resolution method.
Seminars in Mathematics, V. A. Steklov Mathe-
matical Institute, Leningrad, Consultants Bureau,
New York-London, 16:69-73.

Mason, M. T. (1993). Kicking the sensing habit.
AI Magazine, 14(l):58-59.
Mates, B. (1953). Stoic Logic. University of Cali-
fornia Press, Berkeley and Los Angeles.
Maxwell, J. and Kaplan, R. (1993). The interface
between phrasal and functional constraints. Com-
putational Linguistics, 19(4):571-590.
Mays, E., Apte, C., Griesmer, J., and Kastner, J.
(1987). Organizing knowledge in a complex finan-
cial domain. IEEE Expert, 2(3):61-70.
McAllester, D. and Rosenblitt, D. (1991). Sys-
tematic nonlinear planning. In Proceedings of the
Ninth National Conference on Artificial Intelligence

(AAAI-91), volume 2, pages 634-639, Anaheim,
California. AAAI Press.

McAllester, D. A. (1980). An outlook on truth main-
tenance. AI Memo 551, MIT AI Laboratory, Cam-
bridge, Massachusetts.

McAllester, D. A. (1988). Conspiracy numbers for
min-max search. Artificial Intelligence, 35(3):287-
310.

McAllester, D. A. (1989). Ontic: A Knowledge
Representation System for Mathematics. MIT Press,
Cambridge, Massachusetts.

McAllester, D. A. and Givan, R. (1992). Natural
language syntax and first-order inference. Artificial
Intelligence, 56(1):1-20.

McCarthy, J. (1958). Programs with common sense.
In Proceedings of the Symposium on Mechanisation
of Thought Processes, volume 1, pages 77-84, Lon-
don. Her Majesty's Stationery Office.

McCarthy, J. (1963). Situations, actions, and causal
laws. Memo 2, Stanford University Artificial Intel-
ligence Project, Stanford, California.Reprinted as
part of McCarthy (1968).

McCarthy, J. (1968). Programs with common sense.
In Minsky, M. L., editor, Semantic Information Pro-
cessing, pages 403-418. MIT Press, Cambridge,
Massachusetts.

McCarthy, J. (1977). Epistemological problems in
artificial intelligence. In Proceedings of the Fifth
International Joint Conference on Artificial Intel-
ligence (IJCAI-77), Cambridge, Massachusetts. U-
CAII.

McCarthy, J. (1978). History of LISP. In Wex-
elblat, R. L., editor, History of Programming Lan-
guages: Proceedings of the ACM SIGPLAN Con-
ference, pages 173-197. Academic Press.Published
in 1981; 1978 is date of conference.

McCarthy, J. (1980). Circumscription: a form of
non-monotonic reasoning. Artificial Intelligence,
13(l-2):27-39.

McCarthy, J. and Hayes, P. J. (1969). Some philo-
sophical problems from the standpoint of artificial
intelligence. In Meltzer, B., Michie, D., and Swann,
M., editors, Machine Intelligence 4, pages 463-502.
Edinburgh University Press, Edinburgh, Scotland.



Bibliography 885

McCawley, J. D. (1993). Everything That Linguists
Have Always Wanted to Know About Logic But
Were Ashamed to Ask. University of Chicago Press,
Chicago, Illinois, second edition.

McCorduck, P. (1979). Machines Who Think: A
Personal Inquiry into the History and Prospects of
Artificial Intelligence. W. H. Freeman, New York.

McCulloch, W. S. and Pitts, W. (1943). A logical
calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:1 15-137.

McCune, W. W. (1992). Automated discovery of
new axiomatizations of the left group and right
group calculi. Journal of Automated Reasoning,

McDermott, D. (1976). Artificial intelligence meets
natural stupidity. SIGART Newsletter, 57.

McDermott, D. (1978a). Planning and acting. Cog-
nitive Science, 2(2):71-109.

McDermott, D. (1978b). Tarskian semantics, or, no
notation without denotation! Cognitive Science,
2(3).
McDermott, D. (1987). A critique of pure reason.
Computational Intelligence, 3(3): 1 5 1-237. Includes
responses by a number of commentators and final
rebuttal by the author.

McDermott, D. (1991). Regression planning. Inter-
national Journal of Intelligent Systems, 6:357^-16.

McDermott, D. and Doyle, J. (1980). Non-
monotonic logic I. Artificial Intelligence, 13(1-
2):41-72.

McDermott, J. (1982). Rl: A rule-based config-
urer of computer systems. Artificial Intelligence,
19(l):39-88.
Mead, C. (1989). Analog VLSI and Neural Systems.
Addison-Wesley, Reading, Massachusetts.

Megiddo, N. and Wigderson, A. (] 986). On play by
means of computing machines. In Halpern, J. Y., ed-
itor, Theoretical Aspects of Reasoning about Knowl-
edge: Proceedings of the 1986 Conference (TARK-
86), pages 259-274, Monterey, California. IBM and
AAAI, Morgan Kaufmann.
Melcuk, I. A. and Polguere, A. (1988). A formal
lexicon in the meaning-text theory (or how to do lex-
ica with words). Computational Linguistics, 13(3-
4):261-275.

Mero, L. (1984). A heuristic search algorithm
with modifiable estimate. Artificial Intelligence,
23(1): 13-27.
Metropolis, N., Rosenbluth, A., Rosenbluth, M.,
Teller, A., and Teller, E. (1953). Equations of state
calculations by fast computing machines. Journal
of Chemical Physics, 21:1087-1091.
Mezard, M. and Nadal, J.-P. (1989). Learning in
feedforward layered networks: The tiling algo-
rithm. Journal of Physics, 22:2191-2204.
Michalski, R. S., Carbonell, J. G., and Mitchell,
T. M., editors (1983). Machine Learning: An Ar-
tificial Intelligence Approach, volume 1. Morgan
Kaufmann, San Mateo, California.
Michalski, R. S., Carbonell, J. G., and Mitchell,
T. M., editors (1986). Machine Learning: An Ar-
tificial Intelligence Approach, volume 2. Morgan
Kaufmann, San Mateo, California.
Michie, D. (1966). Game-playing and game-
learning automata. In Fox, L., editor, Advances
in Programming and Non-Numerical Computation,
pages 183-200. Pergamon, New York.
Michie, D. (1972). Machine intelligence at Edin-
burgh. Management Informatics, 2(1):7—12.
Michie, D. (1982). The state of the art in ma-
chine learning. In Introductory Readings in Expert
Systems, pages 209-229. Gordon and Breach, New
York.
Michie, D. (1986). Current developments in ex-
pert systems. In Proc. 2nd Australian Conference
on Applications of Expert Systems, pages 163-182,
Sydney, Australia.
Michie, D. and Chambers, R. A. (1968). BOXES:
An experiment in adaptive control. In Dale, E.
and Michie, D., editors, Machine Intelligence 2,
pages 125-133. Elsevier/North-Holland, Amster-
dam, London, New York.
Michie, D., Spiegelhalter, D. J., and Taylor, C. C.,
editors (1994). Machine Learning, Neural and Sta-
tistical Classification. Ellis Horwood, Chichester,
England.
Miles, F. A. (1969). Excitable Cells. William Heine-
mann Medical Books, London.
Mill, J. S. (1843). A System of Logic, Ratiocina-
tive and Inductive: Being a Connected View of the
Principles of Evidence, and Methods of Scientific
Investigation. J. W. Parker, London.



886 Bibliography

Mill, J. S. (1863). Utilitarianism. Parker, Son and
Bourn, London.
Miller, A. C, Merkhofer, M. M., Howard, R. A.,
Matheson, J. E., and Rice, T. R. (1976). Develop-
ment of automated aids for decision analysis. Tech-
nical report, SRI International, Menlo Park, Cali-
fornia.
Miller, G. P., Todd, P. M., and Hegde, S. U.
(1989). Designing neural networks using genetic
algorithms. In Schaffer, J. D., editor, Proceedings
of the Third International Conference on Genetic Al-
gorithms, pages 379-384, Arlington, Virginia. Mor-
gan Kaufmann.
Milne, A. A. (1926). Winnie-the-Pooh. Methuen,
London.With decorations by Ernest H. Shepard.
Minker, J., editor (1988). Foundations of Deduc-
tive Databases and Logic Programming. Morgan
Kaufmann, San Mateo, California.
Minsky, M. L. (1954). Neural Nets and the Brain-
Model Problem. PhD thesis, Princeton University.
Minsky, M. L., editor (1968). Semantic Information
Processing. MIT Press, Cambridge, Massachusetts.
Minsky,M. L. (1975). Aframework for representing
knowledge. In Winston, P. H., editor, The Psychol-
ogy of Computer Vision, pages 211-277. McGraw-
Hill, New York.Originally appeared as an MIT Ar-
tificial Intelligence Laboratory memo; the present
version is abridged, but is the most widely cited.
Another, later abridged version appeared in Hauge-
land(1981).
Minsky, M. L. and Papert, S. (1969). Percep-
trons: An Introduction to Computational Geometry.
MIT Press, Cambridge, Massachusetts, first edition.
Minsky, M. L. and Papert, S. (1988). Percep-
trons: An Introduction to Computational Geometry.
MIT Press, Cambridge, Massachusetts, expanded
edition.
Minton, S. (1984). Constraint-based generalization:
Learning game-playing plans from single examples.
In Proceedings of the National Conference on Artifi-
cial Intelligence (AA4/-S4), pages 251-254, Austin,
TX. Morgan Kaufmann.
Minton, S. (1988). Quantitative results concerning
the utility of explanation- based learning. In Pro-
ceedings of the Seventh National Conference on Ar-
tificial Intelligence (AAAI-88), St. Paul, Minnesota.
Morgan Kaufmann.

Minton, S., Johnston, M. D., Philips, A. B., and
Laird, P. (1992). Minimizing conflicts: a heuris-
tic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence, 58(1-
3):161-205.
Mitchell, T., Keller, R., and Kedar-Cabelli, S.
(1986). Explanation-based generalization: A uni-
fying view. Machine Learning, 1:47-80.
Mitchell, T. M. (1977). Version spaces: a candidate
elimination approach to rule learning. In Proceed-
ings of the Fifth International Joint Conference on
Artificial Intelligence (IJCA1-77), pages 305-310,
Cambridge, Massachusetts. IJCAII.
Mitchell, T. M. (1980). The need for biases in
learning generalizations. Technical Report CBM-
TR-117, Department of Computer Science, Rutgers
University, New Brunswick, New Jersey.
Mitchell, T. M. (1982). Generalization as search.
Artificial Intelligence, 18(2):203-226.
Mitchell, T. M. (1990). Becoming increasingly
reactive (mobile robots). In Proceedings of the
Eighth National Conference on Artificial Intelli-
gence (AAAI-90), volume 2, pages 1051-1058,
Boston, Massachusetts. MIT Press.
Mitchell, T. M., Utgoff, P. E., and Banerji, R.
(1983). Learning by experimentation: acquiring
and refining problem-solving heuristics. In Michal-
ski, R. S., Carbonell, J. G., and Mitchell, T. M., ed-
itors, Machine Learning: An Artificial Intelligence
Approach, pages 163-190. Morgan Kaufmann, San
Mateo, California.
Montague, R. (1970). English as a formal language.
In Linguaggi nella Societa e nella Tecnica, pages
189-224. Edizioni di Comunita, Milan.Reprinted
in (Thomason, 1974, pp. 188-221).
Montague, R. (1973). The proper treatment of
quantification in ordinary English. In Hintikka, K.
J. J., Moravcsik, J. M. E., and Suppes, P., editors,
Approaches to Natural Language. D. Reidel, Dor-
drecht, The Netherlands.
Moore, A. W. and Atkeson, C. G. (1993). Prior-
itized sweeping—reinforcement learning with less
data and less time. Machine Learning, 13:103-130.
Moore, J. and Newell, A. (1973). How can Mer-
lin understand? In Gregg, L., editor, Knowledge
and Cognition. Lawrence Erlbaum Associates, Po-
tomac, Maryland.



Bibliography 887

Moore, R. C. (1980). Reasoning about knowledge
and action. Artificial Intelligence Center Technical
Note 191, SRI International, Menlo Park, Califor-
nia.

Moore, R. C. (1985a). A formal theory of knowl-
edge and action. In Hobbs, J. R. and Moore,
R. C., editors, Formal Theoriesofthe Commonsense
World, pages 319-358. Ablex, Norwood, New Jer-
sey.
Moore, R. C. (1985b). Semantical considerations
on nonmonotonic logic. Artificial Intelligence,
25(l):75-94.
Moore, R. C. (1993). Autoepistemic logic revisited.
Artificial Intelligence, 59(l-2):27-30.
Moravec, H. (1988). Mind Children: The Future of
Rabat and Human Intelligence. Harvard University
Press, Cambridge, Massachusetts.
Morgenstern, L. (1987). Knowledge preconditions
for actions and plans. In Proceedings of the Tenth
International Joint Conference on Artificial Intel-
ligence (IJCAI-87), pages 867-874, Milan, Italy.
Morgan Kaufmann.
Morrison, P. and Morrison, E., editors (1961).
Charles Babbage and His Calculating Engines: Se-
lected Writings by Charles Babbage and Others.
Dover, New York.

Mostow, J. and Prieditis, A. E. (1989). Discovering
admissible heuristics by abstracting and optimiz-
ing: a transformational approach. In Proceedings
of the Eleventh International Joint Conference on
Artificial Intelligence (IJCAI-89), volume 1, pages
701-707, Detroit, Michigan. Morgan Kaufmann.
Motzkin, T. S. and Schoenberg, I. J. (1954). The
relaxation method for linear inequalities. Canadian
Journal of Mathematics, 6(3):393^t04.
Mourelatos, A. P. D. (1978). Events, processes, and
states. Linguistics and Philosophy, 2:415-434.
Moussouris, J., Holloway, J., and Greenblatt, R.
(1979). CHEOPS: A chess-oriented processing sys-
tem. In Hayes, J. E., Michie, D., and Mikulich, L. I.,
editors, Machine Intelligence 9, pages 351 -360. El-
lis Horwood, Chichester, England.
Muggleton, S. (1991). Inductive logic program-
ming. New Generation Computing, 8:295-318.
Muggleton, S. (1992). Inductive Logic Program-
ming. Academic Press, New York.

Muggleton, S. and Buntine, W. (1988). Machine
invention of first-order predicates by inverting res-
olution. In MLC-88.

Muggleton, S. and Cao, R (1990). Efficient in-
duction of logic programs. In Proceedings of the
Workshop on Algorithmic Learning Theory, Tokyo.

Muggleton, S., King, R. D., and Sternberg, M. J. E.
(1992). Protein secondary structure prediction using
logic-based machine learning. Protein Engineering,
5(7):647-657.

Mundy, J. and Zisserman, A., editors (1992). Geo-
metric Invariance in Computer Vision. MIT Press,
Cambridge, Massachusetts.

Nagel, T. (1974). What is it like to be a bat? Philo-
sophical Review, 83:435-450.

Nalwa, V. S. (1993). A Guided Tour of Computer
Vision. Addison-Wesley, Reading, Massachusetts.

Nau, D. S. (1980). Pathology on game trees: A sum-
mary of results. In Proceedings of the First An-
nual National Conference on Artificial Intelligence
(AAAI-80), pages 102-104, Stanford, California.
AAAI.

Nau, D. S. (1983). Pathology on game trees revis-
ited, and an alternative to minimaxing. Artificial
Intelligence, 21(1 -2):221-244.

Nau, D. S., Kumar, V., and Kanal, L. N. (1984).
General branch and bound, and its relation to A*
and AO*. Artificial Intelligence, 23:29-58.

Naur, P. (1963). Revised report on the algorithmic
language Algol 60. Communications of the Associ-
ation for Computing Machinery, 6(1): 1-17.

Neal, R. M. (1991). Connectionist learning of belief
networks. Artificial Intelligence, 56:71-113.

Neapolitan, R. E. (1990). Probabilistic Reasoning
in Expert Systems: Theory and Algorithms. Wiley,
New York.

Netto, E. (1901). Lehrbuch der Combinatorik. B.
G. Teubner, Leipzig.

Newell, A. (1982). The knowledge level. Artificial
Intelligence, 18(1):82-127.

Newell, A. (1990). Unified Theories of Cogni-
tion. Harvard University Press, Cambridge, Mas-
sachusetts.



Bibliography

Newell, A. and Ernst, G. (1965). The search for
generality. In Kalenich, W. A., editor, Information
Processing 1965: Proceedings of IFIP Congress
1965, volume 1, pages 17-24. Spartan.

Newell, A. and Shaw, J. C. (1957). Programming
the logic theory machine. In Proceedings of the
1957 Western Joint Computer Conference, pages
230-240. IRE.

Newell, A., Shaw, J. C., and Simon, H. A. (1957).
Empirical explorations with the logic theory ma-
chine. Proceedings of the Western Joint Computer
Conference, 15:218-239.Reprinted in Feigenbaum
and Feldman (1963).

Newell, A., Shaw, J. C., and Simon, H. A. (1958).
Chess playing programs and the problem of com-
plexity. IBM Journal of Research and Development,
4(2):320-335.Reprinted in Feigenbaum and Feld-
man (1963).

Newell, A. and Simon, H. A. (1961). GPS, a pro-
gram that simulates human thought. In Billing,
H., editor, Lernende Automaten, pages 109-124.
R. Oldenbourg, Munich, Germany.Reprinted in
(Feigenbaum and Feldman, 1963, pp. 279-293).

Newell, A. and Simon, H. A. (1972). Human Prob-
lem Solving. Prentice-Hall, Englewood Cliffs, New
Jersey.

Neyman, A. (1985). Bounded complexity justi-
fies cooperation in the finitely repeated prisoners'
dilemma. Economics Letters, 19:227-229.

Nicholson, A. E. and Brady, J. M. (1992). The data
association problem when monitoring robot vehi-
cles using dynamic belief networks. In ECAI 92:
10th European Conference on Artificial Intelligence
Proceedings, pages 689-693, Vienna, Austria. Wi-
ley.

Nilsson, N. J. (1965). Learning Machines: Foun-
dations of Trainable Pattern-Classifying Systems.
McGraw-Hill, New York.

Nilsson, N. J. (1971). Problem-Solving Methods in
Artificial Intelligence. McGraw-Hill, New York.

Nilsson, N. J. (1980). Principles of Artificial Intel-
ligence. Morgan Kaufmann, San Mateo, California.
Nilsson, N. J. (1984). Shakey the robot. Technical
Note 323, SRI International, Menlo Park, Califor-
nia.

Nilsson, N. J. (1990). The Mathematical Founda-
tions of Learning Machines. Morgan Kaufmann,
San Mateo, California.Introduction by Terrence I.
Sejnowski and Halbert White.
Nitta, K., Taki.K., and Ichiyoshi, N. (1992). Exper-
imental parallel inference software. In Fifth Gen-
eration Computer Systems 1992, volume 1, pages
166-190, Tokyo. IOS Press.
Norvig, P. (1988). Multiple simultaneous interpre-
tations of ambiguous sentences. In Proceedings of
the 10th Annual Conference of the Cognitive Sci-
ence Society.
Norvig, P. (1992). Paradigms of Artificial Intel-
ligence Programming: Case Studies in Common
Lisp. Morgan Kaufmann, San Mateo, California.
Nowick, S. M., Dean, M. E., Dill, D. L., and
Horowitz, M. (1993). The design of a high-
performance cache controller: a case study in asyn-
chronous synthesis. Integration: The VLSI Journal,
15(3):241-262.
Nunberg, G. (1979). The non-uniqueness of seman-
tic solutions: Polysemy. Language and Philosophy,
3(2):143-184.
Nussbaum, M. C. (1978). Aristotle's De Motu Ani-
malium. Princeton University Press, Princeton, New
Jersey.
O'Keefe, R. (1990). The Craft of Prolog. MIT Press,
Cambridge, Massachusetts.
Olawsky, D. and Gini, M. (1990). Deferred planning
and sensor use. In Sycara, K. P., editor, Proceed-
ings, DARPA Workshop on Innovative Approaches
to Planning, Scheduling, and Control, San Diego,
California. Defense Advanced Research Projects
Agency (DARPA), Morgan Kaufmann.
Olesen, K. G. (1993). Causal probabilistic networks
with both discrete and continuous variables. IEEE
Transactions on Pattern Analysis and Machine In-
telligence (PAMI), 15(3):275-279.
Oliver, R. M. and Smith, J. Q., editors (1990). Influ-
ence Diagrams, Belief Nets and Decision Analysis.
Wiley, New York.
Olson, C. F. (1994). Time and space efficient pose
clustering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
251-258, Seattle, Washington.
Ortony, A., editor (1979). Metaphor and Thought.
Cambridge University Press, Cambridge.



Bibliography 889

Osherson,D.N.,Stob,M., and Weinstein,S. (1986).
Systems That Learn: An Introduction to Learn-
ing Theory for Cognitive and Computer Scientists.
MIT Press, Cambridge, Massachusetts.
Paige, R. and Henglein, F. (1987). Mechanical
translation of set theoretic problem specifications
into efficient RAM code—a case study. Journal of
Symbolic Computation, 4:207-232.
Palay, A. J. (1985). Searching with Probabilities.
Pitman, London.
Palmieri, G. and Sanna,R. (1960). Automatic prob-
abilistic programmer/analyzer for pattern recogni-
tion. Methodos, 12(48):331-357.
Papadimitriou, C. H. and Yannakakis, M. (1994).
On complexity as bounded rationality. In Sympo-
sium on Theory of Computation (STOC-94).
Parker, D. B. (1985). Learning logic. Techni-
cal Report TR-47, Center for Computational Re-
search in Economics and Management Science,
Massachusetts Institute of Technology, Cambridge,
Massachusetts.
Partridge, D. (1991). A New Guide to Artificial
Intelligence. Ablex, Norwood, New Jersey.
Paterson, M. S. and Wegman, M. N. (1978). Lin-
ear unification. Journal of Computer and System
Sciences, 16:158-167.
Patrick, B. G., Almulla, M., and Newborn, M. M.
(1992). An upper bound on the time complexity
of iterative-deepening-A*. Annals of Mathematics
and Artificial Intelligence, 5(2-4):265-278.
Paul, R. P. (1981). Robot Manipulators: Math-
ematics, Programming, and Control. MIT Press,
Cambridge, Massachusetts.
Peano, G. (1889). Arithmetices principia, nova
methodo exposita. Fratres Bocca, Turin.
Pearl, J. (1982a). Reverend Bayes on inference en-
gines: A distributed hierarchical approach. In Pro-
ceedings of the National Conference on Artificial
Intelligence (AAAI-82), pages 133-136, Pittsburgh,
Pennsylvania. Morgan Kaufmann.
Pearl, J. (1982b). The solution for the branching
factor of the alpha-beta pruning algorithm and its
optimality. Communications of the Association for
Computing Machinery, 25(8):559-564.
Pearl, J. (1984). Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison-
Wesley, Reading, Massachusetts.

Pearl, J. (1986). Fusion, propagation, and struc-
turing in belief networks. Artificial Intelligence,
29:241-288.

Pearl, J. (1987). Evidential reasoning using stochas-
tic simulation of causal models. Artificial Intelli-
gence, 32:247-257.

Pearl, J. (1988). Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, California.

Pednault, E. P. D. (1986). Formulating multiagent,
dynamic-world problems in the classical planning
framework. In Georgeff, M. P. and Lansky, A. L.,
editors, Reasoning about Actions and Plans: Pro-
ceedings of the 1986 Workshop, pages 47-82, Tim-
berline, Oregon. Morgan Kaufmann.

Peirce, C. S. (1870). Description of a notation for
the logic of relatives, resulting from an amplifica-
tion of the conceptions of Boole's calculus of logic.
Memoirs of the American academy of arts and sci-
ences, 9:317-378.

Peirce, C. S. (1883). A theory of probable inference.
Note B. The logic of relatives. In Studies in logic
by members of the Johns Hopkins University, pages
187-203, Boston.

Peirce, C. S. (1902). Logic as semiotic: the the-
ory of signs. Unpublished manuscript; reprinted in
(Buchler, 1955, pp. 98-119).

Penberthy, J. S. and Weld, D. S. (1992). UCPOP:
A sound, complete, partial order planner for ADL.
In Proceedings of KR-92, pages 103-114.

Peng, J. and Williams, R. J. (1993). Efficient learn-
ing and planning within the Dyna framework. Adap-
tive Behavior, 2:437-454.

Penrose, R. (1990). The emperor's new mind: con-
cerning computers, minds, and the laws of physics.
Behavioral and Brain Sciences, 13(4):643-654.

Peot, M. and Smith, D. (1992). Conditional nonlin-
ear planning. In Hendler, J., editor, Proceedings of
the First International Conference on AI Planning
Systems, pages 189-197, College Park, Maryland.
Morgan Kaufmann.

Pereira, F. (1983). Logic for natural language anal-
ysis. Technical Note 275, SRI International.



890 Bibliography

Pereira, F. C. N. and Shieber, S. M. (1987). Pro-
log and Natural-Language Analysis. Center for the
Study of Language and Information (CSLI), Stan-
ford, California.
Pereira, F. C. N. and Warren, D. H. D. (1980). Def-
inite clause grammars for language analysis: a sur-
vey of the formalism and a comparison with aug-
mented transition networks. Artificial Intelligence,
13:231-278.
Peterson, C., Redfield, S., Keeler, J. D., and Hart-
man, E. (1990). An optoelectronic architecture for
multilayer learning in a single photorefractive crys-
tal. Neural Computation, 2:25-34.
Pinker, S. (1989). Learnability and Cognition. MIT
Press, Cambridge, MA.
Place, U. T. (1956). Is consciousness a brain pro-
cess? British Journal of Psychology, 47:44-50.
Plotkin, G. D. (1971). Automatic Methods of Induc-
tive Inference. PhD thesis, Edinburgh University.
Pnueli, A. (1977). The temporal logic of pro-
grams. In Proceedings of the 18th IEEE Symposium
on the Foundations of Computer Science (FOCS-
77), pages 46-57, Providence, Rhode Island. IEEE,
IEEE Computer Society Press.
Pohl, I. (1969). Bi-directional and heuristic search
in path problems. Technical Report 104, SLAC
(Stanford Linear Accelerator Center, Stanford, Cal-
ifornia.
Pohl, I. (1970). First results on the effect of er-
ror in heuristic search. In Meltzer, B. and Michie,
D., editors, Machine Intelligence 5, pages 219-236.
Elsevier/North-Holland, Amsterdam, London, New
York.
Pohl, I. (1971). Bi-directional search. In Meltzer,
B. and Michie, D., editors, Machine Intelligence 6,
pages 127-140. Edinburgh University Press, Edin-
burgh, Scotland.
Pohl, I. (1973). The avoidance of (relative) catas-
trophe, heuristic competence, genuine dynamic
weighting and computational issues in heuristic
problem solving. In Proceedings of the Third Inter-
national Joint Conference on Artificial Intelligence
(UCAI-73), pages 20-23, Stanford, California. IJ-
CAII.
Pohl, I. (1977). Practical and theoretical considera-
tions in heuristic search algorithms. In Elcock, E. W.
and Michie, D., editors, Machine Intelligence 8,
pages 55-72. Ellis Horwood, Chichester, England.

Pollard, C. and Sag, I. A. (1994). Head-Driven
Phrase Structure Grammar. University of Chicago
Press, Chicago, Illinois.

Polya, G. (1957). How to Solve It: A New Aspect
of Mathematical Method. Doubleday, Garden City,
New York, second edition.

Pomerleau, D. A. (1993). Neural Network Per-
ception for Mobile Robot Guidance. Kluwer, Dor-
drecht, The Netherlands.

Popper, K. R. (1959). The Logic of Scientific Dis-
covery. Basic Books, New York.

Popper, K. R. (1962). Conjecture sand Refutations:
The Growth of Scientific Knowledge. Basic Books,
New York.

Post, E. L. (1921). Introduction to a general theory
of elementary propositions. American Journal of
Mathematics, 43:163-185.

Pradhan, M., Provan, G. M., Middleton, B., and
Henrion, M. (1994). Knowledge engineering for
large belief networks. In Proceedings of Uncer-
tainty in Artificial Intelligence, Seattle, Washington.
Morgan Kaufmann.

Pratt, V. R. (1976). Semantical considerations on
Floyd-Hoare logic. In Proceedings of the 17th IEEE
Symposium on the Foundations of Computer Sci-
ence, pages 109-121.

Prawitz, D. (1960). An improved proof procedure.
Theoria, 26:102-139.

Prawitz, D. (1965). Natural Deduction: A Proof
Theoretical Study. Almquist and Wiksell, Stock-
holm.

Prieditis, A. E. (1993). Machine discovery of ef-
fective admissible heuristics. Machine Learning,
12(1-3):! 17-141.

Prinz, D. G. (1952). Robot chess. Research, 5:261-
266.

Prior, A. N. (1967). Past, Present, and Future. Ox-
ford University Press, Oxford.

Pullum, G. K. (1991). The Great Eskimo Vocabulary
Hoax (and Other Irreverent Essays on the Study of
Language). University of Chicago Press, Chicago,
Illinois.



Bibliography 891

Purdom, P. (1983). Search rearrangement back-
tracking and polynomial average time. Artificial
Intelligence, 21:117-133.

Putnam, H. (1960). Minds and machines. In Hook,
S., editor, Dimensions of Mind, pages 138-164.
Macmillan, London.

Putnam, H. (1963). 'Degree of confirmation' and
inductive logic. In Schilpp, P. A., editor, The Phi-
losophy of Rudolf Carnap. Open Court, La Salle,
Illinois.

Putnam, H. (1967). The nature of mental states. In
Capitan, W. H. and Merrill, D. D., editors, Art,
Mind, and Religion, pages 37-48. University of
Pittsburgh Press, Pittsburgh, Pennsylvania.Original
title was "Psychological predicates"; title changed
in later reprints at the request of the author.

Pylyshyn, Z. W. (1974). Minds, machines and phe-
nomenology: Some reflections on Dreyfus' "What
Computers Can't Do". International Journal of
Cognitive Psychology, 3(l):57-77.

Pylyshyn, Z. W. (1984). Computation and Cogni-
tion: Toward a Foundation for Cognitive Science.
MIT Press, Cambridge, Massachusetts.

Quillian, M. R. (1961). A design for an under-
standing machine. Paper presented at a colloquium:
Semantic Problems in Natural Language, King's
College, Cambridge, England.

Quillian, M. R. (1968). Semantic memory. In Min-
sky, M. L., editor, Semantic Information Process-
ing, pages 216-270. MIT Press, Cambridge, Mas-
sachusetts.

Quine, W. V. (1953). Two dogmas of empiricism. In
From a Logical Point of View, pages 20-46. Harper
and Row, New York.

Quine, W. V. (1960). Word and Object. MIT Press,
Cambridge, Massachusetts.
Quine, W. V. (1982). Methods of Logic. Harvard
University Press, Cambridge, Massachusetts, fourth
edition.

Quinlan, E. and O'Brien, S. (1992). Sublanguage:
characteristics and selection guidelines for MT. In
AI and Cognitive Science '92: Proceedings of An-
nual Irish Conference on Artificial Intelligence and
Cognitive Science '92, pages 342-345, Limerick,
Ireland. Springer-Verlag.

Quinlan, J. R. (1979). Discovering rules from large
collections of examples: a case study. In Michie, D.,
editor, Expert Systems in the Microelectronic Age.
Edinburgh University Press, Edinburgh, Scotland.
Quinlan, J. R. (1986). Induction of decision trees.
Machine Learning, 1:81-106.
Quinlan, J. R. (1990). Learning logical definitions
from relations. Machine Learning, 5(3):239-266.
Quinlan, J. R. (1993). Combining instance-based
and model-based learning. In Proceedings of the
Tenth International Conference on Machine Learn-
ing, pages 236-243, Amherst, Massachusetts. Mor-
gan Kaufmann.
Quinlan, J. R. and Cameron-Jones, R. M. (1993).
FOIL: a midterm report. In Brazdil, P. B., editor, Eu-
ropean Conference on Machine Learning Proceed-
ings (ECML-93), pages 3-20, Vienna. Springer-
Verlag.
Quirk, R., Greenbaum, S., Leech, G., and Svartvik,
J. (1985). A Comprehensive Grammar of the En-
glish Language. Longman, New York.
Rabiner, L. R. (1990). A tutorial on hidden Markov
models and selected applications in speech recogni-
tion. Proceedings of'the /£££'.Reprinted in Waibel
and Lee (1990).
Rabiner, L. R. and Juang, B.-H. (1993). Fundamen-
tals of Speech Recognition. Prentice-Hall.
Raibert, M. H. (1986). LeggedRobots That Balance.
MIT Press, Cambridge, Massachusetts.
Ramsey, F. P. (1931). Truth and probability. In
Braithwaite, R. B., editor, The Foundations of Math-
ematics and Other Logical Essays. Harcourt Brace
Jovanovich, New York.
Raphael, B. (1968). SIR: Semantic information
retrieval. In Minsky, M. L., editor, Semantic In-
formation Processing, pages 33-134. MIT Press,
Cambridge, Massachusetts.
Raphael, B. (1976). The Thinking Computer: Mind
Inside Matter. W. H. Freeman, New York.
Ratner, D. and Warmuth, M. (1986). Finding a
shortest solution for the n x n extension of the 15-
puzzle is intractable. In Proceedings of the Fifth Na-
tional Conference on Artificial Intelligence (AAAI-
86), volume 1, pages 168-172, Philadelphia, Penn-
sylvania. Morgan Kaufmann.
Reichardt, J. (1978). Robots: Fact, Fiction, and
Prediction. Penguin Books, New York.



892 Bibliography

Reichenbach, H. (1949). The Theory of Probabil-
ity: An Inquiry into the Logical and Mathematical
Foundations of the Calculus of Probability. Univer-
sity of California Press, Berkeley and Los Angeles,
second edition.
Reif, J. H. (1979). Complexity of the mover's prob-
lem and generalizations. In Proceedings of the 20th
IEEE Symposium on Foundations of Computer Sci-
ence, pages 421-427, San Juan, Puerto Rico. IEEE,
IEEE Computer Society Press.
Reiter, R. (1980). A logic for default reasoning.
Artificial Intelligence, 13(1 -2):81-132.
Reiter, R. (1991). The frame problem in the situa-
tion calculus: a simple solution (sometimes) and a
completeness result for goal regression. In Lifschitz,
V., editor, Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John
McCarthy, pages 359-380. Academic Press, New
York.
Reitman, W. and Wilcox, B. (1979). The structure
and performance of the INTERIM.2 Go program.
In Proceedings of the Sixth International Joint Con-
ference on Artificial Intelligence (IJCAI-79), pages
711-719, Tokyo. IJCAII.
Remus, H. (1962). Simulation of a learning machine
for playing Go. In Proceedings IFIP Congress,
pages 428-432. Elsevier/North-Holland.
Renyi, A. (1970). Probability Theory.
Elsevier/North-Holland, Amsterdam, London, New
York.
Rescher, N. and Urquhart, A. (1971). Temporal
Logic. Springer-Verlag, Berlin.
Resnik, P. (1993). Semantic classes and syntactic
ambiguity. ARPA Workshop on Human Language
Technology.Princeton.
Rich, E. and Knight, K. (1991). Artificial Intelli-
gence. McGraw-Hill, New York, second edition.
Rieger, C. (1976). An organization of knowledge
for problem solving and language comprehension.
Artificial Intelligence, 7:89-127.
Ringle, M. (1979). Philosophical Perspectives in
Artificial Intelligence. Humanities Press, Atlantic
Highlands, New Jersey.
Rissanen, J. (1984). Universal coding, information,
prediction, and estimation. IEEE Transactions on
Information Theory, IT-30(4):629-636.

Ritchie, G. D. and Hanna, F. K. (1984). AM: a case
study in AI methodology. Artificial Intelligence,
23(3):249-268.
Rivest, R. L. (1987). Learning decision lists. Ma-
chine Learning, 2(3):229-246.
Roach, J. W., Sundararajan, R., and Watson, L. T.
(1990). Replacing unification by constraint satis-
faction to improve logic program expressiveness.
Journal of Automated Reasoning, 6(1 ):51-75.
Roberts, D. D. (1973). The Existential Graphs of
Charles S. Peirce. Mouton, The Hague and Paris.
Roberts, L. G. (1963). Machine perception of three-
dimensional solids. Technical Report 315, MIT Lin-
coln Laboratory.Ph.D. dissertation.
Robinson, J. A. (1965). A machine-oriented logic
based on the resolution principle. Journal of the
Association for Computing Machinery, 12:23-41.
Rock, I. (1984). Perception. W. H. Freeman, New
York.
Rorty, R. (1965). Mind-body identity, privacy, and
categories. Review of Metaphysics, 19(l):24-54.
Rosenblatt, F. (1957). The perceptron: A perceiv-
ing and recognizing automaton. Report 85-460-
1, Project PARA, Cornell Aeronautical Laboratory,
Ithaca, New York.
Rosenblatt, F. (1960). On the convergence of re-
inforcement procedures in simple perceptrons. Re-
port VG-1196-G-4, Cornell Aeronautical Labora-
tory, Ithaca, New York.
Rosenblatt, F. (1962). Principles of Neurodynamics.
Spartan, Chicago.
Rosenschein, J. S. and Genesereth, M. R. (1987).
Communication and cooperation among logic-
based agents. In Friesen, O. and Golshani, F,
editors, Sixth Annual International Phoenix Con-
ference on Computers and Communications: 1987
Conference Proceedings, pages 594-600. IEEE
Computer Society Press.
Rosenschein, S. J. (1985). Formal theories of knowl-
edge in AI and robotics. New Generation Comput-
ing, 3(4):345-357.
Rosenthal, D. M., editor (1971). Materialism and
the Mind-Body Problem. Prentice-Hall, Englewood
Cliffs, New Jersey.
Ross, S. M. (1988). A First Course in Probability.
Macmillan, London, third edition.



Bibliography 893

Rothwell, C. A., Zisserman, A., Mundy, J. L., and
Forsyth, D. A. (1993). Efficient model library ac-
cess by projectively invariant indexing functions. In
Proceedings 1992 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,
pages 109-1 14, Champaign, Illinois. IEEE Com-
puter Society Press.
Roussel, P. (1975). Prolog: manual de
reference et d'utilization. Technical report,
Groupe d'lntelligence Artificielle, Universite
d'Aix-Marseille.
Rouveirol, C. and Puget, J.-F. (1989). A simple
and general solution for inverting resolution. In
Proceedings of the European Working Session on
Learning, pages 201-210, Porto, Portugal. Pitman.
Rowe, N. C. (1988). Artificial intelligence through
Prolog. Prentice-Hall, Englewood Cliffs, New Jer-
sey.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error
propagation. In Rumelhart, D. E. and McClelland,
J. L., editors, Parallel Distributed Processing, vol-
ume 1 , chapter 8, pages 3 1 8-362. MIT Press, Cam-
bridge, Massachusetts.
Rumelhart, D. E. and McClelland, J. L., editors
(1986). Parallel Distributed Processing. MIT Press,
Cambridge, Massachusetts.In two volumes.
Ruspini, E. H., Lowrance, J. D., and Strat, T. M.
(1992). Understanding evidential reasoning. In-
ternational Journal of Approximate Reasoning,

Russell, J. G. B. (1990). Is screening for abdominal
aortic aneurysm worthwhile? Clinical Radiology,
41:182-184.
Russell, S. J. (1985). The compleat guide to MRS.
Report STAN-CS-85-1080, Computer Science De-
partment, Stanford University.
Russell, S. J. (1986a). Preliminary steps toward
the automation of induction. In Proceedings of
the Fifth National Conference on Artificial Intelli-
gence (AAAI-86), Philadelphia, Pennsylvania. Mor-
gan Kaufrnann.
Russell, S. J. (1986b). A quantitative analy-
sis of analogy by similarity. In Proceedings of
the Fifth National Conference on Artificial Intelli-
gence (AAAI-86), Philadelphia, Pennsylvania. Mor-
gan Kaufrnann.

Russell, S. J. (1988). Tree-structured bias. In Pro-
ceedings of the Seventh National Conference on
Artificial Intelligence (AAAI-88), volume 2, pages
641-645, St. Paul, Minnesota. Morgan Kaufrnann.
Russell, S. J. (1992). Efficient memory-bounded
search methods. In ECAI92: 10th European Con-
ference on Artificial Intelligence Proceedings, pages
1-5, Vienna, Austria. Wiley.
Russell, S. J., Binder, J., and Roller, D. (1994).
Adaptive probabilistic networks. Technical Re-
port UCB/CSD-94-824, Computer Science Divi-
sion, University of California at Berkeley.

Russell, S. J. and Grosof, B. (1987). A declarative
approach to bias in concept learning. In Proceed-
ings of the Sixth National Conference on Artificial
Intelligence (AAAI-87), Seattle, Washington. Mor-
gan Kaufrnann.
Russell, S. J. and Subramanian, D. (1993). Prov-
ably bounded optimal agents. In Proceedings of the
Thirteenth International Joint Conference on Arti-
ficial Intelligence (IJCAI-93), Chambery, France.
Morgan Kaufmann.
Russell, S. J. and Wefald, E. H. (1989). On optimal
game-tree search using rational meta-reasoning. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI-89),
pages 334-340, Detroit, Michigan. Morgan Kauf-
mann.
Russell, S. J. and Wefald, E. H. (1991). Do the Right
Thing: Studies in Limited Rationality. MIT Press,
Cambridge, Massachusetts.
Ryder, J. L. (1971). Heuristic analysis of large trees
as generated in the game of Go. Memo AIM-155,
Stanford Artificial Intelligence Project, Computer
Science Department, Stanford University, Stanford,
California.
Sacerdoti, E. D. (1974). Planning in a hierarchy of
abstraction spaces. Artificial Intelligence, 5(2): 115-
135.

Sacerdoti, E. D. (1975). The nonlinear nature of
plans. In Proceedings of the Fourth International
Joint Conference on Artificial Intelligence (IJCAI-
75), pages 206-214, Tbilisi, Georgia. IJCAII.
Sacerdoti, E. D. (1977). A Structure for Plans
and Behavior. Elsevier/North-Holland, Amster-
dam, London, New York.



894 Bibliography

Sacerdoti, E. D., Pikes, R. E.. Reboh, R., Sagalow-
icz, D., Waldinger, R, J., and Wilber, B. M. (1976).
QLISP—a language for the interactive development
of complex systems. In Proceedings of the AFIPS
National Computer Conference, pages 349-356.

Sachs, J. S. (1967). Recognition memory for syn-
tactic and semantic aspects of connected discourse.
Perception and Psychophysics, 2:437—442.
Sacks, E. and Joskowicz, L. (1993). Automated
modeling and kinematic simulation of mechanisms.
Computer Aided Design, 25(2): 106-118.

Sager, N. (1981). Natural Language Information
Processing: A Computer Grammar of English and
Its Applications. Addison-Wesley, Reading, Mas-
sachusetts.
Salton, G. (1989). Automatic Text Processing.
Addison-Wesley.
Sammut, C., Hurst, S., Kedzier, D., and Michie,
D. (1992). Learning to fly. In Proceedings of the
Ninth International Conference on Machine Learn-
ing, Aberdeen. Morgan Kaufmann.
Samuel, A. L. (1959). Some studies in machine
learning using the game of checkers. IBM Journal
of Research and Development, 3(3):210-229.
Samuel, A. L. (1967). Some studies in machine
learning using the game of checkers II—Recent
progress. IBM Journal of Research and Develop-
ment, 11(6):601-617.
Samuelsson, C. and Rayner, M. (1991). Quantita-
tive evaluation of explanation-based learning as an
optimization tool for a large-scale natural language
system. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (IJCAI-
91), pages 609-615, Sydney. Morgan Kaufmann.
Saraswat, V. A. (1993). Concurrent constraint pro-
gramming. MIT Press, Cambridge, Massachusetts.
Savage, L. J. (1954). The Foundations of Statistics.
Wiley, New York.

Sayre, K. (1993). Three more flaws in the computa-
tional model. Paper presented at the APA (Central
Division) Annual Conference, Chicago, Illinois.
Schabes, Y., Abeille, A., and Joshi, A. K. (1988).
Parsing strategies with 'lexicalized' grammars: ap-
plication to tree adjoining grammars. In Vargha, D.,
editor, Proceedings of the 12th International Con-
ference on Computational Linguistics (COLING),

volume 2, pages 578-583, Budapest, Hungary. John
von Neumann Society for Computer Science.
Schaeffer, J., Culberson, J., Treloar, N., and Knight,
B. (1992). A world championship caliber checkers
program. Artificial Intelligence, 53(2-3):273-289.
Schalkoff, R. I. (1990). Artificial Intelligence: An
Engineering Approach. McGraw-Hill, New York.
Schank, R. C. and Abelson, R. P. (1977). Scripts,
Plans, Goals, and Understanding. Lawrence Erl-
baum Associates, Potomac, Maryland.
Schank, R. C. and Riesbeck, C. K. (1981). In-
side Computer Understanding: Five Programs Plus
Miniatures. Lawrence Erlbaum Associates, Po-
tomac, Maryland.
Scherl, R. B. andLevesque,H. J. (1993). The frame
problem and knowledge-producing actions. In Pro-
ceedings of the Eleventh National Conference on
Artificial Intelligence (AAAI-93), pages 689-695,
Washington, D.C. AAAI Press.
Schmolze, J. G. and Lipkis, T. A. (1983). Classi-
fication in the KL-ONE representation system. In
Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence (IJCAI-83), Karl-
sruhe, Germany. Morgan Kaufmann.
Schofield, P. D. A. (1967). Complete solution of
the eight puzzle. In Dale, E. and Michie, D.,
editors, Machine Intelligence 2, pages 125-133.
Elsevier/North-Holland, Amsterdam, London, New
York.
Schonfinkel, M. (1924). Uber die Bausteine der
mathematischen Logik. Mathematische Annalen,
92:305-316.Translated into English and repub-
lished as "On the building blocks of mathematical
logic" in (van Heijenoort, 1967, pp. 355-366).
Schoppers, M. J. (1987). Universal plans for reac-
tive robots in unpredictable environments. In Pro-
ceedings of the Tenth International Joint Conference
on Artificial Intelligence (IJCAI-87), pages 1039-
1046, Milan, Italy. Morgan Kaufmann.
Schoppers, M. J. (1989). In defense of reaction
plans as caches. AIMagazine, 10(4):51-60.
Schroder, E. (1877). Der Operationskreis des
Logikkalkiils. B. G. Teubner, Leipzig.
Schwuttke, U. M. (1992). Artificial intelligence for
real-time monitoring and control. In Proceedings
of the IEEE International Symposium on Industrial
Electronics, volume 1, pages 290-294, Xian, China.



Bibliography 895

Scriven, M. (1953). The mechanical concept of
mind. Mind, 62:230-240.
Searle, J. R. (1969). Speech Acts: An Essay in
the Philosophy of Language. Cambridge University
Press, Cambridge.
Searle, J. R. (1980). Minds, brains, and programs.
Behavioral and Brain Sciences, 3:417-457.
Searle, J. R. (1984). Minds, Brains and Sci-
ence. Harvard University Press, Cambridge, Mas-
sachusetts.
Searle, J. R. (1992). The Rediscovery of the Mind.
MIT Press, Cambridge, Massachusetts.
Sejnowski, T. J. and Rosenberg, C. R. (1987). Par-
allel networks that learn to pronounce English text.
Complex Systems, 1:145-168.
Selfridge, O. G. (1959). Pandemonium: A paradigm
for learning. In Blake, D. V. and Uttley, A. M.,
editors, Proceedings of the Symposium on Mecha-
nization of Thought Processes, pages 511 -529, Ted-
dington, United Kingdom. National Physical Labo-
ratory, Her Majesty's Stationery Office.
Selfridge, O. G. and Neisser, U. (1960). Pat-
tern recognition by machine. Scientific Ameri-
can, 203:60-68.Reprinted in FeigenbaumandFeld-
man (1963).
Sells, P. (1985). Lectures on Contemporary Syn-
tactic Theories: An Introduction to Government-
Binding Theory, Generalized Phrase Structure
Grammar, and Lexical-Functional Grammar. Cen-
ter for the Study of Language and Information
(CSLI), Stanford, California.
Selman, B., Levesque, H., and Mitchell, D. (1992).
A new method for solving hard satisfiability prob-
lems. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence (AAAI-92), pages
440^46, San Jose, California. AAAI Press.
Selman, B. and Levesque, H. J. (1993). The com-
plexity of path-based defeasible inheritance. Artifi-
cial Intelligence, 62(2):303-339.
Shachter, R. D. (1986). Evaluating influence dia-
grams. Operations Research, 34:871-882.
Shachter, R. D., D'Ambrosio, B., and Del Favero,
B. A. (1990). Symbolic probabilistic infer-
ence in belief networks. In Proceedings of the
Eighth National Conference on Artificial Intelli-
gence (AAAI-90), pages 126-131, Boston, Mas-
sachusetts. MIT Press.

Shachter, R. D. and Peot, M. A. (1989). Simula-
tion approaches to general probabilistic inference
on belief networks. In Proceedings of the Fifth
Conference on Uncertainty in Artificial Intelligence
(UAI-89), Windsor, Ontario. Morgan Kaufmann.

Shachter, R. S. and Kenley, C. R. (1989). Gaus-
sian influence diagrams. Management Science,
35(5):527-550.

Shafer, G. (1976). A Mathematical Theory of Evi-
dence. Princeton University Press, Princeton, New
Jersey.

Shafer, G. and Pearl, J., editors (1990). Readings
in Uncertain Reasoning. Morgan Kaufmann, San
Mateo, California.

Shankar, N. (1986). Proof-Checking Metamathe-
matics. PhD thesis, Computer Science Department,
University of Texas at Austin.

Shannon, C. E. (1950). Programming a computer for
playing chess. Philosophical Magazine, 41 (4):256-
275.

Shannon, C. E. and Weaver, W. (1949). The Math-
ematical Theory of Communication. University of
Illinois Press, Urbana.

Shapiro, E. (1981). An algorithm that infers theo-
ries from facts. In Proceedings of the Seventh Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-8J), Vancouver, British Columbia. Morgan
Kaufmann.

Shapiro, E. Y. (1983). A subset of Concurrent Pro-
log and its interpreter. ICOT Technical Report TR-
003, Institute for New Generation Computing Tech-
nology, Tokyo.

Shapiro, S. C. (1979). The SNePS semantic net-
work processing system. In Findler, N. V., edi-
tor, Associative Networks: Representation and Use
of Knowledge by Computers, pages 179-203. Aca-
demic Press, New York.

Shapiro, S. C. (1992). Encyclopedia of Artificial
Intelligence. Wiley, New York, second edition.Two
volumes.

Sharpies, M., Hogg, D., Hutchinson, C., Torrance,
S., and Young, D. (1989). Computers and Thought:
A Practical Introduction to Artificial Intelligence.
MIT Press, Cambridge, Massachusetts.



896 Bibliography

Shavlik, J. and Dietterich, T., editors (1990). Read-
ings in Machine Learning. Morgan Kaufmann, San
Mateo, California.
Shenoy, P. P. (1989). A valuation-based language
for expert systems. International Journal of Ap-
proximate Reasoning, 3(5):383-411.
Shieber, S. M. (1986). An Introduction to
Unification-Based Approaches to Grammar. Center
for the Study of Language and Information (CSLI),
Stanford, California.

Shirayanagi, K. (1990). Knowledge representation
and its refinement in Go programs. In Marsland,
A. T. and Schaeffer, J., editors, Computers, Chess,
and Cognition, pages 287-300. Springer-Verlag,
Berlin.

Shoham, Y. (1987). Temporal logics in AI: seman-
tical and ontological considerations. Artificial In-
telligence,33(1)39-104.
Shoham, Y. (1988). Reasoning about Change: Time
and Causation from the Standpoint of Artificial In-
telligence. MIT Press, Cambridge, Massachusetts.
Shoham, Y. and McDermott, D. (1988). Problems in
formal temporal reasoning. Artificial Intelligence,
36(1):49-61.
Shortliffe, E. H. (1976). Computer-Based Medical
Consultations: MYCIN. Elsevier/North-Holland,
Amsterdam, London, New York.
Shwe, M. and Cooper, G. (1991). An empirical anal-
ysis of likelihood-weighting simulation on a large,
multiply connected medical belief network. Com-
puters and Biomedical Research, 1991 (5):453-475.
Siekmann, J. and Wrightson, G., editors (1983).
Automation of Reasoning. Springer-Verlag,
Berlin.Two volumes.

Sietsma, J. and Dow, R. J. F. (1988). Neural net
pruning—why and how. In IEEE International Con-
ference on Neural Networks, pages 325-333, San
Diego. IEEE.
Siklossy, L. and Dreussi, J. (1973). An efficient
robot planner which generates its own procedures.
In Proceedings of the Third International Joint Con-
ference on Artificial Intelligence (IJCAI-73), pages
423-430, Stanford, California. IJCAII.
Simmons, R., Krotkov, E., Whittaker, W., and Al-
brecht, B. (1992). Progress towards robotic explo-
ration of extreme terrain. Applied Intelligence: The

International Journal of Artificial Intelligence, Neu-
ral Networks, and Complex Problem-Solving Tech-
nologies, 2(2): 163-180.
Simon, H. A. (1958). Rational choice and the struc-
ture of the environment. In Models of Bounded
Rationality, volume 2. MIT Press, Cambridge, Mas-
sachusetts.

Simon, H. A. (1963). Experiments with a heuristic
compiler. Journal of the Associationfor Computing
Machinery, 10:493-506.

Simon, H. A. (1981). The Sciences of the Artificial.
MIT Press, Cambridge, Massachusetts, second edi-
tion.
Simon, H. A. and Newell, A. (1958). Heuristic
problem solving: The next advance in operations
research. Operations Research, 6:l-10.Basedon a
talk given in 1957.
Simon, H. A. and Newell, A. (1961). Computer
simulation of human thinking and problem solving.
Datamation, pages 35-37.

Siskind, J. M. (1994). Lexical acquisition in the
presence of noise and homonymy. In Proceedings
ofAAAI-94.
Skinner, B. F. (1953). Science and Human Behav-
ior. Macmillan, London.
Skolem, T. (1920). Logisch-kombinatorische Un-
tersuchungen iiber die Erfiillbarkeit oder Beweis-
barkeit mathematischer Satze nebst einem Theo-
reme iiber die dichte Mengen. Videnskapsselskapets
skrifter, I. Matematisk-naturvidenskabeligklasse,4.

Skolem, T. (1928). Uber die mathematische Logik.
Norsk maternatisk tidsskrift, 10:125-142.

Slagle, J. R. (1963a). A heuristic program that
solves symbolic integration problems in freshman
calculus. Journal of the Associationfor Comput-
ing Machinery, 10(4).Reprinted in Feigenbaum and
Feldman(1963).

Slagle, J. R. (1963b). Game trees, m & n minimax-
ing, and the m & n alpha-beta procedure. Artificial
Intelligence Group Report 3, University of Cali-
fornia, Lawrence Radiation Laboratory, Livermore,
California.
Slagle, J. R. (1971). Artificial Intelligence: The
Heuristic Programming Approach. McGraw-Hill,
New York.



Bibliography 897

Slagle, J. R. and Dixon, J. K. (1969). Experiments
with some programs that search game trees. Jour-
nal of the Association for Computing Machinery,
16(2): 189-207.
Slate, D. J. and Atkin, L. R. (1977). CHESS 4.5—
The Northwestern University chess program. In
Frey, P. W., editor, Chess Skill in Man and Machine,
pages 82-118. Springer-Verlag, Berlin.
Slater, E. (1950). Statistics for the chess computer
and the factor of mobility. In Symposium on Infor-
mation Theory, pages 150-152, London. Ministry
of Supply.
Slotnan, A. (1978). The Computer Revolution in
Philosophy. Harvester Press, Hassocks, Sussex.
Sloman, A. (1985). POPLOG, a multi-purpose
multi-language program development environment.
In Artificial Intelligence—Industrial and Commer-
cial Applications. First International Conference,
pages 45-63, London. Queensdale.
Smallwood, R. D. and Sondik, E. J. (1973). The
optimal control of partially observable Markov pro-
cesses over a finite horizon. Operations Research,
21:1071-1088.
Smith, D. E. (1989). Controlling backward infer-
ence. Artificial Intelligence, 39(2): 145-208.
Smith, D. E., Genesereth, M. R., and Ginsberg,
M. L. (1986). Controlling recursive inference. Ar-
tificial Intelligence, 30(3):343-389.
Smith, D. R. (1990). KIDS: a semiautomatic pro-
gram development system. IEEE Transactions on
Software Engineering, 16(9):1024-1043.
Soderland, S. and Weld, D. (1991). Evaluating non-
linear planning. Technical Report TR-91-02-03,
University of Washington Department of Computer
Science and Engineering, Seattle, Washington.
Solomonoff, R. J. (1964). A formal theory of in-
ductive inference. Information and Control, 1:1-22,
224-254.
Sondik, E. J. (1971). The Optimal Control of Par-
tially Observable Markov Decision Processes. PhD
thesis, Stanford University, Stanford, California.
Spiegelhalter, D., Dawid, P., Lauritzen, S., and
Cowell, R. (1993). Bayesian analysis in expert sys-
tems. Statistical Science, 8:219-282.
Spiegelhalter, D. J. (1986). Probabilistic reason-
ing in predictive expert systems. In Kanal, L. N.

and Lemmer, J. E, editors, Uncertainty in Artificial
Intelligence, pages 47-67. Elsevier/North-Holland,
Amsterdam, London, New York.
Spirtes, P., Glymour, C, and Schemes, R. (1993).
Causation, prediction, and search. Springer-Verlag,
Berlin.
Srivas, M. and Bickford, M. (1990). Formal veri-
fication of a pipelined microprocessor. IEEE Soft-
ware, 7(5):52-64.
Steele, G. (1990). Common LISP: The Language.
Digital Press, Bedford, Massachusetts, second edi-
tion.
Stefik, M. J. (198la). Planning and meta-planning.
Artificial Intelligence, 16:141-169.
Stefik, M. J. (1981b). Planning with constraints.
Artificial Intelligence, 16:111-140.
Sterling, L. and Shapiro, E. (1986). The Art of Pro-
log. MIT Press, Cambridge, Massachusetts.
Stevens, K. A. (1981). The information content of
texture gradients. Biological Cybernetics, 42:95-
105.
Stickel, M. E. (1985). Automated deduction by the-
ory resolution. Journal of Automated Reasoning,
l(4):333-355.
Stickel, M. E. (1988). A Prolog Technology Theo-
rem Prover: implementation by an extended Prolog
compiler. Journal of Automated Reasoning, 4:353-
380.
Stockman, G. (1979). A minimax algorithm better
than alpha-beta? Artificial Intelligence, 12(2): 179-
196.
Stolcke, A. (1993). An efficient probabilistic
context-free parsing algorithm that computes prefix
probabilities. Report TR-93-065, ICSI, Berkeley.
Stone, H. S. and Stone, J. (1986). Efficient search
techniques: an empirical study of the n-queens
problem. Technical Report RC 12057, IBM Thomas
J. Watson Research Center, Yorktown Heights, New
York.
Stonebraker, M. (1992). The integration of rule sys-
tems and database systems. IEEE Transactions on
Knowledge and Data Engineering, 4(5):415-423.
Strachey, C. S. (1952). Logical or non-mathematical
programmes. In Proceedings of the Association for
Computing Machinery (ACM), pages 46—49, On-
tario, Canada.



898 Bibliography

Subramanian,D. (1993). Artificial intelligence and
conceptual design. In Proceedings of the Thir-
teenth International Joint Conference on Artificial
Intelligence (IJCAI-93), pages 800-809, Chambery,
France. Morgan Kaufmann.

Subramanian, D. and Feldman, R. (1990). The util-
ity of EBL in recursive domain theories. In Proceed-
ings of the Eighth National Conference on Artificial
Intelligence (AAAI-90), volume 2, pages 942-949,
Boston, Massachusetts. MIT Press.

Subramanian, D. and Wang, E. (1994). Constraint-
based kinematic synthesis. In Proceedings of the
International Conference on Qualitative Reasoning.
AAAI Press.

Sugihara, K. (1984). A necessary and sufficient
condition for a picture to represent a polyhedral
scene. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 6(5):578-586.
Sussman, G. J. (1975). A Computer Model of Skill
Acquisition. Elsevier/North-Holland, Amsterdam,
London, New York.

Sussman, G. J. and McDermott, D. V. (1972). From
PLANNER to CONNIVER—a genetic approach.
In Proceedings of the 1972 AFIPS Joint Computer
Conference, pages 1171-1179.

Sussman, G. J. and Winograd, T. (1970). MICRO-
PLANNER Reference Manual. AI Memo 203, MIT
AI Lab, Cambridge, Massachusetts.

Sutton, R. S. (1988). Learning to predict by the
methods of temporal differences. Machine Learn-
ing, 3:9-44.

Swade, D. D. (1993). Redeeming Charles Bab-
bage's mechanical computer. Scientific American,
268(2):86-91.

Tadepalli, P. (1993). Learning from queries and ex-
amples with tree-structured bias. In Proceedings
of the Tenth International Conference on Machine
Learning, Amherst, Massachusetts. Morgan Kauf-
mann.

Tail, P. G. (1880). Note on the theory of the "15
puzzle". Proceedings of the Royal Society of Edin-
burgh, 10:664-665.

Taki, K. (1992). Parallel inference machine PIM.
In Fifth Generation Computer Systems 1992, vol-
ume 1, pages 50-72, Tokyo. IOS Press.

Tambe, M., Newell, A., and Rosenbloom, P. S.
(1990). The problem of expensive chunks and
its solution by restricting expressiveness. Machine
Learning, 5:299-348.
Tanimoto, S. (1990). The Elements of Artificial In-
telligence Using Common LISP. Computer Science
Press, Rockville, Maryland.
Tarjan, R. E. (1983). Data Structures and Network
Algorithms. CBMS-NSF Regional Conference Se-
ries in Applied Mathematics. SIAM (Society for
Industrial and Applied Mathematics, Philadelphia,
Pennsylvania.
Tarski, A. (1935). Die Wahrheitsbegriff in den for-
malisierten Sprachen. Studio Philosophica, 1:261-
405.
Tarski, A. (1956). Logic, Semantics, Metamathe-
matics: Papers from 1923 to 1938. Oxford Univer-
sity Press, Oxford.
Tash, J. K. and Russell, S. J. (1994). Control strate-
gies for a stochastic planner. In Proceedings of
the Twelfth National Conference on Artificial In-
telligence (AAA1-94), Seattle, Washington. AAAI
Press.
Tate, A. (1975a). Interacting goals and their use. In
Proceedings of the Fourth International Joint Con-
ference on Artificial Intelligence (IJCAI-75), pages
215-218, Tbilisi, Georgia. IJCAII.
Tate, A. (1975b). Using Goal Structure to Direct
Search in a Problem Solver. PhD thesis, University
of Edinburgh, Edinburgh, Scotland.
Tate, A. (1977). Generating project networks. In
Proceedings of the Fifth International Joint Con-
ference on Artificial Intelligence (IJCAI-77), pages
888-893, Cambridge, Massachusetts. IJCAII.
Tate, A. and Whiter, A. M. (1984). Planning with
multiple resource constraints and an application to
a naval planning problem. In Proceedings of the
First Conference on AI Applications, pages 410-
416, Denver, Colorado.
Tatman, J. A. and Shachter, R. D. (1990). Dy-
namic programming and influence diagrams. IEEE
Transactions on Systems, Man and Cybernetics,
20(2):365-379.
Taylor, R. J. (1989). Review of ernst (1961). In
Khatib, O., Craig, J. J., and Lozano-Perez, T.,
editors, The Robotics Review ], pages 121-127.
MIT Press, Cambridge, Massachusetts.



Bibliography 899

Tenenberg, J. (1988). Abstraction in planning.
Technical Report TR250, University of Rochester,
Rochester, New York.
Tennant, H. R., Ross, K. M., Saenz, R. M., and
Thompson, C. W. (1983). Menu-based natural lan-
guage understanding. In 21st Annual Meeting of the
Association for Computational Linguistics: Pro-
ceedings of the Conference, pages 151-158, Cam-
bridge, Massachusetts.
Tesauro, G. (1992). Practical issues in temporal dif-
ference learning. Machine Learning, 8(3-4):257-
277.
Tesauro, G. and Sejnowski, T. J. (1989). A parallel
network that learns to play backgammon. Artificial
Intelligence, 39(3):357-390.

Thomason, R. H., editor (1974). Formal Philoso-
phy: Selected Papers of Richard Montague. Yale
University Press, New Haven, Connecticut.
Thorne, J., Bratley, P., and Dewar, H. (1968). The
syntactic analysis of English by machine. In Michie,
D., editor, Machine Intelligence 3, pages 281-310.
Elsevier/North-Holland, Amsterdam, London, New
York.
Todd, B. S., Stamper, R., and Macpherson, P.
(1993). A probabilistic rule-based expert system.
International Journal of Bio-Medical Computing,
33(2):129-148.
Tomasi, C. and Kanade, T. (1992). Shape and mo-
tion from image streams under orthography: a fac-
torization method. International Journal of Com-
puter Vision, 9:137-154.
Touretzky, D. S. (1986). The Mathematics of In-
heritance Systems. Pitman and Morgan Kaufmann,
London and San Mateo, California.
Touretzky, D. S., editor (1989). Advances in Neural
Information Processing Systems 1. Morgan Kauf-
mann, San Mateo, California.
Turing, A. M. (1936). On computable numbers, with
an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 2nd
.series, 42:230-265 .Correction published in Vol. 43,
pages 544-546.
Turing, A. M. (1950). Computing machinery and
intelligence. Mind, 59:433—460.
Turing, A. M., Strachey, C., Sates, M. A., and
Bowden, B. V. (1953). Digital computers applied

to games. In Bowden, B. V., editor, Faster Than
Thought, pages 286-310. Pitman, London.Turing is
believed to be sole author of the section of this paper
that deals with chess.

Tversky, A. and Kahneman, D. (1982). Causal
schemata in judgements under uncertainty. In Kah-
neman, D., Slovic, P., and Tversky, A., editors,
Judgement Under Uncertainty: Heuristics and Bi-
ases. Cambridge University Press, Cambridge.

Ueda, K. (1985). Guarded Horn clauses. ICOT
Technical Report TR-103, Institute for New Gener-
ation Computing Technology, Tokyo.

Ullman, J. D. (1989). Principles of Database and
Knowledge-Base By stems. Computer Science Press,
Rockville, Maryland.

Ullman, S. (1979). The Interpretation of Visual Mo-
tion. MIT Press, Cambridge, Massachusetts.

Valiant, L. (1984). A theory of the learnable. Com-
munications of the Association for Computing Ma-
chinery, 27:1134-1142.

van Benthem, J. (1983). The Logic of Time. D. Rei-
del, Dordrecht, The Netherlands.

van Benthem, J. (1985). A Manual of Intensional
Logic. Center for the Study of Language and Infor-
mation (CSLI), Stanford, California.

van Harmelen, F. and Bundy, A. (1988).
Explanation-based generalisation = partial evalua-
tion. Artificial Intelligence, 36(3):401-412.

van Heijenoort, J., editor (1967). From Frege to
Godel: A Source Book in Mathematical Logic,
1879-1931. Harvard University Press, Cambridge,
Massachusetts.

Van Roy, P. L. (1990). Can logic programming
execute as fast as imperative programming? Re-
port UCB/CSD 90/600, Computer Science Divi-
sion, University of California, Berkeley.Ph.D. dis-
sertation.

VanLehn, K. (1978). Determining the scope of En-
glish quantifiers. Technical Report AI-TR-483, MIT
AI Lab.

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On
the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability
and Its Applications, 16:264-280.



900 Bibliography

Vasconcellos, M. and Leon, M. (1985). SPANAM
and ENGSPAN: machine translation at the Pan
American Health Organization. Computational Lin-
guistics, ll(2-3):122-136.
Veloso, M. and Carbonell, J. (1993). Derivational
analogy in PRODIGY: automating case acquisition,
storage, and utilization. Machine Learning, 10:249-
278.
Vendler, Z. (1967). Linguistics and Philosophy.
Cornell University Press, Ithaca, New York.
Vendler, Z. (1968). Adjectives andNominalizations.
Mouton, The Hague and Paris.
Vere, S. A. (1983). Planning in time: windows and
durations for activities and goals. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(PAMI), 5:246-267.
von Mises, R. (1928). Wahrscheinlichkeit, Statistik
und Wahrheit. J. Springer, Berlin.Translated into
English as von Mises (1957).
von Mises, R. (1957). Probability, Statistics, and
Truth. Alien and Unwin, London.
Von Neumann, J. (1958). The Computer and the
Brain. Yale University Press, New Haven, Con-
necticut.
Von Neumann, J. and Morgenstern, O. (1944). The-
ory of games and economic behavior. Princeton
University Press, Princeton, New Jersey, first edi-
tion.
von Winterfeldt, D. and Edwards, W. (1986). Deci-
sion Analysis and Behavioral Research. Cambridge
University Press, Cambridge.
Voorhees, E. M. (1993). Using WordNet to dis-
ambiguate word senses for text retrieval. In Six-
teenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 171-80, Pittsburgh, Pennsylvania.
Association for Computing Machinery.
Waibel, A. and Lee, K.-F. (1990). Readings in
Speech Recognition. Morgan Kaufmann, San Ma-
teo, California.
Waldinger, R. (1975). Achieving several goals si-
multaneously. In Elcock, E. W. and Michie, D.,
editors, Machine Intelligence 8, pages 94-138. El-
lis Horwood, Chichester, England.
Waltz, D. (1975). Understanding line drawings of
scenes with shadows. In Winston, P. H., editor,

The Psychology of Computer Vision. McGraw-Hill,
New York.

Wand, M. (1980). Continuation-based program
transformation strategies. Journal of the ACM,
27(1):174-180.
Wang, H. (1960). Toward mechanical mathematics.
IBMJournal of'Researchand Development, 4:2-22.
Wanner, E. and Gleitman, L., editors (1982). Lan-
guage Acquisition: The State of the Art. Cambridge
University Press.
Warren, D. H. D. (1974). WARPLAN: a system
for generating plans. Department of Computational
Logic Memo 76, University of Edinburgh, Edin-
burgh, Scotland.
Warren, D. H. D. (1976). Generating conditional
plans and programs. In Proceedings of the AISB
Summer Conference, pages 344-354.
Warren, D. H. D. (1983). An abstract Prolog in-
struction set. Technical Note 309, SRI International,
Menlo Park, California.
Warren, D. H. D., Pereira, L. M., and Pereira, F.
(1977). PROLOG: The language and its imple-
mentation compared with LISP. SIGPLANNotices,
12(8):109-115.
Wasserman, P. D. and Oetzel, R. M., editors (1990).
NeuralSource: The Bibliographic Guide to Artifi-
cial Neural Networks. Van Nostrand Reinhold, New
York.
Watkins, C. J. (1989). Models of Delayed Reinforce-
ment Learning. PhD thesis, Psychology Depart-
ment, Cambridge University, Cambridge, United
Kingdom.
Watson, C. S. (1991). Speech-perception aids for
hearing-impaired people: current status and needed
research. Journal of the Acoustical Society of Amer-
ica, 90(2):637-685.
Webber, B. L. (1983). So what can we talk about
now. In Brady, M. and Berwick, R., editors, Compu-
tational Models of Discourse. MIT Press.Reprinted
inGroszefa/. (1986).
Webber, B. L. (1988). Tense as discourse anaphora.
Computational Linguistics, 14(2):61-73.
Webber, B. L. and Nilsson, N. J. (1981). Readings
in Artificial Intelligence. Morgan Kaufmann, San
Mateo, California.



Bibliography 901

Weiss, S. M. and Kulikowski, C. A. (1991). Com-
puter Systems That Learn: Classification and Pre-
diction Methods from Statistics, Neural Nets, Ma-
chine Learning, and Expert Systems. Morgan Kauf-
mann, San Mateo, California.
Weizenbaum, J. (1965). ELIZA—a computer pro-
gram for the study of natural language communica-
tion between man and machine. Communications of
the Associationfor Computing Machinery, 9( 1 ):36-
45.

Weizenbaum, J. (1976). Computer Power and Hu-
man Reason. W. H. Freeman, New York.
Weld, D. and Etzioni, O. (1994). The first law
of robotics: A call to arms. In Proceedings of
the Twelfth National Conference on Artificial In-
telligence (AAAI-94), Seattle, Washington. AAAI
Press.

Weld, D. S. (1994). An introduction to least com-
mitment planning. AI Magazine.To appear.

Weld, D. S. and de Kleer, J. (1990). Readings
in Qualitative Reasoning about Physical Systems.
Morgan Kaufmann, San Mateo, California.

Wellman, M. and Doyle, J. (1992). Modular utility
representation for decision-theoretic planning. In
Proceedings, First International Conference on AI
Planning Systems, College Park, Maryland. Morgan
Kaufmann.

Wellman, M. P. (1985). Reasoning about preference
models. Technical Report MIT/LCS/TR-340, Lab-
oratory for Computer Science, MIT, Cambridge,
Massachusetts.M.S. thesis.

Wellman, M. P. (1988). Formulation of Trade-
offs in Planning under Uncertainty. PhD thesis,
Massachusetts Institute of Technology, Cambridge,
Massachusetts.
Wellman, M. P. (1990). Fundamental concepts of
qualitative probabilistic networks. Artificial Intelli-
gence, 44(3):257-3Q3.
Werbos, P. (1974). Beyond Regression: New Tools
for Prediction and Analysis in the Behavioral Sci-
ences. PhD thesis, Harvard University, Cambridge,
Massachusetts.

Wheatstone, C. (1838). On some remarkable, and
hitherto unresolved, phenomena of binocular vision.
Philosophical Transactions of the Royal Society of
London, 2:37'1-394.

Whitehead, A. N. (1911). An Introduction to Math-
ematics. Williams and Northgate, London.
Whitehead, A. N. and Russell, B. (1910). Principia
Mathematica. Cambridge University Press, Cam-
bridge.

Whorf, B. (1956). Language, Thought, andReality.
MIT Press, Cambridge, Massachusetts.

Widrow, B. (1962). Generalization and informa-
tion storage in networks of adaline "neurons". In
Yovits, M. C., Jacobi, G. T., and Goldstein, G. D.,
editors, Self-Organizing Systems 1962, pages 435-
461, Chicago, Illinois. Spartan.
Widrow, B. and Hoff, M. E. (1960). Adaptive
switching circuits. In 7960 IRE WESCON Con-
vention Record, pages 96-104, New York.
Wiener, N. (1942). The extrapolation, interpolation,
and smoothing of stationary time series. OSRD
370, Report to the Services 19, Research Project
DIC-6037, MIT.
Wiener, N. (1948). Cybernetics. Wiley, New York.

Wilensky, R. (1983). Planning and Understanding.
Addison-Wesley.
Wilensky, R. (1990). Computability, conscious-
ness, and algorithms. Behavioral and Brain Sci-
ences, 13(4):690-691 .Peer commentary on Pen-
rose (1990).
Wilkins, D. E. (1980). Using patterns and plans in
chess. Artificial Intelligence, 14(2): 165-203.

Wilkins, D. E. (1986). Hierarchical planning: def-
inition and implementation. In ECAI '86: Seventh
European Conference on Artificial Intelligence, vol-
ume 1, pages 466^178, Brighton, United Kingdom.
Wilkins, D. E. (1988). Practical Planning: Extend-
ing the AI Planning Paradigm. Morgan Kaufmann,
San Mateo, California.

Wilkins, D. E. (1990). Can AI planners solve
practical problems? Computational Intelligence,
6(4):232-246.
Wilks, Y. (1975). An intelligent analyzer and under-
stander of English. Communications of the ACM,
18(5):264-274.Reprintedin Groszefa/. (1986).
Wilson, R. H. and Schweikard, A. (1992). Assem-
bling polyhedra with single translations. In IEEE
Conference on Robotics and Automation, pages
2392-2397.



902 Bibliography

Winograd, S. and Cowan, J. D. (1963). Reliable
Computation in the Presence of Noise. MIT Press,
Cambridge, Massachusetts.
Winograd, T. (1972). Understanding natural lan-
guage. Cognitive Psychology, 3(l).Reprinted as a
book by Academic Press.
Winograd, T. and Flores, F. (1986). Understanding
Computers and Cognition. Ablex, Norwood, New
Jersey.
Winston, P. H. (1970). Learning structural descrip-
tions from examples. Technical Report MAC-TR-
76, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts.PhD dissertation.
Winston, P. H. (1992). Artificial Intelligence.
Addison-Wesley, Reading, Massachusetts, third
edition.
Wittgenstein, L. (1922). Tractatus Logico-
Philosophicus. Routledge and Kegan Paul, Lon-
don, second edition.Reprinted 1971, edited by D. F.
Pears and B. F. McGuinness. This edition of the En-
glish translation also contains Wittgenstein's origi-
nal German text on facing pages, as well as Bertrand
Russell's introduction to the 1922 edition.
Wittgenstein, L. (1953). Philosophical Investiga-
tions. Macmillan, London.
Woehr, J. (1994). Lotfi visions, part 2. Dr. Dobbs
Journal, 217.
Wojciechowski, W. S. and Wojcik, A. S. (1983).
Automated design of multiple-valued logic circuits
by automated theorem proving techniques. IEEE
Transactions on Computers, C-32(9):785-798.
Wojcik, A. S. (1983). Formal design verification
of digital systems. In ACM IEEE 20th Design Au-
tomation Conference Proceedings, pages 228-234,
Miami Beach, Florida. IEEE.
Woods, W. (1972). Progress in natural language
understanding: An application to lunar geology. In
AFIPS Conference Proceedings.Vol. 42.
Woods, W. (1978). Semantics and quantification in
natural language question answering. In Advances
in Computers. Academic Press.Reprinted in Grosz
etal. (1986).
Woods, W. A. (1970). Transition network gram-
mars for natural language analysis. Communica-
tions of the Association for Computing Machinery,
13(10):591-606.

Woods, W. A. (1973). Progress in natural language
understanding: An application to lunar geology. In
AFIPS Conference Proceedings, volume 42, pages
441-450.

Woods, W. A. (1975). What's in a link: Foun-
dations for semantic networks. In Bobrow, D. G.
and Collins, A. M., editors, Representation and Un-
derstanding: Studies in Cognitive Science, pages
35-82. Academic Press, New York.

Wos, L., Carson, D., and Robinson, G. (1964). The
unit preference strategy in theorem proving. In Pro-
ceedings of the Fall Joint Computer Conference,
pages 615-621.

Wos, L., Carson, D., and Robinson, G. (1965). Effi-
ciency and completeness of the set-of-support strat-
egy in theorem proving. Journal of the Association
for Computing Machinery, 12:536-541.

Wos, L., Overbeek, R., Lusk, E., and Boyle, J.
(1992). Automated Reasoning: Introduction and
Applications. McGraw-Hill, New York, second edi-
tion.

Wos, L., Robinson, G., Carson, D., and Shalla, L.
(1967). The concept of demodulation in theorem
proving. Journal of the Association for Computing
Machinery, 14:698-704.

Wos, L. and Robinson, G. A. (1968). Paramod-
ulation and set of support. In Proceedings of
the IRIA Symposium on Automatic Demonstration,
pages 276-310. Springer-Verlag.

Wos, L. and Winker, S. (1983). Open questions
solved with the assistance of AURA. In Bledsoe,
W. W. and Loveland, D. W., editors, Automated
Theorem Proving: After 25 Years: Proceedings of
the Special Session of the 89th Annual Meeting of
the American Mathematical Society, pages 71-88,
Denver, Colorado. American Mathematical Society.

Wright, S. (1921). Correlation and causation. Jour-
nal of Agricultural Research, 20:557-585.

Wright, S. (1934). The method of path coefficients.
Annals of Mathematical Statistics, 5:161-215.

Wu, D. (1993). Estimating probability distributions
over hypotheses with variable unification. In Pro-
ceedings of the Thirteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-93), pages
790-795, Chambery, France. Morgan Kaufmann.



Bibliography 903

Yang, Q. (1990). Formalizing planning knowledge
for hierarchical planning. Computational Intelli-
gence, 6:12-24.
Yarowsky, D. (1992). Word-sense disambigua-
tion using statistical models of Roge('s categories
trained on large corpora. In Proceedings of
COL1NG-92, pages 454^60, Nantes, France.
Yip, K. M.-K. (1991). KAM: A System for In-
telligently Guiding Numerical Experimentation by
Computer. MIT Press, Cambridge, Massachusetts.
Yoshikawa, T. (1990). Foundations of Robotics:
Analysis and Control. MIT Press, Cambridge, Mas-
sachusetts.
Younger, D. H. (1967). Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2): 189-208.
Zadeh, L. A. (1965). Fuzzy sets. Information and
Control, 8:338-353.
Zadeh, L. A. (1978). Fuzzy sets as a basis for a the-
ory of possibility. Fuzzy Sets and Systems, 1:3-28.
Zermelo, E. (1976). An application of set theory to
the theory of chess-playing. Firbush News, 6:37-

42.English translation of German paper given at the
5th International Congress of Mathematics, Cam-
bridge, England, in 1912.
Zilberstein, S. (1993). Operational Rationality
through Compilation of Anytime Algorithms. PhD
thesis, University of California, Berkeley, Califor-
nia.
Zimmermann, H.-J. (1991). Fuzzy Set Theory—And
Its Applications. Kluwer, Dordrecht, The Nether-
lands, second revised edition.
Zobrist, A. L. (1970). Feature Extraction and Rep-
resentation for Pattern Recognition and the Game
of Go. PhD thesis, University of Wisconsin.
Zue, V., Seneff, S., Polifroni, J., Phillips, M., Pao,
C., Goddeau, D., Glass, J., and Brill, E. (1994).
Pegasus: A spoken language interface for on-line
air travel planning. In ARPA Workshop on Human
Language Technology.
Zuse, K. (1945). The Plankalkul. Report
175, Gesellschaft fur Mathematik und Datenverar-
beitung, Bonn.Technical report version republished
in 1989.



Index
Page numbers in bold are definitions
of terms and algorithms; page
numbers in italics are references to
the bibliography.

Symbols
- (in parsing), 697
Si _i+ Sj (achieves), 347
-< (before), 347
", (link), 319

{xlC} (substitution), 265
u (gap), 711
a (learning rate), 576
7 (discount factor), 507
e-admissible, 106
e-ball, 553
i (uniqueness operator), 196
A (functional abstraction), 195
A-expression, 195
X2 (chi squared), 543
=>• (implies), 167
A (and), 166
O- (equivalent), 167
-. (not), 167
V(or), 166
i—>• (uncertain rule), 461
>- (determination), 633
V, 238
Dp (always), 258
<>p (eventually), 258
|= (entailment), 158
r- (derives), 159
3! (exists a unique), 196
3 (there exists), 191
V (for all), 190
n (Intersection), 200
U (Union), 200
G (Member), 200
C (subset), 200
lp, A; q,B] (lottery), 473
~ (indifferent), 473
>- (preferred), 473
MT (best prize). 478
u\_ (worst catastrophe), 478

a, (activation value), 568
A*-SEARCH, 97
A* search, 115
AAAI (American Association for

AI), 28
Aarup, M., 390,859
ABC computer, 14

Abeille, A., 687,894
Abelson, R., 23, 894
ABO, see bounded optimality,

asymptotic
ABSOLVER, 103
abstraction, 62, 409,410, 794
abstraction hierarchy, 380
abstraction planning, 389
abstract operator, 376
abstract solution, 376
ABSTRIPS, 389
Abu-Mostafa,Y., 595,859
accelerometer, 783
accessible, see environment,

accessible
accusative case, see objective case
Acharya, A., 117,316, 859, 864
achievement (in planning), 349, 357
acknowledgment, 684
acoustic model, 760, 762-764

in disambiguation, 682
ACRONYM, 769
ACT*, 645
ACTION, 48
action, 31, 39

conditional, 411
cooperative, 180
intelligent, 5
intermediate-level (ILA), 787
low-level, 787
partially instantiated, 346
rational, 10,27,50
sensing, 392, 394,411,487
simultaneous, 216

action-utility table, 485
action-value, see agent, action-value
action-value function, 599
action description, 344
action model, 510
action monitoring, 401
action potential, 564
activation function, 567
activation level, 567
ACTIVE-ADP-AGENT, 608, 608
active learning, 599
active vision, 830
act phase, 314
actuator, 777
adaline, 19,594
Adams, J., 240
adaptive control theory, 601
adaptive dynamic programming,

603,623

adaptive network, see neural
network

adaptive planning, 389
ADD-EDGE, 702,703
additivity (of utility function), 601
add list (in STRIPS), 344
Adelson-Velsky, G., 144
adjective phrase, 707
adjoin (to a set), 199
adjunct, 671
ADL (planning formalism), 390
admissible heuristic, see heuristic,

admissible
Adorf, H.-M., 390, 878
ADP, see dynamic programming,

adaptive
ADP-UPDATE, 623
Advice Taker, 18,22,179
agent,?, 26,31,49

action-value, 210
active, 607
architecture, 26, 842
autonomous, 153, 625
communicating, 683
decision-making, 773
decision-theoretic, 471, 508-513
design, 786
forward-chaining, 314
function, 500
goal-based, 43, 49, 201
greedy, 609
ideal, 49
ideal rational, 33
immortal, 507
intelligent, 27, 842, 848
knowledge-based, 13, 151, 185,

201,265,842
learning, 525
limited rational, 246
logical, 213
model-based, 201
naive, 658
omniscient, 182
passive, 600
passive ADP, 623
passive learning, 623
planning, 337, 337-341,773
problem-solving, 55
program, 35, 37, 49
prepositional logic, 174
rational, 7,31, 50, 493, 607
reflex, 40,49, 201, 202,216, 500,

529,587,828
reinforcement learning, 624



906 Index

replanning, 410
situated planning, 403
software, 36
taxi-driving, 39, 507, 526, 843
tropistic, 201
uncooperative, 658
utility-based, 44, 49, 508
vacuum, 32, 51-52,58
wacky, 609
wumpus world, 174-177,

201-203,662
agent-based software engineering,

219
agent function, 411
aggregation (in planning), 409
Agmon, S., 594, 859,887
agrammatical strings, 712
Agre,P.E., 411,859
agreement (in a sentence), 668
Aho, A. V., 853, 859
AI, see artificial intelligence
Aiken,H., 14
aircraft carrier scheduling, 371, 390
airport, driving to, 415
airport siting, 480,484
AISB, 28
Ait-Kaci, H., 328, 329,859
AI Winter, 25
al-Khowarazmi, 11
Alami, R., 788, 873
Alberti, 726, 768
Albrecht, B., 778, 896
alchemy, 4
algorithm, 11
algorithmic complexity, see

Kolmogorov complexity
Alhazen, 768
Aliens (movie), 777
ALIGN, 754,754
alignment method, 752
ALIVE, 36
ALL-RELATED-TO?, 322,322
ALL-RELS-lN, 321
ALL-RELS-OUT, 321, 322
Allais, M., 479, 859
Alien, B., 390,877
Alien, J., 28, 259, 364, 688, 859
Alien, R., 595, 859
Alien, W., 94, 760
Almanac Game, 495
Almuallim, H., 646, 859
Almulla, M., 117, 889
Aloimonos, J., 770, 859
alpha-beta, see search, alpha-beta
alpha-beta pruning, 130, 146, 844
Alshawi, H., 685, 686, 859
Alspector, J., 595, 859
Alterman, R., 389, 859

altruism, 419
Alvey report, 24
ALVINN, 586, 587
AM, 646,647
Amarel, S., 67, 86, 859
ambiguity, 658, 680-682,712-715
Ambros-Ingerson, J., 411, 860
Amit, D., 595, 860
Ammon, K., 826,860
AMORD, 330
analogical reasoning, 646
ANALOGY, 19, 29
analysis of algorithms, 851
Analytical Engine, 15, 142,823
Anantharaman, T. S., 144,876
anaphora, 679
And-Elimination, 172
And-Introduction, 172
Andersen, S., 465,860
Anderson, A. R., 839, 840, 860
Anderson.J., 13,28, 162,316,595,

645,860,875
annealing, see search, simulated

annealing, 113
antecedent, 167
antelope, 658
anytime algorithm, 844
aphasia, 565
APN, see probabilistic network,

adaptive
apparent motion, 735
Appelt, D., 258,694, 720, 874,876
APPEND, 395,402
applicable operator, 344
APPLY, 126
apposition, 707
approximation hierarchy, 380, 390
Apte, C., 325, 884
Arbuckle,T., 862
arc consistency, 84
architecture, 35, 786

agent, 26, 842
blackboard, 770
cognitive, 316
for speech recognition, 25
hybrid, 137
open planning, 369
parallel, 117
real-time, 329
robot, 786-790
rule-based, 316
subsumption, 411
types, 50

Arentoft, M., 390, 859
ARCS, 299,303
argument from disability, 823
argument from informality, 826

Aristotle, 6, 9, 179,212,257,564,
838

Arlabosse, F., 27, 879
Arlazarov, V., 144,859
Armstrong, D., 839, 860
Arnauld, A., 10,471,493,860
article, 664
artificial insemination, 834
artificial intelligence, 3, 17

applications, 26
conferences, 28
definition, 4, 29
foundations, 615
history of, 8-26, 28
industry, 24, 28
journals, 28
programming language, 18
as rational agent design, 7
real-time. 843
societies, 28
strong, 29,818
subfields, 4
weak, 29, 818

artificial sweeteners, 834
artificial urea. 834
asbestos removal, 480
Ashby,W. R.,594,860
Asimov,!., 814,848, 860
ASK, 152, 153,201,211,214,298,

299,323,325,342,629,
660,721

assertion (logical), 201
assignment (in an ATN), 686
associative memory, 571
assumption, 326
Astrom, K., 520, 860
astronomer, 468
asymptotic analysis, 852
Atanasoff, J., 14
Atkeson.C, 623,886
Atkin, L. R., 87, 897
ATMS, see truth maintenance

system, assumption-based
ATN, see augmented transition

network
atom, 667
atomic event, 425
atomic sentence, see sentence,

atomic
attention, 719
augmentation, 667, 669,677, 684
augmented transition network, 686
AURA, 297,313, 330
Austin, J., 685,860
AUTOCLASS, 647
autoepistemic logic, 466
auto insurance, 469
automata, 838, 849



Index 907

automated debugging, 646
automated reasoners, see theorem

provers
automatic pilot, 329
automatic programming, 400,400
automotive industry, 774
autonomous vehicle, 26, 517, 587,

775
underwater (AUV), 775

autonomy, 35, 39,49,773
avoiding obstacles, 725
axiom, 198, 222

domain closure, 254
effect, 205
frame, 206
independent, 198
successor-state, 206
usable (in OTTER), 310

axon, 564

B
b* (branching factor), 102
B* search, 143
b-tree, 704
Babbage,C., 15,823
Bacchus, E, 432, 519,860
Bach, E., 259,860
bachelor, 231
Bachmann,P., 853,860
BACK-CHAIN, 275,275, 305,306
BACK-CHAIN-LIST, 275,275
BACK-PROP-UPDATE, 581
back-propagation, 21,24,578,

578-583,593,595
backed-up value, 108
backgammon, 133-135,139,144,

615
background, 828, 830
background assumptions, 735
background knowledge, 282,626
backjumping, 309
backprojection, 806
backtracking, 84,771

chronological, 309
dependency-directed, 309

Backus-Naur form, 186,655, 667,
854

backward chaining, 272,275, 305,
313,447

Bacon, R, 9
Bain, M., 466,860
Bajcsy, R., 769, 770,860
Baker, C. L., 28, 685,860
Baker, J., 770,860
Ballard, B., 144,325,860,868
bandit problem, 610
Bandyopadhyay, A., 770,859
Banerji, R., 552,559,886

bang-bang control, 618
Bar-Hillel, Y., 685,720, 860
Bar-Shalom, Y., 520,860,872
bar codes, 805
Ban, A., 28, 861
Barrett, A., 390, 867
Barrett, R., 330,861
Barstow, D. R., 330,867
Barto, A., 623,867
Barwise, J., 181,213,867
BASE, 672
baseline, 739
Bates, M., 16, 142, 899
Battell, J. S., 141,874
Baum, L., 770,867
Baum-Welch algorithm, 766
Bayes' rule, 426, 426-427,431,

434, 436,449, 760
Bayes, T., 426,431,867
Bayesian learning, see learning,

Bayesian
Bayesian network, see belief

network
Bayesian updating, 428,431,434,

435,510
Beal, D., 143, S67
Beck, H., 325,867
bee, 651
beer factory scheduling, 371
beetle, see dung beetle
behavior, see action
behavior-based robotics, see

robotics
behavioral module, 789
behaviorism, 13, 15,50
Bel (belief about state), 509
^el (prediction), 509
Belhumeur, P., 740, 867
belief, 157,243, 820

degree of, 424
BELIEF-NET-ASK, 446,447,452
BELIEF-NET-TELL, 446
belief function, 462
belief network, 25,436,464,498,

712,720
dynamic, 514,519
vs. neural network, 592
sigmoid, 596

belief network approximation, 453
belief network construction, 440
belief network inference, 445-456

complexity, 453
belief network learning, 531
Bell, C., 390,861
Bell, J., 213, 867
Belle (chess computer), 137
Bellman, R. E., 5, 86,503, 504,520,

867

Belsky, M. S., 862
benchmarking, 851
Bendix, P., 293,879
BennettJ., 313, 330,874
Berlekamp, E., 143, 867
Berliner, H. J., 26,117,137,

143-145,867,862
Bernoulli, D., 494,862
Bernoulli,!., 12,432,476
Bernstein, A., 143,862
Berry, C., 14
Berry, D. A., 623, 862
Bertsekas, D. P., 520,862
Berwick, R., 690
BEST-FIRST-SEARCH, 92,93,93,97
best-first search, 92, 115
best possible prize, 478
Beth, E. W., 292, 862
betting game, 424
Bezzel, M., 86
bias, 529

declarative, 636
Bibel, W., 293, 390,862
Bickford,M, 313,897
biconditional, 167
bidirectional search, 85, 89
bigram model, 760,765
Binder, J., 596,895
binding list, 201,265
BINDINGS, 347,372, 374
binocular stereopsis, 737-742,750,

768
binomial nomenclature, 258
biological naturalism, 819, 834
Birnbaum, L., 687, 862
Biro, J., 840, 862
Birtwistle, G., 331,862
bit (of information), 540
Bitman, A., 144,859
Bitner,!., 116,862
BKG, 139, 144
Black, E., 687,862
black-box, 625
blackboard architecture, 770
Blenko.T., 258,876
blind search, 73
Block, N., 839, 840,862
blocking (in belief networks), 444
blocks world, 19,23, 260, 359,382,

383,404, 827
Bloom, P., 687, 862
Blum, A., 595,862
Blumberg, B., 36,883
Blumer, A., 560,862
BMTP, 826
BNF, see Backus-Naur form
BO, see bounded optimality
Board, R., 560,862



908 Index

Bobrow, D., 19, 646,862, 863
Boddy, M., 844, 868
Boden, M. A., 840,863
body (of a clause), 305
Boltzmann machine, 571,595
Boole, G., 11, 179, 212,291, 863
Boolean connective, see connective,

Boolean
Boolean function, 570
Boolean logic, 179
Boolos, G. S., 293, 825, 863
Booth, A. D., 720,882
Booth, T., 687,871
Borgida, A., 324, 332,863
Boser.B., 586, 595,881
BOTTOM-UP-PARSE, 666,666, 697
boundary set, 549
bounded cutset conditioning, 465
bounded optimality, 845

asymptotic (ABO), 846
Bowden.B., 16, 142,599
BOXES, 618
Boyer.R. S., 293,313, 328,330,

826, 863
Boyer-Moore theorem prover, 313,

330
Boyle, J., 294, 902
BP (British Petroleum), 539
Brachman, R., 261, 324. 325, 331,

332, 863,868, 882
Bradshaw, G. L., 881
Bradtke, S., 623, 861
Brady, D., 595,877
Brady, J., 888
brain, 3, 9, 16,563

aphasia, 565
computational power, 566
cortex, 565
damage, optimal, 572
prosthesis, 835, 841
as recurrent network, 570
states, 819
super, 4, 12
in a vat, 821
vs. computer, 565-566

brains cause minds, 565, 819
branch and bound, 116
branching factor, 74, 632

effective, 102, 131
Bransford, J., 722, 863
Bratko, I., 330, 644,863
Bratley, P., 686,899
Bratman, M. E., 839,863
BREADTH-FIRST-SEARCH, 74
breadth-first search, 74, 85
Breese, J., 50, 495, 876
Brelaz, D., 116,863
Bresnan, J., 687, 863

bridge (card game), 29
bridges, 800
Briggs, R., 256,863
brightness, 729
Brill, E., 903
Broca, P., 565
Brooks, R., 411, 769, 789, 812, 863
Brouwer.P., 623,861
Brown, A., 363
Brown, J. S., 260, 647, 868,882
Brudno,A., 143
Brudno, A. L., 863
Brunelleschi, 768
Bryson, A., 21,578,595,86.?
Buchanan, B., 22, 94,257,466, 552,

559, 863, 864, 870,882
Buchler,J., 864
buffalo, 690
BUILD, 260,330
bunch, 234
Bundy, A., 330, 331, 645, 864, 899
Bunt, H. C., 258, 864
Buntine, W., 646, 887
burglar alarm, 437-438
Burstall, R., 258, 330, 864
Bylander, T., 363, 864

C (configuration space), 791
C-BURIDAN, 41 1
C4.5, 559
Caianello, E., 594,864
CALL, 307
Cambefort, Y., 50, 874
Camembert cheese, 221
Cameron-Jones, R., 644, 89J
Campbell, M. S., 144,576
Campbell, P. K., 832,864
candidate definition, 544
candidate elimination, 549
can machines think, 822, 831
Canny,J., 733, 796, 811, 864
canonical distribution, 443
canonical form, 270
Cantor, 826
Cao, E, 646, 887
Capek.J., 810
Capek, K., 809
Carbonell, J., 560, 646, 864,885,

900
Cardano,G., 12,431
Carnap, R., 424, 430,432,864
Carnegie Mellon University, 17,

138,586,707
Carson, D., 293, 902
cart-pole problem, 617
case (of nouns), 668
ease-based planning, 389

Casimir, A., 907
Cassandra, A., 520,864
CATEGORY, 666
category, 228,229, 317,323
category theory (not), 228
Caterpillar English, 692
causal influence, 441
causal link, 347, 350, 368, 375
causal network, see belief network
causal rules, 209
causal support, 448
causal theory, 254
causation, 169, 209, 429
caveman, 626
CCD, see charge-coupled device
cell decomposition, 796, 809, 812

exact, 797
cell layout, 69
Census Bureau, 301
cerebral cortex, see brain
certainty equivalent, 478
certainty factor, 23, 461, 466
CFG, see grammar, context-free
chaining, 280
chain problem, 89
Chakrabarti, P., 111,864
Chambers, R., 618, 622, 885
chance node (decision network), 484
chance node (game tree), 133
chance of winning, 127
Chang, C.-L., 294, 864
Chang, K., 465,871
change, 203, 234

continuous, 237
dealing with, 177

channel routing, 69
Chapman, D., 25, 363, 390,411,

859, 864
Chapuis.A., 810,564
charge-coupled device, 727, 772
Charniak, E., 5, 23, 328, 331, 688,

720, 864, 865, 873
chart, 697
CHART-PARSE, 702
CHAT, 693, 694,720
Chateau Latour, 834
Chatila, R., 788, 873
checkers, 18, 138, 142, 148,559,

823
cheese factory (Camembert), 221
Cheeseman, P., 25,467,865
Chellas, B. F., 261,565
chemical transmitter, 564
chemistry, 22
Chen, K., 145, 579
Cherniak, C., 50, 565
Chernobyl, 775
Chervonenkis, A., 560,899



Index 909

chess, 15, 20, 26, 122, 137-138,
412,820

automaton, 141
program, 16
ratings, 137

CHESS 4.5, 87
X2 pruning, 543
Chickering,M., 596,875
Chierchia, G., 28, 685, 865
CHILDREN, 666
chimpanzees, 651
Chinese room, 831-834,840
Chinook, 138, 148
Chitrao, M., 688, 865
choice point, 306, 309
Chomsky, N., 15, 653, 656, 685,

686, 865
choose, 355, 855
CHOOSE-ATTRIBUTE, 537,540, 541
CHOOSE-BEST-ACTION, 38
CHOOSE-BEST-CONTINUATION, 402
CHOOSE-DECOMPOSITION, 374, 379
CHOOSE-LITERAL, 642-644
CHOOSE-OPERATOR, 356,356, 357,

358, 374, 379, 382, 384,
385,385

Christmas, 831
chronological backtracking, 326
cHUGIN, 465
Chung, K. L., 433, 865
Church, A., 11, 292, 329, 865
Church, K., 688, 702, 720, 865
Churchland, P. M., 839, 840, 865
Churchland, P. S., 836, 839, 840,

865
ClGOE, 646
circuit verification, 226
circumscription, 459,466
city block distance, 102
clarification, 680
Clark, K., 329,466, 865
Clark, R., 687, 865
Clarke, A., 465
Clarke,M., 144,565
class, see category
CLASSIC, 298,325
classification (in description logic),

323
classification (of examples), 534
class probability, 561
clause, 182
CEINT, 646
Clinton, H., 308
CLIPS, 298
clobbering, 353
clock, 33
Clocksin, W., 330, 865
CLOSE-ENOUGH, 504

closed class, 664
Clowes, M. B., 746, 769, 865
CLP, see logic programming,

constraint
CLP(R), 329
clustering, 453, 465
CMU, see Carnegie Mellon

University
CNF, see conjunctive normal form
CNLP, 411
coarticulation, 762, 765
Cobham.A., 11,865, 869
coercion, 409,410,411
cognitive architecture, 316
cognitive psychology, 13
cognitive robotics, 259
cognitive science, 6, 13, 17, 28
Cohen.J., 328,810,565, 866
Cohen, P., 720, 866
coherence relation, 717
coin flip, 383,461, 462,476, 540
collection, see category
collective computation, see neural

network
Collins, A., 646, 864
Colmerauer, A., 328, 329, 685, 866
Colomb, R., 328, 866
Colossus, 14
command, 683
commitment

epistemological, 165
ontological, 165,185,417,459
premature, 381

common ground, 661
Common Lisp, see Lisp
common sense, 458
commonsense ontology, 317
commonsense summer, 258
communication, 161,254, 651-685
competitive ratio, 808
compilation, 307, 379, 788
compilation time, 309
complement (of a verb), 670, 710
COMPLETE?, 702
completeness

of a plan, 349
of a proof procedure, 160, 178,

277
of resolution, 286-290
of a search algorithm, 73, 85
theorem, 277

complete plan, see plan, complete
complete proof procedure, 277
COMPLETER, 698-701,702, 702,

703
completer, 698
complexity

sample, 554

space, 73, 85
time, 73, 85

complexity analysis, 74,852
complex sentence, see sentence,

complex
complex term, 211
compliant motion, 784, 795
COMPOSE, 273, 303
composite decision process, 116
composite object, see object,

composite, 251
composition (of substitutions), 273
compositionality, 163, 672
COMPOUND, 299
COMPOUND-ACTION, 663
COMPOUND?, 303
compounding, 703
compression, 615
computability, 11
computational learning theory, 553,

557,560,595
computer, 4, 14-15

vs. brain, 565-566
Computers in Biomedicine, 23
computer vision, see vision
concept, see category
Conceptual Graphs, 298
concerto, 830
conclusion (of an implication), 167
condition-action rule, see rule
CONDITION-PART, 395
CONDITIONAL-PLANNING-AGENT,

395
CONDITIONAL?, 395
conditional effect, see effect,

conditional
conditional independence, 429,431,

434,449,464, 509
conditional link, 396
conditional planner, see planning,

conditional
conditional probability, see

probability, conditional
conditional probability table, 438
conditional step, 396
conditioning (in belief networks),

453
conditioning (in planning), 398
conditioning case, 438
Condon,E., 142,866
Condon,!., 137,144,566
configuration space, 791,790-796,

809
generalized, 792

configuration space obstacle, 791
confirmation theory, 10,432
conflict resolution, 298, 314, 315
confrontation, 382



910 INDEX

conjunct, 166
conjunction, 166
conjunction (natural language), 664
conjunctive normal form, 182,278,

282, 290,292
conjunctive queries, 309
connectionism, see neural network
connection method, 293
connective

Boolean, 165
logical, 16, 165,189

CONNIVER, 330
consciousness, 9, 29, 564, 823,

831-836
consequent, 167
consistency, 116, 277,545
CONSISTENT, 356,358,382,385
CONSISTENT-DET?, 635,635
consistent decomposition, 373
consistent plan, see plan, consistent
conspiracy number, 143
constant symbol, 186, 188, 211
constraint, 83

binary, 83
temporal, 370
time, 368
unary, 83

constraint logic programming, see
logic programming

constraint propagation, 84
constraint satisfaction, 19, 65,

83-84,91,328,388
constraint satisfaction problem, 83

heuristics for, 104
construction industry, 775
constructive induction, see

induction, constructive
CONTENTS, 663
context (in planning), 395
context-free grammar, see grammar,

context-free
context-sensitive grammar, see

grammar, context-sensitive
contingency, 392
contingency problem, see problem.

contingency
continuation, 307
continuity (of preferences), 474
continuous, see environment,

continuous
contour, 117, 735,745-749
contour (of a state space), 98
contradiction, 639
contrapositive, 312
control

lateral, 749
longitudinal, 750

control systems, 463

control theory, 364, 498,510, 539,
594,617,780

adaptive, 601,622
control uncertainty, 803
conventional signs, 651
conversion to normal form, 281-282
CONVINCE, 465
convolution, 731, 771
Conway,J., 143, 861
Cook,S., 12,173, 853,866
Cooper, G., 465, 596,866, 876,896
coordinate frame, 734
Copeland,J., 258, 840,866
Core Language Engine, 685
Cormen,T. H., 853,366
corpus, 704
correspondence theory, 821
count noun, 242
Covington, M. A., 688,866
Cowan, J., 19, 596,866, 902
Cowell, R., 596, 897
Cox, R., 424,432, 866
CPOP, 394, 395, 398, 399,401,

406,411
CPSC, 444, 456
CPT, see conditional probability

table
crack, 746
Cragg,B., 594, 866
Craik, K. J., 13, 180,866
Cray Blitz, 144
creativity, 15,817,823
Cresswell, M., 261,877
Crevier, D., 28, 866
crisis management, 775
critic (in learning), 526,562
critic (in planning), 379
criticality level, 380
critical point, 798, 801
Cracker, S., 143,873
Crockett, L., 207, 866
Croft, B., 258, 876
Croft, W., 685,876
cross-correlation, 735, 740
cross-indexing, 302
cross-over, 620
cross-validation, 543,573,597
cross ratio, 754
crossword puzzle, 118
cryptarithmetic problem, 65, 91
CSP, see constraint satisfaction

problem
Culberson, J., 142,594
Cullingford, R., 23, 866
cult of computationalism, 818
cumulative learning, 638, 644
curiosity, 612

current-best-hypothesis, 546, 559,
576

CURRENT-BEST-LEARNING, 547,
547, 548,555

Currie, K., 369, 390, 866, 871
Curry, H. B., 329, 867, 894
CUTOFF-TEST, 126,132
cutset, 455
cutset conditioning, 454

bounded, 455
Cybenko,G., 595,867
CYC, 258,317,828, 844

D
D'Ambrosio, B., 465, 895
d-separation, 444,449
DAG, see directed acyclic graph
Dagum, P., 465,867
Dahl,O.-J., 331,862, 867
DALTON, 647
Daniels, C., 117,883
DANTE-II, 776
Dantzig,G., 12,867
Darlington, J., 330,864
Darrell, T., 36, 883
Dartmouth workshop, 17
Darwiche, A., 465,867
Darwin, C, 619
data-directed inference, 274
data-driven inference, 274
database, 328,693-694
data extraction, 696
data fusion, 512
dative case, 668
Davidson, D., 259,867
Davies, T., 633,646,685, 867,876
Davies, T. R., 646
Da Vinci, L., 768
Davis, E., 182, 258,260, 261, 825,

867
Davis, M., 286,292,867
Davis, R., 330, 646,867
Dawid, P., 596,897
Dayan, P., 604,867
DBN, see belief network, dynamic
DCG, see grammar, definite clause
DDN, see decision network,

dynamic
deadlines, 368
Dean, M., 313,888
Dean, T., 364, 389,520, 844, 868
Debreu, G., 483,868
debugging, 222
Dechter, R., 99, 868
decision

one-shot, 472
problem, 11
rational, 416,471,491



Index 911

sequential, 472,487, 498,510,
603

under uncertainty, 418
DECISION-LIST-LEARNING, 556,

556, 557
DECISION-THEORETIC-AGENT, 508,

511
DECISION-TREE-LEARNING, 535,

537,537,538, 542,543,545,
557,561,562,635,636,638

decision analysis, 491
decision analyst, 491
decision cycle, 508
decision list, 555
decision maker, 491
decision network, 436,465,471,

484,484-486,493,494
dynamic, 516, 519

evaluation, 517
evaluation, 486

decision node, 485
decision theory, 12, 25,419, 493
decision tree, 494, 531, 531

expressiveness, 532
learning, 530, 559
pruning, 542

declarative approach, 304
declarative bias, see bias, declarative
declarativism, 153,219
decomposability (of lotteries), 474
decomposition, 390
de Dombal, F. T, 432,433, 867
deduction, 163
Deep Blue, 138
deep structure, 686
Deep Thought, 138, 144
default logic, see logic, default
default reasoning, see reasoning,

default
default value, 229, 319
deferring, see planning, deferred
de Finetti, B., 423,432,435, 867
definite clause grammar, see

grammar, definite clause
definition (logical), 198
definitions, 323
degree of belief, 417

interval-valued, 459
degrees of freedom, 777,778, 781,

791
de Groot, A., 142, 867
DeGroot, M. H., 433, 868
DeJong, G., 645, 868
de Kleer, J., 260, 328, 330, 332,

867, 868, 87J, 901
delete list (in STRIPS), 344
Del Favero, B., 465,895
deliberate ambiguity, 682

deliberation, 403, 843
demodulation, 284,284, 293
demodulator, 310, 333
De Morgan, A., 212,868
De Morgan rules, 193
demotion, 353
Dempster's rule, 462
Dempster, A., 462,466, 596,868
Dempster-Shafer theory, 457,459,

462, 466
Den (denotation), 245
DENDRAE, 22-23,257
dendrite, 564
Denker, A., 26, 138
Denker, J., 585, 586,595,621,881
Dennett, D. C., 50, 817, 820, 834,

840, 847,868
Deo, N., 87, 868
DEPTH, 72,75
depth (of a node), 72
DEPTH-FIRST-SEARCH, 78, 91
depth-first search, 77, 85, 305
DEPTH-LIMITED-SEARCH, 79
depth-limited search, 78, 85
depth limit, 129
depth of field, 727
De Raedt, L., 868
derived sentences, 160
Derr, W., 142, 866
deSarkar, S., 111,864
Descartes, R., 9, 10,768, 838
Descotte, Y., 390,868
description logic, see logic,

description, 331
descriptive theory, 479
desire, 820
detachment, 460, 460
determination, 633,647

minimal, 635
determinations, 646
determiner, 708,708
deterministic, see environment,

deterministic
deterministic node, 443
Devanbu.R, 325,868
DEVISER, 387, 389
Devol, G., 774, 810
Dewar, H., 686, 899
Dewey Decimal system, 230
DFS-CONTOUR, 106,107, 107
diachronic, 203
diagnosis, 416

dental, 416
medical, 209,443,461,487, 848

diagnostic inference, see inference,
diagnostic

diagnostic rules, 209
diameter (of a state space), 78

Dickmanns, E., 587, 750, 770, 869
dictionary, 21,251,704
Dietterich, T., 560,859, 869, 896
differentiation. 629
diffusely reflected light, 729
Digital Equipment Corporation, 24,

316
Dijkstra, E. W., 87, 869
Dill, D., 313,888
Dincbas, M., 330,869
Dingwell, W. O., 653,869
directed acyclic graph, 437, 465,

570
disabilities, 840
DISAMBIGUATE, 662, 663
disambiguation, 658, 673,678,

680-682,685,712
discontinuities, 730
discontinuous function, 571
discount factor, 507,624
discounting, 507, 519,520
discourse, 715

coherent, 717-720
understanding, 715-719

DISCOURSE-UNDERSTANDING, 715
discrete, see environment, discrete
discrete event, see event, discrete
discretization, 544
discrimination net, 559
dish, 250
disjoint sets, 231
disjunct, 166
disjunction, 166
disjunctive effects, 409
disjunctive normal form, 292
disparity, 737, 738
distributed encoding, 577
divide-and-conquer, 341, 379,407
Dixon,J. K., 143,897
DNA.619
DO, 663
dolpHins, 651
domain (in a CSP), 83
domain (in knowledge

representation), 197
domain (of a random variable), 420
domain constraint, 785
dominance

stochastic, 481
strict, 481

domination (of heuristics), 102
Donskoy.M., 144,859
Doran,J., 86, 115, 117, 869
Double-Negation Elimination, 172
Dow, R. J. F, 595,896
Dow Jones, 696
downward solution, 376, 389, 391
Dowty, D., 685,869



912 INDEX

Doyle, J., 50, 330, 332,459, 494,
868, 869,885,901

Drabble, B., 390, 869
Draper, D., 411,869,870
Dreussi, J., 389, 896
Dreyfus, H. L., 9, 817, 818, 827,

828, 869
Dreyfus, S. E., 86, 87, 504, 520,

827, 828, 861, 869
drilling rights, 487
driving

automated, 29, 586
dropping conditions, 548
Droz.E., 810, 864
DT-AGENT, 419
dualism, 9, 838
Dubois, D., 466,869
duck, mechanical, 810
Duda, R., 23, 466,869
dung beetle, 35,50, 203
Dunham,B., 21,877
du Pont, 24
Diirer, A., 768
Durrant-Whyte, H., 520,882
Dyer,M., 23,869
DYLAN, 329
dynamic, see environment, dynamic
dynamical systems, 520
dynamic belief network, see belief

network, dynamic
dynamic belief networks, 520
dynamic decision network, see

decision network, dynamic
dynamic logic, 261
dynamic programming, 87, 116,

503,520,603,623,697,
742, 765

adaptive, 603, 623
dynamic weighting, 116
Dzeroski, S., 869, 879
Dzeroski, S., 646

E(cat, i) (event), 236
£o (English subset), 662
£\ (English subset), 670
£2 (English subset), 680
Barley, J., 720, 869
earthquake, 437
Eastlake,D., 143, 873
Ebeling,C, 137, 144,862,869
EBL, see explanation-based learning
Eckert, J., 14
economics, 50,476,507, 847
edge (in a chart), 697
edge (in an image), 730
edge (in a scene), 745
edge detection, 730,733

Edinburgh, 646, 810
Edmonds, D., 16
Edmonds.J., 11-12,869
EDVAC, 14
Edwards, D., 143,685, 874,876
Edwards, P., 840,870
Edwards, W., 493,900
EFFECT, 358, 381,382, 385
effect, 344

conditional, 381, 389
disjunctive, 383
knowledge, 395
universally quantified, 383, 389

effect axiom, see axiom, effect
effective branching factor, 116
effector, 31,777
EFFECTS, 349,408
egomotion, 736
Ehrenfeucht, A., 862
8-puzzle,63, 101, 103, 115
8-queens problem, 64, 83, 86, 89
Einstein, A., 3
electrocutaneous feedback, 777
electronic circuits domain, 223-226
ELEMENTS, 321
ELIZA, 20, 849
Elkan, C., 213,463,870
Elliot, G., 116,874
ELSE-PART, 395
emergent property, 833
empiricism, 9
Empson, W., 687, 870
EMPTY?, 72
EMV, see expected monetary value
encoded message model, 659,684
end effector, 777, 781
Enderton,H. B., 213,292,870
Engelberger, G., 810
Engelberger, J. F., 810, 870
English, 19,21,29

subset, 662
EN1AC, 14
ENQUEUE-AT-END, 74
ENQUEUE-AT-FRONT, 78
entailment, 158, 163, 170, 277
entailment constraint, 626,637, 644
Entscheidungsproblem, 11
environment, 31,40, 790

accessible, 46, 122,500
artificial, 36
continuous, 46, 774
deterministic, 46
discrete, 46
dynamic, 46, 774
episodic, 46
game-playing, 147,624
inaccessible, 46, 500, 773
nondeterministic, 46, 773

nonepisodic, 46, 773
properties, 46
properties of, 773
semidynamic, 46
static, 46
taxi, 39
vacuum, 65

environment class, 49
environment history, 499
environment simulator, 47
EPAM (Elementary Perceiver And

Memorizer), 559
epiphenomenalism, 836
epipolar line, 740
episodic, see environment, episodic
epistemological commitment, 165
epistemological level, 153
epoch, 576,600
equality (logical), 193-194
equality substitution, 291
equality symbol, 193
equilibrium, 604
equivalence (logical), 167
Erman, L. D., 770,870
Ernst, G., 115,888
Ernst, H. A., 810,870
Erol, K., 389, 870
error (of a hypothesis), 553
error recovery (in tokenization), 704
error surface, 580
ERS-1,370
Eskimos, 162
Essig, A., 432, 873
estimation phase, 509
Etchemendy, J., 181,867
Etzioni, O., 411, 814, 846, 848, 870,

907
El], see utility, expected
Euclid, 767
Eureka, 94
EURISKO, 647
European Space Agency, 367
Euthyphro, 9
EVAL, 126, 132
EVAL-FN, 93
EVAL-TRUTH, 182
evaluation function, 92, 115, 123,

126-128
accuracy, 127
linear, 128

Evans, T. G., 19,29,870
event, 235

discrete, 237
liquid, 237

EVENT-VAR, 677, 680
event calculus, 235, 234-236,259,

675
event category, 262



Index 913

evidence, 417
incorporating, 428

EVIDENCE-EXCEPT, 451,452,452,
452

EVIDENCE?, 452
evidence variable, 445
evidential support, 448
evolution, 30, 162,619

machine, 21
evolutionary programming, 620
example, 529, 534
exceptions, 229, 319
excitatory synapse, 564
exclusive or, 168,596
execution, 57
execution monitoring, 392,401,

402,410,411,788
exhaustive decomposition, 231
Existential Elimination, 266
existential graph, 316, 323
Existential Introduction, 266
EXPAND, 72,73
EXPANSION, 385
expansion (of states), 70
expected monetary value, 476
expected utility, see utility, expected
expected value (in a game tree), 133
expectimax, 144
expectimax value, 133
expectiminimax, 135

complexity, 135
EXPECTIMINIMAX-VALUE, 135
expectimin value, 135
expert system, 257, 491, 539,647.

827, 848
commercial, 316
first, 22
first commercial, 24
HPP project, 22
logical, 458
medical, 26, 466
metalevel reasoning, 330
Prolog-based, 304
with uncertainty, 25

explaining away, 447, 461
explanation, 326,630

natural language, 721
explanation-based learning, 627,

644, 645
explicit representation, 615
exploration, 623
exploration function, 612.613
exploration problem, see problem,

exploration
expressiveness vs. efficiency, 531
EXTENDER, 698
extension (of a causal link), 405
extension (of a concept), 545

extrinsic property, 243
eyes, 724,727, 728, 768

f (free space), 791
/- COST, 107
factoring (in resolution), 280
Fahlman, S. E., 19, 260, 330, 331,

870
fail, 355, 855
false negative, 545
false positive, 546
family tree, 637
Farhat, N., 595, 870
Faugeras, O., 769, 770,870
fault tolerance, 566
fax, 664
feature (of a state), 104
feature (speech), 758
feature detector, 586
feed-forward network, see neural

network, feed-forward
feedback loop, 461
feedforward circuit, 789
Feigenbaum, E. A., 22, 28, 94, 257,

329, 559,828,861,864,
870, 882

Feldman, J., 28, 494,495,870
Feldman, R., 646,898
Fermat,R, 12,431
FETCH, 299-302,334
field of influence, 805
Fifth Generation project, 24, 308,

329
figure of speech, 714,715
Fikes, R., 330,332, 363,411, 645,

863, 870,894
filler, 710
FILTER, 311
FIND-AND-INFER, 273,273,273
FIND-TRANSFORM, 753,753,754,

772
Findlay, J., 258, 871
FINISH, 406,408
finite-state machine, 656, 788
Firby, J., 389,868
FIRST, 273, 275, 303, 338,395,402
first-order logic, see logic, first-order
first-order probabilistic logic, 843
Fischer, M., 259, 877
Fisher, R., 432,871
FITNESS-FN, 620
fitness function, 619, 619
fixation, 739
Flakey, 789
flat tire, 393,412
floor-planning, 91
Flores, E, 827,902

Floyd, R., 87,871
fluent, 241,679
fly eyes, 737, 749
FMP, see planning, fine-motion
Focus, 646
focus, 727
focus of expansion, 736
Fodor, J. A., 653, 832, 839, 877
FOIL, 642,643,643,644, 646,648
FOL, see logic, first-order
foliation, 793
folk psychology, 13, 261, 840
FOPC, see predicate calculus
FORBIN, 389, 390
Forbus, K. D., 260, 328, 332,877
force sensor, see sensor, force
foreshortening, 743
forgotten node, 108
formal language, see language,

formal
formulate, search, execute, 57
FORMULATE-GOAL, 57
FORMULATE-PROBLEM, 57
Forsyth.D., 769,871,893
Fortmann, T. E., 520,860,872
FORTRAN, 623
forward-backward algorithm, 766
FORWARD-CHAIN, 273,273, 274,

294
forward chaining, 272, 273, 298,

313
forward checking, 84
Fox, M., 369,390, 87/
Fraenkel, 826
FRAIL, 298
frame (representation), 23
frame (speech), 758
frame axiom, see axiom, frame
frame problem, 207,213

inferential, 207
representational, 207

frames paper, 331
frame system, 298, 316
Frean, M., 595, 871
FREDDY, 70, 810
Fredkin, E., 849
Fredkin Prize, 144
Freedman, P., 788,873
free space, 791
freeways, 800
free will, 9
Frege.G., 11, 179,212,291,825,

871
frequentism, 430
Friedberg, R., 21, 623, 829, 877
fringe, 72
Fristedt, B., 623,862
frontier, 72



914 Index

Fu, K, 687,871
Fuchs, J., 390, 871
function, 185

learning a, 529, 558
functional decomposition, 249
functional dependency, 633, 646
factionalism, 50, 819, 835, 839
functionalist, 836
functional programming, 329, 329
function symbol, 188, 188, 211
Fung,R., 465,871
Furukawa, K., 329,871
Furuta, K., 618,577
fuzzy logic, see logic, fuzzy
fuzzy set, 466
fuzzy set theory, 463

Ga(x) (Gaussian), 733
g (activation function), 568
G-set, 550
Gabbay,D., 180, 871
Gabor,Z., 495
gain ratio, 544, 562
Gala, S., 325, 861
Galileo, G., 3,526,641
Gallaire, H., 328,872
Gallier, J. H., 213,292,572
Gamba, A., 594, 872
Gamberini, L., 594, 572
gambling, 12,474
game, see also backgammon,

bridge, checkers, chess, Go,
Othello

perfect information, 122
playing, 122-141
theory, 122,847
three-player, 147
zero-sum, 148

game show, 476
gap, 710
Carding, J., 743,769,572
Gardner, M., 292, 572
Garey, M. R., 853, 572
GARI, 390
Garside, R., 688, 572
Gaschnig, J., 23, 116, 466,569, 572
GASOIL, 539
Gasquet, A., 390,577
gates, 223
gathering, 253-254
Gauss, C., 572
Gauss, C. E, 86
Gauss, K. F., 520
Gaussian elimination, 506
gaussian function, 733
Gawron, J. M., 770, 878
Gazdar, G., 686,872

Geffner, H., 466, 572
Geiger, D., 596, 575
Gelatt,C, 117,579
Gelb, A., 520
Gelernter, H., 18,329,572
Gelfond, M., 466, 572
gene, 619
GENERAL-SEARCH, 71,73,74,77,

78,92,93, 115
General Electric, 776
generalization, 546, 547,584
generalization hierarchy, 552
generalized cylinder, 752,769
general ontology, 226-247
General Problem Solver, 6, 363
general search, 85
GENERATE-DESCRIPTION, 662,663
generation (of language), see natural

language, generation
generation (of states), 70
generative capacity, 656,671
Genesereth, M. R., 153,180, 213,

219,286,293,295,309,313,
330,363,811,572,592,597

GENETIC-ALGORITHM, 620
genetic algorithm, 21,572, 595,

611,619-621,623
genetic engineering, 838
Gentner, D., 646,572
Gentzen,G., 179,291,572
Geometry Theorem Prover, 18
Georgeff, M. P., 364, 572
Gerberich, C., 329,572
Gestalt school, 768
GHC, 329
Ghose, S., 117,564
Gibson, J., 769,572
Gift of the Magi, 378
Gilmore, P., 292, 572
Gini, M., 411.555
Ginsberg, M. L., 29, 295,411,465,

466, 572, 873, 897
Ginsberg, M.L., 567
Giralt, G., 788,573
gist, 162
Givan, R., 884
Glanc, A., 810, 873
Glass, J., 903
GLAUBER, 647
Gleitman, L., 687,900
GLOBAL-TRAIL-POINTER, 307
Glover, E, 117,573
Glymour, C., 596,597
Go, 122, 139
goal, 42, 55, 56, 211

concept, see goal predicate
formulation, 56
maintenance, 400

predicate, 531
representation, 339
test, 60, 85

goal (inferential), 201
GOAL-TEST, 60,73, 107, 110
goal predicate, 531
God, existence of, 432
Goddeau, D., 26, 903
Godel, K., 11, 265, 277, 292, 824,

573
Goetsch,G., 117,562
GOFAI, see good old-fashioned AI
gold, 153
Gold, E. M., 559, 687,573
Goldbach's conjecture, 647
Goldberg, D. E., 619,573
Golden, K., 390,567
Goldman, R., 688,720, 864, 873
Goldszmidt, M., 467,573
Golea, M., 595, 553
GOLEM, 641,646
GOLUX, 330
Gomard, C. K., 645,575
Good, I. J., 142,465,573
good and evil, 471
Goodman, N., 258, 645,573, 552
good old-fashioned AI, 827, 839
good style, 217
gorillas, 653
Gorry, G., 432, 573
Gould, S. J., 458, 573
Gower, A., 144,577
GPS, 6, 10,17
GPSG, 686
graceful degradation, 518,566
gradient descent, 111, 577, 580,616
Graham, S. L., 720,573
grammar, 854

attribute, 685
categorial, 687
context-free, 656, 684,685

probabilistic, 683, 687
context-sensitive, 656
definite clause, 697
definite clause (DCG), 667,685
dependency, 687
formal, 662
generalized phrase structure

(GPSG), 686
head-driven phrase structure

(HPSG), 686
lexical-functional (LFG), 687
multistratal, 686
phrase structure, 684
recursively enumerable, 656
regular, 656
semantic, 687
transformational, 686,686

t



Index 915

tree-adjoining (TAG), 687
grammatical formalisms, 656.686
Grand Canyon, 682
Grand Prix, 141
granularity, 380
grasping, 725
gravity, 826
Grayson, C. J., 477, 873
greedy, see search, greedy
GREEDY-SEARCH, 93
Green, C., 19,212,313,330,363,

873
Greenbaum, S., 685. 891
Greenblatt, R., 143, 144,873, 887
Gregory, S., 329, 865
Greiner, R., 646, 873
Grice, H. P., 685, 873
Griesmer, J., 325, 884
Grimes, J., 720, 873
Grishman, R., 688, 865
Grosof, B., 646, 893
Grosz, B., 688, 694, 719, 720, 874
ground clause, 289
grounding, 821
ground literal, 300
ground resolution theorem, 289
ground term, 190
Grove, A., 432, 519, 860
GSAT, 114, 116, 182, 183,183. 184
Gu, J., 116,874
Guard,:., 313,330, 874
Guha, A., 595, 874
Guha, R., 242, 258, 828, 844, 582
Gupta, A., 316,859
Gutfreund, H., 595, 860
Guy, R., 143, 867

H
WMAP (MAP hypothesis), 588
#ML (ML hypothesis), 589
Haas, A., 260, 874
HACKER, 330,363
Hacking, I., 433,874
Hager, G., 258,876
HAL computer, 465
Raid, A., 433, 874
Halpern, J., 260,432, 519,860, 874
halting problem, 277, 824, 824
hamburger, 821
Hamming, R. W., 433, 874
Hammond, K., 389, 874
ham sandwich, 715
hand-eye machine, 810
Hanks, S., 411, 843,869, 870,874
Hanna, F. K., 647,892
Hansen, J., 329,872
Hanski, I., 50, 874
Hansson,O., 116, 874

happy graph, 538
Haralick, R., 116,874
HareLD., 261,874
Harkness, K., 141,874
Harman, G. H., 839,874
Harp, S. A., 595,874
HARPY, 770
Harris, L. R., 720, 874
Harrison, M. A., 720, 873
Hart, P., 23, 115,116,411,466.645,

869, 870, 874
Hart,T., 143,874
Hartman, E., 595
Harvard, 14, 479
hash table, 300,704
Haugeland, J., 5, 28, 827, 840, 874
Haussler, D., 560, 646, 862,874
Hawkins, J., 594,874
Hayes.J. E., 144,875
Hayes,P. J., 50, 213, 258-260,330,

331,820,875,884
Hayes-Roth, E, 770,870
Hazan, M., 250, 875
HD-POP, 374, 374, 389
head (of a clause), 305
hearer, 652
HEARSAY-!!, 770
Heath Robinson, 14
Hebb,D. 0., 16, 19,594,622,875
Heckerman, D., 25, 27,457, 461,

462,465,466,495,596,
875, 876

Hegde,S.U., 595,886
Held.M., 116,875
Helman, D. H., 720,875
Helmholtz, H., 12
Hendler, J., 364, 389, 859,870
Hendrix, G., 323,875
Henglein, E, 330,889
Henrion, M., 50, 444,456, 465,495,

875, 876,890
Henry, O., 378
Hephaistos, 810
Heppenheimer,T., 810, 875
Herbrand's theorem, 287
Herbrand, J., 287, 292, 328, 875
Herbrand base, 287
Herbrand universe, 286, 292, 293
hermeneutic, 94
Herskovits, E., 596, 866
Hertz, J., 595, 875
heuristic, 94, 115, 118

admissible, 97
composite, 104
function, 93, 101
least-constraining-value, 105, 116
Manhattan, 102, 106,118
min-conflicts, 114

monotonic, 97
most-constrained-variable, 105.

116
most-constraining-variable, 105
most-constraining conjunct, 309
search, see search, heuristic
straight-line, 93

Heuristic Programming Project, 22,
94

heuristic repair, 114
Hewitt, C., 330,875
hidden Markov model, 25,712, 762,

770
hidden unit, 571
hierarchical abstraction, 654
hierarchical decomposition, see

planning, hierarchical
hierarchical task network, see

planning, hierarchical
higher-order logic, see logic,

higher-order
Hilare II, 788
Hilbert, D., 11
HILL-CLIMBING, 112
hill-climbing, 111, 119, 572, 590

random-restart, 112
Hintikka, J., 260, 875
Hinton, G., 24, 595, 875, 893
Hirsh, H., 645, 875
Hirst, G., 688,875
Hitachi, 369
HITECH, 26,137, 144
HMM, see hidden Markov model
Ho, Y., 21,578,595,863
Hobbs, J. R., 258, 261, 685, 687,

718,720,876
Hoff, M., 19,594, 601,622, 901
Hogg, D., 29, 895
holistic context, 828
Holland,;. H., 623,876
Holloway, J., 144,887
holonomic, see robot, holonomic
Holy Grail, 159
homeostatic, 594
hominids, 653
homophone, 757, 772
homo sapiens, 3
homunculus, 819
Hopcroft, J. E., 853,859
Hopfield, J., 24, 595, 876
Hopfield network, 571
Hopkins Beast, 810
Horch, K. W., 832, 864
horizon, 726
horizon problem, 129
Horn, A., 174,292,876
Horn, B., 769,770,863, 876
Horn clause, 174, 310,640,642,667



916 Index

guarded, 329
Horn Normal Form, 270, 290
Horn sentence, 174, 270
Horowitz, M, 313, 888
Horvitz, E., 25, 50,465, 495, 876
housebuilding, 372, 384
Howard, R., 484,493, 494, 520,

876, 886
HPP, see Heuristic Programming

Project
HPSG, 686
HST, see Hubble space telescope
Hsu, F.-H., 144, 876
Hsu, K., 595, 877
Hu, V, 595, 859
Huang, T., 27, 520, 877, 880
Hubble space telescope, 114, 370,

390
Hubel.D. H., 770, 877
Huber, R. J.. 832, 864
Hucka, M., 788, W
Huddleston, R. D., 685, 877
Huffman, D.. 19, 746, 769, 877
Hughes, G., 261, 877
HUGIN, 465, 520
human judgment, 446, 458,466,479
human performance, 4
human preference, 507
Hume,D., 9,430, 877
Hunt, E., 559, 877
Hunter, G., 293,577
Hunter, L..877
Hurst, S., 539, 894
Hutchinson, C, 29, 895
Huttenlocher, D., 753, 769, #77
Huygens,C, 431,577
Hwang, C. H., 258. 686.877
Hyatt, R., 144,577
hypothesis, 529

approximately correct, 553
consistent, 529
null, 542
space, 544, 545

I
IBM, 14, 138
IBM 701 computer, 14
IBM 704 computer, 138
icecream, 418
Ichiyoshi, N., 329. 888
ICON, 856
103,559
IDA*. 117
IDA*, 107
IDEAL-PLANNER, 337, 338
ideal mapping, 34
ideal rational agent. 33
identification in the limit, 557

identity relation, 194
IDS, 103
ignorance, 459, 462

practical, 417
theoretical, 416

IJCAI (International Joint
Conference on AI), 28

ILA, see action, intermediate-level
ILP. see logic programming,

inductive
image, 725
image formation, 725-731,767
image processing, 767
image reconstruction

Bayesian, 370
implementation level, 153
implication, 167
Implication-Elimination, 172
implicative normal form, 278, 282,

290, 292
implicit representation, 615
in; (sum of inputs), 568
inaccessible, see environment,

inaccessible
incomplete information, 392
incompleteness, 277

theorem, 1 1, 288, 824
incorporation, 658, 716
incremental learning, 529, 549
independence

conditional, 444
indeterminacy

bounded. 401
unbounded, 402

index function, 755
indexical,679
indexing

clever, 302
combined. 301
table-based, 300-301
tree-based. 301, 301-302

indifference, 432
individuation, 242
INDUCE, 529,530
induction, 9. 529

constructive, 638
mathematical, 11

inductive inference
pure, 529

inductive learning, see learning
inductive logic programming (ILP),

646
INK see implicative normal form
INFER, 311,311
inference, 152, 163-165,265

causal, 447
data-driven, 274
diagnostic, 447

intercausal,447
logical, 163
mixed, 447
probabilistic, 436

inference procedure, 223
inference rule, 171, 171
inferential frame problem, 213
infinite horizon problems, 520
infinite loop, 203
infinite regress, 819
influence diagram, see decision

network, 877
information (theory), 540
INFORMATION-GATHERING-AGENT.

490
information gain, 541, 542
information highway, 848
information retrieval, 694-695
information theory, 540-543,559
information value theory, 487
informed search, 73, 92
infrared, 512
Ingerman, P., 685, 877
inheritance, 230,230, 317, 328, 332

multiple, 320
with exceptions, 319-320

inhibitory synapse, 564
INITIAL-STATE, 60, 73,107, 110 ,

112, 113
INITIALIZER. 699,700
initializer, 698
initial state, 60, 85, 123
input function (of a neuron). 567
input generalization, 615
input resolution, 285
input unit, 571
insurance premium, 478
INTEGER, 856,856
integrability, 745
INTELLECT, 720
intelligence test, 90
intention (discourse), 657
intentionality, 831, 839, 840
intentional stance, 50, 820, 840
intentional state, 820
intercausal inference, see inference
intercausal reasoning, see reasoning
interleaving, 59
intermediate form, 676
internal model, 203
internal state, 42
INTERPLAN, 363
INTERPRET-INPUT, 41
interpretation, 161, 165, 187

logical, 178
pragmatic, 658, 678-680,684,

685
semantic, 658



Index 917

inlet-reflections, 745
interval, 235
intractability, 11, 21, 29
intrinsic property, 243
introspection, 6, 13, 459
invariant

geometric, 754
projective, 754

invariant shape representation, 755
inverse method, 293
inverse resolution, see resolution,

inverse
inverted pendulum. 617
IPEM, 411
IPL, 17
IQtest, 19,29
IR, see information retrieval
irrational behavior, 473, 824
irrationality, 4
ISA links, 331
Isis, 369, 390
ITEP, 144
ITERATIVE-DEEPENING-SEARCH, 79,

79, 103,106
iterative deepening, see search,

iterative deepening
iterative improvement, 111, 115
ITOU, 646

Jackel, L., 586, 595, 881
Jackson, P., 29, 877
Jacobs, P., 696, 877
Jacquard, J., 15
Jacquard loom, 15, 774
Jaffar, J., 329, 877
Jaguar, 369
James, H., 13
James, W., 13
Japanese, 703
Jaskowski, S., 291,877
Jefferson, Prof., 830
Jeffrey, R. C, 293,432,493, 494,

863, 877
Jelinek, E, 687,759, 770,862, 877
Jensen, E, 465, 860
Jensen, E V., 465, 860, 877
Jerison,H.J., 653,877
Jessell, T. M., 595,878
Jevons, W., 292
Jochem, T., 587, 877
Johnes, K. E., 832, 864
Johnson, C., 559,864
Johnson, D. S., 853,872
Johnson, M., 720, 722,863, 881
Johnson, W., 86, 878
Johnson-Laird, P., 28,878
Johnston, M., 116, 390,878, 886

joint, see joint probability
distribution

joint (of a robot), 777, 809
joint encoder, 782
joint probability distribution, 425,

431,436,439
'jokes, 682
Jones, N. D., 645, 878
Joshi, A., 687, 720,878, 894
Joskowicz, L., 260,894
Joule, J., 641
JTMS, see truth maintenance

system, justification-based
Juang,B.-H., 770, 891
Judd,J., 595,878
judgment, see human judgment
juggling, 599
Julesz, B., 768, 878
junction type, 748

K
k-DL (decision list), 555
i-DT (decision tree), 555
Kaelbling.L. P., 180,520,623,788,

864, 868,878
Kahan, W., 466
Kahneman, D., 4, 443,479, 878,899
Kaindl,H., 117, 143,878
Kalman,R., 510, 520,878
Kalman filtering, 510, 520, 587
Kambhampati, S., 390,878
Kanade, T., 737, 899
Kanal, L. N., 116-117,467,878,

880,887,887
Kanazawa, K., 520, 868
KandeLE. R., 595,878
Kanoui, H., 328,866
Kaplan, D., 259,878
Kaplan, R., 720, 884
Karger.D., 87,878
Karp, R. M., 12,69,116,853,875,

878
Kasami, T., 720, 878
Kasparov,G., 137, 144
Kassirer, J., 432, 875
Kastner,J., 325,884
Kautz, H. A., 258,466, 876, 878
Kay, M., 692,770, 878
KB, see knowledge base
KB-AGENT, 152,202
KBIL, see inductive learning,

knowledge-based
Kearns, M. J., 560, 878
Kedar-Cabelli, S., 645, 886
Kedzier, D., 539,894
Keeler, J., 595, 890
Keeney, R. L., 479, 484,494,878,

879

Keller, R., 645, 886
Kelly, J., 865
Kemp, M., 768, 879
Kenley,C., 465,895
Kent, C., 244
Kepler, J., 768
Ketchpel, S., 219,872
Keynes, J. M., 432, 879
Khorsand,A., 117,878
KIDS, 330
Kierulf, A., 145, 879
Kietz, J.-U., 646, 879
Kilimanjaro, 651
Kim, J. H., 465,879
kind, see category
kinematics, 781
King, C., 447
King, R., 641,879, 887
King, S., 27, 879
kinship, 197
Kirkpatrick, S., 117,879
Kirman, J., 520,868
Kirousis, L., 749, 879
Kister, J., 143, 879
Kjaerulff, U., 520, 879
KL-ONE, 298,332
KL1,329
Klein, E., 686, 872
Knight, B., 142,894
Knight, K., 5, 328,879, 892
Knoblock.C, 86,879
knowing what, 246
knowing whether, 246
knowledge

acquisition, 23, 217
and action, 10,247
background, 152
built-in, 35
commonsense, 18
diagnostic, 427
model-based, 427

knowledge-based approach, 827
knowledge-based system, 22-24,

615
knowledge base, 151, 178,213

large, 844
properties, 218

knowledge effect, 247
knowledge engineer, 440
knowledge engineering, 217,221,

368
for decision-theoretic systems,

492
for planning, 359
vs. programming, 219
with uncertainty, 456

knowledge level, 153, 179
knowledge map, see belief network



918 Index

knowledge precondition, 247
knowledge representation, 5, 15, 18,

23,157,257
analogical, 213
language, 152, 178

knowledge source (KS), 770
knows that, 246
Knuth.D., 132, 143,293,685,853,

879
Knuth-Bendix algorithm, 293
KODIAK, 298
Koenderink,J., 769,579
Kohn, W., 329,879
Kohonen.T., 595,880
Koko, 653
Roller, D., 27, 87, 432,519, 520,

596, 860,877, 878, 880,893
Kolmogorov, A. N., 431, 432,520,

559, 880
Kolmogorov complexity, 559
Kolodner,!, 23,646,550
Konolige, K., 260, 880
Koopmans, T., 520,880
Korf,R. E., 87, 117, 880
Kotok,A., 143,880
Kowalski, R., 213, 259,292, 304,

328, 330,880
Koza,J. R., 623, SSO
Kripke, S. A., 260,880
Krogh, A., 595,575
Krotkov,E., 778,596
Kruppa, E., 768, 880
KRYPTON, 332
Kube, P., 258, 876
Kuehner, D., 293,880
Kukich, K., 720, 880
Kulikowski, C. A., 560, 901
Kumar, V., 116, 117,878,880, 881.

887
Kurzweil, R., 5, 28, 881
Kyburg, H. E., 432, 881

Ladkin, P., 259, 881
Ladner, R., 259, 577
Lafferty, J., 687, 862
Laird, J., 26, 316, 645, 788, 843,

881,887
Laird, P., 116,886
Lakoff, G., 258, 720, 881
lambda calculus, 329
Lambertian surface, 729,743, 771
La Mettrie, J. O. de, 838, 849,881
landmark, 805, 809
Langley, P., 881
Langlotz,C, 25,876
language, 651

as action, 685

analysis, 658
formal, 654
interfaces, 23, 693
model, 760

in disambiguation, 682
module, 653

"natural, 7, 161,654
origin, 653
perception, 657
problem-solving, 329
processing, 16
situated, 659, 659, 684
and thought, 162,653
translation, 21,632, 691-693,720
understanding, 19, 23

Lansky, A. L., 364, 872
Laplace, P., 12,430,432,458
Larson, G., 626
laser range finder, 785
Lassez, J.-L., 328, 329, 877,881
Latin, 668
Latombe, J.-C, 390, 811, 868, 88]
lattice theory, 313
Lauritzen, S., 465,596, 577, 881,

897
LAWALY, 389
Lawler.E., 116,55,?
Laws, K. I., 685, 876
laziness, 416, 558
leak node, 443
leaping to conclusions, 626
learning, 153,525, 823,830

action-value, 599
active, 599
architecture, 844
assessing performance, 538
Bayesian, 588, 588-589,593
belief network, 531, 588-592
blocks-world, 19
cart-pole problem, 617
checkers, 18
curve, 538
decision lists, 555-556
decision trees, 531-536,641
determinations, 634
driving, 586-587
element, 525,558
explanation-based, 788
and failure, 403
to fly, 539
game-playing, 617
handwriting recognition, 586
human, 624
incremental, 529, 549,626
inductive, 558, 566, 829

knowledge-based, 628, 637,
645

knowledge in, 625—628

linearly separable functions,
575-577

new predicates, 638, 640
PAC, 553,560, 632
passive, 599
pronunciation, 585-586
Q, 613
rate, 576, 579,604, 613
restaurant problem, 531, 620
speedup, 527
top-down, 641-644
utility function, 599

least-commitment, 549
least-constraining-value, see

heuristic
least commitment, 271, 346, 374
least mean squares, 601
Le Cun, Y., 586, 595,881
Lederberg, J., 22, 94, 257, 870, 882
Lee, K.-E, 623, 770,881,900
Lee, R., 294, 864
Leech, E, 688, 872
Leech, G., 685, 597
Lefkovitz, D., 145, 882
left-corner parser, 699
legal reasoning, 29
Leibniz, W., 9, 15, 179,432, 827
Leiserson, C. E., 853, 866
Lemmer, J. E, 467,878
Lenat, D. B., 242,258, 263, 646,

647, 828, 844, 867,882
LENGTH, 666,702,851
lens, 727
Leon, M., 692,900
Leonard, H. S., 258,882
Leonard, J., 520,882
LePape, J.-R, 330, 869
Lesh,N., 411,570
Lesniewski, S., 258, 882
Lesser, V. R., 770, 570
levels of description, 152
Levesque,H., 184,259,261,331,

332, 863,882, 894, 895
Levy, D. N., 144,875
Lewis, D. K., 50, 685, 839, 882
Lewis, R., 641,579
LEX, 552,559
lexicon, 664,686, 698, 703-704
LEG, see grammar,

lexical-functional
Li, M., 560, 882
liability, 848
Lieberman, L., 769, 860
LIFE, 297, 329
life insurance, 479
Lifschitz, V., 363, 390,466,872,

882
lifting lemma, 286,289



Index 919

light-beam sensors, 785
Lighthill, J., 21,882
Lighthill report, 21,24
likelihood, relative, 427
likelihood weighting, 456,465
limb (in a scene), 745
limited rationality, 8
Lin, S., 115
Linden, T. A., 411,852
Lindsay, R. K., 257,720,882
linear input resolution, 312
linearization, 346, 347
linear plan, see plan, linear
linear resolution, 285
linear separability, 574,593
line labelling, 745
linguistics, 15-16,28

computational, 16
Linguistic String Project, 685
link (in a neural network), 567
link (of a robot), 777, 809
linked list, 329
linking curve, 800
LINKS, 347, 372,375
Linnaeus, 258
Lipkis, T., 332,894
LIPS, see logical inferences per

second
liquid event, see event, liquid
liquids, 260
Lisp, 18, 197,329,654

Common, viii, 329,330, 855
lists, 200
literal (sentence), 167, 182
Littman, M., 520,864
lizard toasting, 627
LLA, see action, low-level
Lloyd, J., 328,882
LMS, see least mean squares
LMS-UPDATE, 602,602, 623
LMT (Lozano-Perez, Mason, and

Taylor), 795
local encoding, 577
locality, 174,460
locally finite graph, 100
locally structured system, 441
Locke, J., 9
Locke, W. N., 720,882
locking, 312
locomotion, 777, 778
Lodge, D., 848
logic, 7, 11,151,158

autoepistemic, 466
combinatory, 329
default, 459
description, 298
dynamic, 259
first-order, 185,211

semantics, 186
syntax, 186

first-order probabilistic, 843
fuzzy, 166,417,459,463^66
higher-order, 195
inductive, 432,432

< modal, 245, 258,260
nonmonotonic, 321,459
notation, 7
prepositional, 151,165

limitations, 176
semantics, 168
syntax, 166

temporal, 165,258, 259
terminological, 298

logical connective, 16, 165, 189
logical inferences per second, 307
logical level, 153
logical omniscience, 246
logical piano, 292
logical positivism, 10
logicism, 7, 16
logic programming, 293, 304-310,

328, 343
constraint, 308, 328
inductive (ILP), 628,636-645
language, 297

logic sampling, 455,465, 515
Logic Theorist, 292
Logic Theorist (LT), 17
logic variables, 306,308
LOGIN, 328,329
long-distance dependency, 710
long-term memory, 316
Longuet-Higgins, H., 769, 882
LOOKUP, 38, 321
lookup table, 38, 572
LOOM, 298
lottery, 473

standard, 478
love, 823
Lovejoy.W., 520,883
Lovelace, A., 15,823
Loveland.D., 293,294,553
Lowe, D., 769,88.3
Lowenheim, L., 212, 883
Lowerre, B., 770,883
Lowrance, J., 466,893
Lowry, M. R., 330,883
Loyd, S., 86, 883
Lozano-Perez, T., 795, 883
LT, 17
LT (Logic Theorist), 17
Luby, M., 465,867
Lucas, J., 824, 883
Luger.G. R, 5,883
LUNAR, 23,693,720
Lunokhod robots, 775

Lusk, E., 294, 902

M
M?. (model), 499
M (model), 605
MacHack 6, 143
machine evolution, 21
machine learning, 5, 7,463, 687,

829
machine translation, see language,

translation
Machover.M., 213,867
Mackworth, A., 749,769, 853
Macpherson, P., 466, 899
macro-operator, 787
macrop, 389
Maes, P., 36, 553
Magerman, D., 687, 562,583
Mahajan, S., 623,881
Mahanti,A., 117,883
Mahaviracarya, 431
Maher, M., 328, 881
MAJORITY-VALUE, 537
majority function, 533,573
MAKE-ACTION-QUERY, 152, 177,

202, 663
MAKE-ACTION-SENTENCE, 152,

202, 338, 395,408
MAKE-GOAL-QUERY, 337,338,408
MAKE-MINIMAL-PLAN, 356
MAKE-NODE, 73,107,110,112,

113,666
MAKE-PERCEPT-SENTENCE, 152,

177,202,338,395,402,
408,663

MAKE-PLAN, 399,408
MAKE-QUEUE, 72,73,110
Malik, J., 27,520, 737, 743, 749,

769, 877,880, 883
Manhattan, see heuristic, Manhattan
MANIAC, 587
Manin, Y., 293,553
manipulation, 254,725,777
manipulator, 780
Mann.W.C., 719,720, 553
Manna, Z., 213,293, 330, 553
manufacturing, 390
MAP, see maximum a posteriori
map-coloring problem, 91, 105
mapping, 34

ideal, 34
Marchand, M., 595, 883
Marin, J., 559, 877
Mark MI/HI, 14
Markov, A. A., 500,770, 553
Markov blanket, 465
Markov chain, 514
Markov decision problem, 411,500



920 Index

partially observable, 500
Markov decision problems, 520
Markov model, 762
Markov property, 500,509,762, 765
Marr, D., 769,883
Marriott, K., 328, 881
Marsland, A. T., 144, 884
Martelli, A., 116, 143, 328,884
Martin, C, 28, 884
Martin, ]., 720, 884
Martin, P., 258, 694, 720, 874, 876
MARVEL, 26
Maslov,S., 293,884
Mason, M., 411, 795, 883,884
mass noun, 242
mass spectrometer, 22
MATCH, 666
match phase, 314
material advantage, 127
material handling, 774
materialism, 9, 819

eliminative, 840
material value, 127
Mates, B., 119,884
mathematical induction schema, 288
mathematical objection, 824, 826
mathematics, 11-12
Matheson, J., 484,494, 576,886
Mauchly,J., 14
MAUT, see multiattribute utility

theory
MAX, 110,132
MAX-VALUE, 130-132,132
maximum a posteriori, 588
maximum expected utility, 472,493,

502
maximum likelihood, 589
Maxwell,!., 458,720,554
Mayer.A., 116,574
Mays, E., 325.554
McAllester, D., 143, 312. 330, 332,

364, 554
MCC, 24
McCarthy, J., 17, 18,50. 179,212,

213,230,257,259,329,
459, 820, 832, 554

McCartney, R. D., 330, 883
McCawleyJ. D., 685,555
McClelland, J. L.. 24, 893
McConnell-Ginet, S., 28, 685.565
McCorduck, P., 810,555
McCulloch, W. S., 16, 19,563, 570,

594, 555
McCune, W., 310, 330, 555
McDermott, D., 5, 213, 317, 328,

330,331,390,411,459,
565, 555, 596, 595

McDermott, J., 24, 316, 555

McDonald, D., 707
McDonald, R., 185
McGuinness, D., 324, 332, 863
MDL, see minimum description

length
MDP, see Markov decision problem
Mead, C., 595,555
meal, 251
meaning, 161
means-ends analysis, 10,10
mean square error, 623
measure, 231, 386
measure fluent, 386
medical diagnosis, 22, 23, 27, 465
MeehanJ., 328,565
Meet, 239
meganode, 453
Megarian school, 179,258, 291
Megiddo, N., 847,555
Melcuk, I., 687,555
Mellish, C., 330, 865
MEMBER, 307,307,322
MEMBER?, 322
MEMBERSHIPS, 321,322
memoization, 87,452, 629
memory requirements, 75, 77, 79
meningitis, 426^127,434, 435
mental model, in disambiguation,

682
mental objects, 243-247
mental states, 819
Mercer, R., 687, S62
mereology, 258
Merkhofer, M., 494, 556
MERLIN, 331
Mero, L., 116,555
meta-comment, 718
Meta-DENDRAL, 552, 559,641
METALOG, 330
metamer, 730
metaphor, 715, 720, 822
metaphysics, 10
metareasoning, 140,309, 364

decision-theoretic, 844
metonymy, 714, 720
Metropolis, N., 117,555
Metropolis algorithm, 117
MEU, see maximum expected utility
Mezard, M., 573, 595, 555
MGSS*, 143
MGU, see unifier, most general
Michalski, R. S., 560, 555
Michaylov.S., 329,577
Michie, D., 28, 70, 86, 115,117,

144,221,539,560,618,
622,810,569,555,594

MICRO-PLANNER, 330
microelectronics industry, 774

micromort, 480,494,497
microworld, 19,19, 21, 827
Middleton, B., 444,456, 890
Miles, E, 596, 885
Mill, J. S., 10, 546, 555, 556
Miller, A., 494,556
Miller, D., 389,565
Miller, G., 595, 704, 556
Milne, A. A., 218, 556
MIN, 107, 132
min-conflicts, see heuristic,

min-conflicts, 116
MIN-VALUE, 130, 132,132
mind, 5, 817, 838

conscious, 818
dualistic view, 838
and mysticism, 565
philosophy of, 817, 838, 840
as physical system, 8, 9
and symbolism, 180
theory of, 6

MlNIMAL-CONSISTENT-DET, 635,
635

minimax, see search, minimax
MINIMAX-DECISION, 126,147
MINIMAX-VALUE, 126,126, 135,

147
minimax decision, 124
minimization (logical), 236
minimum description length, 560
minimum spanning tree, 116,119
Minker,J., 328,572,556
Minsky.M. L., 16,18,21,23,24,

28,331,465,577,578,594,
595, 827, 556

Minton.S., 116,645,556
missing attribute values, 543
missionaries and cannibals, 67, 86,

88
MIT, 17, 18,781,810
Mitchell, D., 184,595
Mitchell, T., 552, 559,560, 645,

788,812,843,565,564,
555, 556

Mitchell, T. M., 645
MIT1, 777
ML, see maximum likelihood
ML (programming language), 329
mobile robots, 520
mobot, 775
modal logic, see logic, modal
model

causal, 443
(in logic), 170
(in representation), 13
theory, 212
trees, 616

model-based reasoning, 209



INDEX 921

model-based recognition, 785
modification operator, 346
modularity, 210
Modus Ponens, 172,245,285, 290,

291,294,819
Generalized, 269,269-270

MOLGEN, 390
monkey and bananas, 366
monotonicity (of a heuristic), 97,

116
monotonicity (of a logic), 173, 321,

459
monotonicity (of preferences), 474
Montague, R., 258, 259, 685, 878,

886, 899
Montanari, U., 116, 143,328, 884
Monty Python, 159
Mooney.R., 645,868
Moore, A., 623,886
Moore,J., 331, 886
Moore, J.S., 293,313,328, 330,

826, 863
Moore, R., 132,143,260,261,466,

876, 879, 887
morality, 817
Moravec, H., 835, 849, 887
More,!., 17
Morgan, J., 720, 866
Morgenstern, L., 260, 887
Morgenstern,O., 12, 142,493,847,

900
morphology

analysis, 695, 703
derivational, 703
inflectional, 703

Morris, P., 467, 873
Morrison, E., 142,887
Morrison, P., 142, 887
Mosher.R., 776
most-constrained-variable, see

heuristic
most-constraining-variable, see

heuristic
most general unifier, see unifier,

most general
Mostow,J., 116,118,587
Motet, S., 27, 879
motion, 735-737

compliant, 803
guarded, 803

motion parallax, 737, 768
motion planning, 796-808,811

complexity, 811
motor subsystem, 410
Motzkin, T., 594, 859,887
Mourelatos, A. P., 259,887
Moussouris, J., 144,887

MPI, see mutual preferential
independence

MRS, 297, 309,313,330,457
MST (minimum spanning tree), 119
Muggleton, S., 466, 641,646, 860,

879, 887
jnultiagent domain, 244
multiattribute utility theory, 480,

480, 494
multilayer network, see neural

network, multilayer
multiple-state problem, see problem
multiple inheritance, 320
multiply connected network, 453
Mundy.J., 769,887,893
MUNIN, 465
Murphy's Law, 59, 87
music, 15
mutation, 21, 619,620
mutually utility-independent, 484
mutual preferential independence,

483
MYCIN, 23-24,461,466
myopic policy, 490
Myrhaug.B., 331,862, 867
mysticism, 565

N
n-armed bandit, 611
Nadal,J.-P., 573,595,885
Nagel, T., 839, 887
Nalwa,V. S., 13,770,887
NAME, 321
naming policy, 660
narrow content, 821
NASA, 390,693,776
NASL, 411
Nasr, R., 328,859
natural deduction, 291
natural kind, 232, 319
natural language, see language,

natural
Natural Language Inc., 694
natural language processing (NLP),

see language
natural science, 654
natural stupidity, 317
Nau, D., 870
Nau, D. S., 116,143,389,390,878,

887
Naur, P., 685,887
Navathe, S., 325, 867
navigation, 252-253,725, 796-808

landmark-based, 796
NavLab, 586
NAVTO, 787
Neal, R., 596,887
Neapolitan, R. E., 467, 887

neat, 25
needle in a haystack, 160
negated literals, 312
negation, 167
negation as failure, 304, 343
negative example, 534
negligence, 848
Neisser, U., 594,895
Nelson, H., 144, 877
NERF, 572
NETL, 298,331
NETtalk, 585
Netto, E., 86, 887
NEURAL-NETWORK-LEARNING, 576,

577,580
NEURAL-NETWORK-OUTPUT, 577,

597
neural computation, see neural

network
neural network, 16, 19, 24, 128,

139,530,563,563,593,829
vs. belief network, 592
efficiency, 583
expressiveness, 16, 583
feed-forward, 570, 593
hardware, 16
learning, 16
multilayer, 21,571, 593
and noise, 584
nonlinearity in, 567
recurrent, 570
second best, 585

neurobiology,565, 769
Neurogammon, 617
neuron, 16,452,563,564,819.833,

835
NEW-CLAUSE, 643
NEW-LITERALS, 642-644
NEW-VARIABLE, 307
Newborn, M., 117,889
Newell, A., 6, 10,17,26,86,94,

115, 143,179,292,316,
329,331,645, 843, 587,
886-888,896. 898

Newton, I., 3, 509
NEXT-SUCCESSOR, 110
Neyman, A., 847, 888
Nicholson, A., 520, 868, 888
Nicholson, A. E., 520
Nievergelt, J., 145, 879
Nilsson, N. J., 28, 87, 115,116,118,

143, 144,213,286,293,
363,411,594,645,810,
8 U, 870,872, 874,888, 900

Nim, 142
Nitta, K., 329, 888
Nixon, R., 320, 682,714
Nixon diamond, 320



922 Index

NL-MENU, 720
NLP, see natural language

processing
NOAH, 330, 363,411
Nobel prize, 50
node, search, 71
noise, 535, 542-543,552. 563, 584,

588,636,731.795
noisy-OR, 443
nominal compounds, 706, 721
nominalist, 258
nominative case, see subjective
noncomputability, 11
nondeterminism, 855-856
nondeterministic, see environment,

nondeterministic
NONDETERMINISTIC-CHART-PARSE,

699
nondeterministic algorithm, 855
nonepisodic, see environment.

nonepisodic
nonholonomic, see robot,

nonholonomic
NONLIN, 363
NONLIN+, 389, 390
nonlinear plan, see plan, nonlinear
nonmonotonicity, 321,459
nonmonotonic logic, see logic,

nonmonotonic
Nono, 267
nonterminal symbol, 655, 656, 854
normalization, 428
normalizing constant, 451
Normann, R. A., 832, 864
normative theory, 479
North, O., 267
North,!., 21, 871
Norvig, P., 328, 330, 688, 770, 878,

888
notation

arithmetic, 7
logical, 7

notational variations for FOL, 196
noun phrase, 655, 709
Nowatzyk.A., 144, 876
Nowick, S., 313,888
NP, see noun phrase
NP-completeness, 12, 21, 852, 853
nuclear power, 468, 838
NUMBER-OF-SUBKINDS, 322
number theory, 647
Nunberg,G., 720, 888
Nussbaum,M.C., 888
Nygaard.K., 331,862,867

O
O() notation, 852

cP (configuration space obstacle),
791

O'Brien, S., 720. 891
O'Keefe, R., 330. 888
O-PLAN, 369-371.387,390
object, 165,185,188

^composite, 234
object-oriented programming, 15
object creation, 384
objective case, 668
objectivism, 430
object recognition, 725, 751-755
observation sentences, 10
obstacle avoidance, 808
OCCUR-CHECK, 303
occur-check,303,305
Ochiai, T., 618, 871
Ockham's razor, 534. 558, 559, 589,

626,644
Ockham,W., 534,559
Ockham algorithm, 560
octant, 747
odometry, 783
Oetzel, R. M., 596, 900
offline cost, 61
Ogasawara, G., 27,520, 877. 880
Oglesby.E, 313, 330,574
Olalainty, B., 390,871
Olawsky.D., 411,888
Olesen, K., 465, 860, 877, 888
Oliver, R., 494. 888
Olson, C., 754, 888
Olum, P., 769, 872
omniscience, 32, 558

logical, 246
one-shot decision, see decision,

one-shot
online algorithm, 796, 806, 806-809
online cost, 61
online navigation, 813
Ono,N., 618,57;
ONTIC, 312, 330
ontological commitment, 165, 185,

417,459
ontological engineering, 217, 222
ontological promiscuity, 258
ontology, 222, 257
Op (STRIPS Operator), 344
OP, 299, 303
opacity, 244
open-coding, 306
open class, 664
operationality, 632
operationality and generality, 632
operations research, 86, 87, 116,

117,367,498,500
OPERATOR, 72
operator, 60, 85, 123

abstract, 372
primitive, 372

operator expansion, see planning,
hierarchical

operator reduction, see planning,
hierarchical

OPERATORS, 60,73,126
operator schema, 344
OPS-5,298,314,316
optical character recognition, 657
optical flow, 735, 750, 769
optimality (of a search algorithm),

73,85
optimally efficient algorithm, 99
optimal solution, 76
optimistic prior, 610
optimization problem, 619
optimizer, peephole, 379
OPTIMUM-AIV, 367,369, 390
Opus, 320
OR, see operations research
Or-Introduction, 172
oracle, 856
orderability, 474
ordering constraints, 350
ORDERINGS, 347, 372,374
ordinal utility, see utility, ordinal
Organon, 179,257
Ortony, A., 720,888
Osherson, D. N., 559, 889
Othello, 138,623
OTTER, 297,310, 311,311,313,

330,333
outcome of a lottery, 473
output unit, 571
Overbeek, R., 294, 902
overfitting, 542, 542-543,572, 588
overgeneration, 668
overshooting, 577
OWL, 298

P (probability), 420
P (probability vector), 421
PAC, see probably approximately

correct
packed forest, 697, 703
packed tree, 723
Paek, E., 595,870
PAGE description, 36, 37, 248
Paige, R., 330, 889
Palay, A. J., 143,889
Palmer, R. G., 595, 875
Palmieri, G., 594, 872,889
Pandemonium, 594
Pang, C., 87, 868
Panini, 15, 685
Pao, C., 26, 903



Index 923

Papadimitriou. C., 749,847, 879,
889

Papert, S., 21, 24,577, 578,594,
595, 886

PARADISE, 140
paradoxes, 259
parallel distributed processing, see

neural network
Parallel Inference Machine, 308
parallelism, 566

AND-, 308
OR-, 308

parallel lines, 726
parallel search, 117, 117
paramodulation, 284,293
PARENT-NODE, 72
parent node, 72
parity function, 533
Parker, D., 595, 889
PARLOG, 329
Parrod, Y., 390, 859
PARSE, 662,663
parse forest, 664
parse tree, 658, 664,701
parsing, 658,658, 664

chart, 697
partial derivative, 580
partial order, see planning,

partial-order
partial plan, see plan, partial
partition, 231, 795
part of, 233
part of speech, 658
Partridge, D., 29, 889
parts, 252
Pascal's wager, 432, 493
Pascal, B., 12, 14,431
Pascaline, 15
Pasero, R., 328, 866
PASSIVE-RL-AGENT, 602,605,607
passive learning, 599
passives, 687
Paterson, M., 889
path, 60, 85
PATH-COST, 72
PATH-COST-RlNCTION, 60
path cost, 60, 61,85
PATHFINDER, 457,458,465
pathmax, 98
Patil, R., 332,702,720, 865,869
Patrick, B., 117,889
pattern matching, 330
Paul, R. P., 811,889
paying, 255
payoff function, 124,418
PCFG, see grammar, context-free
POP, see parallel distributed

processing

Peano.G., 212, 316,889
Pearl, J., 25, 97, 99, 116-117,143,

435,437,465,467,497.
596, 868, 873, 879, 889,895

PEDESTAL, 390
Pednault,E. P., 390,889
PEGASUS, 26
Peirce,C. S., 212, 316.323.685,

889
pen, 713
Penberthy, J., 390, 861,889
Peng, J., 623, 889
Pengi, 411
Penrose, R., 825, 889
Pentland, A., 36, 883
Peot, M., 411,465, 889,895
PERCEPT, 48
percept, 39
perception, 30
perceptron, 19, 571,573, 593, 594

convergence theorem, 20
learning rule, 576, 593
representational power, 21, 596

percept sequence, 33
Pereira, E, 304, 306, 685,688, 693,

694, 720,874, 889, 890, 900
Pereira, L., 306, 900
PERFORMANCE-ELEMENT, 608, 609
PERFORMANCE-FN, 48
performance element, 525, 526,

558,562,766
performance measure, 32, 40. 47,

50,416,472
Perrault, C., 720, 866
perspective. 767
perspective projection, 726, 735
PERT, 367-369
Peters, S., 685,869
Peterson, C., 595, 890
Petrie, T., 770, 867
phenomenology, 828
Philips, A., 116, 886
Phillips, M., 26, 903
Phillips, S., 87, 878
Philo, 179
philosophy, 3, 8-10, 817-841

European, 8
phone (speech), 757
phoneme, 585
phone number, 246
phonetic alphabet, 758
photogrammetry, 768
photometry, 729
photosensitive spot, 749
phrase, 655
phrase structure, 655, 685
physicalism, 819,839
Picasso, P., 834

pick (choice point), 856
Pickwick, Mr., 831
piecewise continuity. 740
pigeons, 13
Pillsbury, 696
PIM, see Parallel Inference Machine
ping-pong, 29, 598
pinhole camera, 725
Pinker, S., 687,890
Pisa, tower of, 526
pit, bottomless, 153
Pitt, L., 560,862
Pitts, W., 16,19, 563, 570, 594, 885
pixel, 727
place, 236
Place, U., 839, 890
plan, 347

canned, 407
complete, 349
conditional, 410, 806
consistent, 349, 349
fully instantiated, 346
initial, 347
linear, 363
noninterleaved, 363
nonlinear, 363
parameterized, 398
partial, 345
representation, 346

PLAN-ERS1, 390
PLANEX, 411,787
Plankalkul, 14
PLANNER, 23,330,402
planning, 42, 140, 211,342, 539

abstraction, 389
adaptive, 389
ADL formalism, 390
assembly, 792
blocks world, 19
bounded-error, 796
case-based, 389
conditional, 392, 393-398,407,

412,415,500
contingency, 392
andDDNs, 519
deferred, 393
and execution, 403-406
fine-motion, 802, 809
formalization, 25
hierarchical, 371-380,389
hierarchical decomposition, 374
history, 363
as logical inference, 341
menu, 249-252
multi-agent, 390
partial-order, 337, 346. 355-356,

390,407
progression, 345, 365



924 Index

reactive, 411, 411
regression, 345, 356, 363
route, 18
and scheduling, 369
search spaces, 345-346
situation calculus, 341-342
situation space, 345
speech acts, 654
symbolic, 788
total order, 346
under uncertainty, 795, 843

planning agent, see agent, planning
planning variable, 400
plan recognition, 654,718
plasticity, 564
Plato, 8, 178,827,838
Plotkin, G. D., 646, 890
ply, 124
Pnueli, A., 259,890
Podelski, A., 329, 859
poetry, 4, 682
Pohl, I., 87, 116,890
poker hands, 433
Poland, 240
Polguere, A., 687, 885
policy, 411,498,500, 517,519, 806

optimal, 500
POLICY-ITERATION, 506,608
policy iteration, 505,505-506,520,

603, 843
policy loss, 505
Polifroni, J., 26, 903
Pollack, M., 720, 866
Pollard, C, 686, 890
Polya, G., 94,890
polytree, 448,464
POMDP, see Markov decision

problem
Pomerleau, D. A., 26, 586, 587,750,

877, 890
POMPD (partially observable

Markov decision problem),
520

Pooh, Winnie the, 218
POP, 355, 356, 356, 357, 358, 362,

364-367,369,374,384,
391,398,404,406,412

POP-DUNC, 381, 384, 385, 390,
401

POPLOG, 330
Popper, K. R., 432, 559, 836, 890
Port-Royal Logic, 471, 493
Portuguese, 627
pose, 734,752
positive example, 534
positivism, logical, 10
possibility theory, 466,466
possible threat, 354,357, 357

possible world, 260,795
Post, E. L., 179,890
posterior probability, see

probability, conditional
POSTSCRIPT, 706, 707
Prade, H., 466, 869
Pradhan, M., 444, 456,890
pragmatic interpretation, see

interpretation, pragmatic
pragmatics, 658
Prata, A., 595, 870
Pratt, V. R., 259, 890
Prawitz, D., 291,293,890
pre-editing, 692
precompilation, 270
precondition, 344

disjunctive, 383
universally quantified, 383

PRECONDITIONS, 402
predecessor, 80
predicate, 165,674
predicate calculus, see logic,

first-order
predicate symbol, 187, 211
PREDICT, 723
predicting the future, 531, 553
prediction-estimation process, 515
prediction phase, 509
PREDICTOR, 698-700,702,702
predictor, 698
preference, 418, 473,474, 483

lexicographic, 496
monotonic, 476

preference independence, 483
preferentially independent, 496
premise, 167
prenex form, 292
preposition, 664
president, 240
Presley, E., 240
PRESS, 330, 331
Price Waterhouse, 369
Prieditis, A., 103, 116,118,887,890
primary colors, 730
Princeton, 17,704
Principia Mathematica, 17
PRINT, 856
Prinz, D., 142, 890
Prior, A. N., 258,890
prioritized sweeping, 607, 623
priority queue, 623
prior knowledge, 625,627, 636, 645
prior probability, see probability,

prior
prismatic motion, 781
Prisoner's Dilemma, 847
prisoners, three, 435
probabilistic model, 425

probabilistic network, see belief
network

adaptive, 590
probabilistic projection, 515
probabilistic sensor models, 520
probability, 12,23,25, 127

alternatives to, 458
assessment, 430
axioms of, 422-423
conditional, 418,421, 421-422,

431,440
conjunctive, 440
distribution, 139,421,445
history, 433
judgments, 443
of sun rising, 430
prior, 420,420-421,431
theory, 417, 493

probably approximately correct,
553, 556, 560

PROBLEM,60
problem, 60, 85

airport-siting, 496
assembly sequencing, 70
bandit, 623
contingency, 59, 123
cryptarithmetic, 65, 91
datatype, 60
8-queens, 64, 83
8-puzzle, 101,103, 115
8-queens, 86, 89
exploration, 59
halting, 277, 824
inherently hard, 852-853
intrinsically difficult, 106
map-coloring, 91, 105
missionaries and cannibals, 67
monkey and bananas, 366
multiple-state, 58, 66
real-world, 63
relaxed, 103
robot navigation, 69
route-finding, 93
shoes-and-sock, 347
shopping, 340
single-state, 58, 60
toy, 63
travelling salesperson, 69
VLSI layout, 69, 114

problem-solving agent, see agent,
problem-solving

problem formulation, 56, 57
problem generator, 526, 562
problem solving, 22

complexity, 342
vs. planning, 338

procedural attachment, 323
PROCESS, 311,311



Index 925

process, 237
production, 40, 854
production system, 297, 314
product rule, 421
PROGRAM, 48
programming language, 14, 160
program synthesis, 411
progression planner, see planning
projection, probabilistic, 514
Prolog, 197, 297, 304, 328, 363,

644, 688
Concurrent, 329
parallel, 308

Prolog Technology Theorem Prover,
311,330

promotion, 353
pronunciation, 585,762
proof, 160, 173,266

as search, 268
by contradiction, 280
checker, 312
procedure, 11
theory, 160, 165

property, 185
PROPOSITIONAL-KB-AGENT, 177
propositional attitude, 244
propositional logic, see logic,

propositional
proprioception, 782
PROSPECTOR, 23,466
prosthetic limbs, 777
Protagoras, 685
protected link, 353
protection, 350
protection interval, 347
protein structure, 641
Provan, 0. M., 444,456, 890
pruning, 123,130,346, 542

in contingency problems, 136
inEBL, 631

Psaltis, D., 595, 859, 870, 877
pseudo-code, 855
pseudo-experience, 607,616
PSPACE, 811,853
psychological models, 566
psychological reasoning, 261
psychology, 3, 12-14

experimental, 6, 13
information-processing, 13

psychophysics, 769
public key encryption, 313
Puget, J.-E, 646, 893
Pullum, G. K., 162,656,686, 872,

890
PUMA, 781,782
punishment, 528
Purdom, P., 116,897

Putnam, H., 50, 286, 292, 432, 839,
867, 891

Pylyshyn.Z. W., 839, <S9/

Q(a, i) (value of action in state), 612
Q-learning, 599, 623,624
Q-LEARNING-AGENT, 614
Q-value,612
QA3, 212,363
QALY, 480,494
QLlSP, 330
qualia, 821, 836, 840
qualification problem, 207, 213,

415,830
qualitative physics, 233,260
qualitative probabilistic network,

465, 482
quantified term, 676, 677
quantifier, 165,189

existential, 191-192
nested, 192-193
scope, 673,686
universal, 189-191

quantization factor, 758
quantum theory, 826
quasi-logical form, 676,686
query (logical), 201
query variable, 445
question, 711
queue, 72
QUEUING-FN, 72, 73
Quevedo,T., 142,810
quiescence, 129,142
Quillian, M. R., 257, 331,891
Quine,W., 179, 213,232, 258, 891
Quinlan, E., 720, 891
Quinlan, ]., 540, 559, 561,616, 642,

644, 646,891
Quirk, R., 685,891

R(i) (Reward), 603
Rl,24,316
Rabiner, L. R., 688, 766, 770, 891
racing cars, 846
Raibert, M. H., 778,891
Raiffa, H., 479,484, 494,879
ramification problem, 207
Ramsay, A., 330,861
Ramsey, F. P., 432,493, 891
randomization, 34
random restart, 119
random variable, 420, 441

Boolean, 420
Rao, B., 27, 520,877,880
Raphael, B., 19, 115, 116,646,810,

863, 874,891

rapid prototyping, 304
RAPTS, 330
rational action, 518
rational agent, see agent, rational
rationalism, 827
rationality, 4, 847

calculative, 845
limited, 8
perfect, 8, 845

rational speaker, 716
Ratner, D., 87, 897
rats, 13
Rau, L., 696,877
Rayner, M., 632, 894
ray tracing, 729
RBDTL, 635, 636,646
RBL, see relevance-based learning
reactive planner, see planning,

reactive
reading signs, 254
Reagan, R., 706
real-time AI, see artificial

intelligence, real-time
real-world problems, see problem,

real-world
reasoning, 18, 163

about location, 206
default, 326, 458-460,466
goal-directed, 140
intercausal, 461
metalevel, 330
uncertain, 25,658,682
with uncertainty, 760

Reboh, R., 330, 894
recognition hypothesis, 755
recognizable set, 795, 795
RECOMMENDATION, 57
record player, 812
recurrent, see neural network,

recurrent
recursive definitions, 643
Reddy, R.. 770,870, 883
Redfield, S., 595, 890
reductio ad absurdum, 280
reduction, 12, 184,853
redundancy, 791
redundant step, 405
reference class, 430,432
referential opacity, 260
referential transparency, 244
refinement operator, 345
reflectance, 729, 743
reflectance map, 745
REFLEX-AGENT-WITH-STATE, 43,49
REFLEX-LEARNING-ELEMENT, 529,

530
REFLEX-PERFORMANCE-ELEMENT,

529, 530, 530



926 Index

refutation, 280, 283, 293, 311
refutation completeness, 286
regression, nonlinear, 572
regression planner, see planning
regret, 479
Reichardt, J., 810, 891
Reichenbach, H., 432, 892
Reif, J., 796, 811,564, 892
reification, 230,230, 319,435
reinforcement, 528, 528, 598
reinforcement learning, 528, 598,

829
Reingold,E., 116,562
Reiter, R., 213,259, 459,466, 892
Reitman, W., 145, 892
RELATED-TO?, 322
relation, 185
relative clause, 710
relaxed problem, see problem
relevance, 169,628,646
relevance-based learning, 628, 634,

645
RELS-IN, 321
RELS-OUT, 321,322
REMAINDER, 57
removal from a KB, 298
REMOVE-FRONT, 72, 73
Remus, H., 145,<W,592
renaming, 273
Renyi, A., 592
Renyi, A., 431
repeatability, 783
repeated states, 82
replanning, 367, 371, 392,401 -403,

407,412
REPLANNING-AGENT, 402,402
representation, see knowledge

representation
representation languages, 157
representation theorem, 480
REPRODUCTION, 620
REQUEST, 490
Rescher,N., 261,592
RESET-TRAIL, 307
Resnik, P., 688, 592
resolution, 18,21, 172,172,265,

277,290,297,648
algorithm, 277
completeness proof, 286
generalized, 278
input, 285
inverse, 639, 639-641,646
linear, 285
strategies, 284-286

resolution closure, 287
RESOLVE-THREAT, 382

RESOLVE-THREATS, 356,356, 357,
358,374,375,382,382,
384,385,385

resolvent, 279, 639
resource (in planning), 386-389,

391
response, 13
REST, 273,275,303, 338,395,402
restaurant, see learning, restaurant

problem
restrictive language (in planning),

342
Result (situation calculus), 342
rete, 314
retina, 724
RETRACT, 321,325,326,412
retraction, 325
REWARD, 601
reward, 528, 598,603
reward-to-go, 601
reward function, 503
rewrite rule, 310, 333,655, 854
REWRITES-FOR, 699, 702
Rice, T, 494,886
Rich, E., 5, 592
Rieger.C, 23,592
Riesbeck, C. K., 23, 328, 565,894
right thing, doing the, 4, 8
Ringle, M., 840, 592
risk aversion, 478
risk neutrality, 478
risk seeking, 478
Rissanen,J., 560, 592
Ristad, E., 690
Ritchie, G. D., 647, 592
Rivest, R.. 560,595. 853, 562. 566,

592
RMS, see root mean square
Roach, J., 329, 592
roadmap, 800
Roberts, D. D., 331,592
Roberts, L., 769, 592
Roberts, M., 143,562
Robin, C., 218
Robinson, A., 292
Robinson, G., 293, 902
Robinson, J., 18,277,286,293,328,

592
Robo-SoAR, 788
robot, 773, 773, 809

architecture, 786-790
autonomous, 773
cleaning, 812
holonomic, 778
mobile, 775,812
navigation, 69
nonholonomic, 778

robot game, 811

robotics, 6, 363,512
behavior-based, 789
father of, 810
laws of, 814

Robot Institute of America, 773
robot reply, 832
Rochester, N., 14, 17, 18
Rock, I., 770, S92
rollup(ofaDBN), 515
Romania, 56
root mean square error, 505
Rorty, R., 840,592
Rosenberg, C., 585,595
Rosenblatt, E, 19, 576, 594, 769,

572, 592
Rosenblitt, D., 364, 554
Rosenbloom, P., 26, 316,645, 843,

881, 887,898
Rosenbluth, A., 117,555
Rosenbluth, M., 117,555
Rosenfeld, E., 28, 560
Rosenholtz, R., 743,769, 883
Rosenschein, J., 180,592
Rosenschein, S. J., 180, 788,575,

592
Rosenthal, D. M., 840, 592
Ross, K., 720,599
Ross, S. M., 433, 592
rotary motion, 781
rotation, 734
Rothwell, C., 769, 593
Roukos, S., 687, 562
Roussel, P., 328, 566, 593
route finding, 68
Rouveirol, C., 646,893
Rowe, N. C., 29,893
RSA (Rivest, Shamir, and

Adelman), 313
Rubik'scube, 86, 103,735
Rujan, P., 595, 553
rule

causal, 212
condition-action, 40, 145,612
diagnostic, 212
dotted, 697
if-then, 40,167
implication, 167
of thumb, 94
situation-action, 40, 498
uncertain, 461

RULE-ACTION, 41,43
rule-based systems, 458

with uncertainty, 460-462
RULE-LHS, 666
RULE-MATCH, 41,43
RULE-RHS, 666
rule memory, 314
RULES, 666,699



Index 927

rule schema, 671
Rumelhart, D. E., 24, 595, 893
RUN-ENVIRONMENT, 47,48
RUN-EVAL-ENVIRONMENT, 47,48,

48
RUN-NETWORK, 581
RUNNING-AVERAGE, 602,605
runtime variable, 400
Ruspini, E., 466, 893
Russell, B., 10, 16, 17,291,292,

825, 901
Russell, J., 494,893
Russell, S. J.. 27, 50, 117, 143, 309,

330,520,596,646,843,
844, 846, 867, 874, 877,
880, 893, 898

Russian, 21
Ruzzo, W. L., 720, 873
Ryder, J. L., 145, 893

S
S-set, 550
sabotage, 661
Sacerdoti, E. D., 330, 363, 389, 893,

894
Sachs, J., 162,594
Sacks, E., 260, 894
Saenz, R., 720, 899
safety clearance, 797
Sag, I., 686,720, 572, 878, 890
Sagalowicz, D., 330, 894
Sager, N., 685, 594
SAINT, 19
St. Petersburg paradox, 476, 494
Salton, G., 688,894
SAM, 297, 313,330
Samad, T., 595, 574
Sammut, C, 539, 894
sample complexity, see complexity,

sample
sampling rate, 758
Sampson, G., 688, 572
Samuel, A., 17, 18, 138, 143,559,

600,617,622,823,829,594
Samuelsson, C., 632,594
Sanna, R., 594, 872, 889
Sanskrit, 256, 331,685
Sapir-Whorf hypothesis, 162
Saraswat, V. A., 329,594
SAT, see satisfiability problem
satisfiability, 164
satisfiability problem, 182
saturation, 287
Satyanarayana, S., 595, 559
Savage, L. J., 12, 424,432, 493,594
sawing-the-lady-in-half trick, 817
SAY, 663
Sayre, K., 818, 894

scaled orthographic projection, 726
SCANNER, 699, 700, 702, 702
scanner (in chart parsing), 698
scene, 725
scent marking, 653
Schabes, Y., 687, 894
Schaeffer, J.. 138, 142, 144.554,

594
Schalkoff, R. J., 5, 594
Schank,R. C., 23,594
scheduling, 367, 369

job shop, 369
space missions, 369

Schemes, R., 596, 597
schema, 234
SCHEME, 329,856
Scherl, R., 259, 594
Schmolze, J., 332,594
Schoenberg. L, 594, 559,557
Schoenfinkel.M., 329,594
Schofield, P., 86, 594
Schoppers, M. J., 411,594
Schroder, E., 292,594
Schubert, L., 258, 686, 577
Schwartz, J. H., 595,575
Schwartz, W., 432,873
Schweikard, A., 794, 901
Schwuttke, U., 26. 594
scientific discovery, 559
SCISOR, 696
script, 234
Scriven, M.. 839, 595
scruffy, 25
SEAN, 330
SEARCH,57
search, 22, 42, 56, 85

A*. 96-101
completeness, 100
complexity, 100
optimality, 99

alpha-beta, 129-133.141, 143,
844

B*, 143
backtracking, 84, 309,771
bidirectional, 80
blind, 73
constraint satisfaction, 83-84
current-best-hypothesis, 546
cutting off, 129
general, 85
greedy, 93, 115, 1 18
heuristic, 73, 115
hill-climbing, 111,595
IDA*, 106
informed, 73, 92
iterative deepening, 79, 85, 87,

129,312
iterative deepening A*, 106

iterative improvement, 115
minimax, 124-126.130, 139, 141
quiescence, 129
random-restart, 595
simulated annealing, 113
SMA*, 107
uninformed, 73

search cost, 61
search node, see node, search
search strategy, 70, 73
search tree, 71
Searle, J. R., 565,685, 819.

831-835.837.839,840,595
segment (of discourse), 717
segmentation (of an image), 734
segmentation (of speech), 757
Sejnowski, T., 585, 594, 595, 617,

575, 595,599
SELECT-NONPRIMITIVE, 374
SELECT-SUB-GOAL, 374, 382-384,

385,391
SELECT-SUBGOAL, 355,356,356
SELECTION, 620
Self, M., 565
Selfridge, M., 687,562
Selfridge, O. G., 17,594,595
Selfridge, P., 325,565
Sells, P., 686,595
Selman, B., 117, 184,331,466,575,

579, 595
SEM-NET-NODE, 321
semantic interpretation, 672-678,

685, 689, 720
semantic network, 298, 316

partitioned, 323
SEMANTICS, 662,663
semantics, 28,157, 165,672

causal, 821
compositional, 672
intersective, 708
logical, 178
preference, 688

semidecidability, 277
semidynamic, see environment,

semidynamic
Seneff, S., 26,903
sensing action, see action, sensing
sensitivity analysis, 447, 492
sensor, 31, 724

abstract, 795
cross-beam, 785
depth, 785
force, 784
lane position, 513
parallel-beam, 785
structured light, 785
tactile, 724,784

sensor failure, 512



928 Index

sensor fusion, 512
sensor model, 510, 510-513

stationary, 510
sensory stimuli, 724
sentence

analytic, 164
atomic, 167, 189, 193,211,279
complex, 167, 211
in a KB, 151, 178
in a language, 655
logical, 186
necessarily true, 163
as physical configuration, 158
quantified, 211
valid, 163

separability, see utility function,
separable

sequence prediction, 90
sequent, 291
sequential decision, see decision,

sequential
sequential decision problems, 520
Sergot, M., 259,880
Sestoft, P., 645,878
set of support, 285, 310
sets, 199
Settle, L., 313,330,874
Shachter, R., 465,480, 494, 520,

895, 898
shading, 735, 743-745
Shafer,G.,466,467,895
Shahan, R. W., 840,862
Shakey, 19,360,363,365,411,787,

810
Shalla, L., 293, 902
Shankar.N., 313, 826,895
Shannon, C., 16, 17, 122, 142,540,

559, 895
shape, 734
shape from shading, 769
shape from texture, 769
Shapiro, E., 329, 330,646, 895,897
Shapiro, S. C., 28, 94, 323
Sharp, D., 596, 866
Sharpies, M., 29, 895
Shavlik, J., 560, 869, 896
Shaw, J., 94, 143, 292, 329, 888
sheep shearing, 775
Shenoy, P., 466,896
Shepard, E. H., 886
Shieber, S. M., 328,686, 688, 890,

896
shipping lanes, 793
Shirayanagi, K., 145,596
shoes and socks, 364
Shoham, Y., 213, 258,259, 466,

876, 896
shopping, 227, 247-255, 371, 392

shopping list, 249
short-term memory, 316, 570
shortest path, 87, 119
Shortliffe, E. H., 22,466, 864,896
SHRDLU, 23, 330
Shrobe, H., 329, 870
SHUNYATA, 826
Shwe, M., 465, 896
Sidner,C, 719,720, 874
Siekmann, J., 294, 896
Sietsma, J., 595, 896
SIGART, 28
sigmoid function, 569, 580,583
signal processing, 758-759
sign function, 569
Siklossy, L., 389,896
silhouette curve, 800, 800
silhouette method, 800
similarity network, 457
Simmons, R., 778,896
Simon, H. A., 6, 10, 17, 28, 50, 86,

94, 137, 143,292,313,330,
887,888,896

SIMPLE-COMMUNICATING-AGENT,
663

SlMPLE-PLANNING-AGENT, 338
SlMPLE-POLICY-AGENT, 501,521
SlMPLE-PROBLEM-SOLVING-AGENT,

57
SIMPLE-REFLEX-AGENT, 41
SIMPLIFY, 311
SIMULATED-ANNEALING, 113
simulated annealing, 111, 113, 117,

119
simulation of intelligence, 834
simulation of world, 821
simultaneity, 227
Singh, S., 623, 867
single-state problem, see problem,

single-state
singly connected network, 447
sins, seven deadly, 95
SIPE, 371,387,389, 390
SIR, 19
Siskind, J. M., 687,896
SlTUATED-PLANNING-AGENT, 408
situated agents, 830
situated automaton, 788
situated language, see language,

situated
situatedness, 26, 403
situation, 204,472
situation-action mapping, 828
situation calculus, 204,212, 213,

216,227,234,259,361,
363,368,390,400,659

skeleton, 798
SKELETON-AGENT, 38

skeletonization, 796, 798, 809
Skinner, B. E, 15,50,896
Skolem,T.,212,292,S96
Skolem constant, 292, 679
Skolem function, 282, 292,400
skolemization,281, 292
Slagle, J. R., 19, 142-144,896, 897
slant, 734
Slate, D. J., 87, 897
Slater, E., 142,897
sliding-block puzzle, 63
Sloman, A., 330, 839, 861,897
Slavic, P., 4, 878
SMA*, 107
Smallwood, R., 520,897
Smith, D. E., 295, 309, 330, 411,

872, 889,897
Smith, D. R., 330, 897
Smith, J., 494,888
Smith, R., 559,864
Smith, S., 369, 87/
smoothing, 730
SNARC,16
SNEPS, 298, 323
SNLP, 364
snow, 162
SOAR, 298,645, 788,790, 843, 844
Societe de Linguistique, 653
Socrates, 6, 8, 9
Socratic reasoning, 312
Soderland, S., 364, 897
softbot.36,412,773
software agent, 36
Solomonoff, R., 17,559,897
solution, 56, 60, 85,349,358

in planning, 342,349
SOLUTION?, 356,358,374
soma, 564
Sompolinsky,H., 595,860
sonar, 501, 512, 784
Sondik, E., 520,897
sonnet, 830
soul, 838
sound (inference), 159, 178
sour grapes, 32, 526
space complexity, see complexity
spacecraft assembly, 390
SPANAM, 692
Sparck Jones, K., 688, 874
sparse system, 441
spatial reasoning, 260
spatial substance, see substance
speaker, 652
speaker identification, 759
specialization, 546, 547
specificity preference, 459
spectrophotometry, 730
specularly reflected light, 729 i



INDEX 929

SPEECH-PART, 663
speech act, 652, 652-654,684,720

indirect, 652
interpretation, 663

speech recognition, 25, 26, 657,
757,757-767

speech synthesis, 657
speech understanding, 757
speedup learning, 527
spelling correction, 704, 720,722
Spiegelhalter, D. J., 465, 560, 596,

881,885, 897
spies, 163
SPIKE, 370,390
spin glass, 595
Spirtes, P., 596,897
Sproull, R. R, x, 495,870
SPSS, 370
SQRT, 34
square root, 34
SRI, 19, 343, 360, 363,494, 810
Srivas.M., 313,897
SSD, see sum of squared differences
stability

dynamic, 778
static, 778

Stader, J., 390, 859
staged search, 117
STAHL, 647
Stamper, R., 466, 899
standardizing apart, 271,294
Stanford University, 17, 22, 457
Stanhope Demonstrator, 292
stapler, 728
START, 405-408,666
start symbol, 854
STATE, 72,601
state

representation, 339
state (in a chart), 697
state (in the world), 56
state (process), 237
STATE-DESCRIPTION, 337,338,395,

402,408
state evolution model, 514
States, D., 877
state set space, 60
state space, 60, 85, 790
state variable, 508
static, see environment, static
static (variable), 856
static universe, 383
stationarity (for rewards), 507
stationarity (in PAC learning), 553
statistical mechanics, 24, 595
STATLOG, 560
Steel, S., 411,860
Steele, G. L., 329, 330, 868,897

steering vehicles, 780
Stefik, M. J., 390, 897
Stein, P., 143, 879
step function, 569
stepper motor, 783
STEPS, 372,374
stereogram, random dot, 768
stereopsis, binocular, 735
Sterling, L., 330,897
Sternberg, M., 641,879,887
Stevens, K., 769, 897
Stickel, M. E., 258, 293, 311, 330,

720, 876, 897
stimulus, 13
Stob, M., 559,889
stochastic dominance, see

dominance, stochastic, 493
stochastic simulation, 453,455,464,

515
Stockman, G., 143,897
Stoic school, 179,258,291
Stokes, I., 390, 859
Stolcke, A., 687, 897
Stone, H., 116,897
Stone, J., 116,897
Stone, P., 559,877
Stonebraker,M., 219,897
STORE, 299,300,302, 334
Story, W., 86, 878
slotting, 659
Strachey, C. S., 16, 142,597,899
straight-line distance, 93
Strat, T., 466,893
strategy (in a game), 124
strawberries, enjoy, 823
string (in a language), 655
string (in logic), 245
STRIPS, 343,360, 363,365, 389,

390,400,401,411,412,
645,787

STRIPS language, 343-345,367
Strohm, G., 390, 877
strong AI, 29,831-834,839
structure (composite object), 234
Stubblefield, W. A., 5, 883
Stuckey, P., 329,877
STUDENT, 19
stuff, 242
Stutz, J., 865
subcat, see subcategorization list
subcategorization, 670, 669-671

list, 670
subevent, 235
subject-aux inversion, 711
subjective case, 668
subjectivism, 13,430
subplans

interaction between, 341

Subramanian, D., 646, 846,893,898
SUBS, 321,322
SUBSEQUENCE, 666
SUBSET?, 322,322
SUBST, 265,273
substance, 228, 241-243

spatial, 242
temporal, 242

substitutability (of lotteries), 474
substitution, 201, 265, 270
subsumption (in description logic),

323
subsumption (in resolution), 286
subsumption architecture, 411
SUCCESSOR, 76
successor-state axiom, see axiom,

successor-state
successor function, 60
SUCCESSORS, 107,110, 132
Suermondt, H. J., 465,876
Sugihara, K., 749, 769, S98
SUMMATION, 851, 852
summer's day, 831
sum of squared differences, 735
Sundararajan, R., 329, 892
Sun Microsystems, x
sun rising, 430
Superman, 161, 244
SUPERS, 321,322
supervised learning, 528, 829
SUPPORT-EXCEPT, 451, 452, 452
sure thing, 478
surface patches, 746
surface structure, 686
Sussman, G. J., 330, 363, 868, 898
Sussman anomaly, 365
Sutherland, G., 22, 864
Sutton.R., 603,623,867,898
Svartvik, J., 685, 897
Swade, D. D., 15, 898
Swedish, 29
syllogism, 6, 291
Symantec, 694
symbol

dynamic, 660
static, 660

symbolic differentiation, 333
symbolic integration, 552
synapse, 564
synchronic, 209
syntactic ambiguity, 720
syntactic sugar, 200
syntactic theory (of knowledge), 245
syntax, 23, 165
syntax, logical, 157, 178
synthesis, 313

deductive, 313
synthesis of algorithms, 313



930 Index

system gain, 507,519
systems reply, 832
SYSTRAN, 692
Szeliski, R., 736

T(cat, i) (liquid event), 237
T-SCHED, 390
TABLE-DRIVEN-AGENT, 38, 39
table tennis, see ping-pong
tabu search, 117
TACITUS, 258
tactile sensor, see sensor, tactile
Tadepalli, P., 646,898
TAG (Tree-Adjoining Grammar),

687
Tail, P., 86,898
Taki, K., 329, 888,898
Talos, 810
Tambe, M., 316, 645,559, 898
Tanimoto, S., 29, 898
Tarjan, R. E., 853,898
Tarski's world, 213
Tarski,A., 11,212,685,598
Tarzan, 68,707
Tash, J. K., 520, 898
taskability, 790
task network, 363
Tate, A., 25, 363, 364,369,389,

390, 859,861,866
Tatman, J., 520,898
TAUM-METEO, 692,720
tautology, 164
Tawney, G., 142, 866
taxi

in Athens, 435
automated, 526
environment, 39

taxonomic hierarchy, 23, 228,230
taxonomic information, 252
taxonomy, 230, 257
Taylor, C., 560,885
Taylor, R., 795, 810, 883,898
TD, see temporal-difference
TD-UPDATE, 604,605
teacher, 528,598
TEAM, 694, 720
TEIRESIAS, 330
telepathic communication, 660
telephone number, 87,246
telepresence, 776
television, 652
TELL, 152, 153,214,245, 273, 298,

299, 320, 323,660
Teller, A., 117,855
Teller, E., 117,885
Temperley, H., 594,866
temporal-difference equation, 604

temporal constraints, 388
temporal differencing, 622
temporal logic, see logic, temporal
temporal substance, see substance
Tenenberg,J., 391,899
Tennant, H., 720,899
term (in IR), 695
term (in logic), 186, 188
TERMINAL-TEST, 126
TERMINAL?, 601-602,605,608,614
terminal state, 124,598
terminal symbol, 655, 854
terminal test, 124
termination condition, 803
terminological logic, see logic,

terminological
term rewriting, 293
Tesauro,G., 139,615,617,899
Tesla,N., 810
test set, 538,538
texel, 743
text, 715
text categorization, 695-696
text interpretation, 694
texture, 735,742,742-743
texture gradient, 743, 769
Thag, 626
thee and thou, 664
THEN-PART, 395
THEO, 788,790,843,844
theorem, 198
theorem prover, 5, 297, 310-313

as assistants, 312
theorem proving, 363, 411

mathematical, 20, 29
theory of information value, 609,

830, 844
theory resolution, 293
thermostat, 820
Theseus, 559
thingification, 230
Thomason, R., 685, 899
Thomere,J., 27,879
Thompson, C., 720, 899
Thompson, K., 137, 144,866
Thompson, S., 719,720,883
Thorndike, E. L., 13
Thorne, J., 686,899
Thorpe, C., 587, 877
thought, see reasoning

laws of, 7
threat, 353
threat resolution, 353, 382
3-CNF, 182
3-D information, 734
3SAT, 84, 182
Tic-Tac-Toe, 123, 124, 145, 147
tiling algorithm, 573

tilt, 734
Timberline workshop, 364
time, 258
time complexity, see complexity
time expressions, 722
time interval, 238, 259, 262
time machine, 365
time slice, 515
Tinsley, M., 138
TMS, see truth maintenance system
Todd, B., 466,899
Todd, P. M., 595,886
tokenization, 703
Tomasi, C., 737, 899
tomato, 762
tongue, 762
Torrance, S., 29, 895
TOSCA, 369
total cost, 61
total order, see planning, total order
touch, see sensor, tactile
Touretzky, D. S., 331, 596,899
towers of Hanoi, 793
toy problem, see problem, toy
trace, see gap
tractability of inference, 324
trading, 263
trail, 306
training

curve, 580
sequence, 600
set, 534, 538
on test set, 538

transfer motion, 793
transfer path, 793
transition function, 606
transition model, 499, 502
transitivity (of preferences), 473,

474
transitivity of implication, 278
transit motion, 793
transit path, 793
translation, 29
travelling salesperson problem, 69,

69, 116,119
tree model, 132
Treloar, N., 142, 894
triangle table, 401
trie, 704
trigram, 761
trihedral solid, 746
tropism, 201
truth, 163, 178,189
truth-functionality, 460,464
truth-preserving (inference), 159
truth maintenance, 326
truth maintenance system, 326, 332,

460, 839



Index 931

assumption-based, 327, 332
justification-based, 326

truth table, 168, 179, 180
TSP, see travelling salesperson

problem
Tuck, M., 788, 881
tuple, 187
Turing, A., 5, 11, 14, 16, 28, 122,

142,292,465,691,823,
824,826,827,831,836,
839, 840,899

Turing award, 466, 853
Turing machine, 11, 560, 827
Turing Test, 5, 7, 28,37, 652, 823,

825,830
total, 6

Turk, 141
turning radius, 780
Tversky, A., 4, 443,479, 878,899
TWEAK, 363
Tweety, 320
2001: A Space Odyssey, 465
TYPE, 663
type, see category
type (in planning), 383
type predicate, 308
typical instance, 232

U
U (utility), 472
UCPOP, 390
Ueda, K., 329, 899
Ulam, S., 143, 879
Ullman, J. D., 328, 853,859, 899
Ullman, S., 753, 769, 877,899
uncertainty, 23, 25, 66, 229,415,

462, 830, 843
in games, 123
model, 805
reasoning with, see reasoning
rule-based approach to, 458
summarizing, 417

unconditional probability, see
probability, prior

unconsciousness, 564
undecidability, 11, 29
understanding, 716
understanding problem, 654
ungrammatical sentences, 669
unicorn, 181
unification, 270, 270-271,290, 314

328, 383
algorithm, 302-303
in a DCG, 686
and equality, 284

unifier, 270
most general (MGU), 271,294

uniform-cost search, 85

uniform convergence theory, 560
uniform cost search, 75
uniform prior, 589
UNIFY, 270, 271,273, 275, 284,

303, 303,307, 358, 385
UNIFY-LISTS, 303,303,303
UNIFY-VAR, 303,303,306
Unimation, 810
uninformed search, 73
unique main subaction, 378, 389
unit (of a neural network), 567
unit clause, 285
unit preference, 285
Unit Resolution, 172
units function, 231
Universal Elimination, 266
universal field, AI as a, 4
universal plan, 411
UNIX, 706
unsatisfiability, 164
unsupervised learning, 528
UOSAT-II, 370, 390
UPDATE, 601,602
UPDATE-ACTTVE-MODEL, 608
UPDATE-FN, 48
UPDATE-MEMORY, 38
UPDATE-STATE, 42,43,57
upward solution, 376, 389, 391
URP, 494
Urquhart,A., 261,892
Uskov, A., 144,859
Utgoff, P. E., 552,559, 886
utilitarianism, 10

act, 847
rule, 847

UTILITY, 126
utility, 23, 44, 123,418

expected, 50, 135,419,471,472,
476,516

independence, 484
maximum expected, 419
of money, 476-478
node, 485
normalized, 478
ordinal, 476
theory, 418, 473-475,493

multiattribute, 493
utility function, 45, 50, 124,471,

474,499,615
additive, 502
multiplicative, 484
separable, 502

utility scale, 478-480
utterance, 652
UWL, 411

vacuum, see agent, vacuum

vacuum tube, 14, 16
vacuum world, 32,51,87,90,412,

624
vagueness, 459,681
Valiant, L., 560,899
valid conclusions, 165
VALIDITY, 182
validity, 163,178
valid sentences, 169
VALUE, 111-113,126
value, backed-up, 124
VALUE-DETERMINATION, 506
VALUE-ITERATION, 503,504,504,

506,608
value determination, 505, 603, 624
value function, 476

additive, 483
value iteration, 502, 502-505,520
value node, see utility node
value of computation, 844
value of information, 487-490,493,

497,502
value of perfect information, 488
van Benthem.J., 261,899
van Doom, A., 769,879
van Harmelen, E, 645, 899
van Heijenoort, J., 293,899
vanishing point, 726
VanLehn, K., 686, 899
van Roy, P., 304, 307, 329, 899
Vapnik, V, 560,899
variabilization (in EBL), 630
variable (in a CSP), 83
variable (in a grammar rule), 668
variable (logical), 190
VARIABLE?, 303
variable binding, 357, 374
Vasconcellos, M., 692, 900
Vaucanson, J., 810
Vecchi.M., 117,579
vector-space model, 695
vector quantization, 759, 762, 763
Veloso, M., 646, 900
Vendler, Z., 259, 900
Venn diagram, 422
verb phrase, 655
Vere, S. A., 389, 900
verification, 313

hardware, 226
VERSION-SPACE-LEARNING, 549,

552
VERSION-SPACE-UPDATE, 549,549,

550
version-space learning, 530
version space, 549, 550
version space collapse, 551
vertex (of a chart), 697
vertex (polyhedron), 746



932

vervet monkeys, 651
very long names, 218
virtual reality, 776
visibility graph, 799
vision, 6, 7, 12, 19,725-767
Vitanyi, P. M. B., 560, 882
Viterbi algorithm, 765,772
VLSI layout, 69, 114
vocabulary words, 664
vocal tract, 762
vonLinne, C., 258
von Mises, R., 432, 900
Von Neumann,)., 12, 14, 16, 142,

493, 594, 847, 900
von Winterfeldt, D., 493, 900
Voorhees,E., 720,900
Voronoi diagram, 800
Voyager, 26, 370
VP, see verb phrase
VPI, see value of perfect

information

W
Wj,t (weight on a link), 568
Waibel, A., 770, 900
Walden, W., 143,879
Waldinger, R., 213, 293, 330, 363,

894, 900
Wall, R., 685,869
Wall Street Journal, 696
Walter, G., 810
Waltz, D., 19, 749, 900
WAM, see Warren Abstract Machine
Wand.M, 146, 900
Wang, E., 260,898
Wang, H., 6, 179,900
Wanner, E., 162,687,900
war games, 849
Warmuth, M., 560, 862, 891
WARPLAN, 363,411
WARPLAN-C, 411
Warren, D. H. D., 304, 306, 328,

363,411,685,590,900
Warren Abstract Machine, 306, 328
washing clothes, 722
Washington, G., 240
Wasserman, P. D., 596, 900
Watkins, C,, 623, 900
Watson, C., 832,900
Watson, J., 13
Watson, L., 329, 892
wavelength, 730
weak AI, 29, 839
weak method, 22
weather reports, 692

Weaver, S., 777
Weaver, W., 540,559, 895
Webber, B. L., 28, 688, 720,874,

878, 900
Weber, J., 27, 520, 737,877, 880
Wefald, E. H., 50, 143, 844, 893
Wegman.M., 328,889
weight (in a neural network), 567
weighted linear function, 127
Weinstein, S., 559,889
Weiss, I., 770, 859
Weiss, S. M., 560, 90/
Weizenbaum, J., 20, 839, 849, 907
Weld, D., 260, 364, 390, 411, 814,

848, 861,869, 870,889,
897, 901

well-formed formula, T93, 193
Wellman, M. P., 364, 465,494, 520,

843,868,874, 901
Wells, M., 143, 879
Werbos, P., 595,889,901
Wermuth, N., 465, 881
West, Col., 267
Westinghouse, 369, 390
wff, see well-formed formula
Wheatstone, C., 768, 907
White, T., 594
Whitehead, A. N., 8, 16, 291, 292,

629, 907
Whiter, A., 389, 898
Whittaker, W,, 778, 896
Whorf,B., 162,907
WHY, 721
wide content, 821
Widrow, B., 19, 594,601, 622, 907
Wiener, N., 142, 520, 594, 907
Wigderson, A., 847,885
Wilber, B., 894
Wilcox, B., 145,892
Wilensky, R., x, 23, 720, 826. 832,

907
Wilkins, D. E., 140, 389, 907
Wilks,Y, 688,907
Williams, R., 496, 595, 623, 889,

893
Williamson, M., 411,S70
Wilson, R. H., 794, 90/
Winker, S., 313, 330,902
Winograd, S., 19, 902
Winograd, T., 19, 23, 330, 827, 898,

902
Winston, P. H., 5, 19, 548,559, 902
Wittgenstein, L., 158, 179,232,685,

822, 902

Woehr, J., 466, 902
Wohler, R, 834
Wojciechowski, W., 313, 902
Wojcik, A., 313, 902
Wood,D., 116.SS7
Woods, W. A., x, 23, 331, 686, 693,

720, 902
word, 652
Wordnet, 704, 720
working memory, 314, 645
world model, in disambiguation, 682
world state, 56
worst possible catastrophe, 478
Wos, L., 293,294, 313. 330, 902
Wright, S., 464, 902
Wrightson, G., 294, 896
Wu, D., 688,720, 902
wumpus world, 153, 206, 216, 227,

412,652
Wundt, W., 12

X
XCON, 316
Xerox, 692
xor, see exclusive or

Yager, E., 788,881
Yakimovsky, Y., 494, 870
Yang, Q., 389, 903
Yannakakis,M., 847.SS9
Yap.R., 329,877
Yarowsky, D., 688, 903
yield (in parsing), 658
Yip, K., 260, 903
Yoshikawa.T., 811,903
Young, D., 29, 895
Younger, D., 720. 903

Z-3,14
Zadeh,L. A.,466, 903
Zapp, A., 587, 750,770,569
Zermelo.E., 142,826,903
ZFC, 826
Zhivotovsky,A., 144,859
Zilberstein, S., 844, 903
Zimmermann, H.-J., 466, 903
zip code, 572,586
Zisserman, A., 769,871,887, 893
Zobrist, A., 145, 903
Zue, V., 26, 903
Zuse, K., 14, 142, 903
Zytkow.J. M., 881


