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Preface

The purpose of this book is to provide an in-depth information on fundamentals of Engineering
Physics to the student community to improve their general understanding on the subject. The book has
been designed as a textbook for the beginners in all branches of Engineering according to the latest
syllabus of Visvesvaraya Technological University, Belgaum, Karnataka. The emphasis is given on basic
concepts & fundamental aspects of modern physics.

The book has been divided into eight Chapters. The first Chapter is Modern Physics, which
contains Blackbody radiation spectrum, Photo-electric effect, Compton effect, Wave particle Dualism, de-
Broglie hypothesis - de-Broglie wavelength, extension to electron particle, Davisson and Germer
Experiment, Matter waves and their Characteristic properties, and Expression for de-Broglie wavelength
using group velocity. The second Chapter is Quantum Mechanics, which involves Heisenberg’s uncertainty
principle and its physical significance, Wave function, Time independent Schrodinger wave equation,
Application of Schrédinger wave equation - Energy eigen values for a free particle, and Energy eigen
values of a particle in a potential well of infinite depth. The third Chapter focuses on Electrical Conductivity
in Metals, which includes Free-electron concept, Classical free-electron theory, Expression for drift velocity,
Expression for electrical conductivity in metals, Failure of classical free-electron theory, Quantum free-
electron theory, Fermi - Dirac Statistics, Expression for electrical resistivity/conductivity, and Temperature
dependence of resistivity of metals. The fourth Chapter is on Dielectric & Magnetic Properties of Materials,
which includes Dielectric constant and polarization of dielectric materials. Types of polarization. Equation
for internal fields in liquids and solids, Classius - Mussoti equation, Ferro and Piezo - electricity, Frequency
dependence of dielectric constant, Classification of dia, para and ferro-magnetic materials, Hysteresis in
ferromagnetic materials, and Soft and Hard magnetic materials.

The fifth Chapter focus on Lasers, which includes Principle and production, Einstein’s coefficients,
Condition for Laser action, Principle, Construction and working of He-Ne and semiconductor Laser,
Applications of Laser, and Holography - Principle of Recording and reconstruction of 3-D images.
The sixth Chapter is on Optical Fibers & Superconductivity, which contains Propagation mechanism
in optical fibers, Types of optical fibers and modes of propagation, Applications of optical fibers,
Temperature dependence of resistivity in superconducting materials, Effect of magnetic field, Type I
and Type II superconductors, BCS theory, High temperature superconductors, and Applications of
superconductors. The seventh Chapter is on Crystal Structures, which contains Crystal systems, Miller
indices, Expression for inter-planar spacing, Atomic packing factor, and Determination of crystal structure
by Bragg’s X-ray spectrometer. The last Chapter is on Material Science, which focuses on Nano-science
and Nano-technology, Shapes of nano-materials, Methods of preparation of nano-materials, Ultrasonic
non-destructive testing of materials, and Measurements of velocity in solids and liquids.

Every attempt has been made to make this book error free and useful for the students. Two
sample question papers are included at the end of the book. Each Chapter begins with objective and
ends with unit questions, objective type questions and assignment problems. Any constructive suggestion
and criticism regarding the improvement of this book will be acknowledged.

— Authors
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CHAPTER

MODERN PHYSICS

i OBJECTIVES

This Chapter contains the detailed discussion on the origin of modern physics and introduces
to the subject of failures of classical mechanics and how the quantum theory consolidated the
answer for the problems which were remained unanswered by classical theory. The duality of light
and the hypothetical argument given by de-Broglie to explore the wave nature of moving particle
and evidence for existence of matter waves are discussed. The main objectives of this chapter are to
Study:

e The failures of classical mechanics and origin of Quantum Mechanical Theory

e The application of quantum idea to explain black body radiation spectrum, photoelectric
effect, and Compton effect

e The de-Broglie hypothesis (matter waves) and experimental evidence given by Davison
and Germer

e The relation between the group velocity, phase velocity, patticle velocity and velocity of light

e Characteristics of matter waves

1.1 INTRODUCTION TO PHYSICS

The word science comes from a Latin word “scientia” which means ‘to know’. Science is the knowledge
gained through the systematic observations and experiments. Scientific methods include the systematic
observations, reasoning, modeling and theoretical prediction. Science is divided into two broad categories
as natural science and philosophical science. Natural Science has many disciplines, physics being one of
them.

The word physics has its origin in a Greek word ‘physis’ meaning ‘nature’. Physics is the most
basic science, which deals with the study of nature and natural phenomena, especially, properties of
matter, energy and their interactions. Understanding of science begins with understanding of physics.
Physics is an empirical study. Everything we know about physical world and about the principles that
govern its behaviour has been learned through observations of the phenomena of nature. The ultimate
test of any physical theory is its agreement with observations and measurements of physical phenomena.

Technology is the application of the doctrines in physics for practical purposes. The invention of
steam engine had a great impact on human civilization. Till 1933, Rutherford did not believe that
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energy could be tapped from atoms. But in 1938, Hann and Meitner discovered neutron-induced fission
reaction of uranium. This is the basis of nuclear weapons and nuclear reactors. The contribution of
physics in the development of alternative resources of energy is significant. We are consuming the fossil
fuels at such a very fast rate that there is an urgent need to discover new sources of energy which are
cheap. Production of electricity from solar energy and geothermal energy is a reality now, but we have a
long way to go. Another example of physics giving rise to technology is the integrated chip, popularly
called as IC. The development of newer ICs and faster processors made the computer industry to grow
leaps and bounds in the last three decades. Computers have become affordable now due to improved
production techniques and low production costs.

The legitimate purpose of technology is to serve people. Our society is becoming more and more
science-oriented. We can contribute better to the science and society if we develop a deeper understanding
of the basic laws of physics.

1.2 INTRODUCTION TO BLACKBODY RADIATION SPECTRUM
1.2.1 Introduction to Modern Physics

At the end of nineteenth century, the physics consisted of mainly Newton’s laws of motion and universal
gravitation, the laws of conservation of energy and momentum, the laws of thermodynamics, and Maxwell’s
equations for electricity and magnetism were all more or less nearly complete and were used to describe
the machines that launched two waves of industrial revolution—the first one powered by steam and the
second one powered by electric current. Most of the people believed that there is nothing new to
discover in physics now. All that remains is more and more precise measurement. But Lord Kelvin
(1824-1907) identified two problems with the physics at that time. They were: (1) Theory of luminiferous
eather to explain light wave propagation in space (Wave theory of light) and (2) The inability of
electromagnetic theory of light to adequately predict the characteristics of thermal radiation.

In the beginning of the 20" century, the first problem was solved by Albert Einstein, by means of
theory of relativity. The major revelations of this theory were that there is no ether, there is no absolute
space, there is no absolute time, mass is not conserved, energy is not conserved, and nothing travels
faster than light. For awhile, this was the most revolutionary theory in all of physics. The second
problem was solved by Max Karl Planck (1858-1947) by means of quantum mechanical theory. The
major revelations of this theory are that all things are both particles and waves at the same time and that
nothing can be predicted or known with absolute certainty.

The arrival of these two revolutionary theories divided physics up into two domains. All theories
developed before the arrival of relativity and quantum mechanics and any work derived from them are
called Classical physics. All theories derived from the basic principles of relativity and quantum mechanics
are called Modern physics. The quantum mechanics principle initially could able to explain the following
phenomenon successfully:

e  Blackbody radiation and the ultraviolet catastrophe

e Photoelectric effect
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e  Discrete atomic spectra and the problem of how atoms manage to exist

e  Radioactive decay

1.2.2 Blackbody Radiation

All objects radiate electro-magnetic energy in the form of heat continuously whatever is their temperature,
though which frequencies predominates depends on the temperature. At room temperature most of the
radiation emitted by an object is in the infrared part of the spectrum and hence the emitted radiations
are invisible.

A blackbody is defined as an object that absorbs all the frequencies of electromagnetic radiation
falling on it and consequently appears black. A blackbody or perfect absorber is also an ideal radiator
which emits radiation in all frequencies. Such a radiation emitted/radiated by a blackbody is called
blackbody radiation. In practice, a small opening in any heated cavity, such as a port in an oven, behaves
like a blackbody because such an opening traps all incident radiation (Fig. 1.1). The opening to the
cavity inside a body is a good approximation of a blackbody. Light entering the small opening strikes the
far wall, where some of it is absorbed but some is reflected at a random angle. The light continues to be
reflected, and at each reflection a portion of the light is absorbed by the cavity walls. After many
reflections essentially all of the incident energy is absorbed. If the direction of the radiation is reversed
in Fig. 1.1, the light emitted by a small opening is in thermal equilibrium with the walls, because it has
been absorbed and re-emitted many times.

Figure 1.1 The opening to the cavity inside a body is a good approximation of a blackbody

1.2.3 Blackbody Radiation Spectrum

To study the distribution of radiant energy over different frequencies, the black body is maintained at a
constant temperature. By means of an infrared spectrometer and a bolometer/photodetector the emissive
powers of the black body for different frequencies are measured. The results of the experiment is shown
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in Fig. 1.2 as blackbody radiation spectrum. In the spectrum, at a given temperature, the radiation
intensity (energy density) initially increases with frequency, then peaks at around a particular frequency
and after that decreases, finally reaches to zero at very high frequencies.

A 6000 K

4500 K

Intensity ———>

3000 K

T T Y T T T >
2 4 6 8 10 12 14 16

Frequency (in 10" Hz) —

Figure 1.2 Blackbody radiation spectrum

1.2.4 Energy Distribution in Blackbody Radiation Spectrum

Based on the study of the blackbody radiation spectrum, following observations can be made:
1. The energy is not uniformly distributed with frequency.

2. At a given temperature, the energy density initially increases with increase in frequency reaches a
maximum value and then decreases with further increase in frequency.

3. The frequency corresponding to the maximum energy density (peak of the curve) shifts towards
higher frequency side with increase in temperature.

1.2.5 Laws of Blackbody Radiation

1. Stefan’s Law

In 1879, an Austrian physicist Josef Stefan (1835-1893) found experimentally that the total power
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per unit area emitted at all frequencies by a hot solid, e, is proportional to the fourth power of

total?

its absolute temperature. Therefore, Stefan’s law may be written as

“total = .[efdf =oT* (1.1
0

where ¢ is the power per unit area emitted at the surface of the blackbody at all frequencies, e, is
the power per unit area per unit frequency emitted by the blackbody, T is the absolute temperature
of the body, and & is the Stefan-Boltzmann constant, given by 5.67 x 10-8 W.m=2.K-*. A body that
is not an ideal radiator will obey the same general law but with a coefficient, o, which has value

less than 1:

—aoT (1)

etum
Wein’s Distribution Law

In 1893, Wilhelm Wien proposed a general form for the blackbody distribution law that gave the
correct experimental behavior of A with temperature. This law is called Wien’s displacement law
and may be written as:

A, T=2898x10"mK - (1.3)

where A__is the wavelength in meters corresponding to the blackbody’s maximum intensity and
T is the absolute temperature of the surface of the object emitting the radiation. Assuming that the
peak sensitivity of the human eye (which occurs at about 500 nm—blue-green light) coincides with
A_ for the Sun (a blackbody), we can check the consistency of Wien’s displacement law with

Stefan’s law by calculating the Sun’s surface temperature:

2.898 x10”° m.K

T="500x10"m

= 5800 K o (1.4)

Wein’s Exponential Law

In 1893, Wein also calculated the energy per unit volume at frequency range f and f + df of the
radiation within the blackbody cavity, u( f, T) as:

u(f,T)df = Af’e™/T df e (1.5)

where A and B are Wien’s constants. This result was known as Wien’s exponential law.

Limitations of Wein’s Law:

Experiments show that Wein’s law holds good for shorter wavelength (higher frequency) region of
the spectrum and at higher temperature of the blackbody. It fails to explain the gradual drop of the
energy density at longer wavelengths (lower frequency) after the peak value as shown in Fig. 1.3.
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4.

A
Q0

g 2 Experimental
= g H “Q points
gl ¢ XN
& & i @
e ® Wien's “
9] / exponential _yp. ®©

Si) law T ® ®

LA 1 1 1 1 1 1 I | 1 1

0o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1.3 Discrepancy between Wien’s law and experimental data for a blackbody at 1500 K

Rayleigh-Jeans Law

According to Lord Rayleigh and James Jeans, the spectral energy density at frequency range f and
f + df is simply the density of modes multiplied by kT,

k. T
or u(f,T)df =8nfc—3”df (06)

where k, is Boltzmann’s constant = 1.380 x10** J/K.
Limitations of Rayleigh-Jeans Law: The Ultraviolet Catastrophe

A blackbody is an idealized object which absorbs and emits all frequencies of radiation. Classical
physics can be used to derive an equation which describes the intensity of blackbody radiation as
a function of frequency for a fixed temperature—the result is known as the Rayleigh-Jeans law.
Although the Rayleigh-Jeans law works for low frequencies, it diverges as f?; this divergence for
high frequencies (ultraviolet frequencies) is called the Ultraviolet catastrophe.

The Planck’s Radiation Law

In 1900, Max Planck was working on the problem of how the radiation an object emits is related
to its temperature. He came up with a formula that agreed very closely with experimental data, but
the formula only made sense if he assumed that the energy of a vibrating molecule was quantized—
that is, it could only take on certain values. The energy would have to be proportional to the
frequency of vibration, and it seemed to come in little “chunks” of the frequency multiplied by a

certain constant. This constant came to be known as Planck’s constant, or h, and it has the value
h =6.626 x 10 J.s. He has been honoured by Nobel Prize in the year 1918.

Max Planck discovered the famous blackbody formula, which used the quantum theory.
Accordingly, u(f, T), is given by:
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87hf> 1
u(f,T)df = > [ de (L)

kT _
where h is Planck’s constant = 6.626 x 10-** .].s. and kg is Boltzmann’s constant = 1.380 x 10’ J/K.

Since Wien’s law holds good in the higher frequency region and Rayleigh-Jeans law in the lower
frequency region and if Planks law could able to explain the energy distribution in entire region of

blackbody radiation spectrum then one should able to deduce Wien’s and Rayleigh-Jeans law from
Plank’s law.

f
For higher frequency region e%BT is very large
hf
= e%BT >>1
hf hf
(e%ﬂ -D= e%”T
Substitute the above approximation in (1.7) we get

u(f, T)df = ﬂe'%ﬂ df

c
Compare the above equation with the Wien’s law we get A =87nh/c’ and B= %
B

Similarly for lower frequency region

hf L/
f is small implies —— is very small and expand e% oT as power series, we have

e%T:HiJri(iJ o2 [ij +

k,T 20 k,T) 3\ k,T
Since —— is very small and the higher power terms are very small and can be neglected
B
hf
(e %BT _ 1] = i
ky T

Substitute the above result in Eqn (1.7) we get the Eqn (1.6) which is the Rayleigh-Jeans law. Hence
the expression given by Plank valid in the entire frequency region of blackbody radiation spectrum.

1.3 PHOTO-ELECTRIC EFFECT
1.3.1 Definition

The phenomenon of emission of electrons from a metal surface when illuminated by light of suitable
frequency is called the photoelectric effect. Photoelectric effect was discovered by H. Hertz in 1887.
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The photoelectric effect involves conversion of light energy into electrical energy. The electrons
emitted during photoelectric effect are called photoelectrons and the current constituted by photoelectrons
is called the photoelectric current.

The minimum frequency of the incident radiation required for the emission of electrons from the
surface of a metal is called the threshold frequency of the metal. Threshold frequency varies from metal
to metal.

It has been observed that metals like zinc, cadmium, magnesium etc. shows photoelectric effect
only for ultraviolet light. But some alkali metals like lithium, sodium, potassium, caesium and rubidium
shows photoelectric effect even for visible light.

1.3.2 Experimental Study
Light rays

<— Quartz window

'
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e
&,
Photoelectric X
<
current (QA) <&
o
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5 5
Light intensity f,  Frequency f
(a) (b)

Figure 1.5 (a) Graph of photoelectric current verses intensity of light (b) Graph of

kinetic energy of electrons verses frequency of incident light
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The experimental set-up consists of an evacuated glass tube which contains two electrodes, a
cathode C and an anode A, which are sealed inside the tube (Fig. 1.4). The tube contains a side window
of quartz which allows light of reasonably short wavelength to pass through and allows to falls on
cathode C. The electrons emitted from cathode C will move towards the anode A. This will constitutes
the photoelectrons and causes photoelectric current to flow in the circuit and measured using a micro
ammeter connected in the circuit.

The photoelectric current can be increased or decreased by varying the magnitude and sign of the
anode potential with respect to the cathode. It is observed that there is a certain minimum negative
(retarding) potential at anode which will reduce the photoelectric current to be zero and is referred as
stopping potential or retarding potential or cutoff potential, represented as V. Therefore the stopping
potential is defined as the minimum negative potential required at the anode so as to completely suppress
the photoelectrons reaching the anode and hence the current to zero in the circuit.

Photocurrent

A
La L [ (nA)

—

26>,
V,>V,>V,

>
0 Applied voltage \Y% 0 +V

g

(a) (b)

Figure 1.6 (a) Plot of photoelectric current versus applied potential between electrodes at two
different intensity of incident light (b) Plot of photoelectric current versus applied potential
between electrodes at three different frequencies of incident light
Experimental Observations:

1. Photoelectric effect is an instantaneous process. Photoelectrons will ejected out within 10-%s (very
small time) after light irradiation on the metal surface.

2. For a given photosensitive material, there exist a certain minimum frequency called the cut-off or
threshold frequency below which no photoelectric effect takes place.

3. For a given photosensitive material and frequency of incident radiation (more than threshold
frequency) the photoelectric current is directly proportional to the intensity of incident light, as
shown in Fig. 1.5 (a).

4.  Effect of potential at anode: The graph of photoelectric current and the voltage applied between
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the electrodes (cathode C and anode A) shows that initially the photoelectric current increases
with the increasing potential. For a certain potential, the current becomes maximum. For further
increase in potential, the graph shows saturation of current (Horizontal portion).

5. The value of stopping potential increases with increase in frequency of the incident radiation
which is shown in Fig. 1.6 (b).

6. The kinetic energy of the photoelectrons increases linearly with the frequency of the incident radiations
[Fig. 1.5 (b)]. It is independent of the intensity of the incident radiations which is as shown Fig. 1.6 (a).

1.3.3 Laws of Photoelectric Effect

On the basis of the above experiment, Lenard and Millikan gave the following laws regarding photoelectric
effect:

1. The number of photoelectrons emitted per second from the metal surface is directly proportional
to the intensity of incident light.

2. The maximum Kinetic Energy of emitted photoelectrons does not depend upon the intensity of
incident light.

3. The maximum Kinetic Energy of emitted photoelectrons increases linearly with increase in frequency
of incident light.

4. If the frequency of incident light is less than certain minimum value, then no photoelectrons
emitted from the metal surface whatever may be the intensity of incident light. This minimum
frequency (threshold frequency) is different for different metals.

5. Photoelectric process is instantaneous i.e., there is no time-lag between incidence of light and
emission of photoelectrons.

Classical physics failed to explain the observed laws on the basis of electromagnetic theory.

1.3.4 Einstein’s Photoelectric Equation

To explain the experimental observations of photoelectric effect, Einstein used Plank’s Quantum Theory
of light (light beam consists of photons). He introduced a concept of work function and is nothing but
the minimum energy required to make the electron to come out of the metal surface, represented by .
Work function is measured in eV (electron volt). Work function depends on the properties of the metal
and the nature of the surface.

According to Einstein, whenever a photon of energy hf is incident on a metal, an electron absorbs
it instantaneously and if the absorbed energy hf by the electron is greater than the work function
(binding energy of electron), it will come out of the metal surface and then acquire some kinetic energy
to move out with a velocity v.

The energy of a photon absorbed by the electron is used in two ways.
(i) The part of absorbed photon energy is used in releasing the electron from the metal surface
(ii) The remaining energy appears as the kinetic energy of the electron.

Thus we can write: Energy of incident photon = Binding energy of electron + K.E. of electron
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Then, hf = @ + V2 mv*_ ..(1.8)

Eqn. 1.8 is the Einstein’s photoelectric equation where ¢ is called the work function of the given

X

metal. Work function of a metal is the minimum energy needed to liberate an electron from the surface
of the metal.

Here, ¥2 mv’__ represents the kinetic energy (KE.) imparted to the electron.

KE. =Vamv’ =hf-¢ .. (1.9)
Work function is different for different metals.
If f, is the threshold frequency then ¢ = hf; ... (1.10)

KE =Vmv: =hf-@=hf-hf,=h(f-f) . (L11)

Explanation of experimental observations using Einstein’s Photoelectric equation:

ax

1. Photoelectric effect is instantaneous process because of collision between two micro particles
namely an electron and a photon.

2. Kinetic energy of the electron depends on the term (f-f ) as seen from equation (1.11). For frequency
f = f kinetic energy of the electron equal to zero. This frequency f ; represents the threshold
frequency. Photoelectrons are not emitted if f < f .

3. If intense light radiation is incident on a metal surface, then it implies that more photons are
incident on more electrons and hence making more photoelectrons to be emitted which increases
the photoelectric current.

4.  An increase in frequency of the incident radiation increases the energy of the emitted electrons as given
by Einstein’s equation. The increase in frequency has no effect on the magnitude of photo current.

5. As the kinetic energy of the photoelectrons increases with frequency; it requires large value of
retarding potential to stop the electrons. If m is the mass and e is the charge of the electron
emitted with velocity v and V is the stopping potential, then eV = %2 mv?.

Thus, Einstein explained photoelectric effect successfully on the basis of particle nature of light and

got Nobel Prize in 1921.

1.4 COMPTON EFFECT

In the year 1916, Einstein extended his photon concept and proposed that when light interacts with
matter, not only energy but also linear momentum of photon gets transferred in discrete amounts and
both law of conservation of energy and law of conservation of momentum holds good. The magnitude
of momentum transferred with each photon of frequency f is given by:

p =hif/c =h/A .. (1.12)

In 1923, Arthur Compton at Washington University carried out an experiment that gave support
to the views of Einstein. Compton arranged for a beam of X-rays of wavelength A to fall on a target made
of graphite and measured the wavelengths and intensities of X-rays scattered in various directions from
the target. The observed phenomena is called as Compton effect. He received Nobel Prize in 1927.
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1.4.1 Definition

When X-rays of sharply defined frequency are incident on a material of low atomic number like carbon,
they suffer a change of frequency on scattering. The scattered beam contains two wavelengths. In addition
to the expected incident wavelength, there exists a component of longer wavelength. This phenomenon
is called Compton effect. The change in wavelength (AL) from incident wavelength (L) to scattered
X-ray wavelength (A") is called Compton shift.

Explanation: The classical electromagnetic theory failed to explain Compton shift but Compton
successfully used Quantum Theory of Radiation to explain the phenomena. Accordingly, the whole
process is treated as a particle collision event between X-ray photon and a loosely bound electron of the
scatterer. In this process, both momentum and energy are conserved. In this photon-electron collision,
a portion of the energy of the photon is transferred to the electron. As a result, the X-ray proceeds with
less than the original energy and therefore gains lower frequency or higher wavelength.

1.4.2 Expression for Compton Shift

The incident photon with an energy hf and momentum hf/c strikes an electron at rest. The initial
momentum of the electron is zero and its initial energy is only the rest mass energy m c*. The scattered
photon of energy hf and momentum hf/c moves away in a direction inclined at an angle 0 to the
original direction as shown in Fig. 1.7. After scattering, the electron acquires a momentum mv and
moves at an angle ¢ to the original direction. The energy of this recoil electron is mc?.

Eé“ P(.’
v Recoiling electron
[ncident ¥
photon "/'\ o
> o
» W
\\
E\ P “\‘./g
%
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\\
™ Scattered photon
EI < E, p.

(a) Scattering model
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Figure 1.7 Scattering of photon by electron of an atom

According to the principle of conservation of energy,

hf + mc* = hf + mc’

.. (1.13)

Considering x and y components of the momentum and applying the principle of conservation of

momentum gives :
hf/c + 0 = (hf/c) cos O + mv cos ¢
and 0 = (hf/c) sin 6 - mv sin ¢

.. (1.14)
.. (1.15)

Here, m is the mass associated with moving electron related to its rest mass by the following

relation as given by Einstein Relativistic equation,

From Eqn. (1.14) and (1.15) we have
hf - hf cos 6 = mvc cos ¢
hf sin 0 = mvc sin ¢
Squaring and adding Eqn. (1.17) and (1.18),
h’ff + h*f? - 2h%ff cos O = m*v?
From Eqn. (1.13), hf - bf + m’ = mc’
Squaring Eqn. (1.20) gives

... (1.16)

- (L17)
.. (1.18)

.(1.19)
.. (1.20)
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(h - BfY? + m2ct + 2 mie® hf - ) = mic
or h’ff - hf? - 2hf + m ¢t + 2 mc® h(f - f) = m’c* .. (1.21)
Subtracting Eqn. (1.19) from Eqn. (1.21) we get,
m’c’ (¢ - v?) = - 2hff + 2 mc” h(f - f) + 2h*ff cos O + m*c*

m?c?(c? - v¥) = - 2h*f (1 - cos ©) + 2 mocz h(f-f) + mozc4 .. (1.22)
From Eqn. (1.16) we get, m’ = m*c?/(c* - v?)
or m?(c?- v2) = m. 2 ¢? .. (1.23)

0

Using Eqn. (1.23) in Eqn. (1.22), we get
m,c* = - 2h*f (1 - cos 0) + 2 h(f - f) m*+ m *c*

or 2 h(f - f) mc? = 2h*f (1 - cos 6)

or -1/ ff = h/mgc”) (1 - cos 0)

or 1/ f - 1/f=(h/mg?) (1 - cos 0)

or o/f - ¢/f = (h/my) (1 - cos 6)

or A=A =(h/mg) (1 - cos 0)

or A=A + (h/mge) (1 - cos 6) .. (1.24)
Therefore the change in wavelength = AL = X' - A = (h/m) (1 - cos 0) ... (1.25)

Eqn. (1.25) shows that:
Compton shift AA is independent of the wavelength of incident radiation.
Compton shift AA is independent of the nature of scattering substance.

Compton shift AL depends only on the angle of scattering ©.

Bl S

The wavelength of scattered light is always greater than the wavelength of incident light.

Based on angle of scattered light, three cases can be considered:

Case (1): When 6 = 0°: AL =0, i.e., there is no scattering of photon along the incident direction.
Case (2): When 0 = 90°: AL = h/m ¢ = 0.02426 A, This is known as Compton wavelength.
Case (3): When 0 = 180°: AL = 2 h/m ¢ = 0.04852 A, This is twice of Compton wavelength.

1.4.3 Experimental Verification of Compton Shift

Monochromatic X-rays of wavelength A are allowed to fall on a scattering material like a small block of
carbon. The scattered X-rays are received by a Bragg spectrometer and their wavelength is determined
(Fig. 1.8). The spectrometer can freely swing in an arc about the scatterer. The wavelength of the
scattered X-rays is measured for different values of the scattering angle. The experimental results obtained
by Compton are shown in Fig. 1.9. In the scattered radiation, in addition to the incident wavelength (),
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there exists a line of longer wavelength (A"). The Compton shift AL is found to vary with the angle at
which the scattered rays are observed.

Graphite target
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Figure 1.8 Schematic diagram of Compton’s apparatus
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Figure 1.9 Scattered X-ray intensity versus wavelength of Compton
scattering at 0°, 45°, 90°, and 135°
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1.5 WAVE PARTICLE DUALISM

Various optical phenomena like reflection, refraction, interference, diffraction and polarization of light
can be easily explained by wave theory of light. But, the wave theory of light failed to explain the
blackbody radiation, photoelectric effect, and Compton effect. These phenomena can be easily explained
by quantum theory of light. This shows light appears in both form as to support wave theory at one hand
and quantum theory on the other hand. This complex nature of light is said to be dual nature. In
quantum theory of light, the energy is thought to be in the form of energy packet, called photons. The
energy carrying particle ‘photon’ itself exhibits diffraction effects, thereby showing wave like characters.
But this leads to an important conclusion that light possesses dual characters, i.e., at the same time it
behaves like wave and particle.

1.5.1 de-Broglie Hypothesis

In 1923, Louis de-Broglie (pronounced broylee) proposed that matter, like radiation, has dual nature.
That means, the matter, which is made up of discrete particles (atoms, protons, electrons etc.), may
exhibit wavelike properties under appropriate conditions. de-Broglie named these waves associated with
material particles as matter waves. In his Ph.D. thesis, de-Broglie postulated that because photons have
wave and particle characteristics, perhaps all forms of matter have wave as well as particle properties. He
has been honoured by Nobel Prize in the year 1929 for unfolding the existence of wave nature of moving
particles.

He proposed following similarities for his hypothesis of matter waves:

1. Nature loves symmetry: The two forms in which nature manifests herself are matter and radiation.
We know that radiation possess dual nature so that matter also may show dual nature. Physicists
have rarely gone wrong by assuming the symmetry of nature. A changing magnetic field produces
an electric field in nature, and due to symmetry, it is also found that a changing electric field
produces magnetic field.

2. The close parallelism between mechanics and optics: The principle of least action in mechanics
states that a moving particle always chooses minimum action path. Similarly, the Fermat’s principle
in optics states that light always chooses a path where the time of transit is minimum.

3. Bohr’s theory of atomic structure: According to Bohr’s theory, the stable states of electrons in the
atom are governed by integer rule. The only phenomena involving integers in Physics are those of
interference and modes of vibration of stretched strings, both of which imply wave motion. Hence
de-Broglie thought that the electrons may also be characterized by a periodicity like waves.

The above similarities suggested that an electron or any other material particle must exhibit wave-
like properties in addition to particle-like properties. These waves, associated with a material particle,
are called matter waves.

1.5.2 de-Broglie’s Wavelength

The expression for de-Broglie’s matter wave can be obtained by considering Einstein’s mass-energy
relationship and Max Planck’s energy equation.
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According to Einstein, the relationship between mass and energy of photon moving at a velocity ¢

is given by
E=mc? ...(1.26)
According to Max. Plank, the energy associated with a photon of frequency f is given by
E=hf = ho/A .. (1.27)
Comparing Eqn. (1.26) and (1.27), me? = he/A
or A =h/mc ... (1.28)

Eqn. (1.28) gives the expression for the wavelength of a photon wave that moves through a medium
when photon travels with a velocity equal to velocity of light (c).

Similarly, when any material particle having mass m and moving with velocity v must possess a
de-Broglie wavelength given by
A=h/mv ..(1.29)
If the material particle moves with kinetic energy E = 2 me?, then de-Broglie wavelength can be
written as

7\,:—:

my 2mE

.. (1.30)

1.5.3 de-Broglie’s Wavelength-Extension to electron Particle

Consider an electron of rest mass m  and charge e accelerated by a potential of V volts from rest to a
velocity v. Then we write:

Yamyt = eV

or v= ’Ze_V .. (1.31)
my

We also know that the wavelength of matter wave as A = h/myv .. (1.32)
Using Eqn. (1.31) and (1.32), we write:

e ..(1.33)

\J2ZmgeV
Putting m = 9.11 x 10°" kg; h = 6.62 x 107 ]/s and e = 1.602 x 10" C, we get Eqn. (1.33) as
12.26 .
x:_\/v A .. (1.34)

If the accelerating voltage V = 100 volts, then the wavelength of electron becomes A = 1.226 A.
Since this wavelength is comparable with the wavelength of X-rays, the de-Broglie waves should be

capable of being diffracted by a crystal, just like X-rays.
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1.5.4 Davison and Germer Experiment

de-Broglie’s predictions of the existence of matter waves is first verified experimentally in 1927, by
C. J. Davison and L.H. Germer of Bell Telephone Laboratories in New York.

Experimental Setup :

Glass-vacuum
vessel

Accelerating —
voltage =

Filament

Movable

electron
detector

o

§ S

(o} -
% Nickel target

DAVISSON AND GERMER
APPARATUS

Figure 1.10 A schematic diagram of the Davison—Germer apparatus

The experimental setup is shown in Fig. 1.10. Electrons are produced by heating a filament (F) by
a low tension battery (LTB). These electrons are accelerated and focused to nickel crystal by applying
accelerating voltage V. The diffracted beam is collected by means of a movable detector. The whole
experimental setup is placed inside a vacuum chamber.

Experimental Procedure

The beam of electron is allowed to fall normally on the surface of the crystal. Due to normal incidence,
the nickel crystal acts like diffraction grating and the diffracted beam is collected by means of a detector
which can be moved to positions on a circular scale S and the intensity of electron beam is measured by
means of a galvanometer G. The galvanometer deflection is plotted against the angle between incident
beam and the beam entering the detector. The experiment is repeated for different accelerating voltages
and resulting curves are drawn. A typical curve obtained for accelerating potential of 54 V is shown in
Fig. 1.11.
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Oo

Scattered intensity (arbitrary units)

90°

Figure 1.11 Graph of intensity of diffracted beam versus the angle between incident and diffracted
beam for 54 V

Experimental Result

The graph remains fairly smooth till the accelerating voltage becomes 44 volts. At 44 volts, a spur
appears in the graph and as the accelerating voltage is increased, the length of the spur increases, till the
accelerating voltage reaches 54 volts at an angle of 50°. With further increase in accelerating voltage,
the spur decreases in length and finally disappears at 68 volts.

Inference

The occurrence of a pronounced spur at 50° with the electron accelerated through 54 volts can be
explained as due to constructive interference of the electron waves, scattered in this direction, from the
regularly spaced parallel planes in the Nickel crystal. According to de-Broglie’s theory, the wavelength of
the electron accelerated through a potential of 54 volts is given by:

x:ﬁz’\:mé;\.

J54
According to the experiment, a diffracted beam at co-atitude of 50° corresponds to the electron
beam glancing angle of © = 65° with respect to the crystal plane is observed. For nickel, the interplanar
distance, d is found to be 0.91 A from the X-ray diffraction studies. The order of diffraction is taken to
be 1 in this case and applying the Bragg’s equation nA = 2d sin 0, where n refers to order of diffraction.
By simplifying, we get, A = 2 x 0.91 A x sin 50° = 1.65 A. Thus the experimental value is in close
agreement with the theoretical value. This shows that a beam of electrons behaves like X-rays, suffers

diffraction at reflecting surfaces and thus has wave-like characteristics.
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1.6 MATTER WAVES AND THEIR CHARACTERISTIC PROPERTIES

Unlike electromagnetic waves, the matter waves have following properties:

1. The wavelength of matter wave is inversely proportional to mass of the particle. Hence larger the
mass of the particle, shorter will be the wavelength and vice versa.

2. The wavelength of matter wave is inversely proportional to velocity of the particle. Hence greater
the velocity of the particle, smaller will be the wavelength and vice versa.

3. The amplitude of the de-Broglie wave varies with likelihood of detecting the particle at a particular
position. Hence the matter wave is termed as probability wave.

4. When a particle is in motion, two different velocities are associated with it. They are mechanical

motion of particle (v ). These two are connected by

particle hase

) and motion of associated matter wave (v,
) _ 2 . ) . .
a relation Ve = € /meide. Now, the particle velocity Ve < ¢ Hence, the velocity of propagation

of matter wave Ve > € Thus matter wave can travel greater than velocity of light!.

1.6.1 Phase Velocity, Group Velocity and Particle Velocity

According to de-Broglie, each particle of matter (like electron, proton etc.) may be regarded as consisting
of group of waves or a wave packet. Each component wave propagates with a definite velocity called
phase velocity or wave velocity. But when a disturbance consists of a number of component waves, each
travelling with slightly different velocity, the resultant velocity will be that of a periodicity. The velocity
of advance of this periodicity is called the group velocity.

Phase velocity

The equation for a wave travelling in positive x-direction is given by
vy = Asin(mt — kx) ..(1.35)
Where y is the displacement along y-direction at the instant ¢, @ is the angular frequency, k is the
propagation constant and x is the displacement along x-axis at the instant t. In the above equation,

(ot — kx) gives the phase of the vibrating particle. The phase quantity (@t —kx) is same for the particles
which are in the same state of vibration (same phase). Therefore for those particles which are in the

same phase, the rate of change of (wt—kx) with respect to time is zero i.e.,

i((,ot—kx)zo or (,\)—k(k) =0
dt dt
dx o
or =22
dt  k

The velocity with which the phase of the vibrating particle propagates as the wave progresses is

called phase velocity. Here the dx/dt is taken as phase velocity.
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phase — f

Group wvelocity

Definition: The velocity with which the wave packet, formed due to the superposition of two or more
travelling waves of slightly different frequency, is transported is called group velocity.

Figure 1.12 lllustration on group velocity

Consider two travelling waves y, and y, of same amplitude with slightly difference in their wavelengths
and are given by

y, = Asin(®,t — k,x)
y, = Asin(®,t —k,x)
The resultant displacement y due to the superposition of two waves is given by
Y=t

y= A[sin((olt —k,x) + sin(o,t — kzx)]

Using the identity sina+sinb=2cos ( d ; b) sin [aT"_b] we get

y= ZAcos(((Dl —o)t (k — kz)xjsin[(ml +o,)t (k + kz)x)
2 2 ) 5
y:ZACOS(%—ATkXJSin((Dt—kx) (1.36)

where ® =(0, +®,)/2, k=(k, +k,)/2, Ao =(0, —®,) and Ak=(k, —k,)
Compare Eqn (1.35) with Eqn (1.36). In Egn (1.35) ‘A’ is the amplitude but in Eqn (1.36) the

amplitude is
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2A cos (_Acot - A_kxj
2 2

The above resultant wave amplitude is not constant but varies as a cosine function. The velocity with
which the variation in amplitude is transmitted in the resultant wave is referred as group velocity. The group velocity

is given by
Ao
== (137
q)gnmp Al{, ( )
1.6.2 Relation between Phase Velocity and Group Velocity
The expression for group velocity is given by Vo dw/dk ...(1.38)
The expression for phase velocity is given by v = o/k ... (1.39)
where ® is the angular frequency of the wave, and k is the wave vector.
Eqn. (1.39) can be written as ® = kvphase
do d dv hase
Theny Ugwup = E = E (kq'}phase ) = Uphase + k C:k
v, ) dA
Hence’ q}group = Uphasc + k (#j E eoe (1'40)
But, we know that k = 2rt/A
Differentiating we get, dk/dA = - 21/,
or d\/dk = - A*/2n
Then we can write k(dr/dk) = 2r/A) (- A/ 2m) = - A
Substituting the above Eqn. in Eqn. (1.40), we get,
dU hase
q/gmup = q/phaxc - )\' ( d;\, j cen (1.41)
Eqn. (1.41) gives the relationship between group velocity and phase velocity.
1.6.3 Relation between Group Velocity and Particle Velocity
The expression for group velocity is given by
Voun = dw/dk .(1.42)
But ® = 2nf= 21 (E/h) .(1.43)
do = 2n/h) dE .. (1.44)
Also we have k =2n/A =27 (p/h) ... (1.45)
dk = 2n/h) dp ... (1.46)
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Dividing Eqn. (1.44) by Eqn. (1.46) gives

dw/dk = dE/dp ... (1.47)
But we know that the kinetic energy of particle is E = p?/2m, where p is momentum of the particle.
Then, dE/dp = 2p/2m = p/m ...(1.48)
Using Eqn. (1.48) in Eqn. (1.47) we get, do/dk = p/m
Butp=mv__. where Ve 1S the velocity of the particle.
Then, dw/dk = mvmmde/ m=v .. ...(1.49)
From Eqn. (1.42) and (1.49), we get,

oun = Voartile ... (1.50)

Thus the de-Broglie wave group associated with a particle travels with a velocity equal to the
velocity of the particle itself.

1.6.4 Expression for de-Broglie Wavelength using Group Velocity

The expression for group velocity is given by

Voo = do/dk .. (L.51)
But ® = 2nfand k = 2n/A
Then do = 2nt df and dk = 2=d (1/A)
Then Eqn. (1.51) becomes Veoun = do/dk = df/d(1/A) ...(1.52)
We can consider the particle velocity is same as group velocity. Hence
v = df/d(1/}) or d (1/n) =df/v ... (1.53)
Using total energy of the particle, we can write  hf = 2 mv? + V .. (1.54)

Let the particle is moving in a field of constant potential V, then by differentiating Eqn. 1.54 gives:

h df = mv.dv or df/v = (m/h)dv ... (1.55)
From Eqn. (1.53) and (1.55), we get, d (1/A) = (m/h)dv
Integrating, 1/X = (m/h)v + constant ... (1.56)

Let the momentum of the particle be p and p = mv. Also by substituting the constant of integration
is zero, we get,

/A = p/h or A=h/p .. (1.57)
The above Eqn. (1.57) is the de-Broglie’s equation.

1.6.5 Relation between Group Velocity, Phase Velocity and Velocity of Light
= w/k

We know that the expression for phase velocity is given by v

phase

Also ©=2nf = Zn% (158)
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n
Also k=—=2n~
A
2 2
o E me c
Then Vppoe =T =— = =
’ k
P mvpmlide Upartiule

\% =v_ .
group particle

But, from Egn. (1.50),
Using Eqn. (1.60) and (1.50), we can write as

= ~2

(1.59)

...(1.60)

...(1.61)

Vplmsc' Vm‘oup =cC
SOLVED PROBLEMS

Photoelectric Effect

1.
for the photosensitive metal is given by 3.2¢V.

Given data,
Photon energy E = hf = 5 eV

Work function of photosensitive metal ¢p=32eV
From the Einstein Photoelectric equation
hf =@ + L
= —mu
® 2
[
Therefore, Emv =hf-0@
[
Emv =5eV —-3.2¢V
=18 eV
=1.8x1.6x10"]
=2.88x10"]
, 19
Therefore, v = M
9.11x10”

=7.95x10° m/s

Calculate the velocity of the ejected photoelectron for the incident photon energy of 5¢V. The threshold energy

(v 1V =1.6x10"])

The maximum velocity of the photoelectron ejected due to the incident radiation energy of 5 eV

on the metal surface is 7.95%x10° m/s.
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Electrons are ejected out of the photosensitive metal surface when a radiation of wavelength 210 nm falls on
it. Given that the limiting wavelength for the photosensitive metal is 325 nm. Calculate the kinetic energy,

stopping potential and wvelocity of the photoelectron.
Given data:
Incident wavelength A = 210 nm

The corresponding photon energy is

625 x10% x 3x10°
Eohf =t OOBXIY IXIT g 64010
x 210x 10

Threshold (limiting) wavelength A_= 325 nm

The threshold energy (work function) is

he  6.625x 107 x 3x10°

(P:hfoz—

: 25 510° =6.12x107"]
0

(i) The kinetic energy of the photoelectron is

%mvz =hf -0

%mvz =9.46x10"]-6.12x107"]

%mvz =334x10"]J

/2 x3.34%x107"
Y=y
m
/z x3.34x107"
V= |
9.11x107"

v=856x10°m/s

Therefore,

(ii) Stoping potential
KE=eV=334x10"]

~3.34x107"°J

e

\%
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3.34x107"
T 16x107"
V=2.087 volts
Therefore the stopping potential V = 2.087 volts

Compton Effect

3. The wavelength of the incident Xay is 1.54 A. Calculate the maximum wavelength of the scattered Xeray by
the target material in a Compton scattering process and hence calculate the energy and wvelocity of the recoiling
electron.

Given data:
The incident X-ray wavelength A=1.54 A = 1.54 x 10° m
The scattered X-ray wavelength is maximum for 6 = 180°
(i) To calculate maximum wavelength

We have from Compton shift expression

AL=(A'=A)= h (1-cos0)
mgyc
1 h
or A=A+ (1-cos9)
moc
34
A =154 %1070 4 0685 x10 (1— cos180)

9.11x107!' x3x 108

6.625x107*

A =154x10"+
9.11x107"' x3x108

(1—cos180)

A =1588x10"m
(ii) To calculate Kinetic energy of recoiling electron

The kinetic energy of the recoiling electron = incident photon energy-scattered photon energy

1 1
K-E.=E—El=hf—hfl=hc[1‘ﬂ

K.E.:6.625><10'34><3><108{ ! T 1 10}]
1.54x107"°  1.588x10"

K.E. =39%x10"]J
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(iii) To calculate the velocity of the recoiling electron

%mvz =3.9%x10™"J

[2x3.9x 107"
v=[——m
m
2x3.9%x107"7
V=
\ 9.11x107"

v=9.25x10m/s

Therefore,

The maximum wavelength of scattered X-ray is L' =1.588x10"""m, the kinetic energy of recoiling

electron is K.E.=3.9x107""J and the velocity of the recoiling electron is v=9.25x10°m /s

de-Broglie hypothesis
4. Calculate the velocity of the electron whose de-Broglie wavelength is 4.52 A.

Given data:
A=452A=452x10"m

To calculate velocity of the electron v =7

The expression for de-Broglie wavelength is

h=—
my

Therefore,

h 6.625 %107
) =—=
mh 9.11x107!' x4.52x107°

v=1.61x10"m/s
The velocity of the accelerated electron is v=1.61x10"m/s

Davison and Germer Experiment

5.  In a Davison and Germer experiment the second order diffraction resulting in a constructive interference was
observed at an angle of 40° with respect to incident electron beam direction for the wavelength of electron

waves 2.5 A. Calculate the interplanar distance of the experimental crystal.
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Given data:
n=2
A=2.5A=25%10"m
¢ = 40°is the angle made by the scattered electron waves with respect to incident electron waves
To calculate
Interplanar distance, d =?

Crystal pla
The glancing angle can be calculated as follows TSt pane

180°=40°+ 20 0
26 = 180° - 40° >
o__ o = Oo
o_ 180°—-40 _ 700 ¢ =4 0
2
The Bragg’s equation is
nA = 2dsin0

Therefore,
ok 2x2.5x107"°
2sin® 2sin70°
The interplanar spacing for the given crystal is 2.66A

= 2.66A

Group velocity and Phase velocity
6.  The particle of mass 3.5 x 10%%g is accelerated it attains a steady kinetic energy of 25 eV. Calculate the
wavelength associated with the moving particle and also the phase velocity of the matter wave.
Given Data:
Mass of the particle m = 3.5 x 10-3%g
Kinetic energy of the particle, K.E. = 25eV = 25 x 1.6 x 107°] = 40 x 107"]
To calculate

de-Broglie (matter waves) wavelength A =?
=7

phase

Phase velocity of the matter waves v

The de-Broglie wavelength is

h 6.625x107"

V2xmxKE.  \2x3.5x107° x40x 10"

The particle velocity is
h

v = —
particle
mA
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Therefore,

h 6.625x 107
U = —=
P mh 3.5% 1070 x 1.25%107°
The phase velocity of a de-Broglie wave is given by

=1.51x10°m /s

_ 2
Upmtidcq}phma =c

Therefore,
B C2 B (3 % 108 )2
sy 1.51x10°

particle

=5.96x10" m/s

v

The wavelength associated with the moving particle is 1.25 A and the phase velocity is 5.96 x 10 m/s
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EXERCISES

L. Descriptive Type Questions

What is a blackbody? What are the characteristics of black body radiation spectrum?

What are the drawbacks of Wein’s law and Rayleigh-Jeans law?

1

2

3. Write a note on Planck’s law of blackbody radiation.
4.  Write a note on Einstein theory of photoelectric effect.
5

Explain why the wave theory of light failed to explain Compton Effect and Photoelectric Effect
and how the quantum theory explained these phenomena!

o

What is Compton Effect! Derive an expression for the Compton shift.

Write a note on de-Broglie hypothesis and explain why this hypothesis is insignificant for
macroscopic world with examples.

8. Derive an expression for de-Broglie wavelength of a accelerated particle and also for the particles
at thermal equilibrium.

9. Describe the experimental setup and results which gave the proof for existence of matter waves or
de-Broglie waves.

10. What is group velocity and phase velocity? Derive an expression relating them.
11. Prove that the particle velocity is nothing but group velocity of the resultant de-Broglie wave itself.
12. Derive an expression for the de-Broglie wavelength from group velocity.
13. What are matter waves! What are the characteristics of matter waves!
14. Describe Davisson and Germer experiment for confirmation of de-Broglie hypothesis.

(VTU June 2009)
15. Define Phase velocity and Group velocity. Show that Group velocity is same as particle velocity.

(VTU Jan 2009)

16. Derive de-Broglie wavelength using Group velocity. (VTU Jan 2009)
17. Explain the energy distribution in the spectrum of a block body. Give an account of the attempts
made through various laws to explain the spectrum. (VTU Jan 2008)
18. Define phase velocity and group velocity. Derive an expression for de-Broglje wavelength from
group Velocity. (VTU Jan 2008)
19. What is Planck’s radiation law! Show how Wien’s law and Rayleigh-Jeans’s law can be derived
from it. (VTU June 2008)

20. Explain phase velocity and group velocity. Derive the expression for de-Broglie wave length using
the concept of group velocity. (VTU June 2008)
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22.

23.

24.
25.

26.
21.

28.
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Give a brief account of black body radiation and Plank’s radiation law; leading to quantization of

energy. (VTU June 2007)
Explain phase velocity, group velocity and particle Velocity and write down the relation between
them. (VTU June 2007)

From the concept of group velocity, obtain an expression for de-Broglie wavelength.
(VTU June 2007)

Discuss Planck’s radiation law. (VTU Jan 2007)
Explain the duality of matter waves from the inferences drawn from photoelectric effect and
Davisson-Germer effect. (VTU Jan 2007)
Define group velocity and obtain an expression for the same. (VTU Jan 2007)

What is Planck’s radiation law? Show how Wien’s law and Rayleigh-Lean’s law can be derived
from it. (VTU Jan 2010)

Define group velocity. Derive relation between group velocity and phase velocity.

(VTU Jan 2010)

II. Multiple Choice Questions

1.

An electron and a proton are accelerated through same potential. The ratio of de-Broglie wave

length Xe/\p is

@) 1 b)) m c/mp
© m/m, @

Wave function associated with a material particle is :
(a) Single valued (b) Finite
(c) Continuous (d) All the above

In a black body radiation Spectrum, the maximum energy peaks shifts towards the shorter wave
length side with the increase in temperature. This confirms

(a) Stefan’s law (b) Wein’s law

(c) Rayleigh-Jean’s law (d) Planck’s law .

The group velocity of the particle is 3 X 10° m/s, whose Phase velocity is
(a)  6.06 x 10° m/s (b) 3 x10° m/s

() 30 m/s d 1.5x10°m/s
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5.

10.

11.

12.

13.

The de-Broglie wave length associated with an electron of mass m and accelerated by a potential V is

(@) h (b) V2mVe
2meV h
h h

(c) Ver (d) Nem

Davisson and Germer were the first to demonstrate:
(a) The straight line propagation of light (b) The diffraction of Photons

(c) The effective mass of electron (d) None of the these.

Electrons behaves as waves because they can be:
(a) Deflected by an electric field (b) Diffracted by a crystal
(c) Deflected by magnetic field (d) They ionize a gas.

In Davisson -Germer experiment the hump is most prominent when the electron is accelerated by

(a) 34 volts (b) 54 volts

(¢) 60 volts (d) 80 volts

In a blackbody radiation spectrum, the Wein’s distribution law is applicable only for
(a) Longer wavelength (b)  Shorter wavelength

(c) Entire wavelength (d) None of these.

The de-Broglie wavelength associated with the particles in thermal equilibrium at temperature T is
given by
h v2mVe

(b)
2Vem 2kTm

h h

d
N 3okT @ V2mVe

In a Davison and Germer experiment the spur is prominent for the scattering angle of

(a)

(c)

(a) 35° (b) 90°

() 50° (d) none of these

If the group velocity of de Broglie wave is 4 x 10" m/sec, its phase velocity is
(a) 12 x 108 m/sec (b) 2.25 x 10 m/sec

(c) 5.33 x 108 m/sec (d 1.33 x 10° m/sec

Wien’s law is deduced from Planck’s radiation formula under the condition of

(a)  Very small wavelength and temperature
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15.

16.

17.

18.

19.

20.
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(b) Large wavelength and temperature
(c) Small wavelength and high temperature

(d) Large wavelength and small temperature

The Compton wavelength is given by

h h?
) b
m,c m,c
h h?
) — (d)
m,c Imc

Which of the following relations can be used to determine de Broglie wavelength associated with
a particle?

h h
(@) — b)) —

2mE mv
(c) h (d) All of th
c of these

V2meV

If the group velocity of a particle is 3 x 10°m/s, its phase velocity is
(a) 100m/s (b) 3 x 10°m/s
() 3 x10°m/s (d) 3 x10"m/s
If the momentum of a particle is increased by four times, the de-Broglie Wave length
(a) become twice (b) become four times
(c) become one-fourth (d) Zero

In a black body radiation spectrum, maximum intensity is shifting towards
(a) shorter wavelength (b) longer wavelength

(¢) no change (d) None of these

Group velocity of wave is equal to

@@ V. b) Ve

(c)  Velocity of light (d) None of these

de-Brogile wave length of an electron accelerated through a potential difference of 54V is
(@) 1.85A (b) 1.58A

() 1.589A (d) 1.66A
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21.

22.

23.

24.

25.

The wave property of large, massive objects is not observed because _____ _

(a) their acceleration is too small (b) their momenta are too small

(c) their speeds are too small (d) none of these

The wavelength associated with a moving particle ____
(a) depends upon charge associated with it

(b) does not depends on charge associated with it

(¢) depends upon the medium in which the particle travels

(d) none of these

In Compton effect, the wavelength of incident wave ____

(a) remains constant (b) shifts towards longer wavelength

(c) shifts towards shorter wavelength (d) shifts towards both longer and shorter wavelength

Which of the following statement is correct for matter waves
(a) Matter waves travel faster than velocity of light

(b) Matter waves travel slower than velocity of light

(c) Matter waves travel at velocity of light

(d) Matter waves can not travel

Which of the following is correct for Compton shift

(a) Compton shift is independent of the wavelength of incident radiation.
(b) Compton shift is independent of the nature of scattering substance.
(c) Compton shift depends only on the angle of scattering 6.

(d) All the above.

III. Numerical Problems

L.

In a Compton scattering process, the scattered X-ray wavelength becomes twice that of the incident
X-ray wavelength only when the Compton shift is maximum. Calculate (i) incident X-ray wavelength,
(ii) scattered X-ray wavelength and (iii) velocity of the recoiling electron.

Prove that the De-Broglie wavelength of a particle in thermal equilibrium at temperature T is

h
2ZmK T
Calculate the potential difference through which an electron should be accelerated so that its De-

Broglie wavelength becomes 10A.

When an electron is accelerated through some potential difference, it attains a steady velocity and
this accelerated electron crosses two points separated by a distance of 250 cm in a 10 * second.



10.

11.

12.

13.
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Calculate (i) de-Broglie wavelength of the accelerated electron and hence calculate the potential
difference through which it has to be accelerated to obtain the calculated de-Broglie wavelength.

In a Davison and Germer experiment the electron accelerated through a potential difference of
100 V are impinged on a crystal X. It is observed that the first order diffraction maximum was
observed at an angle of 65° with respect to incident electron beam direction. Calculate the
interplanar distance of the crystal X.

The second order diffraction resulting in maximum intensity was observed for the incident electrons
energy of 75 eV at a glancing angle of 60° with respect to crystal plane. Calculate (i) angle by which
the diffracted electron beam makes with respect to incident direction on the crystal (ii) calculate
the interplanar distance of the crystal planes.

Explain phase and group velocity. Calculate the de-Broglie wavelength of a bullet of mass 5 gm
moving with velocity 20 km/h. (VTU June 2009)

Compare the energy of a photon with that of a neutron when both are associated with wave length

of 1 A given that the mass of neutron is 1.678 x 10%7kg (VTU Jan 2009)

A particle of mass 0.65 Me V/c? has a kinetic energy 80 eV. Calculate the deBroglie, wave length,
group velocity and phase velocity of the de-Broglie wave. (VTU Jan 2008)

A particle of mass 0.65 MeV/c? has free energy 120 eV. Find its de-Broglie wavelength, ¢ is the
velocity of light. (VTU June 2008)

Calculate the de-Broglie wavelength of a 0.3 kg cricket ball moving with a speed of 120 km/hr.
(VTU June 2007)
A particle of mass 0.5 MeV/c? has kinetic energy 100 eV. Find its de-Broglie wavelength, where

c is the velocity of light. (VTU Jan 2007)
A fast moving neutron is found to have a associated de-Broglie wavelength of 2 A, find its kinetic
energy and group velocity of the de-Broglie waves. (VTU Jan 2010)

Answers to Multiple Choice Questions

1.

d 2. d 3 b 4 OB 5 @& 6 A 7 B 8 B 9 {®B 1. () 1L ()

12. () 13. (©) 14. () 15.(d) 16.(d) 17.(c) 18.(@) 19.(b) 20.(d) 21.(d) 22.(d)
23. (b) 24. (@ 25.(d).



CHAPTER

QUANTUM MECHANICS

g OBJECTIVES

In the previous chapter we have seen that the wave associated with any particle in motion is a
matter wave and the mathematical function which describes the motion of particle is referred as
quantum mechanical wave function. How this wave function affects our description of a particle and
its behavior is the subject of this section. The work carried out by Schrédinger, Heisenberg, and
others, makes it possible to understand most of the phenomena involving elementary particles,
atoms, molecules, and solids. In this section, we shall describe the basic features of wave mechanics
and its application to simple systems. The main goal of this unit is to study

e Uncertainty principle, its application to prove non-existence of free electron inside the
nucleus and physical significance

¢ Fundamental properties of wave function and its significance
e Probability density and normalization of wave function

e Schrodinger wave equation and its application to electron confined in one dimensional
box of finite width with infinite height

¢ Eigen energy value and Eigen function for the particle in one dimensional box

Application of wave equation to free particle

2.1 INTRODUCTION

Before the beginning of 20 century two theories dominated the world of physics namely Newton’s laws
of motion and Maxwell’s laws of electromagnetism. At the end of the nineteenth century, physicists
distinguished between two entities in physical phenomena : matter and radiation. To explain the
phenomenon related to matter and radiation completely different laws were used for each one. For
predicting the motion of material bodies, the laws of Newtonian mechanics were utilized whereas to
explain the radiation, the theory of electromagnetic waves developed by Maxwell’s was utilized. The
Maxwell theory had produced a unified interpretation of a set of phenomena which had previously been
considered as belonging to different domains: electricity, magnetism and optics. Finally, interactions
between radiation and matter were well explained by the Lorentz force. This set of laws had brought
physics to a point which could be considered satisfactory, in view of the experimental data at that time.

However, at the beginning of the 20™ century, many experimental results reported remain
unexplained by classical theory. This failure of Classical physics marked tremendous changes in the
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conceptual ideas and led to the introduction of Relativistic Mechanics and Quantum Mechanics. The
relativistic mechanics take care of the material bodies travelling at very high speeds, comparable to that
of light (relativistic domain) and where as the Quantum theory treats the material particles and radiation
on the same footing.

In the beginning of 20" century, to explain the energy distribution in the black body radiation
spectrum Max Planck introduced a concept of “quantum”. Using this quantum concept Einstein
successfully explained the photoelectric effect. The same concept was used later by Compton to explain
Compton Effect. Quantum mechanics was further developed by Heisenberg, Schrodinger, Pauli, Dirac
and many others. Quantum mechanics plays a fundamental role in the description and understanding
of natural phenomena. In this section, a brief conceptual overview of the quantum mechanics which is
most relevant for undergraduate level students is provided.

2.2 HEISENBERG’S UNCERTAINTY PRINCIPLE

In 1927, Werner Heisenberg at Max Planck Institute of Physics, West Germany, developed a principle
on uncertainty in measurement of physical quantities and received Nobel prize in 1932.

2.2.1 Statement of Heisenberg’s Uncertainty Principle

Heisenberg’s uncertainty principle states that it is impossible to determine precisely and simultaneously
the values of both the members of a pair of physical variables which describe the motion of an atomic
system. Such pairs of variables are called canonically conjugate variables. Example: Position and
momentum, Energy and time.

2.2.2 Heisenberg’s Uncertainty Principle Applied to Position and Momentum

According to Heisenberg, it is impossible to determine simultaneously and precisely both position and
momentum of a moving particle. If Ax is the error in determining the position and Ap is the error in
determining its momentum at the same instant, then these errors are related as:

Ax.Ap=h/2 (2.1
where h=h/2%

The product of two errors is approximately of the order of Plank’s constant. If Ax is small, Ap will
be large and vice versa. It means that if one quantity is measured accurately, the other quantity becomes
less accurate. Thus any physical instrument cannot measure the quantities more accurately than predicted
by Heisenberg’s principle.

2.2.3 Heisenberg’s Uncertainty Principle Applied to Energy and Time

According to Heisenberg, it is impossible to determine simultaneously and precisely both energy of a
wave packet and time taken to measure that energy. If AE is the error in determining the Energy and At
is the error in the time, then these errors are related as:

AE.At>h/2 ..(2.2)
where h=h/2%
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Heisenberg’s principle implies that, in any physical measurement, probability takes the place of
exactness.

2.2.4 TIllustration: Heisenberg Microscope

Let us consider an idealized experiment (referred as thought experiment) and show that it is impossible to
carry out an experiment that allows one to measure the position and momentum of a particle simultaneously
and with an accuracy that violates the uncertainty principle. The thought experiment was introduced by
Heisenberg himself and involves the measurement of an electron’s position by means of a microscope
(Fig. 2.1), which forms an image of the electron on the retina of the eye. Suppose we try to measure the
position and linear momentum of an electron using this imaginary microscope with a very high resolving
power (Fig 2.1), the electron can be observed if an electron scatters the photon into the microscope lens.
According to physical optics, the limit of resolution of the microscope is given by the relation

Ax = A/2sin0 (D)

|1— Ax —.l Before
N

\\

collision
FA Y Incident
1 photon
(/, \
"' l\.
l" \l

4 X, Electron

7

Screen

(a)

After

collision

Scattered
photon
einitially —
at rest |‘_ —>‘ @
Ax
Y i'
Incident photon El-:‘-:';i:)i:g
Po=h/4,
* (&)

Figure 2.1 Experimental set-up to measure the position and linear momentum
of an electron using an imaginary microscope
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where Ax is the distance between the two points which can be just resolved by the microscope
lens. This is the range in which the electron would be visible when disturbed by the photon. Hence Ax
is the uncertainty involved in the position measurement of the electron.

In order to see the electron, the scattered photon must enter the microscope within the angle 26.
The momentum imparted by the photon to the electron during the impact is of the order of h/A. The
component of this momentum along OA is - (h/A) sin® and that along OB is (h/A) sin®. Hence, the
uncertainty in the momentum measurement in the x-direction is:

Ap_ = [(h/}) sin6] - [- (h/A) sinB] = (Zh/A) sinO ... (ii)
Ax. Ap = [A/2sin@]. [(Zh/}) sin6] = h .. (iii)
A more sophisticated approach will lead to Ax.Ap_ >h/2 .. (iv)

2.2.5 Physical Significance

1. As per uncertainty principle, instead of trying to find the exact position or momentum of micro-
particle like photon, electron or atom, one should think of probability of finding the particles at
a certain positions or probable value of the momentum of the particle.

2. The uncertainty principle has no practical importance for Macro particles where de-Broglie
wavelength is negligibly small.

2.3 APPLICATION OF UNCERTAINTY PRINCIPLE

2.3.1 Why Electron cannot be Present inside the Nucleus?

The typical size of nucleus is of the order of 5 x 10-®m. Suppose if the electron exists inside a nucleus,
the uncertainty in its position Ax may not exceed 5 x 10-"m. Using Heisenberg’s Uncertainty principle,
uncertainty in electron’s momentum is:

Ap>h/2Ax > (1.055 x107 )/z x (5 x107" ) >1.055x10°Kg. m.s™"

An electron whose momentum is 1.055 x 10-° Kg. m.s™! has a kinetic energy (K.E.) many times
greater than its rest mass m,
to find kinetic energy.

Hence, K.E. = (1.055 x 10-9).(3 x 10%)
= 3.2x10"]
= (3.2 % 10'%/1.6 x 10°) eV
= 20 MeV

This shows that if an electron exists in the nucleus, the kinetic energy of electron must be more
than 20 MeV. But, electrons of such large energy have never found to be emitted during B-decay. The
maximum energy of B particle emitted is only of 2 to 3 MeV. Hence, we conclude that electrons can not be

o> That means K.E. >> m c*. Hence we can use relativistic formula K.E. = pc

present within nucleus and the electrons observed in B-decay are actually created at the instant of decay.
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2.4 WAVE FUNCTION, PROPERTIES AND PHYSICAL SIGNIFICANCE

2.4.1 Wave Function

The probability that a particle found at a given place in space at a given instant of time is characterized
by the function y (x,3,%,t), and is called the wave function. Wave function can be either real or complex.

2.4.2 Properties of Wave Function

1. The wave function y is in general is a complex function. y* is its complex conjugate.

2. The wave function must be well defined, i.e., it must be single valued and continuous everywhere.
3. Itis used to describe the motion of an atomic particle and is a function of both position and time.
4

v represents probability amplitude, |y|? represents probability density i.e., is probability per unit
length in one dimension and probability per unit volume in three dimension.

2.4.3 Physical Significance

The wave function y has no physical significance by itself. The only quantity having a physical meaning
is the square of its magnitude P called probability density. P = |y |? = yy* where y* is the complex
conjugate of y. The probability of finding a particle in a volume dx, dy, dz is | y|*dx.dy.dz. Further, since
the particle (say electron or photon) is certainly to be found somewhere in space, the triple integral
extending over all possible values of x, v, z.

[l 1w 12 dxdydz =1 .. (23)

A wave function W satisfying the above relation is called a normalized wave function.

2.5 PROBABILITY DENSITY AND NORMALIZATION OF WAVE FUNCTION

The probability of finding a particle in a given volume dV is given by yy*. dV. Using Eqn. (2.3) the total
probability of finding a particle in the entire space is always unity. i.e., [ |[y|?dV = 1, where the integration
extends over all space. The above equation can be also written as [ yy* dV = 1. Any wave function
satisfying this equation is said to be normalized to unity or simply normalized function. Max Born in 1926
interpreted the wave function as a probability density and got Nobel Prize in 1954 for this discovery.

2.6 SETTING UP OF A ONE DIMENSIONAL, TIME INDEPENDENT,
SCHRODINGER WAVE EQUATION

2.6.1 Schrodinger Wave Equation

In 1925, Erwin Schrédinger, an Austrian physicist used de-Broglie’s ideas to set-up a rigorous mathematical
theory to describe the dual (wave and particle) nature of matter. The essential feature of this theory is the
incorporation of de-Broglie wavelength expression (A = h/mv) in to the classical wave equation. Thus, he
derived a wave equation for a single moving particle along one-dimension in the steady state
(time - independent) as:

(dhy/dx?) + (8n*m/h?) (E - Uy =0 .. (2.4)
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2.6.2 Derivation

Let us assume that a particle of mass m is in motion along the x-direction. Let the wave function y of
this wave is a function of the coordinates x and t. Analogous to classical wave, \ is a function of (x - w).
Since v = w/k, v may be written as a function of (kx - wt).

v = f (kx - ot) ..(2.5)
Taking the help of Euler’s identity, we can write Eqn. (2.5) in exponential form as follows:
v = A exp (kx - ot) ...(2.6)

where A is a constant.

Differentiating Eqn. (2.6), twice with respect to t, we get

(dy/dt?) = - iy - (2.7
The expression for a travelling wave along one direction can be written as
(dy/d?) = (1/9) (d*y/dr) ..(2.8)

where y is the displacement and v is the velocity of the wave.

In the above travelling wave equation, by replacing y by y, we get

(dPy/dx?) = (1/4%) (dPy/de?) ..(2.9)
From Eqn (2.7) and Eqn. (2.9), we get
(dy/dx?) = - (/v ...(2.10)
But we know that ® = 2nf and v = Af.
Hence,
(dPy/d?) = - 42/ M)y .. (2.11)
We also know that the Total energy of a particle = Kinetic energy + Potential energy.
or Kinetic energy = Total energy - Potential energy
p?/2m = (E - U) .. (2.12)

[Since K.E. = Y2 mv* = m*?/2m = p*/2m]
Using A = h/p, we get p = h/A. Then Eqn. (2.12) becomes
h?/2mA* = (E - U) .. (2.13)
or /A = 2m/h) (E - U) ..(2.14)
Using Eqn. (2.14) in Eqn. (2.11), we get,
(dy/dx’) = - 8n'm/h)E - Uy
or (dPy/dx?) + (8n*m/hNE - Uy =0 ... (2.15)

This is a one-dimension time-independent Schrédinger’s wave equation. For this discovery, Erwin
Schrodinger, has been honoured by Nobel Prize in the year 1933.
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2.6.3 Eigen Values and Eigen Function

While solving time-independent Schrodinger’s wave equation, we get possible set of acceptable solutions
only for certain specified values of energy. These discrete values of energy E,, E,, E,, ..... E are called
Eigen values or allowed values of the energy of the particle. The solutions vy, y,, W, ..... y_corresponding
to the Eigen values E_are called the Eigen functions. The quantization of energy thus appears as a
natural element of the wave equation.

2.7 APPLICATION OF SCHRODINGER WAVE EQUATION
2.7.1 The Particle in a Box of Infinite Depth

Consider a particle moving inside a box of infinite depth with finite width along the x-direction. The
particle is bouncing back and forth between the walls of the box. The box is supposed to have walls of
infinite height at x = 0 and x = L as shown in the Fig. 2.2. The particle has a mass m and its position x
at any instant of time is given by 0 < x < L.

A o 00
A

»

0 L

»
>
X

Figure 2.2 Particle in a box of infinite potential depth

The potential energy U of the particle is infinite on both sides of the box and is assumed to be zero
within the box between x = 0 and x = L. In terms of boundary conditions imposed by the problem, the
potential function is U= 0 for 0 <x < L; U= forx <0 and U = o for x > L.

The particle can not exists outside the box and so its wave function y = 0 for x < 0 and for x > L.
Our objective is to find the value of y within the box.

Within the box, the Schrodinger’s equation for the wave function becomes

(d2y/dx?) + (8m*m/h)E)y = 0 ...(2.16)
Substituting (87*m/h*)(E) = k* we can write Eqn. (2.16) as
(dhy/dx?) + Ky =0 .. 217
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The general solution of this equation is of the form

y = Asin kx + B cos kx ..(2.18)
The boundary conditions can be used to evaluate the constants A and B in Eqn (2.18).

v =0atx=0and hence B=0

y =0 atx =L and hence 0 = A sin kL

Since A # 0, kL = nt where n is an integer or k = nn/L.

Thus,
v (x) = A sin (nnx/L) ..(2.19)
The energy of the particle = E = k2h*/8m*m = (h*n’n?)/(L*8mt*m)
: E = (n*h?)/(8mL?) ... (2.20)

2.7.2 Energy Eigen Values and Functions of a Particle in a Potential Box of Infinite Depth

In Eqgns. (2.19) and (2.20), for each value of n, there is a Energy level E and corresponding wave
function y . Each value of E_is called an Eigen value and the corresponding wave function y_ is called
Eigen function. Thus inside the box, the particle can only have the discrete energy values (quantization
of energy) as shown in Fig. 2.3.

(i) Eigen Values of a particle :
Using Eqn. (2.20), the allowed energy states are given by :
First energy level E = (h?)/(8mL?)
Second energy level E, = (4h)/(8mL?) or E, = (h*)/(2mL?)
Third energy level E, = (9h%)/(8mL?) and so on.

n
A 4 E, = 16E,

B3 E,=9E,
5

2 E, = 4E,

1 E,

A E=0

Zero-point energy > 0

Figure 2.3 Energy eigen values of a particle in a one dimensional box of infinite height



Quantum Mechanics

It can be noted that the particle cannot have zero energy. The lowest energy allowed for the particle
is E, = (h?)/(8mL?). A particle can not possess energy less than this in one dimensional potential well.
The minimum possible energy for a particle in a box is E, and is called zero-point energy.

The zero-point energy is a consequence of Uncertainty principle. In case if the energy of the particle
is zero, its momentum in the box would be zero, and as per uncertainty principle, the wavelength of
the particle will becomes infinite. In such case, the particle cannot be confined within the well. This
leads to the argument that the particle should have some minimum energy (zero-point energy).

(ii) Eigen Functions of a Particle

Since the particle is somewhere inside the box, the normalized wave function becomes :

” L
1=J'_Oo|\vn(x)|2 dx:AzJ-O Sinz(nTm)dx

The integral is evaluated with the help of the trigonometric identity 2sin’0 = 1 - cos260

J.OL sin? (nTTcx) dx = %IOL [1 - cos(Znnx/ L)] dx

Only the first term contributes to the integral, because the cosine integrates to sin(2nmx/L), which
vanishes at the limits O and L. Thus, normalization requires 1 = A?L/2

or A:\/z
L

.. The normalized wave function of the particle v, = \/% sin (nTnx) .. (2.21)

The normalized wave functions ¥, y,, and , are plotted in Fig. 2.4.

A A A

(a) (b)

Figure 2.4 The first three allowed stationary states for a particle confined to a one dimensional
box. (a) The wave functions for n = 1, 2, and 3 (b) The probability distributions forn =1, 2, and 3
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2.7.3 Energy Eigen Values for a Free Particle

A particle is said to be free when it is moving in space without any external force and when its potential
energy is constant everywhere (U = constant). Consider a particle moving along positive x-axis in one
dimensional space. As the particle is freely moving in space without any external force, the potential
energy of the particle is constant. For convenience, we consider the constant potential to be zero. Then
the time-independent Schrodinger wave equation for free particle can be written as

(dy/dx?) + 8m*m/h)E)y =0 ..(2.22)
Since the particle is moving freely with zero potential energy, its total energy will be kinetic energy
and is given by
E=p?/2m ..(2.23)
where p_is the momentum of the particle along the x-direction.
Eqn. (2.22) can be re-written as
(dy/dx?) + KAy = 0 .. (2.24)
where (8m*mE/h?) = k2...(2.25)
(a) Wave function :
The general solution of the Eqn (2.24) is of the form
v (x) = Ae™ + Be ik ...(2.26)
where A and B are constants and y (x) is called wave function.
(b) Energy :
Using Eqn. (2.25), the energy of the particle is given by
E = (k¥ h?)/ 8n*m ..(2.27)

From the above Eqn. (2.27), it is clear that the particle is permitted to have any value of energy and
is not quantized. This means the freely moving particle prossesses a continuous energy spectrum.

SOLVED PROBLEMS

Uncertainty Principle
1.  Electrons moving with a velocity of 3.32 x 10° m/s if this welocity is measured with an inaccuracy of 0.53%
then estimate the uncertainty in the position of an electron.

Given that:
Velocity of the electron is v = 3.32 x 10°m/s

Inaccuracy in the measurement of velocity = 0.53 %

To find,
Ax =71
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Uncertainty in the velocity is Av = % =1.76x10"m/s

Therefore, the uncertainty in the electron momentum
Ap = mAv

Ap=mAv=9.11x10""x 1.76x10> =16.03x107** kg.m/s

From the Heisenberg Uncertainty principle we have,

AxApxzi

4r

h 6.625x107*

x> = =r =32.8x10"m
T 4mAp, 4x3.14x16.03x10

A

or

Therefore, the uncertainty in position is greater than or equal to 32.8 x 10-°m

In an experimental determination of displacement of an electron in 10-second is 3.6m. Calculate the uncertainty
involved in the determination of position if the inherent error involved in the measurement of displacement of
the electron in given time is 0.23%.

Given that:
The displacement of an electron in 10-¢ second = 3.6 m
The error in the displacement measurement = 0.23%

Therefore, uncertainty in the displacement Ad is

_3.6x0.23
100

Ad =8.28x10" m

The uncertainty in the velocity of the electron Av is

3
Av=&=m=8.28x103 m/s

Therefore, the uncertainty in the momentum Ap is
Ap=mAv=9.11x10""x8.28 x10* =75.43x10 ®kg.m /s
The uncertainty in the electron position Ax is

34
Ax > h 6.625x10

> = =6.97x107m
4mAp,  4x3.14x75.43x107%8

The minimum uncertainty in the position of electron is 6.97 x 10" m
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Particle in a Box
3. The velocity of an electron confined in an infinite potential well is found to be 3x10*m/s for the ground state.
Calculate the velocity of the electron in first and second excited state.
Given that:
Velocity of the electron in ground state v,=3x 10*m/s
To calculate:
Velocity of the electron in first excited state v, = ?
Velocity of the electron in the second excited state v = ?

The energy of an electron confined to one dimensional infinite potential well of finite width for
an n™ state is given by

ZhZ
En—l = . 2
8ma
Where a = L in Eqn (2.20). For ground state n = 1
hZ
E = (1
° 8md’ )
For first and second excited state n = 2 and n = 3 respectively
Therefore energy of an electron in the respective energy state is given by
4h° Ok’
E = — P E = ee
' 8md and £, 8ma’ @)
Form equation (1) and (2)
4h* 9h’
E = —=4E, and E, = —=9E,
8ma 8ma
Therefore the velocity of the electron in the first excited state can be calculated as follows
El = 4Eu
Emv? =4x —mvﬁ
vf = 44}?
ie. tvf=2@g=2><3><104=6><104m/s
Similarly,
(vgz = 902
ie. v, =30, =3%x3x10* =9x10*m /s
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Therefore, the velocity of the electron confined in a one dimensional potential well of infinite
height for the first and second excited state is 6 * 10*m/s and 9 x 10* m/s, respectively.

An electron is bound in one dimensional potential well of width 0.18nm. Find the energy value in eV of the

second excited state. (VTU may/June 2010)
Given that:

Width of the potential well a = 0.18 nm = 0.18 x 10 m
To calculate:
Second excited state energy = 7 eV
For second excited state n = 3
Energy of an electron in an n™ state is given by
B n’h?

- 2
8ma

E

n-1

Therefore, the energy of the electron in second excited state is

E - 9h'7
© 8ma’
9k’ 9x(6.625x107*)*
E, =

8ma’ 8x9.11x107" x(0.18 x10)?
E,=1.67x107"]

1.67x107"

, = —5-eV =104.5¢V
1.6 x10

The energy, in eV, of an electron in second excited state confined to potential well of 0.18 nm

width is 104.5 eV
Compute the first three permitted energy values for an electron in a box of width 4A. (Model Q.P)
Given that:
The width of the Box, a=4 A =4 x 10-°m.
To calculate
Ground state energy E_=7,
First excited state energy E, =7

and second excited state energy E, = ?

We have,
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For ground state n = 1

ho (6.625x107*)?
8ma’ 8x9.11x107" x(4x107'0)’

E, =

E,=3.76x107"]J

~3.76x107"

_ V = 2350V
T ex10" ¢ ‘

For first excited state n = 2

We have,
E _, =n'E,

E =2°E, =4x2.35V =9.41eV

For second excited state n = 3

E, =3'E, =9x2.35V =21.17eV

The energies of the electron in first three allowed states are 2.35 eV, 9.41 eV and 21.17 eV, respectively.

6. A panrticle limited to the x-axis has the wave function ¥'= ax between x = 0 and x = 1; ¥'= 0 elsewhere. Find

the probability that the particle can be found between x = 0.25 and x = 0.50.
Given that:
Wave function of the particle defined in the region x = 0 and x = 1 is

Y = ax
To find:
The probability of finding the particle in the region x = 0.2 to x = 0.7, P =
Probability

x=0.7 ) x=0.7 L, 2X=0~7 ) 1, ;=0
P= J. WYY dx = J. axdc=a J. xdnga [x l:oA

x=0.2 x=0.2 x=0.2

7
2

P= %az [0.7-0.2"]

P=0.1116a*
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EXERCISES

I. Descriptive Type Questions

Write a note on Heisenberg uncertainty principle and its significance.

Write a note on probability density and normalization of wave function.

1
2
3. Prove that a free electron cannot exist inside a nucleus using the Heisenberg uncertainty principle.
4. Derive Schrédinger wave equation.

5

What is Eigen value and Eigen function? Derive the expression for Eigen function and Eigen
energy values for a particle in a infinite potential well of finite width.

o

Derive an expression for the energy Eigen values of a free particle.

7. Discuss the wave functions and probability density for particle in an infinite potential well for first
three allowed states.

State Heisenberg’s uncertainty principle and discuss its physical significance.  (VTU Jan 2010)

9. Solve the Schroédinger’s wave equation for allowed energy values in case of a particle in a potential box.

(VTU Jan 2010)
10. Set up time independent wave equation.
11. What are eigen values !
12. Show that electrons cannot exist in the nucleus of an atom. (VTU Jan 2007)
13. Discuss the wave functions, probability densities and energy levels for a particle in a box.

(VTU Jan 2007)

14. State and explain Heisenberg’s uncertainty principle and prove that nuclei do not contain

electron. (VTU June 2010)
15. Discuss the wave functions and probability density for particle in an infinite potential well, for
first two states. (VTU June 2010)
16. What ate the properties of Wave functions’ (VTU June 2007)
17. Find the eigen functions and eigen values for a particle in one dimensional potential well of
infinite height discuss the solutions. (VTU June 2007)
18. Show that electrons cannot exist in the nucleus of an atom. (VTU June 2008)

19. Discuss the Eigen function, Eigen values and probability density for a particle in a potential well

of infinite depth. (VTU June 2008)

20. Assuming the time independent Schrédinger wave equation, discuss the solution for a particle in
one dimensional potential well of infinite height. Hence obtain the normalized wave function.
(VTU Jan 2008)
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21.

22.
23.
24.
25.

Explain Heisenberg’s uncertainty principle. Based on this, show the non-existence of electrons

inside the nucleus. (VTU Jan 2008)
Set-up time independent Schrodinger wave equation. (VTU Jan 2009)
Write the physical significance of wave function. (VTU Jan 2009)
Explain Heisenberg’s uncertainty principle. Give its physical significance. (VTU June 2009)
Set up Time-independent one-dimensional Schrodinger’s wave equation. (VTU June 2009)

II. Multiple Choice Questions

L.

The normalization of wave function is always possible, if

(@) j_” PP dx = infinite (b) j: YW dx = finite

(©) j: YWY dx =0 ) All of these

Schrodinger’s time independent equation is applicable for the particles with
(a) Constant energy (b)  Variable energy
(c) Only constant potential energy (d) Al of these

The ground state energy of an electron in an infinite well is 5.6 meV. If the width of the, well is
doubled, the ground state energy is

(@) 9.92x10%] (b) 4.48 x 102]

() 2.24x10% (d) None of these

The wave function is acceptable wave function if it is

(a) Finite everywhere (b) Continuous everywhere
(c) Single valued everywhere (d) All of these.

The product of uncertainty between energy and time

(@) =h/2m (b) >h/4n

(c) =h/2m (d) None of these
According to Max Born Approximation wave function is interpreted as ______
(a) Energy density (b)  Particle density

(c) Probability density (d) Charge density

The first permitted energy level is also referred as

(a) Excited energy (b)  Zero point energy

(c) Potential energy (d) None of these
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12.

13.

14.

15.
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The energy associated with a particle in infinite well of finite width is

(a) Finite (b) Continuous

(¢) Discrete (d) all the above

If free electron exists in a nucleus, its energy value must have a minimum energy of about
(a) 4 MeV (b) 20 MeV

(c) 20KeV (d) 10KeV

According to Max Born approximation yy* represents

(a) Charge Density (b)  Particle Density

(c) Energy Density (d) Probability density

If E, is the energy of the lowest state of a one dimensional potential box of length ‘a” and E, is the
energy of the lowest state when the length of the box is halved, then

(@) E,=E, (b) E,=2E,
() E=E/2 (d) E,=4E,
The wave function for the motion of the particle in a one dimensional potential box of length ‘a’
is given by ‘¥ .= A. Sin (ﬂ) where A is normalization constant. The value of A is
a
1 b
(a) NP (b)

The product of uncertainty between angular momentum and angular displacement is

(@ = e by = -
T In T 4
o _h
o = n @ = 4n
Kinetic energy of electron accelerated by a voltage 50 Volts.
(a) 50eV (b) 10eV
(c) 5eV (d) 15eV
The energy of the lowest state in one dimensional potential box of length is
2h*
(a) Zero (b) 2
8ma
h? h
(c) 8ma’ (@ 8ma’
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16. The velocity of the electron in ground and first excited state, confined one dimensional potential
well is given by

(@) v, = 4Vg (b) v, = v,
© v,=12v, (d) None of these
17.  According to Max Born approximation |y|* represents
(a) Energy density (b)  Particle density
(c) Probability density (d) Charge density
18. An electron has a speed of 100 m/s, accurate to 0.005%. The uncertainty in its position is
(a) 0.0Im (b) 0.0115m
(c) 0.024m (d) 0.04m

a
19. An electron moving in a box of length ‘a’. If y is the wave function at x' = 7 with n=1 and y, at

v, .
x = a for n=2, then —% is
1

2
(a) £ (b) \/E
a 2

(0 0 d) o
20. The first excited state energy of a particle of mass m in a box of length L is given by
(a)  zero (b) h%*/8ML?
2h’ h?
(c) Sl (d) pE
21. Uncertainty principle is developed by ___
(a) Max Born (b) Max Plank
(c) de-Broglie (d) Heisenberg
22. Which of the following is not a pair of canonically conjugate variables?
(a) Position and Momentum (b)  Position and energy
(c) Energy and Time (d) Al of these
23. Uncertainty principle has no practical importance for ..............
(a) Macro particles (b) Atomic particles
(c) Both of them (d) None of them
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24. Wave function isa ______
(a) Linear function (b) Exponential function
(c) Quadratic function (d) Complex function
25. Zero point energy is_______
(a) Minimum possible energy of a particle in side a box
(b) First eigen energy
(c) Consequence of Uncertainty Principle

(d) All of these

III. Numerical Problems

1. The distance of separation between two rigid walls of infinite height is 3.15A. Calculate the
energies of the electron in second, third and fourth excited state.

2. The de-Broglie wavelength associated with the electron moving back and forth in the infinite
potential well in the first excited state is 3 x 10-® m. Calculate the de-Broglie wavelength associated
with the electron in ground, second, and third excited state.

3. Calculate the first four permitted energy values of an electron in an infinite potential well with

width 2.75 A.

4.  Calculate the first four permitted energy values of an electron in an infinite potential well of finite
width. Given that the velocity of the electron in the first excited state is 4.35%10° m/s.

5. Calculate the first five permitted energy values of an electron in an infinite potential well of finite

width. Given that the de-Broglie wavelength associated with an electron in the second excited
state is 7.45 x 10~ m.

6. Compute the first 4 permitted energy levels of an electron in a box of width 4A

An electron has a speed of 6 x 10° m/s with an inaccuracy of 0.01%. With what fundamental
accuracy can we locate the position of the electron? (VTU Jan 2007)

8. An electron is bound in one dimensional potential well of width 0.18 nm. Find the energy value
in eV of the second excited state. (VTU June 2010)

9. A spectral line of-wavelength 4000 A, has a Width 8x10-* A. Evaluate the minimum time spent by
the electrons in the upper energy state between the excitation and de-excitation processes.

(VTU June 2007)

10. An electron is bound in one dimensional infinite well of width 0.12 nm. Find the energy values,
and de Broglie wavelength in the ground state and first excited state. (VTU June 2008)

11. An electron is bond in one dimensional potential well of width 0.12 nm. Find the energy values in
the ground state and also the first two excited states in eV. (VTU Jan 2008)
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12.

13.

14.

15.

16.

A quantum particle confined to one dimensional box of width ‘a’ is in its first excited state. What
is the probability of finding the particle over an interval of (a/2) marked symmetrically at the
centre of the box? (VTU Jan 2009)

A particle confined to one dimensional box of width in its first exited state. What is the probability

a
of finding particle at interval of 3 marked symmetrically at the centre of the box?

(VTU June 2009)

An electron has a speed of 600 m/s with an accuracy of 0.005 %. Calculate the certainity with
which we can locate the position of the electron. Given : h = 6.6 x 107* J.s., and m = 9.1 x 10~ Kg.
(Ans : Ax ~ 0.003846 m)

A particle is moving in one dimensional potential box of infinite height. What is the probability
of finding the particle in a small interval Ax at the centre of the box when it is in the energy state,

L
next to the least energy state ! (Hint: (i) ¥, = \/z sin (Ej ; At the centre of the box, x = E and
L L

v, = 0. (i) Probability of finding the particle in an interval at the centre of the box = (‘Pi.Ax = O) .

A particle is moving in one dimensional potential box of infinite height and width 10 A.. Calculate
the probability of finding the particle within an interval of 1 A at the centre of the box, when it is

in the state of least energy ! [Hint : (i) P, :\/%sin(%) ; (i) P=¥! :%; (i) W= ¥ Ax=0.2 .

=0.2. Since L =10 x 10% Ax = 1 x 10719

Answers to Multiple Choice Questions

L.b 2.d 3.d 4@ 50bB 6@ 7b 8 9.(b 10.d I11.d
12 () 13.(b) 14.(@ 15.(0 16.(c) 17.() 18.(b) 19.(d) 20.(d) 2L.(d) 22.(b)
23.(@) 24.(d) 25.(d).



CHAPTER

ELECTRICAL
CONDUCTIVITY IN METALS

i OBJECTIVES

This section is dedicated to discuss the fundamental aspects of solid state physics (or condensed
matter physics) and the discussion is confined to electrical conductivity in metals. The theories put
forward by various scientists to explain the phenomenon observed in metals are described. This
chapter is mainly allocated to study

e  Fundamental properties of metals
e Assumption of classical theory, merits and demerits of classical free electron theory
*  Electrical conductivity, effect of impurities and temperature on the electrical resistivity

e Basic assumption of Quantum free electron theory, merits of this theory over classical
free electron theory

e Fermi-Dirac statistics, Fermi energy, Fermi factor and Temperature dependence of resistivity

3.1 INTRODUCTION

The matter generally exist in four states namely solid, liquid, gas and plasma state. The branch of physics
which deals the phenomenon related to solids is classified as solid state physics. Learning solid state
physics requires a certain degree of knowledge regarding diverse concepts from many areas of physics.
The objective is to understand, in a most fundamental way, how solid materials behave. The solid state
physics (also referred as condensed matter physics) is defined as the study of the physical (e.g. the
electrical, dielectric, magnetic, elastic, thermal etc.) properties of solids in terms of basic physical laws.
The emphasis of the solid state physics is to give better correlation between the physical properties that
are linked to the electronic structure of the materials. The development of solid state physics impacted
tremendously on the technology. It is very difficult to imagine the world without solid state devices.
From the past several decades the solid state physics witnessed a tremendous growth leading to the
improved devices and their performance. As the time goes, the devices becoming smaller and smaller
due to the success and deeper understanding and application of solid state physics. It is very difficult to
accommodate the development, all the phenomenon and related theory that noticed in the solid state
physics. This section gives consolidated information regarding few topics related to solids which are
relevant for under graduate students.
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3.2 PROPERTIES OF METALS

Metals show following outstanding physical properties:
1. High electrical and thermal conductivity.
2. Obey Ohm’s law. i.e., steady state current (I) is proportional to applied voltage E. (I o E).
3. At low temperature, resistivity is proportional to fifth power of absolute temperature. (p o T°).
4

At high temperature, above room temperature, the resistivity is linearly proportional to absolute
temperature. (p a T).

b

In many metals, resistivity is inversely proportional to the pressure. (p o 1/P).
6. Near absolute zero temperature, resistivity of metals tends towards zero leads to superconductivity.

Wiedemann-Franz law : For most of the metals, the ratio of thermal conductivity to electrical
conductivity is proportional to absolute temperature.

The specific heat capacity of metals increases with the increase in temperature.

The paramagnetism of metals is nearly independent of temperature.

3.3 CLASSICAL FREE ELECTRON THEORY

3.3.1 Free Electron Concept

After the discovery of electron in 1897 by J. ]J. Thomson, many theories were proposed to explain the
properties of electrons. Out of them, Drude-Lorentz free electrons theory was widely accepted and could
able to explain many observed behaviors of the electrons in metals.

According to Drude-Lorentz free electrons theory, all metal atoms are consists of valence electrons
which are outermost orbit electrons which can become free during the formation of metal and can
move freely throughout the metal. Such electrons are called free electrons. Due to the loss of free
electrons from the valence orbit the atoms of the metals become positive ions. Such immovable metal
ions form the metal structure and is called lattice. Thus, a metal piece contains immobile lattice ions
and randomly moving electrons called free electrons.

When we apply external electric field to the metal piece, the randomly moving electrons displaces
in a direction opposite to the direction of the applied electric field. This displacement/unit time is
called drift velocity. As a result, electrons are tend to accelerate in the direction opposite to applied
electric field and constitute electric current. At room temperatures due to thermal agitation the lattice
points vibrate about their mean position in the metal and tend to scatter the electrons accelerated by the
applied electric field. Finally a balance occurs between accelerated electrons and scattering leads to
electrical current. This scattering due to lattice ions vibration leads to resistance of the metal.

3.3.2 Assumptions of Classical Free Electron Theory

1. In a metal, there are freely moving valence electrons called free electrons. When we apply an
external electric field, electric current flows due to drift velocity of electrons.
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2. In absence of external electric field, free electrons moves randomly with a kinetic energy (Yamv, ?)
equal to (3/2)k,T, and collide with stationary lattice ions and lose most of their kinetic energy in
each collision, where T is absolute temperature, m is mass of electrons, k; is Boltzmann constant
and v, is thermal velocity of electrons. Thus there is no net movement of valence electrons in
absence of an applied electric field.

The electric potential due to lattice ions is taken to be constant throughout the metal.

The repulsion between free electrons and the attraction between free electrons and lattice ions are
considered insignificant.

5. The average distance travelled by the free electrons between successive collisions with the lattice
ions is called mean free path (A) and the average time elapsed between two consecutive collisions
of an electron with the lattice points is called mean collision time (t). Here, t = A/v,, where v, is
thermal velocity of electrons.

6.  When electric field is applied across the metal, the electrons are accelerated/drifted in the direction
opposite to the applied field, gains mobility (i) and the velocity acquired by these electrons is
called drift velocity (v,). This accounts for a current in the direction of applied field.

7. When the external applied electric field is switched off, the drift velocity of the electrons decreases
to thermal velocity (v,). The time required to decay the velocity of electrons (1/e) times the initial
constant drift velocity before switching off the field is called relaxation time (t).

3.3.3 Expression for Drift Velocity

When the electric field E is applied across the metal, the free electron acquires a constant velocity in

steady state is called drift velocity. If m is the mass, v, is drift velocity and 1 is the mean collision time of

electron, then the resistance force F_ offered to its motion can be written as:

F =mv,/1 ..(3.D)
The driving force acting on the electron due to applied electric field is
F=¢E ..(3.2)
In the steady state, F=F=mv/t=¢E
or v, = eEt/m ...(3.3)

Eqn. (3.3) gives an expression for drift velocity.
The mobility of electrons under applied electric field is given by
pu=v,/E=et/m ..(3.9)

Therefore the mobility is defined as the magnitude of the drift velocity gained by the free electrons
in an applied unit electric field.

3.3.4 Expression for Electrical Conductivity in Metals

Consider the motion of free electrons in a conductor due to applied electric field E. Then the force F on

the electrons is given by
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F=¢E ..(3.5)
Using Newton’s second law of motion, the force on the electron of mass m is given by
F = m(dv/dt) ... (3.6)
From Eqgn. (3.5) and (3.6), we write
eE = m(dv/dt) .37
or dv = (eE/m)dt ...(3.8)
Integrating both sides we get,
[ dv = [(eE/m)de (3.9
or v = eEt/m ...(3.10)

where t is time of traverse.
When the traverse time t is equal to the collision time T, the velocity of electron becomes the
average velocity v . Hence Eqn. (3.10) can be re-written as
v =eEt/m .. (3.11)
Let the area of cross-section of the conductor is A and the current flowing is I due to applied
electric field E. Then the current density is given by ] = I/A and the expression for electrical conductivity
is given by
o=]/E ..(3.12)
or o = I/AE .. (3.13)

Now, the distance travelled by electrons in a unit time is numerically equal to average velocity ¥ .

These electrons sweep a volume equal toV A in a unit time. If e is the charge of the electron, n is the
number of electrons/unit volume, then the current flowing through the conductor is given by
I = (nev A). Substituting the value of current in Eqn. (3.13), we get,

6 =ne V/E ...(3.14)
Substituting i from Eqn (3.11) we get G:E(Q_Erj
E\m
2
net
or o= ... (3.15)
m

Eqn. (3.15) is the expression for electrical conductivity in metals.

3.3.5 Effect of Impurity and Temperature on Electrical Resistivity of Metals

As per classical theory, the resistivity of metals is attributed to the scattering of conduction electrons
which takes place under two mechanisms gives rise to two components of resistivity. They are residual
resistivity (p) and ideal resistivity (pph). These two scattering mechanisms are acting independently and
the total resistivity is the sum of individual resistivity.
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ie., P=P,*P, ...(3.16)
Effect of Impurity on Electrical resistivity :

The residual resistivity p, is due to scattering of conduction electrons by the presence of impurities,
and imperfections such as point defects, dislocation vacancies and grain boundaries. Residual
resistivity is independent of temperature and present in the metal even at 0°K.

Effect of Temperature on electrical resistivity :

The ideal resistivity P, is due to scattering of conduction electrons by vibrating lattice ions called
phonons which increases with increase in temperature. This resistivity is not affected by the
presence of impurity in the metal.

The total resistivity of the metal given in Eqn. (3.16) is called Matthiessen’s Rule. It states that the
total resistivity of a metal is the sum of the resistivity due to scattering by impurities (residual

resistivity) which is temperature independent and the resistivity due to phonon scattering (ideal
resistivity) which is temperature dependent.

Since the resistivity p = 1/6 and ¢ = ne’t/m, we can write

p = m/ne’t .. (3.17)
If t, is the mean collision time of each electron in the metal assuming no scattering by impurities,
then ideal resistivity is given by Py = m/ nez‘cph .. ()

Similarly, if 1, is the mean collision time of each electron assuming no scattering by lattice, then
residual resistivity is given by p, = m/ne’t, ... (b)

Using Eqn. (3.16), the total resistivity of the metals is given by
p=p,*+p=m/ne’t +m/ne’t, ...(3.18)
Fig. 3.1 shows the variation of resistivity of copper with temperature.
0(x10*Q.m)
A
5 -
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Figure 3.1 Variation of resistivity of copper with temperature
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3.3.6 Failure of Classical Free Electron Theory

Even though the classical free electron theory satisfactorily explains Ohms law, Wiedemann-Franz law,

variation of resistivity with temperature, and inverse relationship of resistivity with pressure, it fails to
explain the following properties of the metals:

1.

Specific heat capacity: As per classical theory, the specific heat is independent on temperature, but
actually it increases with the increase in temperature.

Paramagnetic susceptibility: As per classical theory, the paramagnetic susceptibility is inversely
proportional to temperature. But experiments show that it is nearly independent of temperature.

Mean free path: Classical free electron theory is failed to explain the occurrence of long electronic
mean free paths of the order of 10® m in inter-atomic spacing.

Classification of solids: Classical theory failed to explain the distinction between conductors,
semiconductors and insulators.

Value of Hall coefficient: Classical theory failed to explain the occurrence of positive value of
Hall coefficient of metals.

Ferromagnetism: Classical theory failed to explain the ferromagnetism in iron, cobalt etc.

Photoelectric & Compton effect: Classical theory failed to explain the observed Photoelectric
effect & Compton effect.

Value of electrical conductivity: According to classical theory, monovalent metals like Cu, Ag
should have less electrical conductivity compared to divalent (Cd, Zn) and trivalent (Al, In) metals
which is against the observation.

3.4 QUANTUM FREE ELECTRON THEORY

In 1928, Arnold Sommerfield modified classical free electron theory using Planks Quantum mechanical
principles and Pauli Exclusion Principle. This theory could able to explain many drawbacks of classical
free electron theory and known as Quantum Free Electron Theory.

3.4.1 Assumptions

1.
2.

The energy values of conduction electrons are quantized as various allowed energy levels.

The distribution of electrons in these allowed energy levels takes place as per Pauli exclusion
principle.

The free electrons travel in a constant potential inside the metal but confined their stay within the
metal.

The attractive force between free electrons and lattice ions and repulsive force between free
electrons themselves are ignored.

In above assumptions, last two assumptions are borrowed from classical free electron theory and

hence quantum free electron theory is an extension of classical free electron theory.
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3.4.2 Fermi-Dirac Statistics

Based on the first assumption of quantum free electron theory, to answer a question-what are the
possible energy levels and states available to the free electrons?, Fermi-Dirac Statistics is used to explain
the behavior of particles called fermions, which are identical, indistinguishable, have half integral spins
and obey Pauli’s exclusion principle.

If N is the number of Fermions having total energy E, in which n  particles occupy the first energy
level E|, n, particles occupy the second energy level E, and so on, then according to Fermi-Dirac
Statistics, the total number of ways in which n_particles can be distributed in g cells having the same
energy E is given by

n =g/ [(e* P¥) + 1] ..(3.19)
where B = 1/kT and o = - E_/KT where E_ is called Fermi energy and is the maximum kinetic

energy that the free electron can have at the absolute zero temperature. Eqn. (3.19) is called Fermi
distribution function. Substituting the value of o and B, we can rewrite Eqn. (3.19) as:

n =g/ [(®-5/T) + 1] ..(3.20)
The examples of fermions are electrons, protons, and neutrons. According to Pauli exclusion principle,
no more than one particle can be available in one quantum state, i.e., an energy level can accommodate
at most two electrons, one with spin up and the other with spin down. Thus in filling the energy levels,
two electrons occupy the lowest level, two more in the next level, and so forth, until all electrons in the
metal have been accommodated as shown in Fig. 3.2.

Es O O
Es o o
E4 o’ O
Es3 o o
E; o o
E; o o
Eo o 0

Figure 3.2 Energy levels in metals

3.4.3 Fermi-energy — Fermi Factor

The energy of highest occupied level at absolute zero temperature (0 K) is called the Fermi Energy or

Fermi Level (E)). It is constant for a particular metal.
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According to Fermi-Dirac Statistics, the probability F(E) of occupying a particular quantum state
having energy E by an electron is governed by Fermi-Dirac function and is given by:

F(E) = 1/lexp {(E - E)/k, T} + 1] .. (3.21)

Here F(E) is called the Fermi function or Fermi Factor, E is the energy of the level whose occupancy
is being considered, E_ is the Fermi energy or Fermi level and it is constant for a particular metal. The
variation of F(E) with E depends on temperature as shown in Fig. 3.3.

(i) At absolute zero, F(E) = 0 for E> E_and F(E) =1 for E<E..
(ii) At any other temperature T >0 K, F(E) = %2 when E=E,

T=0K
\ .

T=0K

—> KE)

—> KE)
-
1]
8

Ek S E

Figure 3.3 The Fermi distribution function at various temperatures

Thus the Fermi level is also defined as the energy level (E = E)) for which the probability of
occupation is half for T > O K. Thus the probability of finding an electron with energy equal to the
Fermi-energy in a metal is %2 at any temperature above absolute zero.

At very high temperature, k, T >> E_, the electrons loses their quantum mechanical property and
the Fermi distribution function reduces to classical free electron function.

These quantity E, is called Fermi energy in honor of Enrico Fermi, who (along with Arnold
Sommerfeld) did the most to apply quantum mechanics to calculate the properties of solids in the late
1920s.

3.4.4 Density of States

Density of Energy States N(E) dE

In a metal, since the electrons are confined inside, their wave properties will limit the energy values
which they may have. Let g(E) dE be the number of quantum states available to electrons with energies
between E and E + dE. It can be shown that :

g(E)dEz;t—Z‘v(zm)”2 EV? dE ~(3.22)
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where m is the mass of the electron, and V is the volume of the electron gas. We can calculate
Fermi energy E, by filling up the energy states in the metal sample with N free electrons it contains, in
order of increasing energy, starting from E = 0. The highest state to be filled will then have the energy
E = E_by definition of Fermi energy.

The number of electrons that can have the same energy E is equal to the number of states that
have this energy, since each state is limited to one electron. Hence

N=T «E)dE
0

substituting the value of g(E) dE from Eqn. (3.22), we get

4m Ep
N=V@m)" [ EV -(3.23)
4n 2
:?v(zm)” : gE,’f/ : .(3.24)
Let the number of electrons per unit volume is n is equal to N/V. Then
N 8m 3/2
n ZVZW(ZTH) E;/z ”’(3.25)

Thus the expression for Fermi energy at T = 0 K is given by

2 2/3
g o [3_") .(3.26)
2m \ 87

Substituting the values of h, m, 7 etc., we get
E. =3.65x10" n*’ eV .(3.27)
Thus Eqn (3.27) gives the value of Fermi energy as a function of density of valance electrons.
Average Energy of Electron at Absolute Zero

The average energy of an electron at T = 0 K is obtained by the following relation :

Using Eqn. (3.23),

4n
Nk’

V(2m)? J‘:F EY24E

4m
Nk’

=% VQm) P EY .(3.28)
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Using eqn. (3.24) in Eqn. (3.28) we get

_ 3
E_EEF .(3.29)

Eqn. (3.29) is used to estimate the average energy of an electron.

3.4.5 Expression for Electrical Resistivity/Conductivity
The momentum of free electrons in a metal when there is no applied electric field is given by
p=h/A = (h/2m)k ...(3.30)
Since A = 2n/k and k is wave number.

As per quantum statistics, the Fermi surface separates the occupied states from unoccupied states
and in metals, for every occupied state (+k), there is an unoccupied state (-k), and hence the net
momentum of electrons is zero. Therefore, there is no current flow across the metal.

When the external electric field E is applied, the electrons experience a force F = (-eE) due to
displacement of Fermi sphere opposite to the applied field direction. Then we get

F =dp/dt = -eE .. (3.31)
or (h/27m) (dk/dt) = - eE ...(3.32)
Integrating Eqn. (3.32), between 0 & t we get  k(t) - k(0) = - eEt/(h/2n) ...(3.33)

Thus the change in the centre of Fermi Sphere during a characteristic time, called Fermi time t_ is
given by
Ak = - eEt/(h/2n) ...(3.34)
Collisions of electrons with phonons and impurities opposes the displacement of Fermi sphere

and tend to restore it back to its equilibrium position. Finally a steady state is reached. The steady state
current density is given by

J = n(-e)v = - neAk (h/2m)/m* = oE ...(3.35)

where n is the number of electrons per unit volume of the conductor, m* is effective mass of
electrons under periodic potential (m* = 1.5 m)

Using the value of Ak as Eqn. (3.34) in Eqn. (3.35) we get
neh Ak B

2mm*™
or Jo_ neh _EetF —GE
2nm*| h
n
2 2
or o=—"—1t, or o=t Ae -(3.37)
m* m* v
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7\'F
where =
Yp
Using Eqn. (3.36) and (3.37) we get
A
J=oE=| — ~L|E (3.38)
Yy
2A
and o=| =~ (3.39)
m “Jf

The Eqn. (3.38) & (3.39) gives the expression for steady state current density and electrical
conductivity respectively.

Unlike classical free electron theory where the electrical conduction is due to all the free electrons
equally, each moving with average drift velocity v,, in quantum free electron theory, the current is
carried out by very few electrons only, all moving with a high velocity v.. Both approaches gives same
result but Quantum free electron theory is more accurate.

3.4.6 Temperature Dependence of Resistivity of Metals

As per quantum free electron theory, at absolute zero temperature, due to periodicity of lattice ions
(phonons), electrons moves without any scattering during external applied electric field. As temperature
increases, the periodicity of lattice ions get disturbed and they starts vibrating with larger amplitude.
This increases the scattering of free electrons and hence in turn increases the resistivity of metals.

In Eqn. (3.39), the only a quantity which depends on temperature is the mean free path A. Since
this mean free path is inversely proportional to temperature, at high temperatures, we can conclude that

conductivity GOL; or resistivity p o T which is in agreement with experimental observations.

3.4.7 Merits of Quantum Free-Electron Theory

Quantum free-electron theory proposed by Summerfield, which is based on the assumption that free
electrons as Fermi gas, obeys Pauli’s exclusion principle and Fermi-Dirac energy distribution, explains
satisfactorily the phenomenon like, (1) electrical conductivity in metals, (2) specific heat of metals and
(3) electron concentration in metals.

The important feature of quantum free electron theory is that it destroys the notion of classical
theory that all free electrons are conduction electrons. It supports that only few electrons whose energies
lie in the vicinity of Fermi energy level, contribute for conduction and only such free electrons are called
conduction electrons.

One of the major failures of quantum free electron theory is that it could not explain why some
solids are good conductors of electricity, some are semiconductors and others are insulators. Further

development called Band theory of solids could able to explain these questions.
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SOLVED PROBLEMS

Electrical conductivity in metals

1. A uniform silver wire has resistivity 1.54 x 108 ohm-m at room temperature for an electric field 2V/m.
Calculate relaxation time and drift velocity of the electrons assuming that there are 5.8%10%? conduction

electrons per cm® of the materials. (VTU May/June 2010)
Given that:
p = 1.54x10% ohm-m
E=2V/m
n = 5.8x10**/cm’
To calculate:
Relaxation time, 7=
Drift velocity, v, =?
For isotropic solids the Relaxation time is equal to mean collision time
ie., T=1

The expression for electrical resistivity is given by

1 m

p:—: 7

o ne T
or T= 2
ne’p

L 9.11x10™"
5.8x10% x(1.6x107°)} x 1.54x 10"

1=3.98x10"%
The drift velocity of the electron is given by

eEr
Vy=—r
m
v - 1.6x10™Y x2%x3.98x10°"
¢ 9.11x10™"

v, =14x 10*m /s

The relaxation time and drift velocity of the electron in silver is T = 3.98 x 10% and v, = 1.4 x 10* m/s
respectively.
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The experimentally measured resistivity of the silver (assuming only one electron per atom) is 1.64x10-8 ohm-m.
Calculate the relaxation time, drift velocity and mobility of the electrons in silver for applied filed strength of
2000V/m. (Given the density of silver is 10.5 g/cm’, atomic weight of silver is 107.82)

Given that:
p = 1.64x10"® ohm-m
E =2000V/m
D = 10.5 g/cm?® =10500 kg/m’
M=107.82
n=1
To calculate:
Mobility, p =7
Drift velocity v, =7

Each atom contributes only one electron and the electron concentration can be calculated as
follows

n = no of electrons/unit volume

n = (number of electrons per atom x N, x D)/M

N,D
n=
M
025x10% x1
n 2 QOBXIT XA _ 5 g7 g5 /s
107.82
For isotropic materials ©. = 1
The relaxation time is given by
o™
ne’p
9.11x10™"

"5 87x10" x(1L6x10°Y x1.64x10°

T=3.7x10"s
Mobility, p is given by

19 —14
p= S L0 OO 649107 Vs
m 9.11>< 10

Drift velocity V,
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vy = LE =6.49x1077 x 2000
vy =12.99m /s

The relaxation time, mobility and drift velocity of the electron is, 3.7x107*s, 6.49x107m?* /V.s

and v, =12.99m /s respectively.

3. The experimentally measured resistivity of the gold wire (assuming only one electron per atom) is 2.44 x 10-¢
ohm-m. Calculate the relaxation time, drift velocity and mobility of the electrons in gold (Given: applied field
strength across the wire is 45 V/cm the density of gold is 19.3 g/cm?, atomic weight of gold is 196.96).

Given that:
p =2.44 x 10® ohm-m
E =45V/cm = 4500 V/m
D =19.3 g/cm® = 19300 kg/m’
M = 196.96
n=1
To calculate:
Mobility, p =7
Drift velocity v, =7
The electron concentration n is
n = no of electrons/unit volume

n = (number of electrons per atom x N, x D)/M

. N,D
M
025x10% x 1
_6.025x107 x 9300:5.9x1028/m3
196.99
For isotropic materials © = 1
The relaxation time is given by
T=
ne’p
9.11x107"

=
5.9x10% x (1.6 x107")* x2.44x10™°
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1=2.47x10"s
Mobility, u is given by
et 1.6x107"”x2.47x10™"

S 9.11x10""

=4.34x10"m’ /V.s
Drift velocity V,

v, =uE=4.34x 107 x 4500
vy =19.52m /s

The relaxation time, mobility and drift velocity of the electron is T = 2.47 x 107%s, 4.34 x 10 °m%*/V. s
and v, = 19.52m/s, respectively.

Fermi Energy
4.  Find the Fermi energy of copper by assuming that each copper atom contributes one free electron to the electron
gas. The density of copper is 8.94 x 10° kg/m’.
Solution :
Given : m = 9.11 x 107! Kg;
n=N/V=N/M/p) =6.02 x 10%/(63.54/8.94 x 10°) = 8.48 x 10?8 electrons/m’>;

K (3n)’
Formula : The Fermi Energy E, =— (_)
2m \ 87

(6.63x10™) [ 3 2/3
. :—(—x 8.48 x lozsj =0.13 x 108] = 7.04 eV
2(9.11x107") (8n

5. Calculate the Fermi energy of Na assuming that it provides one free electron per atom.; Given
h=6.625 x 10-3* J5; mass of electron = 9 x 1073 kg; density of Na is 970 Kg/m? and atomic weight of
sodium = 22.99.

Solution :

Given h = 6.625 x 107 Js; mass of electron = 9 x 1073 kg; density of Na is 970 Kg/m? and atomic
weight of sodium = 22.99;

n=N/V=N/(M/p) = 6.02 x 10%/(22.99/970) = 2.54 x 1028

h2 31’1 2/3
Formula : The Fermi Energy E,.=— (_]
2m \ 81

(6.625x107 ( 3
81

2/3
E -~ " ) —><2.54><1028j =511 x 109] = 3.19 eV
f 2(9.11x107") J



Textbook of Engineering Physics

6.

The density of zinc is 7.13 x 10° kg.m™® and its atomic weight is 65.4. Calculate the Fermi energy and the mean
energy at T = 0 K. (assume two electron contributes for electrical conductivity)

Solution :
Given @ p =713 x10°kg.m™; M = 654

Required : E =7 & E =?

(i) E = 3.65x 10" n*’ eV

where n = 2pN/M =[2 x 7.13 x 10°> x 6.023 x 10%%/ 65.4] = 1313 = 10%
E.=3.65x 10" x (1313 x 10%)"” eV = 11.1 eV

(i) E:%Ef(s/s) E. %x11.1=6.66 eV

Fermi energy of Silver is 5.51 ¢V. What is the average energy of a free electron at 0 K. ?
Solution : Given : E, =551 eV

Required : Average energy = ?

Formula : E:% E.

E:§x5.51e\/:3.306 eV

Calculate the probability of an electron occupying an energy level 0.02eV above the Fermi level at 200K, in a

material. (VTU Dec. 09/Jan. 10)
Given that:
E=E.+0.02eV
= E-E. =0.02eV=0.02x16x10"]=0.032 x 10-"]
T=200 K

To calculate:
f(E) at 200K =?

The probability of occupation of electron at given temperature T is

1
f(E) = __E—Eﬂ
e KTl
1
f(E)=—
(E) 0.032x107% }
—23
L138x10P %200
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f(E)=0.239
The probability of occupation of an electron 0.02eV above Fermi level at 200K is f(E) = 0.239

A metal has Fermi energy 6.23 ¢V. Determine the energy for which the probability of occupancy is 0.75 at
350K

Given that:
E =6.23eV =623 x1.6x10"=9.968 x 10°”]

T=350K
To calculate:
E=?
The probability of occupancy at given temperature is
f(E) = !

{E—EF}
e ST

[ E-Eq
_Kgr}zl—ﬁE)
f(E)
E-E | _, [1=f(B)
o K,T f(E)
E=E, +KBTIn{I_f(E)}
f(E)

E=9.968x10"" +1.38x 10 x 350 x 1n[1_0’75}
0.75
E=9915x10"]

E=6.19¢V
The energy for which the probability of occupancy is 0.75 at 350 K is 6.19 eV.
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EXERCISES

1. Descriptive Type Questions

I.  What is a metal ? List various properties of metals ?

2. Give the expression for Density of states for conduction electron for unit volume of metal and

obtain an expression for Fermi Energy. (VTU June 2009)
3. Discuss the various drawbacks of classical free electron theory of metals. What are the assumption
made in quantum theory to over come. (VTU June 2009)
4.  Explain classical free electron concept ? Write down the assumptions of classical free electron
theory. (VTU Jan 2009)
Explain failure of classical free electron theory. (VTU Jan 2009)

Based on free electron theory, derive an expression for electrical conductivity of metals. How does
electrical resistance change with impurity and temperature? (VTU Jan 2008)

7. Describe Fermi-Dirac distribution and discuss the same for different temperature conditions.
(VTU Jan 2008)

8. Define drift velocity, mobility and relaxation time for free electron: derive the expression for
conductivity in terms of mean collision time. (VTU June 2008)

9.  Show that occupation probability at E = E_+ AE is same as non occupation probability at
E = E, - AE, where E_ is the Fermi energy. (VTU June 2008)

10. Elucidate the difference, between classical free electron theory and quantum free electron theory.
(VTU June 2007)

11. Explain Fermi energy and Fermi factor. Discuss the variation of Fermi factor with temperature and

energy. (VTU June 2007)
12. Define relaxation time and discuss the dependence of electrical resistivity of metals with
temperature and impurity. (VTU June 2010)
13. Explain how quantum free electron theory succeeds in overcoming the drawbacks of classical free
electron theory. (VTU June 2010)
14. State Mathiessen’s rule and give an account of the nature of total resistivity both at high and low
temperatures. (VTU Jan 2007)

15. Using the free electron model derive an expression for electrical conductivity in metals.
(VTU Jan 2007)

16. Explain density of states. (VTU Jan 2007)
17. Describe how quantum free electron theory has been successful in overcoming the failures of
classical free electron theory. (VTU Jan 2010)



18.

19.
20.
21.
22.
23.

24.
25.

26.
21.
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What is Fermi energy? Discuss variation of Fermi factor with energy and temperature.

(VTU Jan 2010)
Define Drift velocity, mean free path, mean collision time, relaxation time, and drift velocity and mobility?
Derive an expression for the drift velocity.
What is drift velocity? Derive an expression for the electrical conductivity in a metal.
What are the basic assumptions of classical free electron theory?

Define relaxation time and discuss the dependence of electrical resistivity of metals with temperature
and impurity.

What are the similarities and difference between classical and quantum free electron theory.

Describe how quantum free electron theory has been successful in overcoming the failures of
classical free electron theory.

What is Fermi energy? Discuss variation of Fermi factor with energy and temperature.

Derive an expression for Density of states for conduction electron for unit volume of metal.

II. Multiple Choice Questions

1.

If the mobility of the electron is 7 x 10 m?/vs, when accelerated by a field 1V/cm, the V is
given by

(a) 7x10%°m/s (b) 0.7m/s
(¢) 7x102m/s (d) 0.007 m/s
The temperature dependence for electrical resistivity of metal is

1 o
(@ po T by P JT
© pa~T d paT
The Fermi factor for E = E, at T > 0K is

1

@ 1 ™ 5
(0 0 d 2
According to Quantum Free electron Theory, the energy level in a metal are
(a) Continuous (b) Discrete
() Overlapping (d) None
If the mobility of electron in a metal increases with ............ in the resistivity.
(a) Decreases (b) Increases
(c) Remains constant (d) none of these
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6. Ohms law relates to the electric field E, conductivity and current density ] as

(@ J=E/o (b) E
© J-2 4 J-oE
o J=% d J=o
7. The average drift velocity v, of electrons in a metal is related to the electric field E, and collision
time T as
eEt m
(@) 4— b) &
m eEt
(c) ek (d) &
¢ m eMt

8. Experimentally specific heat at constant volume C,, is given by

(@) 5 R (b) 10“RT
2
(c) 3 R (d 10#R

9. The collision time and root mean square velocity of an electron at room temperature are 3 x 107
sec and 1 x 10° m/s respectively. The classical value of mean free path of the electron is

(a) 3x10"”nm by 3A
() 3 nm (d) 173 nm
10. Mobility of electron is
(a) Reciprocal of conductivity (b) Flow of electrons per unit time
(c) Reciprocal of resistivity (d) Average electron drifts velocity per unit electric field.

11. The quantum mechanical expression for electrical conductivity is

G_m*UF G_nesz
@) Ty ® o=
c =" ’ o= -2 )
(c) N, (d) ne’ .,
12. If the Fermi energy of metal at 0°K is 5 eV, f(E) for Fermi energy at T > O'K is
(a) 0.5eV by 1leV
() 0.75¢eV d OeV.



13.

14.

15.

16.

17.

18.

19.

20.

21.

Electrical Conductivity in Metals

For ordinary metals, the resistivity versus temperature curve at T = 0,
(a) has a positive intercept (b) has a negative intercept
(c) goes through the origin (d) none of these

Which one of the following relation is correct for current density?

neA
@ ] =neAv, CIE

Vi

1

(c) ] =nev, d J=

nev,
The value of Fermi distribution function at absolute zero (T = 0 K) is 1, under the condition
(@) E=E, (b) E>E,
() E>>E, (d) E<E,
If the Fermi energy of silver is 5.5 eV, the Fermi velocity of conduction electron is
(a) 0.98 x 10° m/s (b) 1.39 x 10° m/s
(¢) 246 x10°m/s (d) None of these.
The general expression for the Fermi energy of a metal at O K'is ___
(a) 3.65x 109 n¥3 eV (b)  3.65x 10¥ n?? eV
(¢) 3.65x10Yn'3 eV (d) 3.65x10¥n¥2eV

If the Fermi velocity of the electron is 1.3 x 10 m/s and the relaxation time is 3x10 s, then the
mean free path is

(a) 39x10"m (b) 12x10"m
(c) 39x10"m d 3x10°m

For most of the metals, the ratio of thermal conductivity to electrical conductivity is proportional
to absolute temperature.

(a) Wiedemann-Franz law (b) Ohm law

(¢) Drude - Lorentz free electrons theory (d) Mathiessen’s rule
Quantum free electron theory is developed by

(a) Wiedemann-Franz (b)  Arnold Sommerfield
(¢) Drude - Lorentz (d) Mathiessen
Quantum free electron theory made use of _____

(a) Planks quantum mechanical principle (b) Pauli exclusion principle
(c) Fermi-Dirac Statistics (d) All the above
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22.

23.

24.

25.

The major failures of quantum free electron theory is ______
(a) it fails to explain electrical conductivity in metals,

(b) it fails to explain specific heat of metals

(c) it fails to explain electron concentration in metals

(d) it fail to explain why some solids are good conductors, some are semiconductors and others
are insulators

The example of fermions ______

(a) Electrons (b) Protons

(c) Neutrons (d) Al of these

According to Matthiessen’s rule, the total resistivity of a metal is ____

(a) resistivity due to phonon scattering

(b) resistivity due to scattering by impurities

(c) resistivity due to both phonon scattering and scattering by impurities

(d) resistivity due to collision of all electrons on lattice site

As per classical theory, Ideal resistivity of metal is ___

(a)  resistivity due to phonon scattering  (b)  resistivity due to scattering by impurities

(c) temperature independent (d) another name of residual resistivity

III. Numerical Problems

L.

Find the temperature at which there is 1% probability that a state with an energy 0.5 eV above

fermi energy is occupied. (VTU Jan 2009)
The Fermi level in potassium is 2.1 e€V. What are the energies for which the probabilities of
occupancy at 300 K are 0.99, 0.01 and 0.5? (VTU Jan 2008)
At what temperature we can .expect 1% probability that an energy level 0.5 eV above Fermi, level
will be occupied. (VTU June 2008)
Find the relaxation time of conduction electrons in a metal of resistivity 1.54 x 108 Q - m, if the
metal has 5.8 x 10%® conduction, electrons per m>. (VTU June 2007)

A uniform silver wire has resistivity 1.54 x 10® ohm-m at room temperature for an electric field
2 V/m. Calculate relaxation time and drift velocity of the electrons, assuming that there are
5.8 x 10?? conduction electrons per cm’of the material. (VTU June 2010)

Calculate the drift velocity and thermal energy of electrons in a metal of thickness 1 mm across
which a potential difference of 1 volt is applied, at the temperature of 300 K. The mobility of free
electron is 40 cm?/V.s. (VTU Jan 2007)



10.

11

12.

13.

14.

15.

16.

Electrical Conductivity in Metals

Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at
200 K, in a material. (VTU Jan 2010)

Calculate the Fermi energy of Aluminum at T = 0 K| if its free electron density is 1.81 x 10?° m~
(Ans: 11.7 eV)

Calculate the relaxation time of conduction electron in a metal having resistivity 1.95 x 108 Q-m.
[Given: number of electron per m® is 4.9 x 10%%]

The mobility of electron in certain metal is found to be 3.85 x10-> m?V-!s-!. Calculate Drift
velocity of the electron [Given: Length of the wire is 3.2 m, Voltage across the wire is 25 V]

The resistance of the metal wire having length 40 cm is 0.3 Q. If the relaxation time of the
electron is 3x10-1° s, Calculate the drift velocity and mobility of the electron. [Given: current
flowing through the metal wire is 2 Amp.]

The resistivity of the 98% pure gold wire (assuming only one electron per atom) is 2.52 x 10-® ohm-m.
Calculate the relaxation time, drift velocity and mobility of the electrons in gold (Given: applied
field strength across the wire is 23 V/mm the density of gold is 19.3 g/cm?, atomic weight of gold
is 196.96).

The mobility of the electron in gold wire is found to be 4.3 x 10> m?/Vs. if the resistivity of the
gold wire is 2.4 x 10 Q-m, calculate the electron concentration in the gold.

A metal has Fermi energy 5.6 eV. Determine the energy for which the probability of occupancy is
0.25 at 450 K.

The probability of occupancy is 2.5% for the energy 0.25 eV above Fermi energy. Determine the
temperature for which the probability occupancy is 2.5% for the given energy.

The resistivity of the iron (assuming only one electron per atom) is 1.0x10-7 ohm-m. Calculate the
relaxation time, drift velocity and mobility of the electrons in Iron (Given: applied field strength
across the wire is 5 V/mm the density of Iron is 7.86 g/cm?, atomic weight of Iron is 55.845)

Answers to Multiple Choice Questions

L.b) 2. 3@ 40 5@ 6 7@ 8Mbm 9. 10.(d) 11 (b)
12@@ 13.( 4. 15.(d) 16.(b) 17.(a) 18.(a) 19.(a) 20.(b) 21.(d) 22.(d)
23.(d)  24.(0 25.(a).



CHAPTER

DIELECTRIC AND MAGNETIC
PROPERTIES OF MATERIALS

g OBJECTIVES

In previous chapter, our discussion was confined to electrical properties of metals. In this
chapter, how the non-conducting material system behaves under the applied electric and magnetic
field and the materials classification based on their dielectric and magnetic properties are discussed.
The dielectric and magnetic materials find many applications including energy storage, memory
devices, transducers, permanent magnets etc. in the day to day life. The main aim of this chapter is
to introduce the basic concepts and phenomenon related to dielectric and magnetic materials and
their applications in various industries. The objectives of this chapter are to study

*  C(Classification of Dielectric materials, dielectric polarization, and dielectric susceptibility
e Different types of polarization

e Internal fields in liquids and solids and to derive the expression for the same for one
dimensional array of molecular dipoles

e Clausius-Mossotti equation

. Frequency dependence of dielectric constant

e Ferro and Piezoelectric materials and Important applications of dielectric materials
e Magnetic materials and their classification

e Ferromagnetic materials and Hysteresis in ferromagnetic materials

Properties and applications of Soft and Hard magnetic materials

4.1 INTRODUCTION

The materials can be classified into three major classes depending on their physical property and
band structure as conductors, nonconductors (insulators) and semiconductors. The classification can
be done either based on the conducting property, or resistivity, or the way in which the conduction
and valence bands are arranged in materials. In the non-conducting materials the conduction and
valence band is separated by large forbidden gap of several electron volts. As a consequence the
electrons in the valence band cannot jump to conduction band easily and hence required to provide
more energy to do so. The electrons in non-conducting materials are tightly bound to nucleus and
abstract the flow of current due to unavailability of the electrons in the conduction band.
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The non-conducting materials can be categorized depending on the purpose of usage, into
two categories namely, insulators and dielectrics. If a non-conducting material is used for electrical
insulation purpose then those materials are referred as insulators. Similarly, the non-conducting
material is used for charge storage purpose (in capacitors) then those materials are known as
dielectric materials. These materials play a crucial role in electronic industry. For instance, if a
non-conducting material has to be used as dielectric media then these materials should be
characterized by high dielectric constant with low dielectric loss. Specific applications require
suitable property of material. In electronics industry sevral non-conducting materials are being
used for insulation and charge storage applications.

4.2 DIELECTRIC CONSTANT AND POLARIZATION OF DIELECTRIC
MATERIALS

4.2.1 Dielectric Material

Dielectrics are electrically non-conducting materials in which the valence band and the conduction
band are separated by a forbidden energy gap of several electron volts. Examples of dielectrics are : Glass,
wood, rubber etc. These materials are insulators and can be used to store electric charges by applying
electric field.

4.2.2 Polarization of Dielectrics

When we apply some potential difference across a dielectric material, by means of a battery, the electrically
charged components of atoms or molecules of dielectric undergoes displacement and forms positive and
negative ions and gets polarized (Fig. 4.1). The process of charge separation in atoms/molecules due to
applied electric field is called polarization of dielectrics. Such polarized dielectric behaves like big dipole.

D Gl G G Gl
D Gl D Gl Gl |

D Gl G G G|

D Gl D G Gl |

Figure 4.1 Polarization due to applied electric field

Based on the concept of polarization, dielectrics are classified in to two categories namely polar
and non-polar dielectrics. A polar dielectric is one in which the individual molecules possess a dipole moment
even in the absence of applied electric field, i.e. the center of positive charge is displaced from the center of negative
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charge. The polar dielectrics like water, hydrogen chloride, Polyvinyl chloride etc., have permanent
molecular dipoles but arranged in random manner and hence the resultant dipole moment in any
direction in a given volume may be zero. Under the influence of an external electric field, the dipoles of
polar dielectrics are aligned in the direction of the field. This is known as orientation polarization. The
non-polar dielectrics do not have any permanent dipole moment. When external electric field is applied,
the molecules/atoms get polarized.

4.2.3 Dielectric Constant

Relative dielectric constant, & , a non-dimensional material-dependent quantity that specifies the decrease
in the electric field strength when a material (dielectric) is placed in an electric field. The relative
permittivity of vacuum is &€ = 1. The relative permittivity of air is well approximated by unity. For most
dielectrics, € ranges from 1 to 100. There are dielectrics with & up to 10,000.

The dielectric constant of a dielectric medium is defined as the ratio between the capacitance of a
capacitor containing that dielectric medium (C) to the capacitance of the same capacitor with air as
dielectric medium (C).

e - C/C, ~(4.1)

where €_is called the dielectric constant and is describes the ability of the dielectric material to store
electric charges. Also, € =&/g; where g is permittivity of free space and € is permittivity of the medium.

4.2.4 Dielectric Susceptibility

In dielectric medium, the magnitude of polarization (P) is directly proportional to the intensity of
applied electric field (E).

Pa g.E or P=y¢g.E ..(4.2)

¥ is proportionality constant called dielectric susceptibility of the material. Hence dielectric
susceptibility is characterized by ease with which the dielectric material can be polarized by an external
electric field. Dielectric susceptibility 7 is a unitless quantity and related with dielectric constant €_as

x=(e - 1.

4.2.5 Polarizability

In most of the dielectric materials, the electric dipole moment () acquired is directly proportional to
the intensity of applied electric field E.

p o E or u = a E, where the proportionality constant a is called polarizability of the molecule of
the dielectrics. The Polarizability is a property of individual atom and the unit of polarizability is Fm?.

4.2.6 Relation between Dielectric Constant and Polarization

When an dielectric medium is placed in an electric field, the opposite charges present in the dielectrics
get separated by small distance hence dipoles are created inside the dielectrics. Two charges separated by
distance results in dipole moment. Total dipole moment occurring in a unit volume of the material gives

the measure of magnitude of polarization.
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Using Eqn. (4.2) we can write that P=y €. E or g, =P/ (x.E) ..(4.3)
We have e=y +1 ..(44)
From Eqn. (4.3) and (4.4)

P =g, (sr— DE ...(4.5)

4.3 TYPES OF POLARIZATION

There are several mechanisms by which the electrical polarization may occur in a dielectric material due
to the applied external electric field. The type of the mechanism decides the magnitude of polarization.
For a dielectric kept in external electric filed, there is always possibility that one or more polarization
mechanism may exist which mainly depends on the type of the dielectric material and magnitude and
frequency of the applied electric field.

There are four basic types of polarization mechanisms. They are
¢ Electronic polarization

e Jonic polarization

¢ Orientational polarization and

e Space charge polarization.

4.3.1 Electronic Polarization (Optical polarization)

When an atom is placed in an external electric field, the electron cloud and positive charges displaced
by small distance. The polarization that occurs due to the displacement of electron clouds of atoms
relative to core nucleus in a dielectric material is known as electronic polarization. As electrons are very
light, they have a rapid response to the field changes; they may even follow the field at optical frequencies.
The electronic polarization does not depend on the temperature of the dielectric materials. The
polarization occurs in a material within a very short period of time (~10-'* s) and electronic polarization
gives very fast response and relatively week in magnitude (Fig. 4.2).

Ty

<
(a) (b)

Figure 4.2 (a) Charge distribution in an atom in the absence of external electric field (b) Charge

redistribution in the presence of applied external field
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4.3.2 Ionic Polarization

lonic polarization occurs due to the displacement of the ions from their mean position in dielectrics
due to the applied electric field. The ionic polarization usually occurs in ionic crystals like NaCl. When
an external field is applied across such ionic crystals the positive ions and negative ions get displaced in
opposite direction as shown in Fig. 4.3. The positive ions moves in the direction of applied field whereas
the negative ions moves in the opposite direction to external field direction. Such a separation of ions
occurs throughout the ionic crystal and resulting polarization is referred as ionic polarization. The
response time or time required to set ionic polarization is slightly larger compared to electronic polarization.
The magnitude of the electric filed required to set the ionic polarization is much larger compared to
electronic polarization and depends on the type of the materials.

S

—_
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@@
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lle © @ ©

Figure 4.3 lonic polarization

@

4.3.3 Orientational Polarization

The Orientational polarization occurs in dielectric materials which are polar. The polar dielectrics have
permanent dipole moment. The orientation of these molecules will be random due to thermal agitation
and hence the net dipole moment is zero. Under external field, these dipoles align themselves in the
direction of the applied external field and undergoes polarization. The magnitude of orientational
polarization strongly depends on the temperature (decreases with increase in temperature) and magnitude
of the field applied. In solids the atoms are fixed at definite position and the orientation of dipole due to
the external field is abstracted. But in the case of gases and liquids this polarization mechanism is
common. Orientational polarization process requires lager time to set (Fig. 4.4).

% & o b
b E—

Figure 4.4 Orientational polarization in a polar dielectrics : (a) random alignment of dipole in the
absence of the field (b) parallel alignment of dipole due to applied external field
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4.3.4 Space Charge Polarization

The space charge polarization is also known as Migrational or interfacial polarization. This type of
polarization mechanism are observed in heterogeneous dielectrics or multiphase dielectric materials and
also in the homogeneous dielectrics which contain impurities, inclusion etc. The Migrational polarization
takes longer time and is therefore occurs at low frequency. The space charge polarization in a dielectric
occurs when charge carriers migrate to an appreciable distance through the dielectrics due to applied
electric field and accumulate with opposite polarity on the interfaces, becomes trapped or cannot discharge
at an electrode as shown in Fig. 4.5.

E=0 E = Finite
RO®OR®O ©0oe
ROP®ORO

RO®OR®O PR

Figure 4.5 Space charge polarization

4.3.5 Frequency and Temperature Dependence of Polarization

Among all these mechanism of polarization, the molecular polarization (orientational and space charge
polarizations) sets slowly and has large polarization magnitude compared to ionic and electronic
polarization. The magnitude of the electronic polarization is less compared to other two polarization
mechanism but the response time or switching is extremely fast. The Fig. 4.6 shows the various types of
polarization mechanism and their frequency dependence.

The total polarizability, a, is given by
a = (X’e + (li + (Xo

where o, o, and a, are the electronic, ionic and orientational polarizability, respectively.

Molecular

Polarization

Electronic

| | |
107 10" 10" 10"
Frequency (Hz)

Figure 4.6 Frequency dependence of polarization
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When a material is heated, the electronic distribution in the constituent molecules is hardly
affected i.e. no influence on the electronic and ionic polarization mechanisms. The increase in temperature
causes higher degree of randomness in the molecular orientation in the material. Therefore increase in
temperature affects the orderliness in the dipolar arrangement that is established by the applied electric
field. The orientational polarization varies inversely with the temperature.The thermal energy facilitates
the ion diffusion i.e increase in temperature increases space charge polarization.

4.4 EQUATION FOR INTERNAL FIELDS IN LIQUIDS AND SOLIDS
4.4.1 Internal Fields in Liquids and Solids

The internal field is the electric field that acts at the site of any given atom of a solid or liquid dielectric
subject to an external electric field and is the resultant of the applied field and the field due to all the
surrounding dipoles.

4.4.2 Expression for One-dimensional Internal Field

Consider a dielectric which is kept in an external uniform electric field strength E. In the dielectric, an
array of atomic dipoles aligns parallel to the direction of the applied electric field.

CT. 1 Az Bz C,
|

B, A X
- d—t—d—+—d

F—d - d—t— d-—

>
E

Figure 4.7 Alignment of electric dipoles due to applied field

Let d be the distance of separation between each dipole in a linear array or inter atomic distance
as shown in Fig. 4.7.

Let u be the atomic dipole moment of an individual dipole. The electric field component at a
point P due to an electric dipole is expressed in polar form as
in© 0
E,=F207 and E, = £ (4.6)

4me,r 2meyr’

Where E; and E_are the tangential and radial component of the field respectively at P, u is the
dipole moment, r is the distance of separation between the dipoles.
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Figure 4.8 Dipoles separated by a distance d

Now, let us estimate the electric filed at X due to all the dipoles as follows.

The electric field at X due to the dipole A is given by
Ex, =E TE,

since E, =0 and 0 =-180° and r = - d.

E, ——M
XA
' 2me,d’

Similarly, the electric field at X due to the dipole A, is given by

N
XAy ZmSOd3

The field E, at X due to both the dipoles A, and A, is given by
E = EXAI + EXAZ

__ K I
- 7t 3 3
lng,d”  2me,d”  meyd

1

Similarly, the field E, at X due to both B, and B, dipole which are located at a distance of 2d from
X is given by

o M u u
2 3 + 3 3
2ne,(2d)’  2me (2d)  me,(2d)

Similarly, the field at X due to both C, and C, is given by

B 1 n

E3 = 2 3 + 3 3
ne,(3d)”  2me,(3d)’  me,(3d)
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Therefore, the total field at X due to all the dipoles in the linear array is given by

E,=E +E, +E, +....

E =Y a B
T ne,d’  me,(2d)  me,(3d)’
n 1
E, = I+ =+—=+
! naodz[ 23 }
E,. = H ii where n=1,2,3....... o0
1'cgocl3 O
But,
=1
2 =12
n=1 1
Therefore,
1.2n
E, =—L
ne,d

Therefore the total internal field at X is given by

E.=E+E,
i.e
E—E+ 1.2;13
ngyd

If o is the electronic Polarizability for the dipole, then

n=ak
1.20E,
Therefore, E =E +L31
med
E
or E = 1_1—2% ..(4.7)
ne,d’

The above equation is the expression for the internal field.
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4.5 CLAUSSIUS-MOSSOTI EQUATION
Claussius-Mossoti Equation gives the relationship between dielectric constant of a material and the
polarizability of its atoms.

Consider an elemental solid dielectric material of dielectric constant g. Let N is the number of atoms/
unit volume of the material and p is the atomic dipole moment. Therefore the Dipole moment/unit
volume = N

Let E be the internal field, a_is the electronic Polarizability of the atom

p=oa E
Dipole moment/unit volume = Na E.
P=NaE
Therefore, E = L
No,
But, P=¢g(e, —1E where E is the applied field
Rearranging we get
P
o ..(4.8)
g, (e, —1)

The Expression for the internal field in the case of three dimensional array of atoms is given by

E=E+ (lj P (4.9)

€y

where v is the proportionality constant known as internal field constant.

Substitute for E and E we get,

L:L_F l P
Na, ¢g,(e,—-1) \¢g,

1 1 1
No, &,|(g -1

Consider the internal field in the material to be Lorentz field

iey=1/3

Lot 1 1] 1[3+e -1
Na, ¢g,|(, -1 3| g 3 -1
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g | (g,+2)
Na, |3 -1
Rearranging we get
(e,-1) Na,
(e,+2) 3e,

...(4.10)

The above equation is known as Claussius-Mossotti equation

4.6 FREQUENCY DEPENDENCE OF DIELECTRIC CONSTANT

When dielectrics are subjected to influence of alternating external field, the dielectric constant also vary
according to frequency of the alternating field. Therefore & becomes complex quantity and is given by

g, =¢ —je, (4.11)

Wheree, is real part of the dielectric constant and responsible for increase of capacitance and

8: is imaginary part of the dielectric constant and represents the dielectric loss.

Most capacitors are used in alternating electric circuits to store energy. This requires the dipoles to
reorient quickly under a rapidly changing electric field. Depending on the frequency of the external field
different polarization mechanisms respond with different time scale. The space charge polarization
magnitude is larger at lower frequency due to the absorption of energy by the dielectric material. Therefore,
space charge polarization response time is large. Many molecules are relatively sluggish in reorientation.
Thus, molecular polarization breaks down at relatively higher frequency compared to space charge
polarization. The magnitude of molecular polarization is less compared to magnitude of space charge
polarization. In contrast, electronic polarization responds quite rapidly to an alternating electric field
even at frequencies up to 10 Hz . At very high frequency all the polarization mechanism fails, will fade
off, which means that there will not be any kind of response to extremely high frequency fields. Relaxation
frequency for different polarization mechanism is different

T<T<T, ..(4.12)

where T, T and t_are electronic, ionic and molecular relaxation frequencies, respectively. If the relaxation
frequency of the given polarization mechanism is matches with the applied field frequency then the
energy absorption is maximum. At certain frequencies a substantial amount of the excitation energy is
absorbed and transferred into heat. This process is called dielectric loss. The dielectric loss is more at
low frequency and decreases as the frequency increases. It is imperative to know the frequency for
dielectric losses for a given material so that the respective device is not operated in this range.

4.7 FERRO AND PIEZO-ELECTRICITY

4.7.1 Ferroelectric Materials

Ferroelectric materials exhibit spontaneous polarization even in the absence of an external electric field.
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Examples: BaTiO,, KH,PO,, Triglycine sulphate (TGS), Rochelle salt etc. The dielectric constants of ferroelectrics
may be orders of magnitude larger than those of dielectrics. Thus, they are quite suitable for the
manufacturing of small-sized, highly efficient capacitors. Most of all, however, ferroelectric materials
retain their polarization even after an external electric field has been removed. The ferroelectric materials
have high dielectric constant compared to dielectrics. The spontaneous polarization vanishes at phase
transition temperature which varies from material to material. It should be noted that ferroelectrics do
not contain iron, as the name might suggest. Instead, the name is derived from the similarity of some
properties of ferroelectric substances to those of ferromagnetic materials such as iron.

4.7.2 Properties of Ferroelectric materials

Ferroelectric hysteresis:

When a ferroelectric material is exposed to a strong electric field, E, its permanent dipoles become
increasingly aligned with the external field direction until eventually all dipoles are parallel to E and
saturation of the polarization, P, has been achieved, as depicted in Fig. 4.9. Once the external field has
been withdrawn, a remanent polarization, P, remains which can only be removed by inverting the
electric field until a coercive field, E, is reached (Fig. 4.9 ). By further increasing the reverse electric
field, parallel orientation of the dipoles in the opposite direction is achieved. Finally, when reversing
the field once more, a complete hysteresis loop is obtained, as depicted in Fig. 4.9. Therefore, ferroelectrics
can be utilized for memory devices in computers, etc. The area within a hysteresis loop is proportional
to the energy per unit volume that is dissipated once a full field cycle has been completed.

Figure 4.9 Schematic representation of a hysteresis loop for a ferroelectric material
in an electric field

4.7.3 Piezoelectric Materials
If pressure is applied to a ferroelectric material, such as BaTiO,, a change in the polarization may occur,
which results in a small voltage across the sample. Specifically, the slight change in dimensions causes a

variation in bond lengths between cations and anions. This effect is called piezoelectricity. It is found in a
number of materials, such as quartz (however, much weaker than in BaTiO3), Zn0O, and complicated ceramic
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compounds such as PbZrTiO,. Piezoelectricity is utilized in devices that are designed to convert mechanical
strain into electricity. Such devices are called transducers. Piezoelectrics are used in many applications that
include strain gauges, microphones, sonar detectors, and phonograph pickups. The inverse mechanism, in
which an electric field produces a change in dimensions in a ferroelectric material, is called electrostriction.

4.8 IMPORTANT APPLICATIONS OF DIELECTRIC MATERIALS

The dielectric materials find many applications in industry and day today life. Some of the important
applications of dielectric materials are :
¢ Information Storage: Some of the dielectric show ferroelectric behavior. It means that the
information can be stored in the materials and hence such materials can be used for fabricating
memory devices.

¢ As Capacitors: Dielectric materials are used in capacitor to enhance the operating voltage and
storage capacity.

e As Transducers: The dielectric which show piezoelectric properties are used as transducers which
convert the mechanical energy in to electrical energy.

¢ Production of Ultrasonic Waves: Dielectric materials are used to produce ultrasonic waves.

e Security Applications: All ferroelectric materials are pyrro-electric and these pyrroelectric materials
find applications in night vision camera and high security applications.

¢ Piezoelectric Applications: Piezoelectric crystals are used to fabricate strain gauges, microphones,

phonograph reproducers and sonar detectors.

¢ Stable Frequency Signal Generators: The most important application of piezoelectric materials is
the crystal resonator, which is used in electronic devices as a frequency selective element. Specifically,
a periodic strain is applied to a quartz crystal by an alternating electric field, which excites this
crystal to vibrations. These vibrations are monitored, in turn, by piezoelectricity. The amplification
occurs only when the applied frequency coincides with the natural resonance frequency of the
molecules. Using this method very distinct frequencies are being produced to utilize them for
clocks or radio frequency signals.

SOLVED PROBLEMS

1. The electronic Polarizability of a solid is given by 4.32 x 10736 F-cm?. If the solid material has
1.45 = 10% atoms/cm’, calculate the dielectric constant of the material. (assume that the internal field is

Lorenty field)
Given data:
Electronic Polarizability, o, = 4.32 x 107 F-cm” = 4.32 x 10% F-m?
Number of atoms per unit volume N = 1.45 x 10?? atoms/cm’?
= 1.45 x 10 x 10° atoms/m’
= 1.45 x 10*® atoms/m’

To calculate:
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Dielectric constant, & = !

The dielectric constant can be calculated using Clausius-Mossotti equation given by
(e, =1) | Na,
(e, +2) 3e,

{(sr —1)} 1.45%10%%4.32x10%

- =0.236
(g,+2) 3%8.854x107"

(e, —1)=(g, +2)0.236
g, —1=0.236¢,+0.472

& —0.2368 =1+0.472

ie g,(1-0.236)=1.472
0.764¢, =1.472
€, = 1472 _ 1.93
0.764

The dielectric constant of given material is € = 1.93

2. Calculate the polarization induced in the material due to application of electric field of 350 Volt per meter.
Given that the dielectric constant of the material is 4.2.

Given that:

Dielectric constant € = 4.2

Electric field strength, E = 350 V/m
To calculate:

Polarization, P = ?

Relation between the dielectric constant and polarization is given by
P=¢g, e, —1)E

P=8.854x10"x(4.2-1)x350=9.92x10"Cm’
Therefore the polarization induced in the material is 9.92 x 10-° Cm?.

3. The induced polarization in a solid due to the application of electric field of strength 2kV/m is
7.35 x 10° Cm2. Calculate the dielectric constant of the material.

Given that:
Field strength E = 2 kV/m = 2000 V/m
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Polarization P = 7.35 x 10 Cm
To calculate:
Dielectric constant of material £ =7

The expression for polarization is given by

P=¢g, e, —1E

P
or SOE r

P

- —=¢
or SOE T
-9
g =1-— 13510 =1-0.415=0.585

g,E 8.854x107"* x 2000

The dielectric constant of material is 0.585.

4.9 CLASSIFICATION OF MAGNETIC MATERIALS

The phenomenon of magnetism was known from ancient time. Turkey is the place well known for iron
ore which was available in plenty. The word magnetism is said to be derived from a region in Turkey
which was known by the name of Magnesia. One should note here that a piece of magnetic material
such as iron ore does not immediately attract other pieces of the same material. In order a piece of iron
has to attract the other, first, one of the pieces has to be magnetized. That means, its internal “elementary
magnets” need alignment in order for it to become a permanent magnet. A piece of iron can be magnetized
by placing it into an electric coil through which a direct current passes for a short duration (discovered
by Oersted at the beginning of the 19% century). But the question obviously arises to anyone is that how
the ancient people managed to magnetize the material? Possibly several methods may be used to produce
permanent magnet. Among which one of the methods of magnetizing is the natural way i.e., due to the
lightening. The large magnetic field in the lightening has a capacity to magnetize a piece of iron.
Once after identifying the magnet produced due to the lightning, the other magnet can be produced by
rubbing the magnetized piece to un-magnetized one. Another possible way to produce the magnet is that
by hitting very hard. Magnetic materials made an important contribution to the development of the
consciousness of mankind, because they paved the way to discoveries of new continents once the compass
had been invented. Around 1500, the British coined the word lodestone for the iron ore Fe,O,, which is
derived from the old English word lode and which means to lead or to guide. Our modern technology
would be unthinkable without magnetic materials and magnetic properties. Applications of magnetic
materials are magnetic tapes or disks (computers), television, motors, generators, telephones, and
transformers etc.

Depending on the magnitude and the sign of the susceptibility, the magnetic materials can be
broadly classified as diamagnetic, paramagnetic and ferromagnetic materials. Further, solids possessing
magnetic properties can be classified in to two major categories depending on whether the materials
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have permanent magnetic dipole moment or not. The first category of materials is diamagnetic where
the magnetic dipole moment in them is zero. The remaining class of materials can be accommodated
due to the presence of permanent magnetic dipole moment.

4.9.1 Diamagnetic Materials

According to Ampere, the molecular currents are responsible for the magnetism in a solid. He compared
the molecular currents to an electric current in a loop-shaped piece of wire, which is known to cause a
magnetic moment. In order to understand the diamagnetism, electronic current has to be considered
rather than molecular current. It was found by Lenz that a current is induced in a wire loop whenever
a bar magnet is moved toward (or from) this loop. The current thus induced causes a magnetic moment
which is opposite to the applied magnetic field direction.

Diamagnetism may be explained by stating that the external magnetic field induces a change in the
magnitude of inner-atomic currents which means that the external field accelerates or decelerates the
orbiting electrons, in order that their magnetic moment is in the opposite direction from the external
magnetic field. Thus the responses of the orbiting electrons counteract the external field whereas the
outermost electrons provide the largest contribution.

In the above discussion we considered only electrons that are bound to their respective nuclei.
Now, let us consider free electron (referred to metals). These free electrons are forced to move in a
magnetic field in a circular path. This leads to a second contribution to the diamagnetic moment;
specifically, the circulating free electrons cause a magnetic moment, similarly as described above. It has
been observed that superconducting materials expel the magnetic flux lines when in the superconducting
state (Meissner effect). In other words, a superconductor behaves in an external magnetic field as if B is
zero inside the superconductor. Thus, for superconductors we obtain

H=-M ..(4.13)

which means that the magnetization is equal and opposite to the external magnetic field strength.
The result is a perfect diamagnet. The magnetic susceptibility of a material is a measure of the ease with
which the material can be magnetized. It is defined as magnetization produced in the material per unit
applied magnetic field. The susceptibility of diamagnetic material is given by

XZE ... (4.14)

where, M is the magnetization, which is equal to the magnetic moment per unit volume developed
inside the solid, and H is the strength of magnetic field.

The susceptibility in superconductors is 1 compared to 10-¢ (susceptibility for gold is ~23x10-%) in
the non-superconductors. Owing to the strong diamagnetism, superconductors can be used for frictionless
bearings, i.e., for support of loads by a repelling magnetic field. The levitation effect of superconducting
material can be explained with the strong diamagnetic properties of superconductors.

The main properties of diamagnetic materials are as follows :

1. A diamagnetic material exhibit negative magnetic susceptibility and is of the order of 10-°.
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2. Since the diamagnetic susceptibility is negative, the relative permeability (u) is slightly less than
unity (p_< 1). Permeability is a measure of the degree of magnetic field lines penetration in the
material.

3. A diamagnetic material tends to repel by magnetic field. It tends to move from strong field to weak
field region.

The magnetic susceptibility of diamagnetic material is practically independent of temperature.

5. Diamagnetism occurs in materials whose atoms consist of an even number of electrons so that the
magnetic moment cancel each other resulting zero magnetic moment of the atom.

6. Diamagnetism is universal property of matter and all materials have a diamagnetic contribution to
their susceptibility. However, in majority of materials, the diamagnetism is overshadowed by other
magnetic properties.

4.9.2 Paramagnetic Materials

Paramagnetism in solids is attributed to a magnetic moment that results from electrons which spin
around their own axes. According to Pauli principle, no two electrons having the same energy can have
the same value and sign for the spin moment. This means that each electron state can be occupied by
two electrons only i.e. one with up spin and one with down spin. An external magnetic field tries to turn
the unfavorably oriented spin moments in the direction of the external field.

The Spin paramagnetism is slightly temperature dependent. It is in general very weak and is observed
in some metals, salts of the transition elements, dilute gases as well as rare earth elements and their salts
and oxides. In the absence of external magnetic field the magnetic moment of the orbiting electrons are
oriented in random fashion. Therefore, the net magnetic moment in the materials will be zero due to
random alignment of magnetic moment. However, when an external field is applied, the individual
magnetic vectors tend to turn into the field direction. This direction alignment may be get disturbed due
to the thermal agitation. Thus, paramagnetism is temperature-dependent.

The temperature dependence of many paramagnetic materials could be explained by Curie law,
which states that the susceptibility, ¥, is inversely proportional to the absolute temperature T,

XZ? ..(4.15)

where C is called the Curie constant.

For many magnetic materials a more general relationship is observed which is referred as the
Curie-Weiss law,

e
1=T 5 (4.16)

where 0 is a constant that has the same unit as the temperature and may possibly have positive as

well as negative values. Metals, with a few exceptions, do not obey the Curie-Weiss law.
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In most solids only paramagnetism due to electron spin is observed. This is due to the fact that in
crystals the electron orbits are essentially coupled to the lattice, which prevents the orbital magnetic
moments from turning into the field direction (except rare earth elements and their derivatives, which
have 4f- electrons). The fraction of the total magnetic moment contributed by orbital motion versus by
spin is defined as the “g-factor.”

The main properties of paramagnetic materials are as follows :

1. Paramagnetic materials, when placed in a magnetic field acquire feeble magnetism in the direction
of the applied magnetic field.

2. Paramagnetic materials exhibit positive magnetic susceptibility of the order of 10-°.

3. For paramagnetic materials, the relative permeability (1) is slightly more than unity (u > 1) and
hence the magnetic fields of lines are pulled towards the centre of the materials.

4. In non-uniform magnetic field, the paramagnetic materials are attracted towards the stronger
region of magnetic field.

5. The paramagnetic susceptibility are strongly dependent on temperature. According to Curie’s Law,

Lo =T where C is Curie constant.

Thus one can clearly distinguish paramagnetic and diamagnetic materials. For paramagnetic
materials, the magnetic moment of the electrons is thought to point in the direction of the external
field, i.e., the magnetic moment enhances the external field. In diamagnetic materials the magnetic
moment opposes the external field. Solids that have both orbital as well as spin moment are clearly
paramagnetic since the sum of both paramagnetic components is commonly larger than the diamagnetism.
Rare earth metals with unfilled 4f-electron bands are example of this kind.

4.9.3 Ferromagnetic Materials

The ferromagnetic materials are characterized by a spontaneous magnetization. It is well known that
many paramagnetic materials, below a critical temperature, present magnetic dipole moment ordering even
in the absence of applied magnetic fields and those materials which exhibit such a magnetic dipole
moment ordering is known as ferromagnetic materials. In ferromagnetic materials the localized magnetic
dipole moments lined up in the same direction so that a spontaneous magnetization is not zero.
In general the ferromagnetic materials are the one when placed in a magnetic field they get strongly
magnetized and retains the magnetization in them even after the removal of magnetic field. Examples of
materials which exhibit ferromagnetic property or elements that show spontaneous magnetism are (1)
transition or iron group elements (e.g. Fe, Ni, Co), (2) rare earth group elements (e.g. Gd or Dy), and (3)
many compounds and alloys.
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The main properties of ferromagnetic materials are as follows :
1. Ferromagnetic materials exhibit very high value of magnetic susceptibility which is as large as 107,
2. The relative permeability is also positive and is of the order of a few thousands.

3. When a ferromagnetic material is placed in magnetic field, the magnetic field lines crowd in to
the material.

4. Ferromagnetic materials are available only in crystalline state and the ferromagnetic property
depends on the direction of magnetization.

5. The ferromagnetic materials are characterized by a definite temperature T , called Curie temperature,
above which ferromagnetic behavior of material disappears.

4.10 HYSTERESIS IN FERROMAGNETIC MATERIALS

4.10.1 Definition

The word ‘hysteresis’ means lagging behind. The magnetization of a ferromagnetic substance depends
on the history of the substance as well as on the magnitude of the applied field. A ferromagnetic
substance has a “memory” because it remains magnetized even after the external magnetic field is
removed. The closed loop shown in Fig. 4.10 is referred as a hysteresis loop. Its shape and size depend on
the properties and type of the ferromagnetic substance and on the strength of the maximum applied

field.

The magnetic hysteresis may be defined as “the lagging of intensity of magnetization behind the
cyclic variation in magnetizing field”.

4.10.2 Explanation of Hysteresis Curve

A typical magnetic hysteresis curve is shown in Fig. 4.10. When the external magnetic field strength is
increased the magnetization slowly rises initially and then more rapidly. Finally the intensity of
magnetization M reaches a maximum level and beyond which even if one increase the magnetizing field
strength, magnetization remains constant and is referred as saturation magnetization, MS. Saturation
magnetization can be defined as the maximum point up to which the material can be magnetized by
applying the external magnetic field. Once the intensity of magnetization reached saturation in the
materials the magnetizing field, H, is slowly reduced to zero. When H is reduced to zero, the magnetization
retains a positive value, called the remanent magnetization, or remanence, M . This retained magnetization
that is usually utilized in permanent magnets. Therefore remanent magnetization is defined as the
ability of the materials to retain the intensity of magnetization in them even after the removal of external
magnetic field. The remanent magnetization can be removed by reversing the magnetic field strength to
a value H, called the coercive field. The minimum magnetic field which should be applied in the
reverse direction so that the intensity of magnetization in the materials becomes zero is known as

coercive field.
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Figure 4.10 Schematic representation of a hysteresis loop of a ferromagnetic material

The saturation magnetization is temperature-dependent. Above the Curie temperature,
T, ferromagnetics become paramagnetic. For ferromagnetics the Curie temperature, T, and the constant 6
in the Curie-Weiss law are nearly identical. A small difference exists, however, because the transition
from ferromagnetism to paramagnetism is gradual.

4.10.3 Hysteresis Loss

Hysteresis losses are encountered when the ferromagnetic material is subjected to a complete hysteresis
cycle. The work thus dissipated into heat is proportional to the area enclosed by a B/H loop. The area
enclosed by the magnetization curve represents the work required to take the material through the
hysteresis cycle. The energy acquired by the material in the magnetization process comes from the
external field. When the magnetization cycle is repeated, due to realignment of the domains, dissipative
processes occur within the material as a result of transformation of magnetic energy into heat energy.
Due to this process the magnetic material temperature increases. Proper materials selection and rolling
of the materials with subsequent heat treatment greatly reduces the area of a hysteresis loop. The energy
put in during magnetization is larger than the energy released in demagnetization and the difference
between these energies is called Hysteresis loss. The energy difference is released as heat. The area
enclosed by the hysteresis curve is a measure of the energy loss per magnetization cycle.

4.11 SOFT AND HARD MAGNETIC MATERIALS

The ferromagnetic materials can be classified in to two classes depending on the hysteresis size and shape
as soft and hard magnetic materials.

4.11.1 Hard Magnetic (H.M.) Materials

Magnetic materials having a large combination of M_and H_are called hard magnetic materials. In the
case of hard magnetic materials the resistance to the movement of the domain walls is very large hence
require large magnetic field to demagnetize the substance. The hysteresis loop for “hard” ferromagnetic
materials is characteristically wide like the one shown in Fig. 4.11, corresponding to a large remanant
magnetization. Such materials cannot be easily demagnetized by an external field. In hard magnetic
materials the free movement of domain wall is restricted due to presence of lattice defects, imperfections
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and presence of precipitated nonmagnetic materials in them. The presence of defects and imperfection
in hard magnetic materials lead to high hysteresis loss and increase the mechanical hardness and
electrical resistivity.

MA
—Hc Hc >H
(b)

Figure 4.11 Hysteresis loop for “hard” ferromagnetic materials

4.11.2 Properties H.M. Materials

The fundamental properties of hard magnetic materials are high saturation magnetization, high coercive
field, high remanant magnetization, large hysteresis loss and wider hysteresis loop (area of hysteresis
loop is large), low eddy current, high mechanical hardness and resistivity, low permeability.

4.11.3 Applications of H.M. Materials

1. Due to the high coercivity and high retentivity (remnant magnetization) these materials are used
for the fabrication of permanent magnet. These materials have the capability to retain the
magnetization in the adverse condition (withstand the environmental changes) and therefore
suitable for producing permanent magnet. Example: Alnico alloys (Alnico alloys contain various
amounts of aluminum, nickel, cobalt, and iron, along with some minor constituents such as copper
and titanium).

2. Permanent magnets are used to fabricate magnetic detectors, microphones, magnetic flux meters,
magnetic separators and electronic devices.

3. The Most important use of hard magnetic materials is in storage devices (e.g., for recorder tapes,
video tapes, hard disks).

4. Permanent magnets are also used in electric motors, speakers for audio systems, wiggler magnets in
synchrotrons etc.

4.11.4 Soft Magnetic (S.M.) Materials

Magnetic materials having a small M_and H_. are called soft magnetic materials. Soft ferromagnetic
materials, such as iron, have a very narrow hysteresis loop and a small remanant magnetization
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(Fig. 4.12). Such materials are easily magnetized and demagnetized. An ideal soft ferromagnet would
exhibit no hysteresis and hence would have no remanent magnetization. In soft magnetic materials the
resistance to the movement of the domain walls is very small and hence require a very small magnetic
field to magnetize and demagnetize the substance. The hysteresis loop for “soft” ferromagnetic materials
is characteristically narrow (Fig. 4.12), corresponding to a small remanant magnetization. Due to narrow
hysteresis loop the energy dissipated is very small compared to hard magnetic materials.

M A

M,

_/R
Figure 4.12 Hysteresis loop for “soft” ferromagnetic materials

4.11.5 Properties S.M. Materials

The basic properties of soft magnetic materials are low coercive field, low remanent magnetization, low
hysteresis loss and narrow hysteresis loop (area of hysteresis loop is small due to low coercive field), high
permeability and susceptibility. Examples: iron-silicon alloy (Fe-Si), Iron-Nickel alloy (Fe-Ni), ferrites
(nickel Zinc ferrite, magnesium-manganese ferrite etc.) and garnets.

4.11.6 Applications of S.M. Materials
1. These materials are used as Transformer Core materials, in magnetic switching circuits and as
magnetic amplifiers and in current machinery.

2.  These materials also find application in electronic communication, motors, generators etc.
Permalloys form a very common class of soft magnets. These are Ni-Fe alloys with sometimes
small additions of other elements.

3. Soft magnetic materials are used in microwave isolators, electromechanical transducers and to
produce ultrasonic waves.

4.  Magnetic materials with characteristic rectangular hysteresis loop are used for memory cores in
computers.
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EXERCISES

I. Descriptive Type Questions

1. What is dielectric polarization? Derive an expression relating dielectric constant and polarization.
2. Write a note on ferroelectric and ferromagnetic materials.

3. Derive the equation for internal field in case of solid or liquid dielectric for one dimensional

array of dipoles. (VTU June 2009)
Derive Clausius Mossuti equation for 3-dimensional cubic solid dielectric. (VTU June 2009)
5.  Derive an expression for internal field in case of one dimensional array of atoms in dielectric
solids. (VTU Jan 2009)
6. Describe Ferroelectrics. (VTU Jan 2009)

Explain the term internal field. Derive an expression for internal field in the case of one dimensional
array of atoms in dielectric solids. (VTU Jan 2008)

8.  Describe the nature of hard and soft magnetic materials. Discuss their applications.
(VTU Jan 2008)

9. What are dielectrics? Derive the equation for internal field in liquids and solids for one dimensional
array of atoms. (VTU June 2008)

10. What are hard and soft magnetic materials? Give their characteristic properties and applications.

(VTU June 2008)

11. Derive the equation for internal field in liquid and solids (VTU June 2007)
12. Distinguish between hard and soft magnetic materials (VTU June 2007)
13. What is internal field? Derive an expression for the internal field incase of one- dimensional array

of atoms in solids or liquids. (VTU June 2010)
14. What are soft magnetic materials’ Discuss their properties. (VTU June 2010)
15. Explain briefly the various types of polarization. (VTU Jan 2007)
16.  Derive an expression for internal field in case of liquids and solids. (VTU Jan 2007)
17.  What is meant by polarization mechanism in dielectrics? Discuss any three different polarization

mechanisms in dielectrics and their frequency dependence. (VTU Jan 2010)
18. Describe hard and soft magnetic materials. (VTU Jan 2010)

II. Multiple Choice Questions

1. The Polarization that occur in the frequency range 102 Hz is
(a) Ionic (b) Electronic

(c) Orientation (d) Space charge
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2.

10.

11.

If two electric charges are g, separated by a distance L. The dipole moment of the system is

(@) ao/L (b) L/q

(© qL d) o/l

Choose the correct relation

(@) E=E(e-1P (b) P=e/(e-1E

() e~K-1 (d) E=efe-1)E

If the distance between the plates of capacitor is increased double, the capacitance is
(a) Doubled (b) Increased to four times
(c) Halved (d) Constant

The unit of dipole moment/unit volume is

(a) Coulomb/metre (b) Coulomb/metre?

(c) Coulomb/metre? (d) Coulomb

The flux density is related to the electric field as

(a) D=¢g+E (b) D=¢—E

() D=¢/E (d D=¢E

In a solid or liquid dielectric with external applied electrical field, as the electronic polarizability
a, increases the internal field E,

(a) Increases (b) Reduces

(c) Remains constant (d) None of these.

In a dielectric, the polarization is

(a) Linear function of applied field (b)  Square function of applied field

(c) Exponential functions of applied field (d) Logarithmic function of applied field.

For a given dielectric, the electron polarizability, o

(a) Increases with temperature (b) Decreases with temperature

(¢) Independent of temperature (d) May increase or decrease with temperature.

If two point charges of opposite sign + q and - q are separated by a distance I. The electric dipole
moment is

@ o/l (b) o/

© [(+q) I d) ql

The polarization that occurs in the frequency range 10°to 10" Hz is
(a) Electronic (b) Orientational
(c) Ionic (d) Space charge
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13.

14.

15.

16.

17.

18.

19.

20.

21.
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For ferromagnetic substance, the Curie-Weiss law is given by

(@)

@ X=C/T (b) ‘X=(T_9)

T-0 C
(©) ‘x:% @ *=(170)
What changes in the capacitance of a capacitor occurs if the dielectric material is removed?
(a) Increases (b) Decreases
(c) Remains same (d) None of these
The relation between B, M and H is
@ H=pM+B) () pM=(H+B)
(c) B= H’O(H + M) (d) None of these

Sulphur is an elemental solid dielectric of atomic weight 32.07 and density 2.07x10% kg/m’. The

number of atoms per unit volume for sulphur is

(a) 3.89x10%/m’ (b) 3.89x10%/m?

(¢) 9.3x10%/m’ (d) None of these
Which one of the following is necessarily the piezoelectric material?
(a) Lead (b) Mica

(c) Iron (d)  Quartz.

The piezoelectric effect is observed only in _______ crystals

(a) non-centrosymmetric (b)  centrosymmetric
(c) ionic (d) none of these

Above Curie temperature the ferroelectric phase of the materials changes to
(a) para electric phase (b) paramagnetic phase

(c) anti-ferro electric phase (d) none of these

The electronic polarization is also referred as

(a) Orientational polarization (b) Migrational polarization
(c) Optical polarization (d) ionic polarization

At lower frequencies of the applied field polarization has the maximum magnitude

(a) Electronic (b) ionic
(c) space charge (d) Orientational

Which of the following polarization mechanism sets faster in the dielectric material due to the
application of external electric field

(a) lonic polarization (b)  Orientational polarization

(c)  Electronic polarization (d) Space charge
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22.

23.

24.

25.

The net magnetic moment in the paramagnetic substance in the absence of the external magnetic

field is

(a) Infinite (b) Zero

(c) One (d) None of these
Spontaneous magnetization is the characteristic of

(a) Diamagnetic materials (b) paramagnetic materials
(c) Both (a) and (b) (d) ferromagnetic materials

The Magnetic materials characterized by high coercivity, high remanent magnetization and high
hysteresis loss are known as

(a)  Soft magnetic materials (b) Hard magnetic materials

(c) Demagnetized materials (d) None of these

The magnetic materials with high remanent magnetizations are used to fabricate
(a) Memory devices (b) Permanent magnets

(c) Transformer cores (d) None of these

III. Numerical Problems

L.

Sulphur is elemental solid dielectric whose dielectric constant is 3.4. Calculate electronic
polarizability if its density is 2.07 x 10’ kg/m? and atomic wt. is 32.07. (VTU Jan 2009, Jan 2008)

A parallel plate capacitor has an area of 6.45 x 10* m? and plates are separated by a distance of
2 x 10 m across which a potential of 10 V is applied. If a material with dielectric constant 6 is
introduced between the plates, determine the capacitance, the charge stored on each plate and the
polarization. (VTU June 2008)

The atomic weight and density of sulpur are 32 and 2.08 x 10° kg/m? respectively. The electronic
polarizability of the atom is 3.28 x 10* F-m?. If sulphur solid has cubic structure, calculate its

dielectric constant. (VTU June 2007)
A solid dielectric material has electronic polarizability 7 x 10*° Fm?. If it is a cubic structure,
calculate the relative permittivity of the material It has 3 x 10%® atoms/m’. (VTU June 2010)

What is the polarization produced in sodium chloride by an electric field of 600 V/mm if it has a
dielectric constant of 6! (VTU Jan 2007)

An elemental solid dielectric material has polarizability 7 x 10-*0 Fm?. Assuming the internal field
to be Lorentz field, calculate the dielectric constant for the material, if it has 3 x 10%?® atoms/m’.

(VTU Jan 2010)

Answers to Multiple Choice Questions

L.b 2.d 3.Wd 4@ 50bB 6@ 70 8 9.(b 10.d 1.
12() 13.(b) 14.(@ 15.(c) 16.(c) 17.(c) 18.(a) 19.(d) 20.(d) 21.(d) 22.(b)
23.(@ 24.(d) 25.(d).
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CHAPTER

LASERS

f OBJECTIVES

This chapter introduces the fundamental aspects, mainly construction, working and applications
of lasers. The invention of LASER in 1960 by Maiman had created plenty of opportunities and
development in various disciplines. Today the LASER are being used for surgery, photo dynamic
therapy of skin related diseases, material cutting and welding, photonics etc. The main goal of this
chapter is to study the

e Characteristics, construction and working principle of He-Ne, and semiconductor laser
e Definition of stimulated and spontaneous emission
e  Einstein coefficients, Requisites for laser system and conditions for laser action

e Applications of Laser in welding, cutting, drilling and measurement of atmospheric
pollutants

Holography—recording and reconstruction of 3-D images and applications

5.1 INTRODUCTION

Laser is an acronym for Light Amplification by Stimulated Emission of Radiation. In 1917, based on
thermodynamic equilibrium between atoms and radiation, Albert Einstein predicted that there are
two kinds of light emission from matter, namely spontaneous and stimulated emissions. He further
proved that both spontaneous emission and stimulated emission are necessary to derive Planck’s
Quantum theory of radiation, which is the basis for theoretical prediction of Laser. In 1960, Charles
Towner demonstrated experimentally stimulated emission for first time at Microwave frequencies as
MASER and received Noble prize in 1964. In the same year, Theodore Maiman demonstrated stimulated
emission based LASER in optical frequencies using Ruby rod as lasing medium, and Ali Javan and his
co-workers constructed laser device using He-Ne gas as lasing medium. In 1962, lasing action using
semiconductor medium was invented. Since then a variety of materials were used to demonstrate
lasing action using liquids, ionized gases, dyes etc.
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5.1.1 Characteristics of Laser

Some of the unique characteristics of lasers which are different from ordinary incoherent light are:
1) Directionality
2) High intensity
3
4) High degree of coherence

~

Monochromacity and

(
(
(
(

Directionality

Any conventional light source like incandescent light emits radiations in all direction whereas a laser
source emits radiation only in one direction. The directionality of the laser beam is generally expressed
in terms of full angle beam divergence which is twice the angle that the outer edge of the beam makes
with the axis of the beam. The outer edge is defined as a point at which the intensity (I) of the beam
drops to 1/e times its value at the centre.

I/e

I/e
Figure 5.1 Gaussian beam

A Gaussian shape of laser beam is shown in Fig. 5.1 and the full angle divergence in terms of

minimum spot size of radius w, is given by
¢ =127 %/ 2w, (5.1)

where A is the wavelength of the beam. For a typical planar wavefront emerging from an aperture of
diameter d, it propagates as a parallel beam for a distance of d?/A called the Rayleigh’s range, beyond
which the beam due to diffraction diverges with an angular spread of A¢p = A/d. For a typical laser the
beam divergence is less than 0.01 milliradian, i.e. a laser beam spreads less than 0.01 millimeter for
every metre. However, on the other hand, for ordinary light the spread is 1m for every 1 m of travel.

If a, and a, are the diameters of laser radiation at distances d, and d, from a laser source respectively,
then the angle of beam divergence in degrees is given by

¢=@,-2a)/2d,-d) .(5.2)

Intensity

A laser emits light radiation into a narrow beam, and its energy is concentrated in a small region. This
concentration of energy both spatially and spectrally accounts for the great intensity of lasers. It can be
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shown that even a one-watt laser would appear many thousand times more intense than a 100 watt
ordinary lamp. If we compare the number of photons emitted in one second from a square centimetre
of a surface of a laser source with those from an ordinary source, the ratio is of the order of 10?® to 10".

Monochromacity

The light from a laser source is highly monochromatic compared to light from a conventional incoherent
monochromatic source. The monochromacity is related to the wavelength spread of radiation given by

AN = (-¢/f2) Af (5.3 ()

The value of AM is in the order of 300 nm for white light, 0.01 nm for gas discharge lamp, while
it is 0.0001 nm for laser.

Coherence

Laser radiation is characterized by a high degree of ordering of the light field compared to radiation
from other sources. In other words, laser light has a high degree of coherence, both spatial and temporal.
Spatial coherence, also called transverse coherence, describes how far apart two sources or two portions
of the same source can be located in a direction transverse to the direction of observation and still
exhibit coherent properties over a range of observation points. The high degree of coherence of laser
radiation makes it possible to realise a tremendous spatial concentration of light power such as 10%* watt
in a space with linear dimensions of only 1 pm.

The temporal coherence on the other hand, normally refers to the relative phase or the coherence
of two waves at two separate locations along the propagation direction of the two beams. It is sometimes
referred to as longitudinal coherence. If we assume that two waves are exactly in phase at the first
location, then they will maintain the same phase at the second location up to a distance 1. where 1 _ is
defined as the coherence length. For white light the coherence length is of the order of hundred nm
while for monochromatic incoherent light its value is of hundred microns. For lasers the value of
coherence length is of the order of several metres.

The relationship between coherence length, wavelength and wavelength spread is given by:

}\’Z
b ™ (5.3 (b))

The above characteristics of lasers supported their unprecedented scientific and technological
application. Thus lasers have been used in telecommunications, meteorology, metrology, biology,
cybernetics, optical computations etc.

5.2 PRINCIPLE AND PRODUCTION OF LASER
5.2.1 Induced Absorption

In 1917, Albert Einstein showed that an atom can absorb a photon of energy, hf, from an external
radiation field and make a transition from a lower energy state, E,, to a higher state, E,, where E,-E, = hf.
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This process is called induced absorption or stimulated absorption (Fig. 5.2 (a)). The probability of
absorption of radiation P, from state 1(ground state) to state 2 (excited state) is proportional to the
energy density of external radiation u( f) and the number of electrons N, in the ground state.

Thus P, o N u(f) = B]ZN]u(f) ..(5.4)
where B, is proportionality constant called Einstein’s coefficient for absorption of radiation.
Atom + Photon => Atom*

where a* represents an excited atom.

5.2.2 Spontaneous Emission

When an atom is in excited state (higher energy state 2 of energy E,), it can make a transition to lower
energy state 1 of energy E, spontaneously, without any external radiation field. During such transition
from higher energy state to lower energy state the atom emits radiation and such process is called
spontaneous emission. The probable rate of spontaneous emission is proportional to number of electrons
in excited state.

Thus P, aN =A N ..(5.5)

Where A, is proportionality constant called Einstein’s coefficient for spontaneous emission.
Atom* => Atom + Photon

Thus in spontaneous emission

(i) The emitted photon has energy hf and can move in any random direction.

(i) The photons emitted from various atoms in the assembly have no phase relationship between
them and hence are incoherent.

(iii) The rate at which electrons fall from excited level E, to lower level E, is at every instant
proportional to the number of electrons remaining in E,.

(iv) The transition probability depends only on number of electrons in excited state.

5.2.3 Stimulated Emission

In addition to spontaneous emission, which is independent of the radiation density, another kind of
emission can occur that is dependent on the external radiation density. If a photon of energy hf interacts
with an atom when it is in higher energy level 2, the electric field associated with this photon can
stimulate or induce atomic emission such that the emitted electromagnetic wave (photon) vibrates in-
phase with the stimulating wave (photon) and travels in the same direction. This phenomenon is called
stimulated emission. Two such photons are said to be coherent.

Atom* + Photon => Atom + 2 Photon

The probable rate of stimulated emission depends on radiation density of external radiation and
the number of atoms in higher energy level 2.
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Thus P, a N, u() = B, N, u(f) ...(5.6)

where B, is Einstein’s coefficient of stimulated emission. Fig. 5.2 summarizes the three processes
of absorption, spontaneous emission, and stimulated emission.

Energy E,-E, = hf
Ez S E—— 'E",1 B — E2
rf_r, ot YA o
[aVaWVar 2 A Ih
hf hf AN T
Y A 4 E
Absorption Spontaneous ' Stimulated
emission emission
(a) (b) (©

Figure 5.2 The processes of (a) induced absorption and (b) spontaneous emission. The lifetime of
the upper state is t s, and the photon is emitted in a random direction (c) stimulated emission

Hence in stimulated (or induced) emission:
(i) For every incident photon, two photons will be emitted moving in the same direction.
(ii) The emitted photons travel in the direction of the incident photon.
Thus the emitted photons have the same frequency and are in phase with the incident photon.
The rate of stimulated emission is proportional to:
(i)  The instantaneous number of atoms in the excited state E,.

(ii) The energy density of the incident radiation.

5.2.4 Einstein’s Coefficients (expression for energy density)

Consider a mixture of atoms and radiation in thermal equilibrium at temperature T. Let N, and N,
are the number of atoms of the energy levels E, and E, respectively and using Eqns. (5.4), (5.5), and
(5.6), we write:

Number of atoms going from 1 to 2 per unit time = N u()B,,

Number of atoms going from 2 to 1 per unit time spontaneously = N A |

Number of atoms going from 2 to 1 per unit time by stimulated emission = N,u(f)B,,

At thermal equilibrium, the number of upward transitions per unit time must equal to the number
of downward transitions per unit time, we have

Nu(B,, = NA, + Nu()B,

PR

u(f) [N,B,, - N,B, 1= NA,

272
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u) =NA, /[NB, - N,B,] (57)
Dividing throughout by N,B, , Eq. (5.7) becomes
u) = A,/ B,1/INB,/NB,) - 1] .(5.8)

According to Boltzmann distribution law, the number of atoms N, and N, in energy states E, and
E, in thermal equilibrium at temperature T are given by

: E, kT
N, =N, e E/KT and N,=N,e 2/

Where N is the total number of atoms present in the ground state and k is Boltzmann’s constant.

or M =/ ...(5.9)
N,
where hf=E, - E,

Using Eqn. (5.9) in Eqn. (5.8) we get,
B Lid
u() = [A,/B,]/ | =% [eT]-1 ..(5.10)
B,
which is the expression for energy density in terms of Einstein’s coefficients.
Comparing Eqgn. (5.10) with the Planck’s radiation formula given by
3 i
u(f){ﬂ}/ {[e”]—l} .(5.11)

C

which is the expression for energy density.

Comparing Egns. (5.9) and (5.10), we find the interesting results

B/B,=1 or BB, 5.12)
A,  8mhf’
and B,, B ..(5.13)

Eqn. 5.12 states that any atom that has a finite probability per unit time of absorption has an equal
probability of stimulated emission. Eqns (5.12) and (5.13) are called Einstein’s relations.

From Eqn. (5.13), the ratio of spontaneous emission to stimulated emission is proportional to f>. It
means that the probability of spontaneous emission dominates over the spontaneous emission more and
more as the energy difference between two energy states increases.

Also, Using Eqns. (5.5) and (5.6), we can write the ratio of spontaneous emission to stimulated
emission as:

R=NA/NB, uf) = A/ B, uf) ()

Using the Eqns. (5.10) and (5.13) we can write that
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hf
R=A,/B, uf) = |[T]-1 (D)

KT
Case 1: When f<< i i.e., at low frequency, stimulated emission exceeds the spontaneous emission.

KT
Case 2: When f >> n i.e., at high frequency, spontaneous emission exceeds stimulated emission.

5.2.5 Requisites of a Laser System
(1) Population Inversion and Laser Action

Since B, = B,, there is an equal probability that a photon will cause an upward (absorption) or downward
(stimulated emission) atomic transition.

When light is incident on a system of atoms in thermal equilibrium, there is usually a net absorption
of energy since, according to the Boltzmann distribution, there are more atoms in the ground state than
in excited states. However, if one can invert the situation so that there are more atoms in an excited state
than in a lower state-a condition called population inversion—amplification of photons can result.
Under the proper conditions, a single input photon can result in a cascade of stimulated photons, all of
which are in-phase, traveling in the same direction and of the same frequency as the input photon.
Since the device that does this is a light amplifier, it is called a laser, an acronym for light amplification
by stimulated emission of radiation.

Consider an energy state E containing N atoms per unit volume. This number N is called population
and is given by Boltzmann’s equation

N = N, etAT (5.14)

where N is the population of the ground state with E = 0, k is the Boltzmann’s constant and T is
the absolute temperature.

From Eqn. (5.14), it is clear that the population is maximum in the ground state and decrease
exponentially as we go to a higher energy state.

If N, is the population in energy state E, N, in E, then

Nl = No eiEl/kT and Nz = NO eiEZ/kT
N, o BAT
FZ - = ..(5.15)
1
Nz - I\]1 e’(Ez’El)/kT ..(5.16)
where E,>E,N, <N,

As N, > N, therefore, if an electromagnetic radiation is incident on the substance at the thermal
equilibrium condition, then there is net absorption of radiation.
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Usually the population of atoms decreases with the increase in energy of the state.
If N, N,, N, are the populations in energy states E , E,, E, respectively such that E <E, <E,, then
N, >N, > N,. This situation is shown in Fig. 5.3(a).

[T N

—»E

RO N,

E, NN

—»N —»N
(a) Normal population of a (b) Inverted population of a
system (N, > N,) system (N, > N,)

Figure 5.3 Population of atoms

If the process of stimulated emission predominates over the process of spontaneous emission, it
may then be possible that N, > N . If this happens then the state is called the population inversion. In the
state of populated inversion the upper levels are more populated than the lower levels. Fig. 5.3(b)
represents a state in which N, > N . i.e. the state of population inversion. To achieve population inversion
the external energy is supplied to excite the atoms of the substance. In some substances which contain
metastable states, population inversion condition is achieved practically.

(2) Pumping

The population inversion can be achieved by exciting the laser medium with a suitable form of
energy. This process is called pumping. There are several methods of pumping a laser medium and
producing population inversion necessary for the occurrence of stimulated emission. Some of the commonly
used methods are:

(i) Optical pumping

(ii) Electrical discharge

(iii) Inelastic atom-atom collision
(iv) Direct conversion

(v) Chemical reactions
Optical pumping

If luminous energy is supplied to a medium for causing population inversion, then the pumping is called
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the optical pumping. In optical pumping the luminous energy usually comes from a light source in the
form of short flashes of light. The optical pumping mechanism is used for lasing material having
broadband higher energy levels as in Ruby laser or in Nd:YAG laser.

Electrical discharge

The pumping by electric discharge is preferred in lasing materials whose higher energy levels have a
narrow bandwidth, e.g. Argon-ion laser. When a potential difference is applied between cathode and
anode in a discharge tube, the electrons emitted from cathode are accelerated towards anode. Some of
these electrons collide with atoms of the active medium, ionize the medium and raise it to the higher
level. This produces the required population inversion. This is also called direct-electron excitation.

Inelastic atom-atom collision

In electric discharge one type of atoms are raised to their excited state. These atom collide inelastically
with another type of atoms. The latter atom provide the population inversion needed for laser emission.
The example is He-Ne laser.

Direct conversion

A direct conversion of electrical energy into radiant energy occurs in light emitting diodes (LEDs). The
example of population inversion by direct collision occurs in semiconductor lasers.

Chemical conversion

In a chemical laser, energy comes from a chemical reaction without any need for other energy sources.
For example, hydrogen can combine with flourine to form hydrogen-fluoride :

H,+F, —> 2HF

This reaction is used to pump a CO, laser to achieve population inversion.

5.2.6 Components and Condition for Laser action
(i) The pumping source
(ii) The active medium
(iii) The optical resonator
Although there are many different types of lasers, most lasers have certain essential features:
(i) The pumping source:

An energy source capable of producing either pulsed or continuous population inversions. In the
case of the Helium-Neon gas laser, the energy source is an electrical discharge that imparts energy by
electron-atom collisions.

In the case of the ruby crystal laser, the population inversion is produced by intense flashes of
broadband illumination from flash lamps. The process of excitation with intense illumination is called
optical pumping.
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(ii) The active medium:

A lasing medium with at least three energy levels: a ground state; an intermediate (metastable) state
with a relatively long lifetime, t; and a high energy pump state (Fig. 5.4). To obtain population inversion,
t, must be greater than t, the lifetime of the pump state E,. It should be noted that amplification cannot
be obtained with only two levels, because such a system cannot support a population inversion. At most,
with extremely intense optical pumping we can increase the population of the upper state in a two-level
system until it equals the population of the lower state.

—% E, (pump state), t,
E Fast decay
— E, (metastable state), t, > t,

hf, hf
(VaVaved VAVAV &
Pump Laser output
input

f__ E, (ground state)

Figure 5.4 Athree-level laser system. t, is the lifetime of the state E,,
and t_ is the lifetime of the state E,

Further pumping serves only to excite as many downward transitions as upward transitions, since
the probability of absorption is equal to the probability of stimulated emission for a given transition. For
a population inversion to be produced, energy absorption must occur for a transition different from the
transition undergoing stimulated emission—thus the need for at least a three-level system.

(iii) The optical resonator:

A method for holding the initially emitted photons within the laser so that they can stimulate
further emission from other excited atoms. In practice this is usually achieved by placing mirrors at the
ends of the lasing medium so that photons make multiple passes through the laser. Thus the laser may
be thought of as an optical resonator or oscillator with two opposing reflectors at right angles to the
laser beam. The oscillation consists of a plane wave bouncing back and forth between the reflectors in
either longitudinal or transverse mode as shown in Fig. 5.5 (a) and (b). The oppositely traveling plane
waves, in turn, generate a highly monochromatic standing wave, which is strongest at resonance when
an integral number of half-wavelengths just fits between the reflectors (Fig. 5.5). To extract a highly
collimated beam from the laser, one of the parallel mirrors is made slightly transmitting so that a small
amount of energy leaks out of the cavity.
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1 / /.

(b)

Figure 5.5 Cavity modes in a laser (a) Longitudinal modes have L = mA/2, where m is an integer, 1
is the laser wavelength in the laser material, and L is the distance between the two mirrors (b)
Modes with transverse components can exist if both ends and sides of the laser are made
reflective. Arrows show the direction of propagation of light rays

These three features of lasers lead to the unique characteristics of laser light that make it a much
more powerful technological tool than light from ordinary sources.

What is metastable state ?

The existence of metastable levels follows from quantum mechanical considerations and can be
explained the term “forbidden transition.” The mechanism by which energy exchange takes place between
an atom and the electromagnetic fields is the dipole radiation. As a consequence of quantummechanical
considerations and the ensuing selection rules, transfer between certain states cannot occur due to
forbidden transitions. The term “forbidden” means that a transition among the states concerned does
not take place as a result of the interaction of the electric dipole moment of the atom with the radiation
field. As a result of the selection rules, an atom may get into an excited state from which it will have
difficulty returning to the ground state. A state from which all dipole transitions to lower energy states
are forbidden is metastable state. An atom entering such a state will generally remain in that state much
longer time (upto 107 sec) than it would in an ordinary excited state (up to 108 sec) from which escape
is comparatively easy.

In the absence of a metastable level, the ions which become excited by pump radiation and are transferred
to a higher energy level will return either directly to the ground state by spontaneous radiation or by cascading
down on intermediate levels, or they may release energy by phonon interaction with the lattice.

5.2.7 Types of Lasers

Lasers are divided into different types based on the lasing materials used. Accordingly the important
types of lasers are Solid state lasers, gas lasers, and semiconductor lasers. Most of the lasers emit light in
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IR or visible region, work in Continuous wave (CW) mode or in pulsed mode. Table 5.1 gives some
important types of Lasers with examples.

Table 5.1 Types of Lasers with Examples

S. No. Type of lasers Examples with Wavelength of emission

1 Solid state lasers Ruby laser (A = 0.6928 pum)
CaF, laser (A = 2.49 pum)
Nd:YAG laser (A = 1.064 um)
Nd:Glass laser (A = 1.6928 pm)

2 Gas lasers He-Ne laser (A ~ 0.633 pum)
Cu—vapour laser (A = 0.5106 um)
3 lon lasers Argon ion laser (A = 0.4881 pm and A = 0.5145 pm.

Power up to 100 W)

4 Metal vapour laser He-Cd laser (A = 0.4416 pum. Power up to 300 mW)
Molecular gas laser CO, laser—invented by C.K.N. Patel in 1963.

(A = 10.6 um, Power = 1 kW)

Nitrogen laser (A = 0.3371 pm)

Hydrogen laser (A = 0.116 pum)

6 Excimer laser Xenon excimer laser (A = 0.172 pum), power = 15 MW
Argon excimer laser (A = 0.126 pum) power = several MW/

7 Semiconductor lasers | GaAs laser (A = visible and IR region)

5.3 He-Ne LASER

The Helium-Neon laser was the first continuous wave (CW) laser. It was invented by Ali Javan and his
co-workers in 1961 at the Bell Telephone Laboratory, New Jersey. The most common and inexpensive
gas laser, the helium-neon laser is a four level laser and usually constructed to operate in the red at 632.8
nm. It can also be constructed to produce laser action in the green at 543.5 nm and in the infrared at
1523 nm. The collimation of the beam is accomplished by mirrors on each end of the evacuated glass
tube which contains about 85% helium and 15% neon gas at 1/300 atmospheres pressure.

5.3.1 Principle

The Helium-Neon laser is a four level laser. The energy level diagram is shown in Fig. 5.6. The left side
of the representation shows the lower levels of the helium atoms. A characteristic of helium is that its
first states to be excited, 2'S, and 2'S  are metastable, i.e. optical transitions to the ground state 1'S are
not allowed. The atoms can be excited to metastable state by means of electron collision provided by
electric discharge. Apart from the electron collision, the electric discharge pumping also supports the
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atomic collision in which, an excited helium atom reaches back to the ground state by transferring its
energy to excite Ne atom and creates population inversion in the Ne system. The population inversion
in Ne leads to laser transition.

21- Helum Neon
Bp o7 N
orson Laser transition
T He->N
207 5, I 63L8am
Energy Sl Ip
(V) Electron
18 lmpact spontaneour
Emission
1T 15 o
P recombination
1 impact
0+ 1

Figure 5.6 Excitation and laser process for the visible laser emission

5.3.2 Construction

The setup consists of a discharge tube of length 50 cm and bore diameter of 0.5 cm (Fig. 5.7). The gain
medium of the laser, as suggested by its name, is a mixture of helium and neon gases, in a ratio 5:1,
contained at low pressure (an average of 1 torr) in a glass envelope. The energy or pump source of the laser
is provided by an electrical discharge of around 1000 volts through an anode and cathode at each end of
the glass tube. A current of 5 to 100 mA is typical for CW operation. The optical cavity of the laser typically
consists of a plane, high-reflecting mirror at one end of the laser tube, and a concave output coupler
mitror of approximately 1% transmission at the other end. He-Ne lasers are normally small, with cavity
lengths of around 15 cm up to 0.5 m, and optical output powers ranging from 1 mW to 100 mW.

Cathode

Laser

output Helium-neon gas rese